$ PHO066-Skoudis.book Page 1 Monday, September 29, 2003 2:03 PM

INntroduction

T he shrieking sound of my alarm clock startled me awake that morn-
ing. I had been having a strange dream in which computers controlled
the world by creating a virtual reality simulation designed to imprison
humans. Shaking off my dream, I prepared for another day at work. As
usual, I groggily logged into my system to wade through the flood of e-
mail that accumulates every night, looking for the real messages requir-
ing “urgent” attention. While sorting through my e-mail, though, I real-
ized my system didn’t seem quite right. My computer was sluggish, not
its usual snappy self.

I looked for aberrant programs sucking up extra CPU cycles, but
found none that had gone awry. It was as though someone or some-
thing had snagged hundreds and hundreds of Megahertz from my 2-
gigahertz processor. No visible programs were crunching the CPU; it
was as though a ghost had invaded my machine. Perhaps I had miscon-
figured something the night before and had accidentally started a per-
formance death spiral.

I spent the next few hours scouring my system looking for my mis-
take, but the system looked okay through and through. The config was
the same as it had been the morning before. Running a variety of
checks, I found no spurious programs, no strange files, and no unusual
network traffic.

Then, I started to question the reality of what my machine was tell-
ing me about itself. Perhaps I'd been attacked, and the bad guy was
tricking me. What if all the checks I was running were actually using the
attacker’s own code, which lied and told me that everything looked

1

<@

e .

$ PHO066-Skoudis.book Page 2 Monday, September 29, 2003 2:03 PM

2 Chapter 1 » INTRODUCTION

good? I quickly backed up my system and booted to a CD-ROM 1
carry around for just such a problem. My handy-dandy CD was full of
diagnostic tools. I eagerly scanned my hard drive looking for anoma-
lies. Jackpot! The attacker had laced my system with malicious code
designed to hide itself!

The bad guy had run several invisible programs designed to use
my CPU in a brute-force cracking routine to determine the contents of a
hidden encrypted file that the attacker loaded onto my system. His pro-
gram was not only disguising itself, it was also guessing thousands of
keys per second in an attempt to break open the encrypted file so the
attacker could read it. I guess it was better for him to offload this proces-
sor-intensive activity to my machine and perhaps hundreds of others,
rather than to tie up his own precious CPU. To this day, I have no idea
of the contents of that mysterious encrypted file he was trying so des-
perately to open. I do, however, have a far greater sense of the mali-
cious code he had used against my system.

And, that, dear reader, is what this book is all about: malicious
code—how attackers install it, how they use it to evade detection, and
how you can peer through their nefarious schemes to keep your systems
safe. This book is designed to arm you with techniques and tools you
need for the prevention, detection, and handling of malicious code
attacks against your own computer systems and networks. We’ll discuss
how you can secure your systems in advance to stop such attacks, how
you can detect any maliciousness that seeps through your defenses, and
how you can analyze malware specimens that you encounter in the wild.

Defining the Problem

Malicious code planted on your computer gives an attacker remarkable
control over your machine. Also known as malware, the code can act
like an inside agent, carrying out the dastardly plan of an attacker inside
your computer. If an attacker can install malicious code on your com-
puters, or trick you into loading a malicious program, your very own
computer systems act as the attacker’s minions, doing the attacker’s bid-
ding. At the same time, your own systems don’t follow your commands
anymore. They are compromised, acting as evil double agents with real
loyalty to the bad guys.

Who needs a human inside collaborator when an attacker can use
malicious code to execute instructions on the inside? Human beings
infiltrating your organization could get caught, arrested, and interro-

:

e .

$ PHO66-Skoudis.book Page 3 Monday, September 29, 2003 2:03 PM $

Defining the Problem 3

gated. Malicious code, on the other hand, might just get discovered,
analyzed, and deleted, all of which are far better for the attacker than
having a captured human accomplice in jail starting to spill secrets.
Whether your organization is a commercial business, educational insti-
tution, government agency, or division of the military, malicious code
can do some real damage.

But let’s not get too far ahead of ourselves. So what is malware?
Many definitions are lurking out there. For this book, let’s use this
working definition:

Malware is a set of instructions that run on your computer and make your system
do something that an attacker wants it to do.

Let’s analyze this definition in a little more detail. First, what is a
“set of instructions”? Note that the definition doesn’t say software or
programs, because to many people, these terms imply some sort of
binary executable. Although much malicious code is implemented in
binary executables, the overall malicious code problem extends far
beyond that. Malicious code can be implemented in almost any con-
ceivable computer language, with the limitation being the imagination
of the computer attackers, and they tend to be quite an imaginative lot.
Attackers have subverted a huge variety of binary executable types,
scripting languages, word processing macro languages, and a host of
other instruction sets to create malicious code.

Considering our definition again, you might ask what malicious
code could make your computer do. Again, the sky’s the limit, with
very creative computer attackers devising new and ever more devious
techniques for their code. Malicious code running on your computer
could do any of the following:

* Delete sensitive configuration files from your hard drive, ren-
dering your computer completely inoperable.

* Infect your computer and use it as a jumping-off point to spread
to all of your friends’ computers, making you the Typhoid Mary
of the Internet.

* Monitor your keystrokes and let an attacker see everything you
type.

* Gather information about you, your computing habits, the Web
sites you visit, the time you stay connected, and so on.

* Send streaming video of your computer screen to an attacker,
who can essentially remotely look over your shoulder as you
use your computer.

:

e .

$ PHO66-Skoudis.book Page 4 Monday, September 29, 2003 2:03 PM

4 Chapter 1 » INTRODUCTION

* Grab video from an attached camera or audio from your
microphone and send it out to an attacker across the network,
turning you into the unwitting star of your own broadcast TV
or radio show.

» Execute an attacker’s commands on your system, just as if you
had run the commands yourself.

