
G&S Typesetters PDF proof

Since December 1969, when the ARPANET project created the

first modern packet-switched network— the genesis of today’s

Internet— the challenge and promise of NDC has resulted in an

explosion of investment, research, and software development. En-

suing efforts encompass nearly all aspects of computer science

today.

47

CHAPTER 3

The Scope of NDC

03-P2910 2/27/04 10:10 AM Page 47

G&S Typesetters PDF proof

The scope of NDC is quite impressive. No other single aspect of com-
puter science research and development quite compares with the myriad
problem spaces enjoined when computers communicate, swap data,
and share processing responsibilities. This chapter presents an overview
of some of the many relevant areas of NDC research and development
today.

Each of these areas is a moving target, in that while progress is being
made in each area and rapid improvement may sometimes be achieved,
a complete examination or solution in any of these areas is not likely in
the short term. In fact, to the extent that each represents a community of
autonomous agents, general fitscape attributes apply. Other categories of
NDC will emerge over time, as new technologies converge and evolve and
as innovative technology adoption patterns continue to manifest them-
selves in consumer-driven economic fitscapes worldwide.

The categories here, which I call fitscapes, reflect many of the topical
areas of the IEEE Computer Society’s Distributed Systems Online jour-
nal, which itself is a constantly changing resource that tracks the branch-
ing processes so evident in the exploration of NDC today.1 The categories
are derived as well from other fitscapes: ongoing activities of the W3C, for
example, and traditional areas of development that may be closely related
but are nevertheless subtly different (for example, grid computing versus
massively parallel computing).

Table 3.1 lists (in alphabetical order) the general areas of NDC R&D
that are explored in this chapter, representing a sampling of the general
categories of NDC R&D. Each category is ripe with potential, rich in de-
tail and nuance, and deserving of extensive examination well beyond the
scope of this volume.

Table 3.1 Some NDC research and development areas

cluster concepts distributed storage peer-to-peer

collaborative computing grid computing pervasive computing

dependable systems languages real time and embedded

distributed agents massively parallel systems security

distributed algorithms middleware Semantic Web

distributed databases mobile and wireless spaces computing

distributed filesystems network protocols ubiquitous computing

distributed media operating systems Web Services

Network Distributed Computing48

03-P2910 2/27/04 10:10 AM Page 48

G&S Typesetters PDF proof

This list does not represent all R&D fitscapes within NDC. One obvious
area not covered here is that of systems and network management, a pio-
neering technology in areas like distributed agents and network protocols.
Since the management of systems and networks is encompassed in a num-
ber of the 24 categories cited in this chapter, it’s left out of the overviews
in this chapter. Also not considered here are many of the rapidly evolving
edge-related aspects of NDC, including user interfaces. As some of the
areas considered in this chapter converge over time, that consolidation will
give impetus to the NDC edge-computing fitscapes. The fitscapes pre-
sented here represent those that are either historically ripe, currently in
vogue, or of sufficient industry interest to attract levels of investment be-
yond one or two research institutions.

There are clear connections between and among these areas—
relationships that are presumably recognized by many of the participants
engaged in the exploration of each. For example, NDC security is germane
to all other categories of NDC development. Distributed agents share
ground and influence with at least pervasive and ubiquitous computing
and the Semantic Web, and probably others as well. A random clump of
these fitscapes chaotically thrown against the wall, with relationships
mapped, might appear as in Figure 3.1.

The purpose of this map is not to present a canonical listing of rela-
tions and dependencies; indeed, only the most obvious ones are noted
here. Every aspect of NDC is directly related in some way to almost every
other aspect of NDC, thus making the map moot as an exercise, so don’t
bother trying to follow the relationships or memorize the dependencies.
The point of the map is to illustrate the level of complexity inherent in our
efforts to simply articulate the relationships among the areas of research in
NDC, never mind the more profound complexities inherent within each.

Imagine the complexities you encounter in keeping track of all the
influences and discoveries if, for example, your role is one of conceptual-
izing distributed agents. How can your work, dependent on NDC-related
work in—at least—middleware, security, distributed databases, and pos-
sibly operating systems, proceed concurrently with work in those areas?
How can you, with many other potential advances also dependent on you,
confidently progress? Clearly, not everything can proceed in lock-step. By
the same token, it may not be obvious, nor is it reasonable, to stage an
ordered process whereby advances in subdisciplines of NDC research can
proceed. A complex fitscape governs each subdiscipline from which a
broader, much more complex, fitscape of overall NDC R&D emerges.

It may be reasonable, however, to estimate possible dependencies that
one category of exploration might have on another over time. Work in

CH 3 The Scope of NDC 49

03-P2910 2/27/04 10:10 AM Page 49

G&S Typesetters PDF proof

some areas will certainly mature more quickly than others, driven by lev-
els of investment, which in turn are driven by technology adoption pat-
terns, and governed by the complexity of the computer sciences issues that
must be solved.

The chart in Figure 3.2 offers conjecture with respect to a maturity or-
der of the 24 categories, evolving such as to provide basic solutions upon
which NDC developers can build. The y axis, degree of decoupling, captures
component decomposition as well as the movement of intelligence closer
to the “edge” of networks; the impact of Moore’s law over time, upon
which various categories of NDC development will build, is also implied
here and will accommodate an even greater decoupling.

Network Distributed Computing50

collaborative
concepts

mobile and
wireless

dependable
systems

middleware languages

network
protocols

spaces
computing

pervasive
computing

distributed
filesystems

ubiquitous
computing

distributed
media

Semantic
Web

distributed
algorithms

grid
computing

cluster
concepts

massively
parallel

distributed
storage

Web
Services

distributed
databases

security

operating
systems

real-time &
embedded

peer to
peer

distributed
agents

Figure 3.1 NDC R&D fitscapes

03-P2910 2/27/04 10:10 AM Page 50

G&S Typesetters PDF proof

Given an accelerating rate of innovation in the major technology trends
cited earlier (some of which are themselves fitscapes of NDC), it is a given
that any estimates of future developments, relationships, or dependencies
among these should be viewed as speculative. The odds are perhaps not as
high as those against walking into the Atlantis Hotel and Casino in Reno,
Nevada, placing a $3 bet in the MegaBucks machine, pulling the handle,
and winning the jackpot in one try. But futures in NDC are nevertheless
speculative.

I will say more about the Atlantis Casino later in the context of real-
world implementation, which, as you may know, is not always by design.
Nor is implementation research, strictly speaking by design; implementa-
tions are less erudite and much dirtier than speculation, research, or the-
ory would have us believe. But for now, an overview of many of the cur-
rent NDC R&D fitscapes is in order.

Ubiquitous Computing

In a well-connected network, we can begin with any node and theoreti-
cally find our way to each of the others by following links along the way.

CH 3 The Scope of NDC 51

massively
parallel

de
gr

ee
 o

f d
ec

ou
pl

in
g

time

middleware

network
protocols

pervasive
computing

distributed filesystems

ubiquitous
computing

distributed
media

grid computing

cluster
concepts

real-time &
embedded

distributed
agents

mobile and
wireless

peer to
peer

security

Web Services

operating
systems Semantic

Web

dependable
systems

distributed
storage

spaces computing
languages

collaborative
concepts

distributed
databases

distributed
algorithms

Figure 3.2 Evolution of NDC over time (pro forma)

03-P2910 2/27/04 10:10 AM Page 51

G&S Typesetters PDF proof

Begin with an end in mind, and you’ll find lofty ideals touted by an in-
spired fitscape. The teleological vector of technology,2 at least that which
is heir to Turing’s mind child, is ubiquitous computing. Pervasive com-
puting would make information available everywhere; ubiquitous com-
puting would require information everywhere. There is a subtle but cer-
tain difference, one that will provide NDC challenges for years beyond the
near-future, pervasive-computing world that we might soon imagine.

Buildings need to be smart, down to the rivet. Electrical systems need
to be smart, down to the light bulb. Monetary systems need to be smart,
down to the penny. And all those systems and more need to be connected
and available down to the network if the ultimate in ephemeralization is
ever to be approached. Are continuing productivity increases necessary?
Goff ’s axiom may apply here as well. What do we call economies that do
not grow? The essence of economic growth is increasing productivity. Un-
less we are prepared both to forgo economic organizational assumptions
altogether and begin anew, as it were, with other approaches (which may
be even more painful to consider than economic stagnation) and to de-
cline given current assumptions, we cannot turn away from the path of
ephemeralization. There is no other direction, therefore, than eagerly to-
ward ubiquitous computing.

Many authors do not distinguish between “pervasive” and “ubiqui-
tous” when it comes to computing visions; even Mark Weiser used the
terms synonymously. But I think it’s important to be cognizant of the dif-
ferences and argue that we will enjoy the fruits of one even as we continue
to pursue the other. Indeed, we are beginning to see early signs of perva-
sive computing today. Any city in which I can easily find an “information
field,” in which dynamic network connections can be enjoined via a mo-
bile computing device, is one in which pervasive computing potential has
emerged. Arguably, any place where an I-mode phone can function is a
place of pervasive computing. But until all possible computing applica-
tions are explored and every niche for network intelligence fully exploited,
ubiquitous computing will remain the unseen terminal of a teleological
vector.

Once computers disappear and dynamic, ad hoc ensembles of soft-
ware swarm about like beneficent organisms to serve our every whim, uti-
lizing resources with previously unimaginable efficiencies, a miraculous
invisible network may then emerge which is as unfathomable to our early
21st-century minds as a wireless Internet-connected device would have
been to a pre-Copernican vision. The Network Age is the age of magic.
NDC developers, by virtue of the myriad fitscapes in which we all play,

Network Distributed Computing52

03-P2910 2/27/04 10:10 AM Page 52

G&S Typesetters PDF proof

are the magicians of this new age. Ubiquitous computing is our shared
Nirvana—whether we realize it or not.

Web Services

There is nothing either good or bad but thinking makes it so.
—William Shakespeare, Hamlet

From the sublime to the ridiculous, the first two NDC fitscapes reveal an
interesting yin/yang: the transcendent hope of ubiquitous computing ver-
sus the gritty reality of Web Services. Arg! 3 Reaching Nirvana through the
church of Web Services may be a long journey indeed.

I am not a fervent evangelist of the vanilla Web Services approach to
NDC. My own biases are drawn to the more organic approaches, embod-
ied in spaces computing, mixed with the sensibilities of real-time and em-
bedded computing. In my view, the advent of SOAP was not the bright-
est day in world of Internet standards. Alas, my personal views are not
germane to a reasoned discussion of NDC in a larger sense, so I’ll attempt
to not color this commentary accordingly—at least not just yet.

Web Services are based on several XML-derived concepts, designed to
facilitate standardized, portable exchange of “component” data in NDC
enviroments. In the fall of 2001, Microsoft and IBM jointly announced
the Global XML Web Services Architecture, which includes XML, SOAP,
and UDDI.4

♦ XML: eXtensible Markup Language

♦ SOAP: Simple Object Access Protocol

♦ UDDI: Universal Directory and Discovery Interface

♦ WSDL: Web Services Description Language

The Global XML Web Services architecture would also define specifica-
tion principles that, in tandem with aspects of the Semantic Web, would
give one day give rise to an NDC framework that would be

♦ Modular— Composable modules that can be combined as
needed to deliver end-to-end capabilities (new modular elements
enjoined into ensembles as needs arise);

♦ General purpose—Designed to meet a wide range of XML Web
Services scenarios, ranging from business-to-business and enter-

CH 3 The Scope of NDC 53

03-P2910 2/27/04 10:10 AM Page 53

G&S Typesetters PDF proof

prise application integration solutions to peer-to-peer applications
and business-to-consumer services;

♦ Federated—Fully distributed, designed to support XML Web
Services that cross organizational and trust boundaries, requiring
no centralized servers or administrative functions;

♦ Standards based—Based on protocols that are submitted to “ap-
propriate standards bodies.”

Component reuse, one holy grail of software development, may poten-
tially be realized if both the Web Services and Semantic Web visions are
viable and embraced. Indeed, promises from Microsoft and IBM in the
Web Services arena would clearly indicate that component composability
is not only within reach, it is imminent. The promise of component reuse
and composability is to software what COTS VLSI chips were to hard-
ware; once enabled by NDC, the joint visions of the Semantic Web and
Web Services promise a composable NDC architecture. The operative
word is promise. Composability is nontrivial in any environment that in-
volves distributed systems, and is especially so in NDC. Much like the
clarinet player, a component needs more than sheet music and a func-
tioning instrument if a viable orchestration is to be achieved.

The Semantic Web

The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents, roaming
from page to page can readily carry out sophisticated tasks for users.

—Tim Berners-Lee, et al.

Homo sapiens is a culture-creating species. Our social expressions serve
to reduce our needs, individually and institutionally. A hierarchy of needs,
identified by Abraham Maslow,5 is as applicable to institutions as it is
to individuals, as a benchmark of cultural provisioning. Language, tradi-
tions, economics, and social and political arrangements, all reflect need-
reduction epistemologies, which run the gamut from physical survival at
the bottom of the pyramid to self-actualization at the summit. Each suc-
cessive step in the virtuous climb toward a shared peak involves creation
of a shared meaning, which itself constitutes an abstract fitscape: culture
and meaning.

Network Distributed Computing54

03-P2910 2/27/04 10:10 AM Page 54

G&S Typesetters PDF proof

According to clinical psychologist Paul Watzlawick, the question of
whether there is order in our shared reality has one of three possible
answers:

1. There is no order, in which case reality is tantamount to confu-
sion and chaos, and life is a psychotic nightmare.

2. We relieve our existential state of disinformation by inventing an
order, forgetting that we have invented it and experiencing it as
something “out there” that we call reality.

3. There is an order. It is the creation of some higher Being on
whom we depend but who Himself is quite independent of us.
Communication with this Being, therefore, becomes man’s most
important goal.6

Either there is order or there is not. If there is not, we perceptively impose
order. If there is, we discern it. But in either case, the point Watzlawick
makes should be clear with respect to semantics: meaning too is either
something we create by perception or something we similarly discern. Re-
gardless, there is a cultural imperative to articulate meaning in such a man-
ner as to facilitate communication.

Although human communication mechanisms are highly redundant
and equally ambiguous, the paradoxical nature of communication itself,
the handmaiden of culture, never seems to prevent heroic attempts to en-
gineer to its essence. The Semantic Web is perhaps the most ambitious of
such efforts to date.7

Semantic Web activities, chartered by the W3C, proffer and articulate
the following general layers of software, which would ostensibly lead to a
meaningful realization of the vision:

♦ XML—eXtensible Markup Language

♦ RDF—Resource Description Framework

♦ Ontologies—Formal definitions of relationship

♦ Agent—An agent language providing for exchange of proofs (i.e.,
trust)

In specifying data that can self-describe, XML provides data portability. It
was proposed in 1996 by John Bosak of Sun Microsystems and accepted
for standardization by the W3C, partially in response to proprietary ex-
tensions to HTML that resulted from the now-historic browser conflict of
that era.8 As a language describing language for portability, XML is mis-
named. The language would more accurately be described by its ability to

CH 3 The Scope of NDC 55

03-P2910 2/27/04 10:10 AM Page 55

G&S Typesetters PDF proof

provide a basis for the creation of portable metadata—stories about the
stories that data would tell.

RDF builds upon XML, providing a framework for representing that
metadata. RDF does not require XML, per se. The specification for RDF
is not bound to XML, though XML can (and likely will) be used for im-
plementation of the RDF model. The ultimate goal of RDF is to enable
the automation of activities (such as discovery) that are germane to dy-
namic, ad hoc assemblies of data and behavior.

A standardized metadata framework is not yet enough. Once we can
portably express meaning, meaning must be meaningfully expressed as on-
tologies. Ontologies are collections of information that provide an organi-
zational basis for expression.

The term ontology, borrowed from philosophy and referring to a the-
ory regarding the nature of existence, implies a study and classification
of that which exists. AI research uses the word to mean a collection
of formally defined relations among terms, the most common being
a set of inference rules and a taxonomy therein. (A taxonomy speci-
fies classes of objects and relations among them; for example, an ad-
dress may contain a street, a street number, a city, a zone, a nation, and
so on.)

Once data can be represented in a standard manner and organized to pro-
vide a basis for common semantic agreement, we can realize the potential
of NDC by dynamically knitting together meaningful collections of in-
formation, thereby yielding levels of services heretofore only imagined.
Widespread, standardized, distributed agents can become viable. Knowl-
edge management, edge-to-edge services, integrated information pools—
with the realization of the Semantic Web, the foundation of ubiquitous
computing itself is theoretically in place.

Spaces Computing

A Mirror World is some huge institution’s moving, true-to-life mirror
image trapped inside a computer—where you can see and grasp it
whole. The thick, dense, busy sub-world that encompasses you is

also, now, an object in your hands. A brand new equilibrium is born.
—David Gelernter

Network Distributed Computing56

03-P2910 2/27/04 10:10 AM Page 56

G&S Typesetters PDF proof

Biologists are much more interested in microbes than in microscopes.
Computers are tools at best and annoyances otherwise; for too long, soft-
ware developers have dwelt on the discipline-specific minutiae while ig-
noring the big-picture implications that NDC finally forces before our
eyes, demanding resolution. If the computer industry itself is to be more
than just a passing fad, outside-the-box visions must be heeded. Spaces
computing is one of those visions.

David Gelernter of Yale University published Mirror Worlds in 1991,
well before the general public had heard of the Internet, let alone acquired
an email address.9 In the Mirror World, a software framework could con-
tain all elements of reality we would deign to measure, track, transport, or
number; reality could be reflected in software in real time—as could all
the relationships among myriad mirrored images. This vision was mani-
fested in the implementation Gelernter pioneered, a system called “Linda,”
which tendered tuple-spaces, a simple persistent storage that transcended
nodes and networks, the mirror in which levels of reality could begin to
reflect.

With Mirror Worlds, Gelernter was hailed as one of the most brilliant
computer scientists of the modern era—so celebrated, in fact, that he
was victimized by one David Kaczynski, aka the Unabomber, in June
of ’93, toward the end of the neo-Luddite’s anonymous reign of terror.
Gelernter was consumed by a lengthy recovery the next several years,
the period which saw URLs emerge from obscurity to emblems of the
then nascent dotcom mania. Gelernter’s vision, however, needed no
therapy.

A Sun Implementation

Let’s look at JavaSpaces. Sun Microsystems demonstrated JavaSpaces in
the spring of 1998 at the JavaOne conference, the annual worldwide gath-
ering of Java devotees in San Francisco’s Moscone Center. JavaSpaces was
the first commercially viable instantiation of Gelernter’s seminal vision,
a Mirror World framework, which was enabled by the Write Once, Run
Anywhere promise of the Java platform. Built upon Jini network technol-
ogy protocols, JavaSpaces was demonstrated at the conference by the
14,000 Java Rings given away to conference attendees.

The rings, as shown in Figure 3.3, featured a small embedded proces-
sor10 that ran the smallest of Java virtual machines, a Java SmartCard-
specified device that defines a WORA engine for credit-card sized devices.

CH 3 The Scope of NDC 57

03-P2910 2/27/04 10:10 AM Page 57

G&S Typesetters PDF proof

Once the ring was registered in a central database, each ring bearer’s name
and coffee preference were stored in their own ring as persistent data that
could be accessed upon subsequent connections to the serial readers that
were interfaces for such devices. Demonstrations were then made available
at coffee-dispensing stations around the event facilities. Espresso, cappuc-
cino, or regular coffee? Decaffeinated? Tea, perhaps? The stored preference
on each ring determined the beverage of choice.

But another demonstration of Java Ring technology proved to be even
more interesting.

What if all those rings could be used to solve a large problem? What
if 14,000 asynchronous, independent, intermittently connected CPUs
could be harnessed to serve the needs of one problem? Would that, con-
ceptually, hold value? What other kinds of applications might also be so
served? Conference attendees were encouraged to periodically take a few
moments, connect their rings briefly to the network, and allow the ring
CPU to be used to compute a small part of a large problem.

The fractal mathematics necessary to compute the location and color
of each pixel in the 64K image, as shown in Figure 3.4, that emerged over
the course of the four days of the event was hosted on those rings. Over a
conference period, the image slowly but certainly filled in.

Computing on rings was terribly cool. Equally cool and almost un-
heralded, however, was JavaSpaces—the “man behind the curtain,” the
Mirror World framework that allowed all those compute transactions to
easily and seamlessly occur.

Since that event, spaces computing has slowly emerged in the Java
platform. Jini network technology has found some application beyond the
early (mistakenly) device-specific marketing spin it suffered.

Network Distributed Computing58

Figure 3.3 The Java Ring, JavaOne 1998

03-P2910 2/27/04 10:10 AM Page 58

G&S Typesetters PDF proof

Commercial Potential

Some purveyors of spaces computing frameworks beyond Gelernter’s
work and JavaSpaces have recently begun to emerge. GigaSpaces, an Israeli
software venture, announced a commercially hardened JavaSpaces in 2001
that promises a vital framework for solving myriad NDC problems to-
day.11 Complementary to, if not competitive with, other approaches like
Web Services, spaces computing may yet capture a critical mass thanks to
its simplicity, an attribute which may become more dear in an increasingly
complex NDC world.

Peer-to-Peer Computing

All the assumptions and institutions that brought us here are being fun-
damentally challenged by the work we do in computer science. The net-
work metaphor is laden with both promise and foreboding, depending on
the context of deployment and the justification of purpose. The very idea
of intellectual property and its inherent value (as codified by existing laws
and protections) is disrupted in an era in which all information of all kinds
can easily be duplicated at near zero costs and transmitted at light speed to
any number of receivers.

Napster served as an early warning system insofar as the institutional
cognitive dissonance endemic in NDC can harbor.12 Even as it pioneered
the vast potential that can be gleaned in Internet-wide peer-to-peer (p2p)

CH 3 The Scope of NDC 59

Figure 3.4 JavaRing/JavaSpaces problem, JavaOne 1998

03-P2910 2/27/04 10:10 AM Page 59

G&S Typesetters PDF proof

deployment, it gave p2p a bad name. By utilizing simple, “organic” net-
working concepts, Napster illustrated both the potential and the unease
p2p engenders.

The concepts behind p2p are relatively simple and amazingly effec-
tive. One way to understand how p2p works is to view it from the per-
spective of the node that may need to engage a p2p network.

To begin, the uninitiated node must have some knowledge of at least
one peer. The joining of a node to a network has traditionally been a func-
tion of hands-on system administration; even with advances like Dynamic
Host Configuration Protocol (DHCP), an administrator must be involved
at some juncture at least to ensure that any new node has a view of a
DHCP server.13 In most p2p implementations, the address of another
peer is required information.