+ Steal files from your machine, especially sensitive ones contain-
ing personal, financial, or other sensitive information.

* Upload files onto your system, such as additional malicious
code, stolen data, pirated software, or pornography, turning
your system into a veritable cornucopia of illicit files for others
to access.

* Bounce off your system as a jumping-off point to attack another
machine, laundering the attacker’s true source location to throw
off law enforcement.

* Frame you for a crime, making all evidence of a caper commit-
ted by an attacker appear to point to you and your computer.

+ Conceal an attacker’s activities on your system, masking the
attacker’s presence by hiding files, processes, and network usage.

The possibilities are truly endless. This list is only a small sample
of what an attacker could do with malicious code. Indeed, malicious
code can do anything on your computer that you can, and perhaps
even everything that your operating system can. However, the mali-
cious code doesn’t have your best interests in mind. It does what the
attacker wants it to do.

Why Is Malicious Code So Prevalent?

Malicious code in the hands of a crafty attacker is indeed powerful. It’s
becoming even more of a problem because many of the very same fac-
tors fueling the evolution of the computer industry are making our sys-
tems even more vulnerable to malicious code. Specifically, malicious
code writers benefit from the trends toward mixing data and executable
instructions, increasingly homogenous computing environments, unprec-
edented connectivity, an ever-larger clueless user base, and an unfriendly
world. Let’s analyze each of these trends in more detail to see how we are
creating an environment much more susceptible to malicious code.

:

$ PHO066-Skoudis.book Page 5 Monday, September 29, 2003 2:03 PM

Why Is Malicious Code So Prevalent? 5

Mixing Data and Executable Instructions:
A Scary Combo

One of the primary reasons malicious code has flourished involves the
ways computers mix different kinds of information. At the highest level,
all information handled by modern computer systems can be broken
down into two very general types of content: data and executable instruc-
tions. Data is readable, but isn’t executed. The computer takes action on
such content. Executable instructions, on the other hand, tell your
machine ¢o take some action. This content tells the computer what to do. If
only we could keep these two types of information separate, we wouldn’t
have such a major problem with malicious code. Unfortunately, like a
child running with scissors, most computer systems and programs throw
caution to the wind and mix data and executable content thoroughly.

To understand the problems that mixing these types of informa-
tion can cause, consider the following data content:

Here’s the story... of a lovely lady

Who was bringing up three very lovely girls.

All of them had hair of gold... like their mother.
The youngest one in curls.

These lines are just plain data, meant to be heard at the start of a
classic TV show. Although this is certainly very entertaining fare, we
could jazz it up quite a bit if we add executable instructions to it. Sup-
pose we had a human scripting language (which we’ll abbreviate, HSL)
that would tell people what to do while they were listening to such a
song. We’d send the script right inside of the song for the sake of effi-
ciency and flexibility. We might embed executable instructions in the
form of a script in the next verse as follows:

Here’s the story... of a man named Brady
<start HSL script> Go get your checkbook. <stop HSL script>
Who was busy with three boys of his own.

<start HSL script> Write a big check for the author of this book.
<stop HSL script>

They were four men... living all together.
<start HSL script> Put the check in an envelope. <stop HSL script>
Yet they were all alone.

<start HSL script> Mail the envelope to the author of this book,
care of the publisher. <stop HSL script>

e

:

$ PHO66-Skoudis.book Page 6 Monday, September 29, 2003 2:03 PM

6 Chapter 1 » INTRODUCTION

If you were a clueless computer system, you might execute these
embedded instructions while singing along with the song. Unfortu-
nately for my checking account, however, you aren’t clueless; you are a
highly intelligent human being, able to carefully discern the impact of
your actions. Therefore, you probably looked at the song and reviewed
the embedded instructions, but didn’t blindly execute them. Maybe I
shouldn’t be too hasty here. If, after reading that whole verse of the
song, you do have an insatiable desire to send me money, go with your
instincts! Don’t let me stop you.

By mixing data with executable code, almost any information type
on your system could include malicious code waiting for its chance to
run and take over your machine. In the olden days, we just had to
worry about executable binary programs. Now, with our mixing mania,
every type of data is suspect, and every entry point for information
could be an opening for malicious code. So, why do software architects
and developers design computers that are so willing to mix data and
executable instructions? As with so many things in the computer busi-
ness, developers do it because it’s cool, flexible, efficient, and might
even help to increase market share. Additionally, some developers
overlook the fact that a portion of their user base might be malicious.
Let’s zoom in on each of these aspects.

Cool: Dynamic, Interactive Content

If content is both viewable and executable, it can be more dynamic,
interacting with a user in real time and even adapting to a specific envi-
ronment. Such attributes in a computing system can be very powerful
and profoundly cool. A classic illustration of this argument is the inclu-
sion of various scripting languages embedded in Web pages. Plain,
vanilla HTML can be used to create static Web pages. However, by
extending HTML to include Javascript, VBScript, and other languages,
Web site developers can create far more lively Web pages. With the
appropriate scripts, such Web pages can feature animation and alter
their behavior based on user input. Whole applications can be devel-
oped and seamlessly transmitted across the Web. That’s just plain cool.

Flexible: Extendable Functionality

Beyond cool, by including its own custom language in addition to view-
able data, a program can be extended by users and other developers in
ways that the original program creator never envisioned. These exten-
sions could make the program far more useful than it would otherwise

:

e .

$ PHO66-Skoudis.book Page 7 Monday, September 29, 2003 2:03 PM $

Why Is Malicious Code So Prevalent? 7

be. This concept is illustrated in various Microsoft Office® products
that include macro languages, such as the Microsoft Word® word pro-
cessor and the Microsoft Excel® spreadsheet. Developers can write
small programs called macros that live inside of a document or spread-
sheet. The resulting file can be turned from a mere document into an
interactive form, checking user input for accuracy rather than just dis-
playing data. It could even be considered a simple application, intelli-
gently interacting with users and automatically populating various fields
based on user input. However, this concept isn’t limited to the
Microsoft world. Many printers use PostScript, a language for defining
page layout for display or printing. With a full language to describe
page layout instead of just static images, developers can create far richer
content. For example, using just PostScript, a developer can write a
page that accesses the local file system to read data while rendering a
picture. This functionality is certainly flexible but an attacker could sub-
vert it by using it as a vehicle for malicious code.