If a node can locate and communicate with a peer node, it is possible
that the peer node may have further addresses, as well as descriptions of
services that might be available from other nodes. So the newly initiated
peer can then discover the existence of other peer nodes and realize the
ability to communicate with them simply by knowing of the first peer
node. The ability to discover other peers is exponentially derived from
knowing the location of the first peer node, and a cascading series of dis-
coveries is thus enabled.

This method of “learning” does not depend on access to a central re-
spository of knowledge about the network. As the World Wide Web grows
in scope and degree of information distribution, it may very well be that
the more organic approaches to NDC software architecture, like p2p, will
be the only ones that can adequately navigate the complex relationships
that are emerging.

Collaborative Computing

The main idea is to regard a program as a communication to human
beings rather than as a set of instructions to a computer.

—Donald E. Knuth

It is the collaborative computing fitscape of NDC that produces most im-
plementations of groupware, a concept that implies groups of people work-
ing together on shared projects. Types of groupware include collaborative
drawing and writing tools, frameworks for scientific collaboration, shared

Network Distributed Computing60

03-P2910 2/27/04 10:10 AM Page 60

G&S Typesetters PDF proof

applications, video communications tools, Web-based conferencing, work-
flow and workflow management tools, the emerging field of knowledge
management, and even email. Since groupware, by definition, involves
groups of human being, it might follow that academic disciplines with
more of a humanities focus might find a haven in research in this area, and
such is the case.

Humans beings have the disturbing habit of being human. Our best
efforts to systematically impose rational ontologies on human activities
fall short, even as we find the tried-and-true scientific method occasionally
lacking when it comes to understanding a reality that is inherently subjec-
tive, complex, and squishy. Most endeavors to date, for example, in the
vein of artificial intelligence, have led to dead ends. Perhaps we are com-
ing to realize that technologies serve us better when we strive to foster hu-
man intelligence, rather than replace it. Some collaborative computing re-
search seems to reflect such postcyborg sensibilities, at least in the area of
knowledge management (KM).

What is KM? Alas, there is no universal definition. It’s probably most
useful to think of KM in the broadest context. From a collaborative com-
puting perspective, KM is the process through which organizations gener-
ate value from their intellectual and knowledge-based assets—humans.
“Best practices” approaches fall within the KM sphere. Much in the way
of persistent conversation (like email and instant messaging), if mined
properly, has the potential to provide knowledge value to the firm. But
there are no solid rules when it comes to KM, except perhaps for one:
people are key.

There is no knowledge without human beings. Technology, for ex-
ample, is not knowledge. It is knowledge incarnate and perhaps a means
for collating knowledge. But it’s the taxonomy-defying masses that con-
stitute the “mine” from whence knowledge must be extracted. As such,
NDC developers who focus on collaborative computing would be well
served to learn as much about human beings as possible—through litera-
ture, history, religion, economics, biology, sociology and psychology—
since it is only through cross-disciplinary activities that the most valuable
resource any company may boast can be fully exploited.

Collaborative computing would also be a fruitful pursuit for scientists
eager to share data. Biotech researchers, for example, are well aware of the
potential of technologies like XML, which, when properly extended, can
facilitate collaborative efforts specific to research disciplines. The Inter-
operable Informatics Infrastructure Consortium,14 an ad hoc organization
whose stated mission is to facilitate and enable data exchange and knowl-

CH 3 The Scope of NDC 61

03-P2910 2/27/04 10:10 AM Page 61

G&S Typesetters PDF proof

edge management across the entire life science community, is just one
example of a discipline-specific instantiation of collaborative computing,
which itself is utilizing technologies for other collaborative computing ef-
forts (as embodied by the W3C).

The broad NDC spectrum of collaborative computing is cross-disci-
plinary by nature; it is likely through R&D efforts in this broad category
that humanizing influences will be felt by computer science at large.

Dependable Systems

Fault-tolerant DC was an active research field during the last two decades
of the 20th century and continues to be in the current era. Once the
domain of mainframe systems, dependability in NDC systems is a natural
result of global competitive pressures. Dependability in any system can be
defined as the ability of the system to ensure that it (and the services it
may deliver) can be relied upon within certain measurable parameters, the
definition of which depends on the context of deployment. Generic con-
cepts such as reliability, availability, scalability (RAS), and security define
dependable NDC systems characteristics. Measures such as mean time
between failures (MTBF) traditionally evaluate the reliability for such
systems.

As global dependence on NDC continues to increase, the probability
of crises rooted in network and system failures also increases. While the
consequences of these failures are often petty inconvenience (my pager
stopped working), the probability that key application failure could give
rise to large economic perturbations or even loss of life also increases. As
more NDC applications become the norm, failures too become more dis-
tributed. Dependable systems must engender trust from many perspec-
tives if NDC is to continue enriching human activities without introduc-
ing equally large measures of risk.

Dependable NDC systems require dependable hardware, which is be-
yond the scope of this book. A bigger part of the equation, however, is
NDC software. A brief discussion of software dependability is germane at
this juncture.

Below are two examples of many fault-tolerant software approaches
that are applicable to NDC application development—techniques which,
when used with other well-engineered development processes and com-
ponents, will serve to provide more dependable NDC systems software
going forward.

Network Distributed Computing62

03-P2910 2/27/04 10:10 AM Page 62

G&S Typesetters PDF proof

Checkpoint-Restart Technique

While discussions of dependable NDC software date back to the earliest
experiences with networked computing,15 a growing body of research in
this category parallels the growth of the Internet over the same period. An
excellent summary of the state of software fault tolerance status relevant to
this era was published in 2000 by Wilfredo Torres-Pomales from the
NASA Langley Research Center in Hampton, Virginia.16 Torres-Pomales
cited a number of general approaches to software fault tolerance, many of
which are applicable to NDC, including Single-Version Software Fault
Tolerance techniques (that is, redundancy applied to a single version of a
piece of software, designed to detect and recover from faults). The most
common example of this approach cited by Torres-Pomales is the check-
point-and-restart mechanism pictured in Figure 3.5.17

Most software faults (after development has been completed) are
unanticipated and usually depend on state. Faults of this type often behave
similarly to spurious hardware faults in that they may appear, do their
damage, and then disappear leaving no vapor trail. In such cases, restart-
ing the module is often the best strategy for successful completion of its
task, one that has several advantages and is general enough to be used at
multiple levels in an NDC system or environment. A restart can be dy-
namic or static, depending on context: a static restart brings the module to
a predetermined state; a dynamic one may use dynamically created check-

CH 3 The Scope of NDC 63

checkpoint
memory

error
detection

processing
input output

checkpoint

retry

Figure 3.5 Single-version, checkpoint-restart technique

03-P2910 2/27/04 10:10 AM Page 63

G&S Typesetters PDF proof

points at fixed intervals or at certain key points during execution. All this
depends on error detection, of course, which also has several applicable
techniques that can be used.

Recovery-Blocks Technique

Multiversion software fault tolerance techniques are, as the name implies,
based on the use of two or more variants of a piece of software (executed
either in sequence or in parallel), the assumption being that components
built differently (by different designers using different approaches, tools,
and so on) will fail differently. So if one version fails with a given input, an
alternative version should provide appropriate output.

One example Torres-Pomales cites is a “Recovery Blocks” technique,
which shares some attributes with Byzantine agreements discussed later.18

The Recovery-Blocks technique combines the basics of checkpoint and
restart with multiple versions of a given component; if an error is detected
during processing in one variant, a different version executes. As shown in
Figure 3.6, a checkpoint is created before execution, and error detection
in a given module can occur at various checkpoints along the way, rather
than through an output-only test.

Network Distributed Computing64

checkpoint
memory

selection
switch

acceptance
test

primary
version

input
output

checkpoints

retry

alternative
variant 1

alternative
variant N

Figure 3.6 Recovery Blocks technique

03-P2910 2/27/04 10:10 AM Page 64

G&S Typesetters PDF proof

Although most of the time the primary version will execute successfully,
the Recovery-Blocks technique allows alternative variants to process in
parallel (perhaps to lesser accuracy, depending on CPU resources avail-
able) in order to ensure overall performance if such are the requirements
of the application.

Security

Security, like every other fitscape of NDC, can hardly be discussed in iso-
lation. But our sciences are narrow fields of study if measured progress is
to be made. Security is based in mathematics but enabled by engineering.
and in the context of NDC, any discussion of security is ripe with para-
dox. In more practical terms, security is mired in encryption, but encryp-
tion is not nearly enough to provide reasonable assurances for NDC. In-
formation can be hidden by encryption methods, but encryption doesn’t
solve other, more basic, issues of trust, including data origin, access con-
trol, and privacy.

Juxtaposing engineering and pure mathematics is one way to examine
NDC security. Another, more paradoxical, dichotomy is that of privacy
versus data transparency, which would yield measurable availability char-
acteristics if done well. The IETF has offered the following definition of
security in RFC 2828, intended to define Internet needs:19

1. The measures taken to protect a system

2. The condition of a system that results from the establishment and
maintenance of measures to protect the system

3. The condition of system resources being free from unauthorized
access and from unauthorized or accidental change, destruction,
or loss

Security is a proper subset of trust. Trust, however, implies not only secu-
rity as defined by the IETF but also protections against conditions that
are not a function of unauthorized access or even accidental damage. Trust
implies a correctness of function, including communications, which
might define fault-free computing.

Maintaining security within a single node is simple compared to se-
curity issues in NDC environments; most breaches of the security in soli-
tary nodes are due to poor engineering, which can theoretically be ad-
dressed. Assuring security in NDC environments in which all hardware
components are under the physical control of one owner is also relatively

CH 3 The Scope of NDC 65

03-P2910 2/27/04 10:10 AM Page 65

G&S Typesetters PDF proof

simple; many systems are designed to run well in such environments, a
good example being Sun Microsystem’s NFS, which supports secure shar-
ing of data while also providing sufficient data transparency to users. Next
in difficulty is the environment in which the endpoints are controlled by
the owner but the networks are public; virtual private networks (VPNs)
strive to solve NDC security matters in those cases.

Alas, most modern NDC applications cannot be as constrained as
these models if they are to ultimately fulfill the promise of ubiquitous
computing. Typically, users have their own nodes—perhaps many of
them—connections between which are increasingly intermittent, utiliz-
ing the random communications fields that mobile and wireless comput-
ing make possible. Furthermore, intelligence is migrating to every con-
ceivable niche; Moore’s law implies not only more capable traditional
systems but also much smaller technology applications, potentially as dis-
posable as the envelope that delivered your last credit card bill. When pro-
cessing capabilities are pervasive, no assumptions can be made with respect
to their nature. Users will store secrets on computer devices as lacking as
today’s smartcards, which means NDC security requires radically innova-
tive solutions going forward.

In the context of NDC, security weighs in at many levels. It can po-
tentially be “baked in” at a fundamental protocol level, it can be layered in
at higher protocol levels, it can be application specific or even network
specific. Clearly, however, it cannot be ignored.

Languages

How many spoken languages has our species uttered? Although some
6,000 remain today, despite the language pruning effects of global com-
petitive pressures of the last century, some experts assert that all but 250
to 600 languages will become extinct by the end of the current century.20

While it might be more efficient from an economic perspective if all
humans spoke one and only one language, how immeasurable would the
loss be?