Efficient: Flexible Software Building Blocks

By mixing executable instructions and data, developers can create small
and simple software building blocks that can be tied together to create
larger software projects. That’s the idea behind object-oriented pro-
gramming, a software concept that is infused in most major computer
systems today. Instead of the old-fashioned separation of code and data,
object-oriented programs create little . . . well, objects. Objects contain
data that can be read, as you might expect. However, objects also
include various actions that they can take on their own embedded data.
Suppose, as an example, we have a virtual hamster object that includes
a picture of a cuddly little hamster as data. This hypothetical object
might also include some executable code called Feed Hamster that
runs and makes the hamster bigger. We could run lots of virtual ham-
ster objects to create an entire community of the little virtual critters. By
abusing the Feed_Hamster code, however, an attacker might be able to
make the virtual hamster explode!

The object-oriented development paradigm is efficient because the
objects I create can be used in a variety of different programs by me
and other developers. Each sits on the shelf like a little building block,
ready to be used and reused in many possibly disparate applications,
such as a virtual hamster cage, a virtual traveling hamster circus, or
even a simulation of virtual hamsters exhausting all resources in an
environmental study.

:

e .

$ PHO066-Skoudis.book Page 8 Monday, September 29, 2003 2:03 PM

8 Chapter 1 » INTRODUCTION

Market Share: Making the Software World
Go 'Round

Given all of the advantages of mixing data and executable instructions
just described, the people who create computer systems know that a
successful platform that mixes executable code and data can gain mar-
ket share. Developers who realize the coolness, flexibility, and efficien-
cies of a platform will start to develop programs in it. With more
developers working on your platform, you are more likely to get more
customers buying your platform and the tools needed to support it.
Viola! The creators of the platform realize increased market share,
fame, and untold riches. Microsoft Windows itself is a classic example.
The Windows operating system mixes executables and data all over the
file system, but it is flexible enough that it has become a de facto stan-
dard for software development around the world.

Each of these factors is driving the computer industry ever deeper
into combining data and executable instructions. As evidence, two of
the hottest buzzwords this decade are Web services. Web services are
an environment that allows applications distributed across the Internet
to exchange data and executable code for seamless processing on multi-
ple sites at the same time. With Web services, applications shoot bun-
dles of executable instructions and data to each other across the
network using eXtensible Markup Language (XML). My Web server
might receive some XML from your server and execute the embedded
instructions to conduct a search on your behalf. I sure hope you don’t
flood my systems with malicious code in your XML! Although it has
been designed with a thorough security model, the Web services jugger-
naut promises to more thoroughly mix executable instructions and data
at a level we’ve never seen before, potentially giving malicious code a
new and deeper foothold on our systems.

In fact, with the way the computer industry is evolving, the separa-
tion of data and executable instructions seems almost passé. However,
we face the rather significant problem of malicious code. A nasty per-
son could write a series of instructions designed to accomplish some
evil goal unanticipated by the developers of the language and users of
the computer. These malicious instructions can be fed directly into
some executable component of a target system, or they could be
embedded in otherwise non-executable data and fed to the target. In
fact, a majority of the malicious code examples covered in this book
function just this way.

:

$ PHO66-Skoudis.book Page 9 Monday, September 29, 2003 2:03 PM

Why Is Malicious Code So Prevalent? 9

Malicious Users

Some developers write code assuming that users are kind, gentle souls,
going about their day-to-day business with the purest of intentions.
Because they expect their software to live in such a benign environ-
ment, developers often don’t check the input from users to see if it
would undermine the system. Of course, in the real world, the vast
majority of systems are exposed to at least some malevolent users. An
application on the Internet faces attack from the general public, as well
as unscrupulous customers of the system. Even internal applications
face disgruntled employees who might try to break the system from the
inside out.

If a program isn’t written with firm defenses in mind, an attacker
could manipulate the system by providing executable instructions
inside of user input. The attacker could then trick the system into run-
ning the executable instructions, thereby taking the machine over. In
fact, this is precisely how numerous popular exploit techniques work.

For example, when a software developer doesn’t check the size of
user input, an attacker could provide oversized input, resulting in a
buffer overflow attack. Buffer overflow vulnerabilities are extremely
common, with new flaws discovered almost daily. To exploit a buffer
overflow, an attacker provides user input that includes executable
instructions to run on the victim machine. This malicious, executable
input is large enough to overwrite certain data structures on the victim
machine that control the flow of execution of code on the box. The
attacker also embeds information in the user input that alters this flow
of execution on the target system, so that the attacker’s own code runs.
By taking user input (which should be data) and treating it as executable
instructions, the system falls under the attacker’s control.

Beyond buffer overflows, consider web applications, such as
online banking, electronic government, or other services, that utilize a
Structured Query Language (SQL) database to store information. In a
SQL injection attack against such applications, a bad guy sends data-
base commands inside of user input. The user might be expected to
provide an account number, but an attacker instead provides a line of
SQL code that dumps information from the database in an unautho-
rized fashion. If the application doesn’t screen out such a command, the
database will execute it, giving the attacker raw access to a Web appli-
cation’s database. Again, because we have mixed executable instruc-
tions with user input, we’ve exposed our systems to attack.

:

e .

$ PHO066-Skoudis.book Page 10 Monday, September 29, 2003 2:03 PM

10 Chapter 1 » INTRODUCTION

Buffer overflows and SQL injection are but the tip of this exploit
iceberg. Attackers have numerous vectors to sneak executable code into
our systems along with standard user input. Clearly, developers must be
extremely careful in the mixing of data and executable instructions, or
else their systems will be highly vulnerable to attack.