Imagine our world today without the influence of Plato, Aristotle,
or Archimedes. Imagine Western legal systems without Exodus or the
New Testament. Though their languages are officially extinct, civiliza-
tion today is ineffably indebted to the written words of ancestral giants,
many of whose tongues would otherwise be silent in the modern world.
Language conveys thought beyond the essence of message-passing. It pro-

Network Distributed Computing66

03-P2910 2/27/04 10:10 AM Page 66

G&S Typesetters PDF proof

vides the foundation for worldview, which cannot be expressed with words
but rather between them. Alas, the loss of human language diversity is
accelerating—a consequence of our shrinking planet.

Computer languages may be subject to Darwinian selection mecha-
nisms, but once compiled, the binary code will run as long as a processor
exists that can execute the target instruction set. In a metaphorical sense
the language is still in use, although not “spoken.” This too presents a
problem for our collective well-being. While spoken languages, if not used
by a large enough body of humans, disappear, computer languages can go
on for years after the last line of code is compiled. As such, the mainte-
nance of aging code can become problematic, especially when the larger
fitscape rewards developers who may be fluent in whatever language hap-
pens to be popular at the moment.

An example of this exposure was the much-hyped Y2K problem,
which never materalized because so many organizations made consider-
able effort to ensure that applications were Y2K-aware. But the lessons of
COBOL (which is currently still in use, albeit not the language of choice
for any number of new NDC development projects) and language para-
digm persistence should be clear: the code we write today may last a lot
longer than we anticipate. As such, our choice of language is as important
as any other project choice we may make.

In the 1970s to 1990s, many computer programs were written that
used only a two-character field to contain the year of any particular
date to save memory and storage. This practice was based on the as-
sumption that the data and the code written to manipulate that data
would not survive past the turn of the century. Unfortunately, develop-
ers who made this assumption were wrong. When the calendar turned
from 1999 to 2000, applications designed to use only two characters
to represent the year were suddenly confused because not only was
data storage involved in the shorthand but algorithms were as well.
Previously sound code would suddenly break—or so the Y2K story
went. But a cascading set of system crashes did not occur. Indeed, the
calendar turned without much notice from the IT community. Perhaps
due to the investments made by large organizations to correct the prob-
lem in advance or perhaps due to the overestimates of Y2K-injured
code, the problem in retrospect appears to have been a nonproblem.

CH 3 The Scope of NDC 67

03-P2910 2/27/04 10:10 AM Page 67

G&S Typesetters PDF proof

NDC efforts have brought computer languages into the forefront of
research as well as coolness. For example, the Java programming language
arguably bootstrapped a new generation of Internet applications. With the
Java specification, the essence of C++ without the shortcomings was mar-
ried with byte code and the promise of Write One, Run Anywhere, and
new models for applications that would span the public networks could be
imagined. The Java platform was a solid step in the direction of a network-
aware platform. The fact that Microsoft’s C# (pronounced “C sharp”)
platform is a close syntactic and runtime mirror of Java platform designs
attests to the visionary appeal that brought Gosling’s invention such dra-
matic acclaim.21

But just as nothing stands alone in the Network Age, nothing stands
still. The Java platform has evolved considerably since “dancing Duke”
first graced a Web page.22 And since languages are the first line of expres-
sive capability, it follows that computer languages in a general sense should
continue to evolve.

As with all the other categories of NDC, language evolution repre-
sents its own complex fitscape. Containing layers within layers, a com-
puter language ultimately relies on an underlying theory of computing in
order to provide a usable tool set from which NDC developers can choose
to implement algorithms of choice. Examples of language R&D that
NDC developers should at least be cognizant of going forward include the
following:

♦ Java/C#— Object oriented, virtual machine interpreted
languages
The Java platform started evolving from the moment it was an-
nounced. From its modest beginning came a standard version
(J2SE), an enterprise-aware version (J2EE), a version targeting
smaller and mobile devices (J2ME), a community process to en-
able standardization (the Java Community Process), and much
more. The dream of Write Once, Run Anywhere, once a holy
grail of computer labs worldwide, unfolded thanks to a C++ type
of syntax, a virtual machine, baked-in security considerations, and
the collective imaginations of millions of developers around the
world. Java (and Microsoft’s C#.NET) is one aspect of NDC lan-
guages that continues to evolve because of research and fitscape
development pressures.

♦ XML (eXtensible Markup Language)—A language for high-level
language creation

Network Distributed Computing68

03-P2910 2/27/04 10:10 AM Page 68

G&S Typesetters PDF proof

With XML came the ability to create HTML-like higher-level
languages to serve specific needs. Portable data, supported by the
portable behavior of the Java platform, proved a compelling vi-
sion. But XML provides only the basis for creation of metadata-
centric approaches to data standardization. The hard part is the
creation of domain-specific extensions; such efforts require com-
munities of agreement, not unlike the JCP. An analogy would be
a new spoken language; if I decided to invent a new language, it
would provide no benefit to anyone unless others understood and
spoke the same tongue. Now imagine that this new language must
be created and agreed to by a committee of individuals who will
ostensibly use it to compete with each other. That’s the inherent
problem XML faces.

♦ The Fox Project—A strongly typed intermediate language with
proof-carrying code
This language layer was pioneered by Carnegie-Mellon Univer-
sity. Funded by the Defense Advanced Research Projects Agency
(DARPA) of the U.S. government, the Fox Project’s goal is to de-
velop language support for building safe, highly composable, reli-
able systems. For the goal to be reached, a return to the mathe-
matical basis for programming languages is deemed to be a certain
requirement. While the current emphasis has been on applica-
tions for ensemble composition in embedded systems, the Fox
Project is a comprehensive program of research that is applying
theoretical foundations of programming languages to develop-
ment tools and techniques for systems in general. Interesting fea-
tures of the Fox Project include the following:

♦ Typed intermediate languages, which extend the benefits of
type safety enjoyed by higher-level source languages to the in-
termediate and target languages of a compiler

♦ Certifying compilers, which provide a foundation for trust-
free code dissemination, by which code can be shared in an
untrusted environment without sacrifice of safety

♦ Proof-carrying code, a technique by which a host computer
can automatically verify that code provided by an untrusted
agent is safe to execute

♦ �-calculus—A theoretical computing model for mobile code
Robin Milner of the University of Cambridge is one of the early
advocates of this theoretical model. The �-calculus recognizes

CH 3 The Scope of NDC 69

03-P2910 2/27/04 10:10 AM Page 69

G&S Typesetters PDF proof

that communication is a fundamental component of theoretical
computing models, which differ from other models of communi-
cating behavior primarily in their recognition and treatment of
mobility: The movement of pieces of data inside a program is
treated exactly the same as the transfer of a message (which can be
an entire program) across the Internet. The �-calculus differs
from other models in its capacity to simply classify behavioral
equivalence among entities, as well as in its patterns of interactive
behavior. It holds that previous theory (that is, classical automata
theory), upon which most of today’s parsers are built, does not ap-
pear to be correct when an automaton’s actions consist of reactions
between it and another automaton. In other words, a fundamen-
tal network-awareness needs to be part and parcel of the compu-
tational theories upon which our languages (and hence our sys-
tems) should be built.

Each of these NDC language developments represents a different layer of
computer language implementation, just as each represents the evolving
nature of languages in the current period.

These examples of language evolution in NDC have three things in
common:

1. Research on all began in earnest in or after 1995 (year zero of the
Network Age).

2. All introduce a heretofore absent network-awareness into com-
puter languages.

3. All reexamine communication approaches between distributed
computing nodes.

Pervasive Computing

I don’t want to carry my laptop around with me any longer. It doesn’t mat-
ter that it’s lighter or more powerful than the first boat-anchor DOS sys-
tem I used to carry on flights in the late 1980s. It doesn’t matter that the
battery allows me to work several hours at a time. The fact is, I don’t need
the laptop; I need access to my data, an application interface that allows
me to manage that data, and a connection to the Internet.

Pervasive computing is the idea that information should follow me and
become available to me where and when I need it; securely, efficiently,
completely, and timely. Very often the term “pervasive computing” is used
synonymously with “ubiquitous computing,” but there is a very real dif-

Network Distributed Computing70

03-P2910 2/27/04 10:10 AM Page 70

G&S Typesetters PDF proof

ference between computing and network resources that can be available
anywhere and similar resources that are present everywhere. Hence, the
different categories.

The pervasive computing category represents adoption patterns as
much as it does enabling technologies. For the information that I require
to be available where and when I need it, the work in many fields must cul-
minate in fruitful solutions. In fact, we are beginning to realize the poten-
tial of pervasive computing, at least in western economies. For example, I
was able to access my Sun-proprietary email account from anywhere in the
world (given a reasonable Internet connection) since 1996, when I first
used my Sun-issued DES Gold “enigma” card, which provided dynamic
password access to a Sun employee portal designed specifically to enable
mobile workplace interaction. My laptop also featured a virtual private
network (VPN) capability that allowed an even finer granularity of ac-
cess to proprietary information through the Sun wide area network
(SWAN), as if I were sitting at a traditional workstation behind a tradi-
tional firewall.

Internet cafes began in 1995 with the advent of the browser (coinci-
dent with Netscape’s initial public stock offering), when what had once
been the domain of geeks (the Internet) became lodged in a general pub-
lic zeitgeist. (This was due, I’m sure, to Netscape’s dramatic capital mar-
ket success; arguably, Netscape’s coming-out party was the day the dotcom
debacle began.) Despite the public misreading of the potential of the
Internet during the late 1990s, the Internet continues to grow, Internet
access continues to become more pervasive, and the era of pervasive com-
puting continues to promise increasing productivity and material ephem-
eralization. The computer science challenges in this fitscape are almost en-
tirely contained by other aspects of NDC, with technology adoption as the
central issue.

Cluster Concepts

NDC progress in the fitscape of cluster computing, as well as the use of
cluster systems for scientific and commercial applications, involves partic-
ipants (researchers, developers, and users) from academia, industry, labo-
ratories, and commerce. Advances and trends in this area include but are
not limited to the following:

♦ System modeling and architecture

♦ Hardware systems and networks

♦ Single-system images

CH 3 The Scope of NDC 71

03-P2910 2/27/04 10:10 AM Page 71

G&S Typesetters PDF proof

♦ System software and tools

♦ Programming models, environments, and languages

♦ Algorithms and applications

♦ Performance modeling and evaluation

♦ Resource management and scheduling

♦ High availability

♦ Scalable clustered systems

♦ System management and administration

Strictly speaking, clustered systems have not been traditionally thought of
as networked distributed systems. Although network datacom can be a key
part of the design of any cluster, what we normally think of as networks
(or the middleware typically found in an arbitrary network) has not been
traditionally involved. This is, however, changing. Because of competitive
pressures and the need to incorporate COTS technologies into more and
more areas of technology, some clusters too are starting to utilize protocols
traditionally found only in less synchronization-demanding applications,
even as COTS-level operating system technologies are entering the fray.
Beowulf systems, for example, are high-performance clusters constructed
from commodity hardware running open source operating system infra-
structures, connected by private internal networks running open network
protocols.23

Key to the notion of clustered computing is the idea of a single-system
image. A cluster is generally a group of nodes that are coupled in such a
way as to present the image of a single node to an application that runs
on or interacts with the cluster. Clusters are designed to either scale or fail
over smoothly; when one subnode in the cluster fails, another is there to
take its place, with the application (including its users) hardly noticing.
Hybrid clusters, those with sufficient subnodes and intelligence to fail over
and scale well, are also useful.

Early clusters were more or less proprietary systems; tightly coupled
CPUs that shared a common bus for memory and storage to reasonably
share data at very high speeds, not very different from multiple-CPU sys-
tems. Advances in datacom capabilities have made it possible for clusters
to leave the shared-bus environment, existing now across buildings and
even across campus. Indeed, a cross-town cluster is not unthinkable, de-
pending on the quality and speed of the dedicated datacom connection.

While the constraints of light speed may make it difficult for computer
engineers to build a global cluster today, dedicated fiber-optic capabilities

Network Distributed Computing72

03-P2910 2/27/04 10:10 AM Page 72

G&S Typesetters PDF proof

may one day make such an arrangement imaginable. A global cluster us-
ing the public Internet for datacom, however, is not so easy to imagine,
given the inherent indeterminacy of the network and the state of Internet
protocols today, regardless of increasing bandwidth. But there may yet be
clever approaches to overcoming even those intrinsic limits.

Distributed Agents

An agent can be many things. The broadest accepted definition is that of
an entity that acts on, or has the power or authority to act on, behalf of an-
other. An agent can be thought of as a means by which something is ac-
complished or is caused.

In any agent-based model, a human being (or even a non-human
agent) may delegate some authority to the agent, which may be “intelli-
gent,” mobile, or both. Given the false start that AI appears to have suf-
fered, it may not be realistic to speak of intelligent agents in NDC. We can
say, however, that an intelligent agent may be able to make rule-based in-
ferences and conduct probabilistic decision analyses or learning on behalf
of its client.

In the context of NDC, a mobile agent may move between nodes to ac-
complish assigned tasks; this vision is of particular interest to mobile users
and mobile communications. Such a view naturally raises many questions
with respect to security and trust-based models, not to mention assump-
tions regarding code viability on a given node. Recall Deutsch’s Eight Fal-
lacies; many of those fallacies must either be ignored or addressed by sub-
stantial work at an industrywide level if a standard agent-based model for
NDC is to become reality. And given the presumed relationship between
the concept of distributed agents and so many other fitscapes of NDC, it
is difficult to imagine a scenario that proffers the ultimate achievment of
ubiquitous computing (which I consider to be the teleological vector of
NDC, if one exists) without such a standard framework.

Not all nodes must sing the same song—quite the contrary. But
“agentness” must be well formalized if a semblance of the intelligence
needed to traverse an arbitrary network is ever to be realized.

Within NDC, agents and the characteristics of distributed agents were
first considered in the problem space of systems and network manage-
ment. The standardization of distributed agents is now being explored in
the context of the Semantic Web as well as the DARPA Agent Markup
Language (DAML).

CH 3 The Scope of NDC 73

03-P2910 2/27/04 10:10 AM Page 73

G&S Typesetters PDF proof

Distributed Algorithms

The notion of an algorithm is basic to all of computer programming,
so we should begin with a careful analysis of this concept.

—Donald Knuth

A distributed system is a collection of individual computing components
that can communicate. This basic definition covers processing organiza-
tions ranging from a VLSI chip to the broadest set of cooperative ensem-
bles that might one day be available as a result of resource convergence over
the widest of global public networks. The heart and soul of all such sys-
tems is the abstraction expressed by the algorithm.

Algorithms are the step-by-step definitions of computational and
communications flow. From a research perspective, algorithms are the re-
search domain of theoretical computer science practitioners, as well as
practical references for real-world application development. The study of
algorithms has proven to be a successful endeavor in solitary computing
node arrangements, providing a basis for understanding problems of prac-
tical importance as well as affording a framework for articulating intrinsic
limitations (such as computability).

But NDC is inherently different from local computing. Indeed,
Deutsch’s Eight Fallacies would teach that not only are computing mod-
els never uniform across the network, but communication ambiguities
also provide indeterminate failure attributes that cannot easily be masked.
NDC introduces interesting complexity measures mired in time and space
variables that are simply not visible to local computing models. And just
as there are greater challenges from greater complexities, the plethora of
approaches to NDC serves to further complicate the NDC fitscape, mak-
ing real-world architectures even more difficult to manage.

Three main architectural models, generally differing in degree of syn-
chrony and decoupling, are algorithmically identifiable in NDC today:

1. A synchronous message passing model. RPC-like models include
RMI (Jini network technology), JAX-RPC, and earlier synchro-
nous message passing systems.

2. An asynchronous message-passing model. Java Messaging Service
(JMS), which provides a basis for Java platform implementations
of Web Services, is representative of this approach.

Network Distributed Computing74

03-P2910 2/27/04 10:10 AM Page 74

G&S Typesetters PDF proof

3. An asynchronous shared-memory model. The more tightly cou-
pled approaches to NDC like grid computing, cluster concepts,
and spaces computing can all benefit from distributed computing
algorithmic advances gleaned from this model.

Algorithmically, systems can be considered to be asynchronous if there is
no fixed upper bound on how long it takes for a message to be delivered
or for elapsed time of processing between steps. Email, for example, typi-
cally takes only a few seconds to arrive but may also take several days, de-
pending on network temperament. As such, asynchronous models cannot,
by definition, provide reliable temporal guarantees. On the other hand,
the reliability (also understood as uncertainty reduction) of asynchronous
models may be enhanced with other benefits like message persistency.
Goff ’s axiom applies here.

In addition to matters of synchrony, network topology is also a do-
main of distributed algorithms; determining shapes and boundaries of dy-
namic networks to effectively navigate the growing rivers of datacom is a
matter of much interest. The commercial popularity of the Internet has
given rise to a substantial increase in research and development in distrib-
uted algorithms, as it has so many other aspects of NDC.

Distributed Databases

Distributed databases are sets of databases that are stored on multiple
nodes but appear to applications as a single database. Through this mech-
anism, an application may concurrently access and modify data in several
databases on a network. Typically, each database in the meta-database is
controlled by a local node but cooperates to maintain the consistency of
the distributed database and to provide the application-level illusion that
a single database is involved.

Database vendors have had interesting challenges to face for a number
of years. Companies like Oracle, for example, have added important value
to businesses over the past two decades by balancing mission-critical data
demands against the often less-than-reliable COTS technologies that their
customers are forced to deploy because of increasing competitive pressures.

The closer a database engine operation is to the hardware, the easier it
is to provide reasonable assurances of data viability; by the same token, the
closer the database engine operation is to the hardware, the less reliant it
can and must be on interfaces provided by the host operating system. To

CH 3 The Scope of NDC 75

03-P2910 2/27/04 10:10 AM Page 75

G&S Typesetters PDF proof

easily play with COTS technologies, therefore, database vendors face a
catch-22, which becomes even more acute as more NDC COTS tech-
nologies are enjoined by databases . . . yet another salute to the flag of par-
adox emblematic of the Network Age.

Because of inherent constraints in NDC, the meaningful data-
integrity guarantees that database vendors must deliver become difficult be-
yond a tightly configured cluster. These challenges must be overcome if a
truly distributed database is to go beyond the illusion of the metadatabase.

This is not to say that the larger, enterprisewide, geographically dis-
persed metadatabase is not tractable; Oracle offers an impressive array of
products that today enable even the largest enterprise manager to glean up-
to-date data from the globally distributed firm. The data itself, however, is
maintained in many databases, but ideally, only one database. Realistically,
as we imagine an age of ubiquitous computing, many databases will likely
still need to be knitted together in some fashion. The NDC exploration
areas of pervasive computing and distributed agents are both related to
problems encountered when distributed databases are considered, as are
dependable computing, peer-to-peer computing, security, and others.

Distributed Filesystems

In regard to data access, the balancing of guarantees of data availability
with security and efficient resource utilization is the product of the dis-
tributed filesystems fitscape of NDC. The first viable distributed file-
system was the Network File System (NFS) from Sun Microsystems. NFS
enabled distributed storage, distributed media, cluster concepts, collabo-
rative computing, and more. It was used on Sun’s UNIX-based worksta-
tions exclusively at first (circa 1983) but became a standard file sharing
mechanism for many operating systems with the public release of NFS 2.0
in 1985. NFS version 3 came along around 1994; major revisions are cur-
rently being implemented to allow better performance across the Internet,
ultimately turning NFS into a true WAN filesystem.

NFS is not so much a filesystem as it is a collection of protocols that
collectively give rise to a client-perspective distributed filesystem. Key to
NFS is the concept of a remote file service that is managed by a remote
server. Clients need not be aware of a file’s location, but rather are given an
interface similar to what a local filesystem might offer; the interface offers
various file operations that the server is responsible for implementing. This
approach can be viewed as a remote access model, as contrasted with an
upload/download model, as shown in the Figure 3.7.24

Network Distributed Computing76

03-P2910 2/27/04 10:10 AM Page 76

G&S Typesetters PDF proof

A rudimentary example of an upload/download model is an Internet FTP
service when used by a client to obtain, modify, and store data on a remote
server.

NFS is implemented on top of RPC. Filesystem interfaces have, for
the most part, been abstracted from operating system interfaces to tradi-
tional local filesystems to transparently offer distributed filesystem capa-
bilities. A virtual filesystem interface (VFS) has been a standard feature in
UNIX and UNIX derivatives since the mid-1980s.

Basically, all requests for file access, whether they be remote or local,
go through the operating system’s VFS interface. This allows applications
to treat all files uniformly, which is of great benefit to NDC application

CH 3 The Scope of NDC 77

remote access model

remote access
requests (client)

File remains
on server.

upload/download model

1. File “moved”
to client.

2. File changes
are local.

3. File “moved”
back to server.

client server

client server

original

modified

Figure 3.7 General distributed filesystem models

03-P2910 2/27/04 10:10 AM Page 77

G&S Typesetters PDF proof

developers. Nevertheless, it is also important to remember the inherent
local /remote differences; the ambiguities and uncertainties of remote
computing must be considered at the interface level if uniform filesystems
access is to be provided.

When it comes to distributed filesystems, two general approaches
should be considered. Either multiple nodes access a filesystem managed
by a single node, or the data in a filesystem is distributed across several
nodes.

Other notable research in NDC distributed filesystems includes the
Farsite work of Microsoft (discussed in the operating systems category be-
low), which provides for replication of files, to increase data availability
across arbitrary networks, and the Extensible File System, proffered in the
early 90s from research at SunLabs, that explored a stacking filesystem,
wherein one filesystem can be stacked on top of an existing one, thereby
allowing the sharing of the same underlying data in a coherent manner.25

Distributed Media

Distributed media (or multimedia) is one of those catch-all fitscapes of
NDC research projects and emerging technologies. Products related to
user-friendly multimedia creation, presentation, search, communication,
and presentation within distributed environments come from this fit-
scape area.

Today’s euphoria over the World Wide Web does not do justice to the
true potential of the Internet. Given Moore’s law and Gilder’s law (which
together give meaning to Metcalfe’s law), it is inevitable that the Internet
(or more likely Internet2) will support distributed interactivity based on
processes that require increasingly larger amounts of data for visualization
in real time. If there is a StarTrek-like holodeck in our future, distributed
media will be one of the areas responsible for firing it up. Even without
such ambitious dreams, this fitscape will enable a new generation of media-
savvy users that are prepared for, and in fact demand, such developments.