Increasingly Homogeneous Computing Environments

Another trend contributing to the increasing problem of malicious code
is the fact that we’re all running the same types of computers and net-
works these days. Two decades ago, way back when pterodactyls flew
the skies over the Earth, there were a lot of different kinds of computers
and networks running around. We had minis, mainframes, and PCs, all
with a huge variety of different operating system types and supported
network protocols. There were numerous types of processor chips as
well, with the Intel, Motorola, MIPS, Alpha, and Sparc lines being but a
handful of examples. Malicious code back then could only attack a lim-
ited population. One of the single biggest impediments to the propaga-
tion of malicious code is a diverse computing base. My Apple II virus
would be a fish out of water on your IBM mainframe. Likewise, if my
evil worm expects certain support from a specific host operating sys-
tem, and doesn’t find that on your machine, it cannot take over.

Now, however, things have changed. The computer revolution has
brought a major consolidation in platform types and networks. It seems
that everything runs on Windows or UNIX, and uses TCP/IP to com-
municate. Processors based on Intel’s x86 instruction set seem to domi-
nate the planet. Even those increasingly rare holdout systems that don’t
rely on these standards (such as a pure MVS mainframe or a VAX box)
are still probably accessed through a UNIX or Windows system front
end, running an Intel processor or clone, on a TCP/IP network. Even at
the application level, we see widespread support of HTML, Java, and
PDF files across a number of different application types.

And things are poised to condense even more. Several of the major
UNIX vendors, including IBM (maker of the AIX flavor of UNIX), Sun
Microsystems (of Solaris UNIX fame), and HP (owner of the HP-UX
variety of UNIX) have announced their increasing support of Linux.
Although AIX, Solaris, and HP-UX haven’t been abandoned, Linux
appears to be the wave of the future for UNIX-like environments.

What does this trend mean for malicious code? A homogenous
computing environment is extremely fertile soil for malicious code. The
evil little program I wrote on my $400 beat-up Linux laptop could

:

e .

$ PHO66-Skoudis.book Page 11 Monday, September 29, 2003 2:03 PM $

Why Is Malicious Code So Prevalent? 11

infect your gazillion-dollar mainframe running Linux. Likewise, a
nation-state could create some malicious code that would infect a hun-
dred million Windows boxes worldwide. Because our computing eco-
system has less diversity, a single piece of malicious code could have an
immense impact.

Unprecedented Connectivity

At the same time we’re condensing on a small number of operating
systems and protocols, we’re greatly increasing our interconnected-
ness. We used to see islands of computer connectivity. My corporate
network wasn’t jacked into your government network. The phone sys-
tem didn’t have indirect data connections with university machines.
The automatic teller machine (ATM) network was carefully segmented
from the Internet.

My, how that has changed! Now, it seems that all computers are
connected together, whether we want them to be or not. My laptop is
connected to the Internet, which is connected to a pharmaceutical com-
pany’s DMZ, which connects to their internal network, which connects
to their manufacturing plant network, which connects to their manufac-
turing systems, which make the medicines we all give to our children.
Malicious code could jump from system to system, quickly wreaking
havoc throughout that supply line.

Two major computer glitches illustrate this concept of unwanted
hyperconnectivity. Back in 1999, off the coast of Guam, a United States
Navy ship detected the Melissa macro-virus on board [1]. Somehow,
due to unprecedented connectivity, the unclassified network of the USS
Blue Ridge was under attack from Melissa, out in the middle of the water
halfway around the world! Additionally, in January 2003, the SQL
Slammer worm started ripping through the Internet, sucking up mas-
sive amounts of bandwidth. During its voracious spread, it managed to
hop into some cash machine networks. By tying up links on the ATM
network, more than 13,000 cash machines in North America were out
of commission for several hours. The same worm managed to impact
police, fire, and emergency 911 services as well. Both of these examples
show how easily malicious code can spread to computer systems that
aren’t obviously connected together.

:

$ PHO066-Skoudis.book Page 12 Monday, September 29, 2003 2:03 PM

12 Chapter 1 » INTRODUCTION

Ever Larger Clueless User Base

In the last decade, the knowledge base of the average computer user
has declined significantly. At the same time, their computers and net-
work connections have grown more powerful and become even juicier
targets for an attacker. Today’s average computer users don’t under-
stand the complexities of their own machines and the risks posed by
malicious code. I don’t think we in the computer industry should
design systems that expect users to understand their systems at a fine-
grained level. The average Joe or Jane User wants to treat his or her
computer like an appliance, in a manner similar to a refrigerator or a
stereo. Who could imagine a refrigerator that can get a virus, or a
worm infecting a stereo?

However, our computers and protocols have been built around an
assumption that users will understand the concerns and trade-offs asso-
ciated with various risky behaviors such as downloading code from the
Internet and installing it, surfing to Web sites that might hose a system,
and not applying patches to system software and applications. For most
users, that’s a pretty poor assumption. We have made systems that, at
best, offer a poorly worded techno-babble warning to Joe and Jane User
as they run highly risky software or forget to apply a system patch that
they don’t understand and typically ignore. Most of the time, there is no
warning at all! We shouldn’t be surprised when malicious code prolifer-
ates in such an environment.

The World Just Isn't a Friendly Place

I don’t know if you’ve noticed it, but the world can be a pretty
unfriendly place. Over the past couple years, international events have
underscored the fact that we live in a tremendously unstable world.
We’ve had wars and terrorism for millennia, but international “inci-
dents” sure seem to have intensified in recent times.