Consider my 12 year-old niece Tyrell, who lives in an Idaho town so
small that all grades in public school—K through 12—share physical fa-
cilities. Yet her school is not lacking in resources. One of the courses it of-
fered last year was television production. Using low-cost production gear,
made possible by rapid developments in digital media, her class studied
hands-on processes and techniques that just a few years ago were limited
to only the best-funded schools and professional production studios. Her

Network Distributed Computing78

03-P2910 2/27/04 10:10 AM Page 78

G&S Typesetters PDF proof

entire class had the opportunity to leave behind the technology inhibitions
and shortcomings that might have been all but inevitable for an earlier
generation as geographically remote as hers. It’s this catch-all NDC
fitscape, facilitated and enabled by the economic implications of the Nth
Law metatrends, that will be the enabler of the most prolific generation of
computer scientists and users the world has seen. Telepresence will be as
natural as cell phones to my niece and her peers, given their early exposure
to distributed media, the tools that create it, and the networks that carry it.

Distributed Storage

The Nth Laws also give rise to an exponentially growing amount of data
itself. Vast pools of data require ever-increasing means of storage; Moore’s
law applies as well to storage capabilities as it does to CPU power. As such,
the kinds of storage available today not only feature several orders of mag-
nitude greater capability; they also ensure that legacy storage becomes in-
creasingly outdated. Nonuniform tiers of storage very quickly emerge in
any enterprise that has had IT dependencies for more than five years.

The distributed storage category of NDC takes into account the non-
uniform tiers of storage available in the modern enterprise, which is itself
a fitscape that continues to evolve. In general, the cost of storage is in-
versely related to the access speed of the storage medium in question. If
this were not so, it would probably make sense to have hundreds of ter-
abytes of RAM available for each node and dispense with other storage
media altogether. Until an all-optical network and holographic memory
systems replace the mountains of disk drives, magnetic tape readers, and
removable storage devices currently in vogue, distributed storage will be
preoccupied with the costs, access speeds, and reliability of persistent data.

The concept of the storage area network (SAN) was pioneered in the
mid-90s, along with so many of the other areas of NDC, stemming, no
doubt, from the more commercially uniform emergence of the network
metaphor.

The acquisition of computer resources as well as the management and
storage of data was an enterprise-centric concern before the 1980s. As
such, capital budgets of organizations were impacted by all computer re-
sources, that is, no IT decision was made without careful examination by
managers of capital budgets for organizations. With the advent of the first
IBM PC in 1981,26 computer resource purchase decisions were no longer
constrained by the more watchful eyes of capital budget managers. An

CH 3 The Scope of NDC 79

03-P2910 2/27/04 10:10 AM Page 79

G&S Typesetters PDF proof

item that can be expensed in a given year27 can evade detection, making it
much less visible from a corporate budget perspective.

As the PC started to become something “aspirational” in firms,28 more
and more PCs started showing up on desks without specific IT decisions
to goad their purchase—flying below the capital budget radar, as it were.
The dilemma that firms then had to face was that of corporate data access
and backup. Since the PC operating environment quickly became domi-
nated by Microsoft and since Microsoft chose not to bundle TCP/IP with
their operating systems until 1995, a data-backup gap ensued that pro-
vided a serious problem for corporations that were becoming increasingly
dependent upon data stored on compute islands not designed to be con-
nected to the corporate IT infrastructure. The same problem also gave rise
to opportunities for vendors to help solve the problem.

Proprietary networking protocols like Banyan Vines and those from
Novell provided the basis for networked-PC data management in the era
immediately preceding the Network Age. It is from those roots that com-
panies like Veritas, Network Appliances, and EMC produced the basis for
what is today evolving into sophisticated data management applications
that span the multiple storage tiers and multiple network infrastructures
that have grown from those islands of PCs. Storage consolidation is a vital
to any firm that is concerned with total cost of ownership. The SAN ap-
proach features “full fabric SAN infrastructures,” which are highly avail-
able and support large-scale consolidation, covering wide area networks,
load balancing, and ease of management.

Modern firms require global data management strategies. The need
for storage, access, security, and availability of data increases as the volume
of data increases, which makes the distributed storage fitscape one of
NDC’s more interesting fitscapes in terms of increasing opportunity and
investment.

Grid Computing

The grid-computing fitscape aims to contribute to the development and
advancement of technologies that enable standard, universal access to
computing power and resources, all of which are used in a manner similar
to electrical power. A computational grid is conceptually similar to an elec-
tric power grid. Grid computing envisions the coupling of geographically
distributed resources to offer consistent, inexpensive, location-agnostic
access to a wide variety of resources, thereby enabling the aggregation

Network Distributed Computing80

03-P2910 2/27/04 10:10 AM Page 80

G&S Typesetters PDF proof

and sharing of such things as supercomputers, computer clusters, SANs,
distributed databases, embedded networks, instruments, nodes on an
arbitrary network, and, ultimately, people. Solutions for large-scale, CPU-
bound, and data-intensive NDC applications are naturals for a grid-
computing approach. Once specific to particular applications, grid com-
puting for general-purpose commercial use was first made widely available
by Sun Microsystems.

Sun Microsystems was the first large computer vendor to make grid
computing available for general-purpose commercial use.* On July 24,
2000, Sun announced the acquisition of Gridware, Inc., a privately
owned commercial vendor of advanced computing resource manage-
ment software that originated in Regensburg, Germany. Gridware de-
veloped resource management software, which was used primarily in
compute-intensive, technical computing environments, such as elec-
tronic design automation. Its products were deployed to optimize uti-
lization of workstations, servers, and dedicated compute farms, an area
of strategic interest to Sun.

Thanks to the acquisition, Sun released a general-purpose grid-com-
puting production that allows any organization to reap the benefits of
such an approach, for example, the following benefits:

♦ Specialized agents on each machine to identify and deliver the
compute resources as needed

♦ A GUI and command-line interface for user job submission and
control

♦ A queuing system to manage priorities and to assign jobs to avail-
able resources

*Gridware, www.sun.com/gridware/

Clear resource utilization benefits can be achieved with products like
Gridware. If an organization can better aggregate the compute power of
existing servers and desktop nodes, a highly scalable clusterlike resource
(which can include thousands of processors) is the result. Many organiza-
tions have made heavy investments in compute resources; many of those
nodes remain idle much of the time. Estimates of electricity consumed by
Internet-connected nodes in the United States range from 2 percent to
8 percent,29 which may not seem substantial, but any waste of processor

CH 3 The Scope of NDC 81

03-P2910 2/27/04 10:10 AM Page 81

G&S Typesetters PDF proof

capability is a waste of resources. The grid computing fitscape of NDC
will help address better resource utilization in the aggregate. Interestingly,
the Gridware product from Sun also reflects the trend toward ephemeral-
ization with respect to software product cost; the basic engine is free.

Massively Parallel Systems

In the early 1990s, parallel processing systems started to emerge from
the shadow of the vector processing supercomputers which they would
complement and arguably replace.30 Parallel processing began with doz-
ens of ordinary processors that could be connected in such a way as to al-
low simultaneous calculations of different units of data from some larger
problem.

Thinking Machines Corporation was founded in 1983 with the in-
tention of providing compute resources to support the always-nascent arti-
ficial intelligence field. Business concerns led TMC to adjust, ultimately
becoming the market leader for massively parallel systems around 1990.
TMC’s Connection Machine 5 (CM-5) was the first large-scale, massively
parallel system, which utilized a single-instruction stream multiple-data
stream (SIMD) architecture, essential for parallel processing.31 The CM-5
was an all-Sun Microsystems play, featuring a Sun 2000 SMP front-end
compile server and a bevy of Sun workstations using SPARC micro-
processors working under the Solaris operating environment.

TMC is no more. While a leader in massively parallel systems for a
short time, its business model was evidently lacking. But the concepts and
history of massively parallel systems echo into the Network Age, with grid
computing, languages, and distributed algorithms all beneficiaries of early
massively parallel systems (MPS).

Computing approaches like that of SETI@home are similar in many
respects to MPS systems. The SETI (Search for Extra-Terrestrial Intelli-
gence) project began in 1984 with a single mainframe system to analyze
the data harvested from radio antennae around the world. The ability of
one system, regardless of its power, to adequately analyze data across a
wide range frequencies and a wide swath of pattern probabilities is very
limited. But a project like SETI is easily victim to budget cuts during po-
litical cycles when such matters make for visible policy adjustments; no
funds were available to buy the needed processing capabilities to ade-
quately do the job. Enter SETI@home in 1995. With the growing de-
ployment of home PCs, which consume electricity whether their CPUs

Network Distributed Computing82

03-P2910 2/27/04 10:10 AM Page 82

G&S Typesetters PDF proof

are busy or not, the advent of the commercial Internet and the browser
gave rise to a resource ripe for harvest. The SETI@home project capital-
ized on this opportunity. By distributing a free screen saver that was actu-
ally an application that performed CPU-intensive calculations on discrete
units of data gathered from myriad antennae, the project utilized the ca-
pabilities of a indeterminately large number of otherwise wasted cycles in
a worldwide NDC massively parallel system. Other efforts with similar
needs will inevitably follow.

Middleware

In the context of NDC, the middleware fitscape eases the task of design-
ing, programming, and managing distributed applications by providing
simple, consistent, integrated distributed programming environments.
Middleware is essentially a distributed software layer, or “platform,” which
attempts to abstract complexities and even mask many of Deutsch’s Eight
Fallacies from developers.

Platforms

Different middleware platforms support different programming models.
One popular model is object-based middleware, in which applications are
structured into (potentially distributed) objects that interact by location-
transparent method invocation. Examples of this type of middleware are
Common Object Request Broker Architecture (CORBA), from the Ob-
ject Management Group, and Microsoft’s Distributed COM (DCOM).32

Both platforms offer an interface definition language (IDL) that abstracts
the fact that objects can be implemented in a variety of suitable program-
ming languages. Both also offer an object request broker, which is respon-
sible for transparently directing method invocations to the appropriate tar-
get object, as well as a set of services including naming, time, transactions,
and replication, which further enhance the distributed programming en-
vironment. A word of caution here, with reference to A Note on Distrib-
uted Computing: There are inherent differences between local and distrib-
uted objects that may not be so easy to ignore. While some work can be
accomplished with models like DCOM and CORBA, other NDC appli-
cations designs may not so readily lend themselves to this type of ap-
proach. (Some of the limitations of DCOM and CORBA from a middle-
ware perspective are discussed later.)

CH 3 The Scope of NDC 83

03-P2910 2/27/04 10:10 AM Page 83

G&S Typesetters PDF proof

Other Paradigms

Not all middleware is object based. At least two other popular paradigms
exist, as well as many derivatives, which are the subject of research and
investigation. Event-based middleware and message-oriented middleware
are both in use today. Both employ a “single shot” communications ap-
proach rather than the request-reply approach found in object-based
middleware. Event-based middleware is particularly suited to the construc-
tion of noncentralized NDC applications that must monitor and react to
changes in their environment. Examples include process control and Inter-
net information channels such as stock tracking, sports score tickers, and
the like. Event-based middleware proponents claim this paradigm has po-
tentially better scaling properties than object-based middleware for such ap-
plications, which may be a reasonable claim given the less communications-
intensive approach. Message-oriented middleware, on the other hand, is
biased toward applications in which messages need to be queued and per-
sistently stored. Workflow and messaging applications are examples.

Interesting areas of investigation include charming approaches like
“mChaRM: Reflective Middleware with a Global View of Communi-
cations,” which is a multichannel reification model being pioneered by
Walter Cazzola of the University of Genova.33 In computer science, reifi-
cation (from the Latin re, “thing,” to regard or treat an abstraction as if it
had concrete or material existence) refers to the action by which informa-
tion is transferred (read or copied) from an internal mechanism of a sys-
tem into the domain within which it may be utilized as a processing en-
tity. Reflection is the action by which information is transferred from the
domain of such a system to its internals. The Java Core Reflection API, for
example, “provides a small, type-safe, and secure API that supports intro-
spection about the classes and objects in the current Java virtual machine.
If permitted by security policy, the API can be used to

♦ Construct new class instances and new arrays

♦ Access and modify fields of objects and classes

♦ Invoke methods on objects and classes

♦ Access and modify elements of arrays34

Walter Cazzola’s mChaRM as shown in Figure 3.8 is a reflective model
that allows the system to reify multipoint communications instead of ob-
jects. Each method invocation can be reified into a multichannel, which
can perform metacomputations about it before real activation need occur.
In this way, classic communication semantics can be enriched with new

Network Distributed Computing84

03-P2910 2/27/04 10:10 AM Page 84

G&S Typesetters PDF proof

behaviors and properties, and theoretically the flow of communications in
an ensemble could be modeled before the ensemble is assembled, which
could potentially be very powerful indeed.

Middleware has been responsible for much of the contention, confu-
sion, investment, and progress of NDC. It is also key to the future if prog-
ress toward global ubiquitous computing is ever to be realized.

Mobile and Wireless Computing

The mobile and wireless category of NDC is another broad field that en-
compasses technologies ranging from radio and television broadcasting to
pagers, mobile phones, Bluetooth-enabled PDAs, and satellite communi-
cations. Even as the newest next-next-generation mobile phone hits the
shelf, standards and protocols for that phone are being updated or even
discarded. The fitscape is moving rapidly, as is the rapidly expanding wire-
less world that would serve wireless LANs.

Standards and Protocols

One driver is the acceptance of the WiFi standard. With Microsoft vocally
committed to the standard, and companies like Sun Microsystems actively

CH 3 The Scope of NDC 85

source locus

abstract locus

target loci

receiver1

receiver2

receiver3

sender

message

Figure 3.8 General distributed filesystem models: mChaRM, multi-
channel reification model (dsonline.computer.org/middleware/articles/

dsonline-mcharm.html)

03-P2910 2/27/04 10:10 AM Page 85

G&S Typesetters PDF proof

engaged in disseminating products that enable developers to bring appli-
cations to the space, wireless local networking for computers and other de-
vices is spreading rapidly in many cities around the world.

Most wireless communications discussions split technologies into two
general types: local and wide area. In time, these discussions will segment
even further, as shown in Figure 3.9, ultimately reflecting a broader IEEE
802 vision:

♦ Personal (wireless personal area network [WPAN]) local (within
my clustered campus [LAN])

♦ Wide (across town—metropolitan area network [MAN])

♦ Very wide (across planet [WAN])

The problems, opportunities, transmission frequencies, and data rates
shift as we traverse the various ranges of wireless datacom.

Radio frequency identification (RFID) is a wireless protocol spon-
sored by AIM, the global trade association for the Automatic Identifica-
tion and Data Capture (AIDC) industry.35 AIDC technology started
tracking and access applications during the 1980s, providing for noncon-
tact, low-bandwidth datacom. Effective in manufacturing and other hos-
tile environments where barcode labels are not appropriate, RFID is es-
tablished in a wide range of markets such as livestock identification and

Network Distributed Computing86

us
er

 d
at

a
ra

te
 (

K
bi

ts
/s

)

0 10 100 1K 10K 100K
distance (meters)

10K

1K

100

10

1

0

LAN

PAN

MAN

WAN

RFID

Figure 3.9 Taxonomy of wireless datacom (grouper.ieee.org/groups/802/)

03-P2910 2/27/04 10:10 AM Page 86

G&S Typesetters PDF proof

automated vehicle identification systems. RFID is found in “smart labels,”
which feature thin programmable stick-ons with a very small microchip
and antenna to transmit product information. Tracking moving objects is
a key feature of RFID. Incorporating RFID solutions into myriad ad hoc
personal services will be inexpensive and easy as wireless LAN/MAN so-
lutions provide integratable information fields.

Personal Devices

Personal devices in years to come will include a bevy of connectables, in-
cluding Internet-enabled eye-glasses with retinal projection systems, which
will be linked with voice-activated input devices or hand-sized keyboards
(innovative keyboard layouts will be necessary, perhaps a Nintendo-style
input device, complementing voice-activated input devices). Such devices
will also link with the simple wireless devices common today, such as
automobile remotes, garage door openers, 900 MHz cordless phones, and
wireless 802.11 networks. All of these devices operate within a short dis-
tance, typically just a few meters. Intelligent, integratable wearables that
can sense “information fields” that will traverse the range of wireless data-
com capabilities will become standardized, very likely around these and
other protocols like Bluetooth.

Wide-area wireless devices operate over a much greater area, although
many are similar to the more local wireless devices, which then touch
global land-based support networks. Most mobile phones fall into this cat-
egory. Other wider-area (somewhere between LAN and WAN) providers,
such as Wave Wireless,36 are pioneering stationary, broadband-wireless so-
lutions in 18+ GHz frequencies, using proprietary protocols. Solutions for
remote broadband (short of satellite, which can be problematic if sym-
metric datacom services are required), these kinds of wireless solutions can
provide point-to-point broad-band (11 Mbps and beyond) covering dis-
tances up to 40 kilometers.

Applications

But there’s much more to wireless and mobile computing than datacom
protocols and frequencies. Indeed, the preceding discussion might have
been better suited to the network protocols category in any event. Appli-
cation requirements are clearly different for mobile devices than for other
general areas of NDC, so discussion of wireless and mobile platforms is
also germane. Take the Java platform, for example.

CH 3 The Scope of NDC 87

03-P2910 2/27/04 10:10 AM Page 87

G&S Typesetters PDF proof

The Java platform leads in wireless with the Java 2 Platform Micro
Edition (J2ME), specifically designed for small or mobile devices. J2ME
technology addresses a large number of intelligent consumer devices, rang-
ing from pagers to set-top boxes. To address wireless and mobile needs,
J2ME requires the mobile information device profile (MIDP), a set of Java
APIs which when combined with the connected limited device configura-
tion (CLDC) provides a complete J2ME application runtime environ-
ment. Targeting all types of mobile information devices, which generally
have memory restrictions as well as tiny user displays and limited battery
life, the MIDP/CLDC specifications address issues such as user interface,
persistence storage, networking, and application model. J2ME through
MIDP/CLDC provides a standard runtime environment that allows new
applications and services to be dynamically deployed on the growing array
of small, mobile devices, effectively enabling such devices to become in-
termittent nodes on the Internet.

Even As I Write . . .

The wireless fitscape is evolving at an incredible rate. The mobile and wire-
less category of NDC will have changed substantially by the time the ink
is dry on these pages. Developments here also affect and are affected by a
number of other fitscapes in the broad scope of NDC.

Network Protocols

Network protocols define the sets of rules governing communication be-
tween nodes on a network. Timing, format, sequencing, error control,
routing, reliability, and security are all considerations that network proto-
cols either have or will encompass. To cope with burgeoning network
complexities, protocols are broken down into steps or layers, each with its
own set of rules for operation and data organization. Each layer, in essence,
is its own protocol.

Modern datacom is founded on the principles of Shannon’s informa-
tion theory, which consists of a set of elegant mathematical models for de-
scribing stochastic processes and ergodic systems made up of such pro-
cesses. These models give rise to a probabilistic approach to data encoding
and transmission characteristics. With Shannon, the ability to encode and
effectively transmit binary codes in an environment that is always prone to
noise (transmission errors) is made tractable. The stack approach to data-
com is enabled at the lowest level by Shannon. The physical transmission

Network Distributed Computing88

03-P2910 2/27/04 10:10 AM Page 88

G&S Typesetters PDF proof

of bits, which are transcribed and framed at the Data Link layer (OSI 7-
layer model), relies almost completely on Shannon’s information theory.
Modern data transmission protocol inventions like DSL, 802.11, Blue-
tooth, are all founded on Shannon’s work.37

There are a lot of datacom protocols. Novell offered a proprietary
stack called internetworking packet exchange/sequenced packet exchange
(IPX /SPX) for use with their NetWare operating system, one of the early
players in the PC-networking space. Another is NetBIOS (network basic
input/output system) from IBM, a now-standard interface that permits
PC applications to communicate directly with other PCs at the transport
layer. Which brings us to Transmission Control Protocol /Internet Proto-
col (TCP/IP), the standard that enables the internet. Loosely based on the
ISO OSI 7-layer model,38 TCP/IP provides basic networking capabilities
for computing nodes that provide and consume Internet resources.

Myriad protocols building on top of TCP/IP give rise to other inter-
esting applications. The now-indispensable browser relies on HyperText
Transfer Protocol (HTTP), which operates above the transport layer, as
do File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP),
and Simple Network Management Protocol (SNMP). With the advent of
Web Services, additional network protocols are being considered to enable
a new generation of networked applications. Baked-in security and relia-
bility, for example, are both required at the protocol level if the Web Ser-
vices vision is to be realized. Indeed, additional protocols that build on top
of the transport layer are becoming quite common and are likely being uti-
lized as competitive differentiators in a business sense as much as they are
standardized communication frameworks in a more secular NDC sense.

In NDC, communications protocols are of utmost importance. In-
deed, many of the topics covered later in this volume contain discussion
of the protocols germane to them. Suffice it to state here that network pro-
tocols are as abundant and complex as are the broad categories of NDC
itself—that is, evolutionary forces will likely trim this fitscape too, given
sufficient time, consumption, and investment.

Operating Systems

Operating systems have been around since ENIAC, the first modern com-
puter system, and still provide the basis for software development and de-
ployment. My first computer science love was the mysterious and enabling
world of operating systems, where software must ultimately meet hard-

CH 3 The Scope of NDC 89

03-P2910 2/27/04 10:10 AM Page 89

G&S Typesetters PDF proof

ware. Operating systems are responsible for a variety of tasks for a given
node, including the following:

♦ Managing and scheduling resources (CPU, disk, printer, memory,
and so on)

♦ Scheduling tasks, and jobs

♦ Controlling I /O

♦ Handling error recovery

♦ Providing security

♦ Supplying a basis for user commands

With the proliferation of NDC, operating systems too are subject to
change resulting from competitive pressures and network-derived innova-
tions. Once, researchers were content with sensible implementations of
a simple IPO model, connecting to the network only as an afterthought.
But today, research in operating systems reflects the assumption that any
node of interest will be connected to other nodes and share data and pro-
cessing responsibilities with them. Given this worldview, operating system
metamorphosis is inevitable. It should be noted that some operating sys-
tem designers have long recognized connection to a network as a given.
For example, the first system ever sold by Sun Microsystems came with a
TCP/IP stack integrated into the system.

Several notable approaches recognize new opportunities for Internet-
aware operating systems. One example is the Odyssey project at Carnegie-
Mellon University being pioneered by Mahadev Satyanarayanan, a com-
puter science professor who envisions application-aware operating systems,
which can adapt as needed depending upon any number of context-
dependent variables (e.g., available bandwidth, network load, battery
power in a mobile device).39

Imagine you’re in the back seat of a taxicab enjoying a full-motion
color video conversation with your mother on the latest and greatest
cell-phone cum Internet portal, via a high-bandwidth wireless MAN,
when your cab stops at a light in the shadow of a tall building, tempo-
rarily degrading the signal. In this scenario, the operating system pro-
vided by the Odyssey vision notifies the (presumably smart) color
video application that signal degradation has occurred; instead of the
2 Mbps stream you had so far enjoyed, you are temporarily restricted

Network Distributed Computing90

03-P2910 2/27/04 10:10 AM Page 90

G&S Typesetters PDF proof

to 200 Kbps. The application adjusts from a 10 frame/sec color ren-
dering to something more sustainable, perhaps 2 frame/sec black and
white. But your conversation, complete with video, continues.