Although I’d hate to see it, it’s conceivable that terrorist organiza-
tions could move beyond physical attacks and attempt to undermine
the computing infrastructure of a target country. Beyond the terrorist
threat, we also face the possibility of a cyberattack associated with mili-
tary action between countries. In addition to lobbing bullets and
bombs, countries could turn to cyberattacks in an attempt to disable
their adversaries’ military and civilian computer infrastructure. Coun-
tries around the world are spending billions of dollars on cyberwarfare
capabilities. I don’t want to be too much of a pessimist. However, it

:

e .

$ PHO66-Skoudis.book Page 13 Monday, September 29, 2003 2:03 PM

Types of Malicious Code 13

seems to me highly likely that malicious code, with its ability to clog
networks and even let an attacker take over systems, will be turned into
a weapon of war or terror in the future, if it hasn’t already.

Types of Malicious Code

On that cheery note, we turn our attention to the multitude of malicious
code categories available to attackers today. About a decade ago, when
I first started working in computer security, I was overwhelmed at all of
the avenues available to an attacker for squeezing executable instruc-
tions into a target machine. An attacker could shoot scripts across the
Web, overflow buffers with executable commands, send programs in e-
mail, overwrite my operating system, tweak my kernel ... all of the dif-
ferent possibilities boggled my mind. And the possibilities have only
increased in the last 10 years. Each mechanism used by the bad guys for
implementation and delivery of malicious code is quite different, and
requires specific understanding and defenses.

As an overview to the rest of the book, let’s take a look at the differ-
ent categories of malicious code. Think of me as a zookeeper taking you
to look at some ferocious animals. Right now, we’ll take a brisk walk past
the cages of a variety of these beasties. Later, throughout the rest of this
book, we’ll get a chance to study each specimen in much more detail.
The major categories of malicious code, as well as their defining charac-
teristics and significant examples, are shown in Table 1.1. Note that the
defining characteristics are based on the mechanisms used by the mali-
cious code to spread, as well as the impact it has on the target system.
Keep in mind that some malware crosses the boundaries between these
individual definitions, a theme we’ll discuss in more detail in Chapter 9.

Table 1.1
Types of Malicious Code
ype of L
Ma.l‘i)cious Defining Characteristics SEl}g(:Illflicf‘;t Covered In
Code p
Virus Infects a host file (e.g., executable, Michelangelo, Chapter 2
word processing document, etc.) CIH

Self-replicates.

Usually requires human interaction to
replicate (by opening a file, reading e-
mail, booting a system, or executing an
infected program).

e

:

$ PHO066-Skoudis.book Page 14 Monday, September 29, 2003 2:03 PM

14 Chapter 1 » INTRODUCTION
Table 1.1
Types of Malicious Code (Continued)
Type of A
Meri)cious Defining Characteristics %g:li;ic?nt Covered In
Code pies
Worm Spreads across a network. Morris Worm, Chapter 3
Self-replicates. Code Red,
Usually does not require human SQL Slammer
interaction to spread.
Malicious Consists of lightweight programs that Cross Site Chapter 4
mobile code are downloaded from a remote system Scripting
and executed locally with minimal or
no user intervention. Typically written
in Javascript, VBScript, Java, or
ActiveX.
Backdoor Bypass normal security controls to give Netcat and Chapter 5
an attacker access. Virtual Network
Computing
(VNC): Both can
be used
legitimately as
remote
administration
tools, or
illegitimately as
attack tools.
Trojan horse Disguises itself as useful program while Setiri, Hydan Chapter 6
masking hidden malicious purpose.
User-level Replace or modify executable Linux RootKit Chapter 7
RootKit programs used by system (LRK) family,
administrators and users. Universal
RootKit,
FakeGINA
Kernel-level Manipulate the heart of the operating Adore Chapter 8
RootKits system, the kernel, to hide and create Kernel Intrusion
backdoors. System
Combination =~ Combine various techniques already Lion, Bugbear.B Chapter 9
malware described to increase effectiveness.

:

$ PHO66-Skoudis.book Page 15 Monday, September 29, 2003 2:03 PM

Malicious Code History 15

People frequently confuse these categories of malicious code, and
use inappropriate terms for various attacks. I hear otherwise freakishly
brilliant people mistakenly refer to a worm as a Trojan horse. Others
talk about RootKits, but accidentally call them viruses. Sure, this
improper use of terminology is confusing, but the issue goes beyond
mere semantics. If you don’t understand the differences in the catego-
ries of malicious code, you won’t be able to see how specific defenses
can help. If you think a RootKit is synonymous with a virus, you might
think you’ve handled the problem with your antivirus tool. However,
you've only scratched the surface of true defenses for that problem.
Sure, some of the defenses apply against multiple types of attack. Yet a
clear understanding of each malicious code vector will help to make
sure you have the comprehensive defenses you require. One of the
main purposes of this book is to clarify the differences in various types
of malicious code so you can apply the appropriate defenses in your
environment.

Although it is immensely useful to get this terminology correct
when referring to malicious code and the associated defenses, it should
be noted that there is some crossover between these breeds. Some tools
are both viruses and worms. Likewise, some worms carry backdoors or
RootKits. Most of the developers of these tools don’t sit down to create
a single tool in a single category. No, they brainstorm about the capabil-
ities they desire, and sling some code to accomplish their varied goals.
You can’t send a worm to do a kernel-level RootKit’s job, unless the
worm carries a kernel-level RootKit embedded in it. This intermingling
gives rise to the combination malware category included in Table 1-1.

Malicious Code History

Although we’ve witnessed a huge increase in malicious code attacks in
the last few years, malware is certainly not new. Attackers have been
churning out highly effective evil programs for decades. However, with
the constant evolutionary improvement in the capabilities of these
attack tools, and the rapid spread of the Internet into every nook and
cranny of our economy, today’s malicious code has far greater impact
than the attacks of yesteryear. Let’s take a nostalgic stroll down memory
lane to get an idea of the roots of malicious code and to understand the
direction these tools are heading in the future. Figure 1.1 shows a plot of
these major malicious code events over the past 20 or so years.