Another example of operating system research is Microsoft’s Farsite
(Federated, Available, and Reliable Storage for an Incompletely Trusted
Environment) project, which promises a more distributed approach to
data storage, fault tolerance, self-tuning, and serverless computing that re-
sembles peer-to-peer sensibilities implemented at the operating system
level.40 Microsoft promises implementations as soon as 2006.

IBM, too, is advertising a self-healing, highly scalable approach they’re
calling “Blue Gene,” which is principally founded on their emerging Au-
tonomic Computing initiative, a program that would imbed operating
systems with notions like “self-optimization,” as well as self-healing (not
unlike the autonomic nervous systems in living organisms).

In 1998, Sun Microsystems announced Jini network technology,
which brought such notions as self-healing networks to the forefront of
the computer industry. The fact that both Microsoft and IBM too now
recognize that requirement is testament to the efficacy of that vision.
NDC requires ever more “organic” approaches to software development
and network deployment as the level of complexity increases. It is only
natural that operating systems too begin to reflect that need.

Real-Time and Embedded Systems

Just as the Internet has grown at a phenomenal rate since its inception,
so too have processors that are not connected to an open network, per se,
but that provide useful functionality nonetheless. All but the simplest of
electrical devices feature an embedded processor today. Why? Because em-
bedding intelligence in a device provides value to consumers. Televisions,
coffee pots, telephones, microwave ovens, automobiles, traffic lights, home-
climate systems, room air conditioners, CD players, radios, refrigerators,
dishwashers, washers and dryers . . . there seems no end to the devices and
products that include intelligent processors to meet emerging consumer
expectations. And just as the Internet brings great value by connected
computing nodes, embedded networks (EmNets) bring great value to real-
time and embedded processors. Indeed, the coupling of EmNets and the
Internet will provide interesting opportunities in myriad directions over
the next few years.

CH 3 The Scope of NDC 91

03-P2910 2/27/04 10:10 AM Page 91

G&S Typesetters PDF proof

EmNets, especially those with hard real-time requirements,41 demand
tighter specifications and particular sensibilities, typically not required in
NDC development. But with the growing integration of real-time and
embedded systems intended to leverage and share general-purpose plat-
forms, all developers face design and architectural challenges in managing
these newly shared resources. As embedded systems are applied to diverse
and potentially adverse environments, appropriate protection of perfor-
mance characteristics must be ensured. All this has led to increased need
for design methodologies for system and application software, operating-
system support mechanisms, and resource and application control tech-
niques for these novel forms of embedded systems.

When NDC meets these newly emerging real-time and embedded
systems, areas of interest can include such diverse topics as these:

♦ OS support for mixed response requirements

♦ Real-time applications in COTS operating systems (e.g., Linux)

♦ Real-time software components

♦ Novel kernel-level mechanisms

♦ Open architectures for resource control

♦ Embedded control applications

♦ Secure real-time systems

♦ Middleware support

♦ Java implementation and applications

♦ Power-aware resource management

♦ QoS-aware application design

♦ System modeling and analysis

As real-time and embedded networks are knitted together and emerge as
services available from the World Wide Web, the sensibilities of each gen-
eral category (for example, time-bound versus time-agnostic) will influ-
ence and impact the other. Further, NDC developers will increasingly
become more time aware, even if hard real-time requirements do not im-
mediately constrain network application development.

Commentary

The end of this unordered list of NDC R&D fitscapes marks the begin-
ning of the journey for software developers. There is no avoiding the com-
plexities we’ve unleashed if we would move forward.

Network Distributed Computing92

03-P2910 2/27/04 10:10 AM Page 92

G&S Typesetters PDF proof

In a little over two decades, NDC R&D, coupled with the immutable
laws of supply and demand and seasoned by an early 21st-century shock
wave of realization that Moore’s law really was an accurate, practical fore-
casting model rather than science fiction, has given rise to a interleaved
group of fitscapes that is beginning to rival some of nature’s own more in-
teresting efforts. Not unlike the universe it would help us to understand,
the sphere of computer science is enjoying an inflationary era, as the
rate of innovation continues to accelerate, following its own exponential
vector—somewhere between Moore and Gilder, applauded by Metcalfe.

In this era of ever-changing change, it may be wise to consider Stuart
Kauffman’s observation that the rate of innovation cannot exceed the abil-
ity of the fitscape to adequately test the novelty without risking systemic
collapse. If we move too fast, we may experience spectacular collapse, the
magnitude of which we cannot even grasp, let alone predict.

If any conclusions can be drawn from an overview of NDC and the
relationships among its 24 fitscapes, they can be summarized as follows:

1. Complexity will continue to increase, absent radically different
approaches.

2. Formal methods are enjoying a renaissance while standardization
efforts both ignore and embrace formal methods.

3. Increasing global competition and COTS technologies will prune
the complex undergrowth of NDC R&D options.

4. Technology adoption will continue to increase only if perceived
value is obvious to the markets (and hence consumers) which that
technology would serve.

5. No one individual, standardization effort, organization, or con-
cern can adequately prestate NDC configuration space. Indeed,
as Kauffman asserts, it is very likely impossible.

6. The kaleidoscope of NDC categories are all related; convergence
among categories of NDC R&D is inevitable.

Notes

1. dsonline.computer.org

2. The term teleology, from philosophy, denotes the study of ultimate
aim or purpose in nature. With respect to technology, we can use
the term to mean the ultimate aim of technology insofar as it can
be discerned.

CH 3 The Scope of NDC 93

03-P2910 2/27/04 10:10 AM Page 93

G&S Typesetters PDF proof

3. Arg!: a technical term from early email protocol; an emotive signi-
fying frustration.

4. xml.coverpages.org/MS-GlobalXMLWebServicesArchitecture.html

5. Abraham H. Maslow, Toward a Psychology of Being (Princeton, NJ:
van Nostrand, 1968).

6. Paul Watzlawick, Munchhausen’s Pigtail or Psychotherapy and
Reality (New York: Norton, 1990), p. 125.

7. Tim Berners-Lee, James Hendler, and Ora Lassila, “The Semantic
Web,” Scientific American (May 2001).

8. The basis for the U.S. government’s suit against Microsoft.

9. David Gelernter, Mirror Worlds (New York: Oxford University
Press, 1991).

10. Dallas Semiconductor.

11. www.gigaspaces.com

12. For a history of Napster, see Joseph Menn, All the Rave: The Rise
and Fall of Shawn Fanning’s Napster (New York: Crown Business,
2003).

13. Jini network technology provides an interesting alternative to this
traditional constraint, which is useful to consider as the idea of self-
healing becomes more widely held in networks as well as within
nodes.

14. i3c.org

15. From “Brief Timeline of the Internet” (http://www.webopedia
.com/quick_ref/timeline.asp) “October 1, 1969: Second node in-
stalled at Stanford Research Institute; connected to a SDS 940
computer. The first ARPANet message sent: ‘lo.’ Trying to spell
log-in, but the system crashed!”

16. Wilfredo Torres-Pomales, “Software Fault Tolerance: A
Tutorial,” NASA /TM-2000-210615, citeseer.nj.nec.com/
torres-pomales00software.html

17. Dhiraj K. Pradhan, Fault-Tolerant Computer System Design
(Upper Saddle River, NJ: Prentice Hall, 1996).

18. Brian Randell and Jie Xu, “The Evolution of the Recovery Block
Concept,” in Software Fault Tolerance, Michael R. Lyu, ed. (New
York: Wiley, 1995).

19. www.ietf.org/rfc/rfc2828.txt

Network Distributed Computing94

03-P2910 2/27/04 10:10 AM Page 94

G&S Typesetters PDF proof

20. Janet Raloff, “Languishing Languages: Cultures at Risk,” Science
News Online (February 25, 1995),
http://www.sciencenews.org/sn_edpik/aa_1.htm

21. The Java platform (which includes language specification and run-
time virtual machine specification—hence, the Java “platform”—
was invented by James Gosling of Sun Microsystems and an-
nounced by Sun in 1995.

22. Duke, the Java mascot, emerged in the summer of 1992, when the
Green Team—the pioneers at Sun who created the Java program-
ming language—built a working demo of an interactive, hand-held
home-entertainment device called the *7 (“Star 7”). The *7 fea-
tured Duke, an animated character who served as an agent for the
user and who could interact with multiple objects on screen.

23. www.beowulf.org

24. Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems,
Principles and Paradigms (Upper Saddle River, NJ: Prentice Hall,
2002), p. 577.

25. research.sun.com/techrep/1993/smli_tr_93-18.pdf

26. The IBM PC wasn’t the first personal computer, per se. But when
IBM introduced the 5150 in August 1981, the PC era began in
earnest.

27. Generally, tax laws treat capital purchases and expenses differently.
Capital purchases are items that must be depreciated over time,
whereas expenses are generally deductible from income in the same
year as expenditure. Capital purchases usually have a higher mini-
mum amount associated with the purchase, for example, “all items
under $5000 can be expensed.”

28. It can be argued that many PCs purchased during the 1980s were
aspirational as opposed to functional. If I am a first-line manager,
for example, and the manager in the cube next to mine has a PC,
which is becoming something cool to have, then I too must have
a PC.

29. usinfo.state.gov/topical /global /ecom/01020603.htm

30. Vector processors perform CPU-intensive calculations analogous to
an assembly line. A central processor doles out the first unit of data,
the second processor performs a calculation and hands the task to
the next processor, and so on. Vector processing is well suited for

CH 3 The Scope of NDC 95

03-P2910 2/27/04 10:10 AM Page 95

G&S Typesetters PDF proof

problems that feature well-organized, parallelizable datasets, like
calculation of weather patterns. For years all supercomputing was
synonymous with vector processors.

31. Multiple-instruction stream, multiple-data stream (MIMD) ma-
chines feature processors that function in an independent or asyn-
chronous manner. SIMD architectures are more tightly coupled
from a memory perspective and offer superior ability to manipulate
vectors, offset by a disadvantageous approach to managing memory
exchange.

32. www.omg.org, www.microsoft.com/com/tech/DCOM.asp

33. www.disi.unige.it /person/CazzolaW/, Walter Cazzola, Univ. of
Genova, Italy, Dept. of Informatics and Computer Science.

34. Java Core Reflection API Specification, java.sun.com/products/
jdk/1.1/docs/guide/reflection/spec/java-reflection.doc.html

35. www.aimglobal.org/technologies/rfid/

36. wavewireless.com

37. C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal 27 (July and October 1948): 379– 423;
623–56.

38. www.webopedia.com/quick-ref/OSI.Layers.asp

39. www.2.cs.edu/~odyssey/

40. research.microsoft.com/farsite

41. Realtime applications can be classified as either hard or soft real-
time. Hard realtime applications require a response to events
within a predetermined amount of time for the application to func-
tion correctly. If a hard realtime application fails to meet specified
deadlines, the application is considered to have failed. Soft realtime
applications, however, do not necessarily fail if a deadline is missed.
An example of a soft realtime application is an airline reservation
system where temporal delays do not necessarily constitute failure,
although a “reasonable” temporal component is implied.

Network Distributed Computing96

03-P2910 2/27/04 10:10 AM Page 96