:

e .

$ PHO66-Skoudis.book Page 16 Monday, September 29, 2003 2:03 PM

16 Chapter 1 » INTRODUCTION
A
Love K Setiri
ug Intrusion backdoor

WO gystern

Back
c Netcat Orifice
.2 on zooo SQL
b Windows Slammer
V] worm
=
2 Code
2 Frs red
8 maco e Pol?m%arghlc

virus Melissa Nimda
- Virds o Executables
< DDoS
[StrangeBrew:
> Netcat "~ First Java Knark
x on virus Kernel
5 First Good Times UNIX RootKit
° Polymorphic virus hoax
£ virus I
(<}
v Virus
()} The Brain: Construction
£ First PC virus Set
% Morris
o worm difsables
v ! much of early
c | First Internet
_— Apple 11
Virus
inWild
Fred Cohen
defines virus
| |
1981 1984 1987 1990 1993 1996 1999 2002 2005
Figure 1.1

More than 20 years of malicious code.

Don’t worry if you do not yet understand all of the tools and con-
cepts described in Figure 1.1. The remainder of the book will address
each of these issues in far more detail. At this point, however, the major
themes I want you to note in Figure 1.1 include these:

* The increasing complexity and sophistication of malicious sofiware: We
went from fairly simple Apple II viruses that infected games to
the complex kernel manipulation tools and powerful worms of
this new millennium. The newer tools are very crafty in their
rapid infection and extreme stealth techniques.

* Acceleration of the rate of release of innovative tools and techniques:
New concepts in malicious code started slowly, but have cer-
tainly picked up steam over time. Especially over the past five
years, we’ve seen the rapid release of amazing new tools, and
this trend is only increasing. Just when I think I've seen it all, the
computer underground releases an astonishing (and sometimes
frightening) new tool.

e

k.

$ PHO66-Skoudis.book Page 17 Monday, September 29, 2003 2:03 PM

Malicious Code History 17

Movement from viruses to worms to kernel-level exploitation: In the
olden days of malicious code, most of the action revolved
around viruses and infecting executable programs. Over the
past five years, however, we’ve seen a major focus on worms, as
well as exploiting systems at the kernel level.

These three themes are very intertwined, and feed off of each
other as malicious code authors borrow ideas and innovate. By tracing
through these significant milestones in malicious code history, we can
pay special attention to each of these important trends:

1981-1982—First Reported Computer Viruses: At least three sepa-
rate viruses, including Elk Cloner, were discovered in games for
the Apple II computer system, although the word virus wasn’t
yet applied to this malicious code.

1983—Formal Definition of Computer Virus: Fred Cohen defines a
computer virus as “a program that can infect other programs
by modifying them to include a, possibly evolved, version of
itself” [2].

1986—First PC Virus: The so-called Brain virus infected Microsoft
DOS systems, an important harbinger of malicious code to come,
as the popular DOS and later Windows operating systems would
become a primary target for viruses and worms [3].

1988—Morris Internet Worm: Written by Robert Tappan Morris,
Jr., and released in November, this primordial worm disabled
much of the early Internet, making news headlines around the
globe.

1990—First Polymorphic Viruses: To evade antivirus systems,
these viruses altered their own appearance every time they ran,
opening up the frontier of polymorphic code that is still being
explored in research today.

1991—Virus Construction Set (VCS) Released: In March, this tool
hit the bulletin board system community and gave aspiring
virus writers a simple toolkit to create their own customized
malicious code.

1994— Good Times Virus Hoax: This virus didn’t infect computers.
Instead, it was entirely fictional. However, concern about this
virus spread from human to human via word of mouth as fright-
ened people warned others about impending doom from this
totally bogus malicious code scam [4].

1995—First Macro Viruses: This particularly nasty strain of viruses
was implemented in Microsoft Word macro languages, infecting

e

:

$ PHO66-Skoudis.book Page 18 Monday, September 29, 2003 2:03 PM

18

Chapter 1

INTRODUCTION

document files. These techniques soon spread to other macro
languages in other programs.

1996—Netcat released for UNIX: This tool written by Hobbit
remains the most popular backdoor for UNIX systems to this
day. Although it has a myriad of legitimate and illicit uses, Net-
cat is often abused as a backdoor.

1998—Netcat released for Windows: Netcat is no slouch on Win-
dows systems either. Written by Weld Pond, it is used as an
extremely popular backdoor on Windows systems as well.

1998—Back Orifice: This tool released in July by Cult of the Dead
Cow (cDc), a hacking group, allowed for remote control of Win-
dows systems across the network, another increasingly popular
feature set.

1998—First Java Virus: The StrangeBrew virus infected other
Java programs, bringing virus concerns into the realm of Web-
based applications.

1999—The Melissa Virus/Worm: Released in March, this
Microsoft Word macro virus infected thousands of computer
systems around the globe by spreading through e-mail. It was
both a virus and a worm in that it infected a document file, yet
propagated via the network.

1999—Back Orifice 2000 (BO2K): In July, cDc released this com-
pletely rewritten version of Back Orifice for remote control of a
Windows system. The new version sported a slick point-and-
click interface, an Application Programming Interface (API) for
extending its functionality, and remote control of the mouse,
keyboard, and screen.

1999—Distributed Denial of Service Agents: In late summer, the
Tribe Flood Network (TFN) and Trin00 denial of service agents
were released. These tools offered an attacker control of dozens,
hundreds, or even thousands of machines with an installed zom-
bie via a single client machine. With a centralized point of coor-
dination, these distributed agents could launch a devastating
flood or other attack.

1999—Knark Kernel-Level RootKit: In November, someone called
Creed released this tool built on earlier ideas for kernel manipu-
lation on Linux systems. Knark included a complete toolkit for
tweaking the Linux kernel so an attacker could very effectively
hide files, processes, and network activity.

e

:

$ PHO66-Skoudis.book Page 19 Monday, September 29, 2003 2:03 PM

Why This Book? 19

* 2000—Love Bug: In May, this VBScript worm shut down tens of
thousands of systems around the world as it spread via several
Microsoft Outlook weaknesses.

* 2001—-Code Red Worm: In July, this worm spread via a buffer
overflow in Microsoft’s IIS Web server product. Over 250,000
machines fell victim in less than eight hours.

* 2001—Kernel Intrusion System: Also in July, this tool by Optyx
revolutionized the manipulation of Linux kernels by including
an easy-to-use graphical user interface (GUI) and extremely
effective hiding mechanisms.

* 2001-Nimda Worm: Only a week after the September 11 terror-
ist attacks, this extremely virulent worm included numerous
methods for infecting Windows machines, including Web
server buffer overflows, Web browser exploits, Outlook e-mail
attacks, and file sharing.

* 2002—Setiri Backdoor: Although never formally released, this
Trojan horse tool has the ability to bypass personal firewalls,
network firewalls, and Network Address Translation devices by
posing as an invisible browser.

* 2003-SQL Slammer Worm: In January 2003, this worm spread
rapidly, disabling several Internet service providers in South
Korea and briefly causing problems throughout the world.

* 2003—Hydan Executable Steganography Tool: In February, this tool
offered its users the ability to hide data inside of executables
using polymorphic coding techniques on Linux, BSD, and Win-
dows executables. These concepts could also be extended for
antivirus and intrusion detection system evasion.

Things didn’t stop there, however. Attackers continue to hone
their wares, coming up with newer and nastier malicious code on a reg-
ular basis. Throughout this book, we’ll explore many specimens from
this list, as well as trends on the malicious code of the future.

Why This Book?

Just between you and me, have you noticed how the information security
bookshelf at your favorite bookstore (whether it’s real-world or virtual) is
burgeoning under the weight of tons of titles? Some of them are incredi-
bly helpful. However, it seems that a brand-spanking new security book
is competing for your attention every 47 seconds, and you might be won-
dering how this book is different and why you should read it.

<@

e .

$ PHO66-Skoudis.book Page 20 Monday, September 29, 2003 2:03 PM

20 Chapter 1 » INTRODUCTION

First, as discussed earlier in this chapter, controlling malicious
code is an extremely relevant topic. System administrators, network
personnel, home users, and especially security practitioners need to
defend their network from these attacks, which are getting nastier all the
time. Worms, Trojan horses, and RootKits are not a thing of the past.
They are a sign of the even nastier stuff to come, and you better be
ready. This book will help you get the skills you need to handle such
attacks.

Second, our focus here will be on practicality. Throughout the
book, we’ll discuss time-tested, real-world actions you can take to secure
your systems from attack. Our goal will be to give you the concepts and
skills you need to do your job as a system, network, or security adminis-
trator. The book also includes a full chapter devoted to analysis tools for
scrutinizing malicious code under a microscope. Following the tips in
Chapter 11, you’ll be able to construct a top-notch defender’s toolkit to
analyze the malicious code you discover in the wild.

Third, this books aims to build on what was covered in other books
before, in an effort to make malicious code defenses understandable and
practical. A while back, I wrote a book titled Counter Hack: A Step-by-Step
Guide to Computer Attacks and Effective Defenses. That earlier book
describes the end-to-end process attackers used in compromising sys-
tems. Counter Hack gives you the big picture of computer attacks, from
reconnaissance to covering tracks. This book is not a second edition of
Counter Hack, nor is it a regurgitation of that book. This book focuses like
a laser beam on one of the biggest areas of concern: malicious code. We
addressed malicious code in just one chapter of Counter Hack. Here, we
get to focus a dozen chapters on one of the most interesting and rapidly
developing areas of computer attacks, getting into far more depth on this
topic than my earlier book. Additionally, attackers haven’t been resting
on their laurels since the release of Counter Hack. This book includes
some of the more late-breaking tools and techniques, as most of the
action in computer attacks and techniques over the past few years has
dealt with newer and nastier malicious code tricks.

Finally, this book tries to encourage you to have fun with this stuff.
Don’t be intimidated by your computer, the attackers, or malicious
code. The book uses a little irreverent humor here and there, but (I
hope) stays within the bounds of good taste (well, we’ll at least try,
exploding virtual hamsters notwithstanding). With a tiny of bit humor,
this book tries to encourage you to get comfortable with and actually
test some of the tools we’ll cover. I strongly encourage you to run the
attack and defensive tools we’ll discuss in a laboratory of your own to

:

e .

%% % PHO066-Skoudis.book Page 21 Monday, September 29, 2003 2:03 PM

?

What To Expect 21

see how they work. Chapter 11 tells you how you can build your very
own low-cost experimental mininetwork for analysis of malicious code
and the associated defenses. However, make sure you experiment on a
lab network, physically disconnected from your production network
and the Internet. In such a controlled environment, you can feel free to
safely mess around with these nasty tools so you can be ready if and
when a bad guy unleashes them on your production environment.

What To Expect

Throughout this book, we’ll use a few standard pictures and phrases to
refer to recurring ideas. As we’re discussing various attacks against com-
puter systems, we’ll show the attack using illustrations. For any figure in
this book where we need to differentiate between the attacking system
and the victim machine, we’ll illustrate the attacking machine with a
black hat, as shown in Figure 1.2. That way, you’ll be able to quickly
determine where the bad guy sits in the overall architecture of the attack.

Additionally, when referring to the perpetrators of an attack, we’ll
use the word attacker or the phrase bad guy. We won’t use the word
hacker, as that terminology has become too loaded with political bag-
gage. Some people think of hackers as noble explorers, whereas others
assume the word implies criminal wrongdoing. By using the words
attacker and bad guy, we’ll sidestep such controversies, which often
spread more heat than light.

Also, it’s important to note that this book is operating system
agnostic. We don’t worship at the shrine of Linux, Solaris, or Windows,
but instead mention attack techniques that could function in a variety of

Attacker’s System Victim System

Figure 1.2
In this book, the attacker’s machines are illustrated with a black hat.

.
e

e .

$ PHO66-Skoudis.book Page 22 Monday, September 29, 2003 2:03 PM

22 Chapter 1 » INTRODUCTION

operating system environments. Throughout the book, we’ll discuss
attacks against both Windows and UNIX systems, jumping back and
forth between the two operating systems to illustrate various points.

This approach is based on my own strong feeling that to be a solid
security person, you need to be ready to operate in both a Windows
and a UNIX environment, as most organizations have some mix of the
two classes of operating systems. If you are prepared for attacks against
both types of systems, your defenses will be far better, and you will be
more valuable to your employer. Using this philosophy, most chapters
include attacks against Windows and UNIX, with a given tool from
either side to illustrate the point. If we cover a particular attack against
Windows, keep in mind that analogous attacks are available for UNIX,
and vice versa.

In some of the later chapters of the book (especially Chapters 7
and 8, which deal with RootKits), the malware undermines compo-
nents of the operating system itself. Therefore, because such attacks are
often highly operating-system-specific, we’ll split those chapters in half,
first dealing with UNIX-oriented attacks and later dealing with Win-
dows attacks.

Although various chapters cover both Windows and UNIX-based
tools, each chapter of this book deals with a specific type of malicious
code. For each type of malware, we start by introducing the concepts
that classify each type, exploring the defining characteristics of the
breed. Then, each chapter describes the techniques used by that type of
malware, as well as prominent examples, so you can understand what
you are up against on your systems. This discussion includes a descrip-
tion of the current capabilities of the latest tools, as well as future evolu-
tionary trends for that type of attack. Finally, we get to the must useful
stuff; each chapter includes a description of the defenses needed to han-
dle that type of malicious code. The chapters in this book include the
following:

Chapter 1: Introduction: That’s this intro . . . you probably figured
that out already!

Chapter 2: Viruses: Viruses were the very first malicious code exam-
ples unleashed more than 20 years ago. They’ve had the most time to
evolve, and include some highly innovative strategies that are being
borrowed by other malicious code tools. This chapter describes the cur-
rent virus threat and what you need to do to stop this vector of attack.

Chapter 3: Worms: By spreading via a network, worms can pack a
wallop, conquering hundreds of thousands of systems in a matter of

:

e .

$ PHO66-Skoudis.book Page 23 Monday, September 29, 2003 2:03 PM

What To Expect 23

hours. Given their inherent power, worms are getting a huge amount of
research and development attention, which we’ll analyze in this chapter.

Chapter 4: Malicious Mobile Code: Attackers are devising novel ways
for delivering malicious code via the World-Wide Web and e-mail. If
you run a Web browser or e-mail reader (and who doesn’t?), this chap-
ter describes the different types of malicious mobile code, as well as
how you can defend your browsers from attack.

Chapter 5: Backdoors: Attackers use backdoors to access a system
and bypass normal security controls. State-of-the-art backdoors give the
attacker significant control over a target system. This chapter explores
the most popular and powerful backdoors available today.

Chapter 6: Trojan Horses: By posing as a nice, happy program, a
Trojan horse tricks users and administrators. These programs look fun
or useful, but really hide a sinister plot to undermine your security from
within. This chapter identifies classic Trojan horse strategies and shows
you how to stop them in their tracks.

Chapter 7: User-Level RootKits: By replacing the programs built into
your operating system with RootKits, an attacker can hide on your
machine without your knowledge. This chapter discusses user-level
RootKits so you can defend your network against such shenanigans.

Chapter 8: Kernel-Level Modifications: If attackers can modify the
heart of your operating system, the kernel itself, they can achieve com-
plete domination of your system in a highly invisible fashion. In this
chapter, we’ll look at this active area of new development and recom-
mend solid practices for stopping kernel-level attacks.

Chapter 9: Going Deeper and Combo Malware: The techniques dis-
cussed throughout this book aren’t static. Sometime in the future,
attackers might try undermining our hardware, with BIOS and CPU-
level attacks. Furthermore, attackers are developing newer attacks by
cobbling various types of malicious software together into Frankenstein-
like monsters. This chapter addresses such deeper malware as well as
combinations of various malicious code types.

Chapter 10: Putting It All Together: There’s nothing like real-world
examples to help clarify abstract concepts. In this chapter, we’ll go over
three sample scenarios of malicious code attacks, and determine how
various organizations could have prevented disaster. Each scenario has
a movie theme, just to keep it fun. Let’s learn from the mistakes of oth-
ers and improve our security.

Chapter 11: Malware Analysis: This chapter gives you recipes for
creating your own malicious code analysis laboratory using cheap hard-
ware and software.

:

$ PHO66-Skoudis.book Page 24 Monday, September 29, 2003 2:03 PM

24 Chapter 1 » INTRODUCTION

Chapter 12: Conclusion: In this chapter, we’ll go over some future
predictions and areas where you can get more information about mali-

cious code.

References

[1] Colleen O’Hara and FSW Staff, “Agencies Fight off ‘Melissa’
Macro Virus,” Federal Computer Week, April 5, 1999, www.few.com/
Jew/articles/1999/FCW_040599_261.asp

[2] Fred Cohen, Computer Viruses: Theory and Experiments, Fred Cohen
& Associates, 1984, http.://all.net/books/virus/index.html

[3] Joe Wells, “Virus Timeline,” IBM Research, August 1996,
www.research.ibm.com/antivirus/timeline.htm

[4] CIAC, U.S. Department of Energy, “The Good Times Virus Is an
Urban Legend,” December, 1994, http://ciac.linl.gov/ciac/notes/
NotesO4c.shtml

:

