

53

3

Java Sockets
and URLs

�

S

OCKETS

AND

 I

NTERPROCESS

 C

OMMUNICATION

�

C

LIENT

/S

ERVER

 M

ETHODOLOGY

�

T

HE

 P

IZZA

 O

RDER

 P

ROTOCOL

 (TPOP)

�

T

HE

 TPOP S

ERVER

�

T

HE

 TPOP C

LIENT

�

UDP C

LIENT

Sockets and Interprocess Communication

At the heart of everything we discuss in this book is the notion of interprocess
communication (IPC). In this chapter, we will look at some examples using Java
mechanisms for interprocess communication. IPC is a fancy way of saying “two
or more Java programs talking with each other.” Usually the programs execute on
different computers, but sometimes they may execute on the same host.

Introduction to IPC

When you call Charles Schwab to check on your stock portfolio, you dial a tele-
phone number. Once connected, you press some telephone buttons to request var-
ious services and press other buttons to send parameters, such as the numeric
codes for stock symbols in which you are interested. You may think of your
account as an object with different methods that you can invoke to purchase or to
sell stocks, to get current quotes, to get your current position in a stock, or to
request a wire transfer to a Swiss bank. You are a

client

 and the other end is a

server

, providing the services (methods) you request.

Of course, the server also provides services to many other clients. You can be a cli-
ent of other servers, such as when you order a pizza with a push button tele-
phone. Sometimes a server can be a client as well. A medical records query server
may have to send a request to two or three hospitals to gather the information you

JavaNetwork 03 Page 53 Monday, February 28, 2000 11:14 AM

54

Advanced Java Networking

request for a patient. Thus your server becomes a client of the hospital servers it
queries on your behalf.

All these situations are examples of interprocess communication. Each client and
each server reside in different processes. Sometimes you, the individual, are the
client; other times it is a computer. Sometimes the server is an application that lis-
tens in on what you type on your telephone pad and processes the information;
other times it will be a program, perhaps written in Java as we will do later in this
chapter. IPC is how our applications communicate, but it also refers to the mecha-
nism we use. This chapter explores the fundamentals of IPC using something
called a socket.

Sockets.

The communication construct underneath all this communication is
more than likely a

socket

. Each program reads from and writes to a socket in
much the same way that you open, read, write to, and close a file. Essentially,
there are two types of sockets:

• One is analogous to a telephone (a connection-oriented service, e.g., Trans-
mission Control Protocol)

• One is analogous to a mailbox (a connectionless “datagram” service, e.g.,
User Datagram Protocol)

An important difference between TCP connection sockets and UDP datagram
sockets is that TCP makes sure that everything you send gets to the intended des-
tination; UDP, on the other hand, does not. Much like mailing a letter, it is up to
you, the sender, to check that the recipient received it. The difference between the
two protocols is very similar to comparing the differences between using the
phone to talk to friends and writing them letters.

When we call a friend using a telephone, we know at all times the status of the
communication. If the phone rings busy, we know that we have to try later; if
someone answers the phone, we have made a connection and are initiating the
message transfer; if the person that answered the phone is the right person, we
talk to them thereby transferring whatever information we intended to deliver.

Had we written a letter, we know that we would have initiated an information
transfer after we dropped it off at the mailbox. This is where our knowledge of the
transfer, in most cases, ends. If we get a letter back and it starts out with “Thanks
for your letter,” we know that our letter was received. If we never again hear from
the person, there is some doubt that they ever received our letter.

Sometimes when you use the postal service, your letter becomes “lost in the mail.”
When the letter absolutely, positively has to be there, you may need a more reliable
form of postage. Similarly, your choice between using a datagram or a connection

JavaNetwork 03 Page 54 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs

55

socket is easily determined by the nature of your application. If all your data fits in
an 8K datagram and you do not need to know if it was received at the other end,
then a UDP datagram is fine. Mailing party invitations is one example where UDP
is more appropriate than TCP. If the length of service warrants the expense of
establishing a connection (three handshake packets), or it is necessary that all the
packets be received in the same order as they were sent, such as transferring a file
that is more than 8K bytes long, then a TCP socket must be used. Likewise, if we
were to mail our important package using something like Federal Express, we
would be able to track the package and know when it arrives at its destination.

Here is another way to look at this. Suppose we have a server that is somewhere
on the network but we don’t know where. To communicate with this type of
server, we must first announce our presence, listen for an answer, and then carry
on the conversation in lockstep where first one end sends then listens while the
other end listens then talks. This is like a student walking into the reserve room of
a college library and, upon not seeing the librarian right away, saying, “Is there
anyone here?” and then listening for a response.

“Good afternoon, I’ll be with you in a moment.”

“I’d like the book Prof. Steflik put on reserve for CS-341.”

“Here it is. Please leave your Student ID card.”

We announced our presence and started listening. The server was listening, heard
us, replied with an implied go ahead, and returned to listening. We heard the
server’s response, announced what we wanted, and returned to listening. The
server (librarian) heard our request, retrieved the information (the book), and
delivered it. This back and forth type of communication is known as half duplex,
where only one endpoint talks at a time; contrast this with full duplex, where both
endpoints can talk and listen at the same time.

In this chapter, we will write an online ordering application, using TCP, and a
broadcast communication application, using UDP. These applications will use the
following classes from the

java.net

 package, as illustrated in Table 3-1.

NOTE:

 A socket is sometimes called a “pipe” because there are two ends (or
points as we occasionally refer to them) to the communication. Messages can
be sent from either end. The difference, as we will soon see, between a client
and a server socket is that client sockets must know beforehand that informa-
tion is coming, whereas server sockets can simply wait for information to come
to them. It’s sort of like the difference between being recruited for a job and
actively seeking one.

JavaNetwork 03 Page 55 Monday, February 28, 2000 11:14 AM

56

Advanced Java Networking

What Are Sockets?

At the root of all TCP and UDP communications is a vir-
tual device called a socket or a port; the terms are pretty much interchangeable.
Sockets are a visualization mechanism for a software buffering scheme that is
implemented deep in the bowels of the transport layer of the TCP/IP stack. The
term “socket” actually comes from the old-fashioned telephone switchboard that
Lily Tomlin’s character Ernestine, the telephone operator, uses. The concept is
pretty similar: Each socket in the switchboard represents a person or service that
an incoming call can be routed to; when an incoming call is answered, the opera-
tor connects it to the appropriate socket, thereby completing the connection
between the client (the caller) and the server (person being called). In the tele-
phone switchboard each socket represented a specific person or service; in
TCP/IP certain sockets are dedicated to specific agreed-upon services.

If we were to look at the packet level, we would see that a socket is really identi-
fied by a 16-bit number thereby giving us about 65,000 possible sockets. The first
1024 sockets are dedicated to specific agreed-upon services and are therefore
called well-known ports. For each of the services provided on the well-known
ports, there is a corresponding protocol that defines the manner in which clients
and servers using that port should communicate. The protocols themselves are
arrived at through a process known as the RFC process. Table 3-2 lists some of the
more common TCP/IP services, their “well-known” ports, and their respective
RFCs. Every Internet standard starts out as a “Request for Comment” or RFC.
Through an interactive process an RFC, if “worthy,” will be refined and devel-
oped by the Internet community into a standard.

Exploring Some of the Standard Protocols.

When starting to under-
stand sockets programming, it’s always best to start out by examining the “triv-
ial” protocols first and then move on to the more complex and finally to our own,
application-specific protocols. The trivial protocols are a subset of Internet proto-
cols that are simple, straightforward, and easy to implement.

Table 3–1 Java.net.* Types and Their Corresponding Protocol

Mechanism Description

Socket TCP endpoint (a “telephone”)

ServerSocket TCP endpoint (a “receptionist”)

DatagramSocket UDP endpoint (a “mailbox”)

DatagramPacket UDP packet (a “letter”)

URL Uniform Resource Locator (an “address”)

URLConnection An active connection to an Internet object (e.g., a CGI-bin script,
a DayTime service)

JavaNetwork 03 Page 56 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs

57

Daytime.

The Daytime service is usually provided on TCP and UDP port 13.
Assuming that we have the address of a host that is running the Daytime service,
the operation is straightforward. Using TCP the client connects to the Daytime
port (13) on the remote host; the remote host accepts the connection, returns its
current date and time, and closes the connection. This can be easily demonstrated
using the Windows 95 Telnet client. Open up the Telnet client and click on Con-
nect and the Remote System. Enter in the address of your host that provides the
Daytime service, select the Daytime port, and click Connect. Notice that a
date/timestamp is displayed in the client area and that a small dialog box indi-
cates that the connection to the host has been lost.

This example is trivial but illustrates two things: First, the Windows Telnet client
can be used to explore standard TCP-based protocols (we’ll see this later with
other protocols. Second, we really did demonstrate how the client end of the pro-
tocol works; the client makes a connection to the server, the server sends the
timestamp and closes the connection, and, finally, the client receives the time-
stamp. To implement our own client, understanding what the client needs to do
makes the task quite simple. A high-level design is

Create a socket
Create an input stream and tie it to the socket
Read the data from the input stream and display the result

To create a socket, define a variable for the socket class and initialize it using the
class constructor:

Socket s = Socket("localhost", 7);

“localhost” is the name assigned to address 127.0.0.1 in your hostsfile; address
127.0.0.1 is known traditionally as your machine’s “loop back port,” and lets your

Table 3–2 Some Well-Known Port Services

Port Protocol RFC

13 DayTime RFC 867

7 Echo RFC 862

25 SMTP (e-mail) RFC 821 (SMTP)
RFC 1869 (Extnd SMTP)
RFC 822 (Mail Format)
RFC 1521 (MIME)

110 Post Office Protocol RFC 1725

20 File Transfer Protocol (data) RFC 959

80 Hypertext Transfer Protocol RFC 2616

JavaNetwork 03 Page 57 Monday, February 28, 2000 11:14 AM

58

Advanced Java Networking

machine talk to itself. The line above creates a socket named “s” and connects it to
port 7 on your loop back port. To connect to the Daytime service on any other
host, just replace localhost with a string containing the dotted decimal name or IP
address of whatever host you want to connect to.

This single instruction will create the socket object and attempt to connect it to the
specified host. Because this has a possibility of failing (throwing an exception—a
connection may not be established), we need to code it in a try/catch construct.

import java.io.*;
import java.net.*;
public class DayTimeClient{
 public static final port = 13;
 public static void main(String args[])
 {
 Socket s = null;
 String timestamp;
 try
 {
 // create the socket to the remote host
 s = new Socket(args[0], port);
 // create an input stream and tie it to the socket
 InputStream in = s.getInputStream();
 BufferedReader in =
 new BufferedReader(new InputStreamReader(in));
 // tell user they are connected
 System.out.println("Connected to : " +
 s.getInetAddress() + "on port " + s.getPort()) ;
 while (true) {
 // read the timestamp
 timestamp = in.readLine();
 if (timestamp == null) {
 System.out.println("Server closed connection");
 break;
 }
 System.out.println("Daytime : " + timestamp);
 }
 }
 catch (IOException e) { System.out.println(e);}
 finally
 {
 // force the connection closed in case it's open
 try
 { if (s != null) s.close(); }
 catch (IOException e2)
 { }
 }
 }
}

JavaNetwork 03 Page 58 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs

59

The code follows our high-level design pretty closely. We first create a socket and
then create a stream and tie the two together. Notice that all I/O is done in a try
construct so that all I/O problems (socket or stream) are automatically caught as
exceptions. In fact, especially notice that the finally clause of the main try/catch/
finally uses a nested try to catch the fact that if the connection is already closed so
that we can terminate the program gracefully in the null catch statement.

Now that we’ve mastered the most trivial of the protocols, let’s move on to some-
thing a little more complicated.

Echo.

“Well-known port” 7 on most hosts provides a service called echo. Echo is
pretty much a diagnostic service and works as follows (see RFC 862 on the com-
panion CDROM for a fuller description):

1.

The client connects to the server on port 7 and proceeds to send data.

2.

The server returns everything it receives to the client. This may be done on a
character-by-character basis or a line-by-line basis depending on the imple-
mentation of the server.

Let’s start out our examination of echo by first writing a non-sockets-based ver-
sion of Echo just to get a feel for what it is that we want to do.

public class EchoTest

{

 public static void main (String args[])

 {

 BufferedReader in = new BufferedReader

 New InputStreamReader(System.in));

 String line;

 while(true)

 {

 line="";

 try

 {

 line = in.readLine();

 }

 catch (IOException e)

 {

 System.err.println(e.getMessage());

 }

 System.out.println(line);

 }

 }

}

The program is quite simple and straightforward. First, we define an input
stream and connect it to the standard input keyboard (System.in); then we define
a string for our only program variable, which will hold the string we read from

JavaNetwork 03 Page 59 Monday, February 28, 2000 11:14 AM

60

Advanced Java Networking

the keyboard and print on the Java console. Finally, we put the read and write in
a do forever loop. Remember, in Java it is not only considered good form to pro-
vide try/catch constructs when doing I/O it is necessaary.

You can execute the program that we created by doing the following, and get sim-
ilar results:

%prompt%

javac EchoTest.java

%prompt%

java EchoTest

abc input...

abc ...output

def input...

def ...output

xyz input...

xyz ...output

^C

%prompt%

Moving EchoTest to Sockets.

Taking another step toward proficiency using
Java sockets, we modify our echo program to do the following:

1.

Read a line from the keyboard.

2.

Write it to a socket connected to TCP port 7.

3.

Read the reply from the socket connection.

4.

Print the line from the socket to the screen.

A socket object is created as follows:

Socket s = Socket("localhost", 7);

The two arguments to the

Socket

 constructor are

hostname

and

port number

. We
use “localhost” to keep it simple. The hostname is passed as a

String

 variable,
typically from the command line and the port number as an

int

.

Here is a simple TCP client written in Java. First, we must create the

EchoClient

class and import all the Java libraries that we will use in our program.

import java.io.*;

import java.net.*;

public class EchoClient

{

}

Now, we must create a function in which we will place a loop similar to the one
we created with our Java-only client. This loop must have two objects on which to
act—the BufferedReader from the socket from which it will get data and the Print-
Stream from the socket to which it will write data. We assumed this was standard
input and standard output for our Java-only client, but we will not make that
assumption here:

JavaNetwork 03 Page 60 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs

61

import java.io.*;

import java.net.*;

public class EchoClient

{

 public static void echoclient(BufferedReader in;

 PrintStream out)

 throws IOException

 {

 }

}

Now, we must get an input stream for the keyboard. For this we’ll use another
BufferedReader tied to System.in. We will also add the loop here. The loop will
first get input from the keyboard using the stream we just created. Then it will
write that data directly to the socket.

import java.io.*;

import java.net.*;

public class EchoClient

{

 public static void echoclient(BufferedReader in;

 PrintStream out)

 throws IOException

 {

kybd = new BufferedReader(

 new InputStreamReader(System.in);

 String line;

 while(true)

 {

 line="";

// read keyboard and write to the socket

try

 {

 line = kybd.readLine();

 out.println(line);

 }

 catch (IOException e)

 {

 System.err.println(e.getMessage());

 }

 }

 }

}

To finish up, we now read the activity on the socket and stick it on the screen by
writing to the Java console using the System object.

public class EchoClient

{

JavaNetwork 03 Page 61 Monday, February 28, 2000 11:14 AM

62 Advanced Java Networking

 public static void echoclient(BufferedReader in,

 PrintStream out)

 Throws IOException

 {

 // make a stream for the keyboard

 BufferedReader kybd = new BufferedReader(

 new InputStreamReader(

 System.in));

 String line; //for reading into

 while(true)

 {

 line="";

 // read keyboard and write to TCP socket

 try

 {

 line = kybd.readLine();

 out.println(line);

 }

 catch (IOException e)

 {

 System.err.println(e.getMessage());

 }

 // read TCP socket and write to java console

 try

 {

 line = sin.readLine();

 System.out.println(line);

 }

 catch (IOException e)

 {

 System.err.println(e.getMessage());

 }

 }

 }

}

Finally, we can create our main application. In our main application, we will create
the socket first and then get a BufferedReader and a PrintStream based on it. This
enables us to read and write to the socket easily, as well as pass it on to the function
we created earlier. Once we are finished, we must close the connection to the socket.

As we will discuss later, too many open connections are a
system liability. If a connection is not in use, but is still open,
other applications may not be able to connect to the port to
which you are connected.

JavaNetwork 03 Page 62 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 63

import java.io.*;

import java.net.*;

public class EchoClient

{

 public static void echoclient(BufferedReader in,

 PrintStream out)

 throws IOException

 {

 // make a stream for reading the keyboard

 BufferedReader kybd = new BufferedReader(

 new InputStreamReader(

 System.in));

 String line;

 while(true)

 {

 line="";

 // read keyboard and write to TCP socket

 try

 {

 line = kybd.readLine();

 out.println(line);

 }

 catch(IOException e)

 {

 System.err.println(e.getMessage());

 }

 // read TCP socket and write to console

 try

 {

 line = in.readLine();

 System.out.println(line);

 }

 catch(IOException e)

 {

 System.err.println(e.getMessage());

 }

 }

 }

 public static void main(String[] args)

 {

 Socket s = null;

 try

 {

 // Create a socket to communicate with "echo"

 // on the specified host

 s = new Socket(args[0], 7);

JavaNetwork 03 Page 63 Monday, February 28, 2000 11:14 AM

64 Advanced Java Networking

 // Create streams for reading and writing

 // lines of text from and to this socket.

 BufferedReader in = new BufferedReader(

 new InputStreamReader(

 s.getInputStream()));

 PrintStream out = new(

 PrintStream(s.getOutputStream());

 // Tell the user that we've connected

 System.out.println("Connected to " +

 s.getInetAddress() + ":" + s.getPort());

 echoclient(in, out);

 }

 catch (IOException e)

 {

 System.err.println(e);

 }

 // Always be sure the socket gets closed

 finally

 {

 try

 {

 if(s != null) s.close();

 }

 catch (IOException exc)

 { ; /* terminate gracefully */}

 }

 }

}

When we execute our program, we send a message to the Echo socket, read what-
ever information comes back on the socket, and then print it. Because the echo
socket merely takes whatever input it gets and bounces it right back to the port,
what we get in return on the socket is exactly what we sent. The output is dis-
played next. If you need to connect to another host, substitute its name for local-
host.

%prompt% java EchoClient localhost
Connected to localhost/127.0.0.1:7

abc request...

abc ...reply

xyz request...

xyz ...reply

^C

This service (and most others) can be tested using the Telnet client that is available
as an application with most TCP/IP stacks. In this case, the Telnet program acts in
the same manner as our client, sending information to the port and reading what-
ever it gets back.

JavaNetwork 03 Page 64 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 65

%prompt% telnet localhost 7
Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

abc request...

abc ...reply

^C

xyz request...

xyz ...reply

^] control-right-bracket

telnet> quit
Connection closed.

URL and URL Connection

Before we leave the topic of using sockets to connect existing Internet servers, let’s
look at using some of the more common and popular services provided on the
Internet. We need to examine a couple of other members of java.net: URL and URL
Connection.

A Uniform Resource Locator (URL) is a string that identifies a resource on the
Internet. RFC 1738 gives an in-depth description of everything you would ever
want to know about URLs. Table 3-3 is a brief description of the various things
that make up a URL.

The URL class gives us the ability to construct URL objects and a number of “get-
ter” methods that let us extract the various parts of a URL. From a networking
standpoint, the methods of getContent(), openConnection(), and openStream()
provide us with some very useful tools that we can use to interface with a number
of protocol servers.

To retrieve a file from a Web server, all we really need to know is its URL:

Class GetURL

{

 try

 {

Table 3–3 Makeup of a URL

Protocol An identifier (usually an acronym) that specifies the protocol to use to
access the resource

Host name The name of the host or domain where the resource is located
(www.binghamton.edu, localhost)

Port number The TCP/IP port number that the service is being provided on

Filename Path- and filename of resource

Reference #anchorname

JavaNetwork 03 Page 65 Monday, February 28, 2000 11:14 AM

66 Advanced Java Networking

 String host = "watson2.cs.binghamton.edu";

 String file = "~steflik/index.html";

 String line;

 BufferedReader in;

 URL u = new URL("http://"+host+"/"+file);

 Object content = u.getContent();

 System.out.println("class: " + content.getClass());

 System.out.println("content: " + content.toString());

 In = new BufferedReader

 (new InputStreamReader(u.openStream()));

 while ((line = in.readLine() != null)

 {

 System.out.println(line);

 }

 }

 catch (MalformedURLException e) { e.printStackTrace();}

 catch (IOException e) {e.printStackTrace();}

}

All we had to do was create a URL object and then use the openStream() method to
create an InputStream and eventually a BufferedReader that we can use to retrieve
the file. At this point all that is needed is a loop to read the lines out of the file.

This technique can be exploited for doing things like populating selection lists in
an applet-based shopping cart application with data from a set of pricing files
kept on the Web server. This technique can also be used to run scripts stored on a
Web server.

Summary of Sockets

We have shown you what, in the most basic sense, sockets are and how they are
used in Java to build client applications that communicate, using well-defined
protocols with standards-based (developed using the RFC process) servers. The
subsequent sections in this chapter build on this material and show you how to
create an entire client/server system using only sockets. The rest of this book
showcases several other Java communication technologies that use sockets as
their underlying mechanism to transfer data across networks. In the large of it,
applications use protocols to direct the way they talk to one another and protocols
use sockets as their network interface.

Client/Server Methodology
In the previous section we developed client applications for servers that already
exist. This isn’t the way that we would necessarily approach developing a sockets-
based client/server application. In the next few pages we will examine a client/
server application for an Internet-based pizza ordering/delivery service that will
be made up of a client (that pizza lovers around the community can install on the

JavaNetwork 03 Page 66 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 67

home computers to order a pizza), a server (running at the store), and a protocol
that directs the information exchange between the client and the server.

Suppose that you are at home with your cronies watching the Super Bowl, and, as
luck would have it, the Washington Redskins are playing. As invariably happens,
you’ve run out of nachos and dip before half time, so you decide to replenish the
nutrition supply by ordering a pizza. Today, when you want to order that pizza,
you pick up the phone and call your favorite pizzaria to request a delivery.

A few years ago, a small start-up company in the Silicon Valley called the Santa
Cruz Operation (SCO) developed an Internet pizza-ordering application. By
today’s standards, it was quite low-tech, based solely on HTML forms and requir-
ing someone to read the information manually on the other end via e-mail. The
nifty thing about this Internet Pizza Hut was the idea that you could simply use
your computer to communicate with a faraway place and get a pizza. In this
sense, SCO was pretty well ahead of the game—they were among the first to gen-
uinely use the Internet, not the corporate intranet, to conduct business with
remote users.

In this section, we will develop our own pizza client/server system as an ultra-
hip high-tech alternative to the telephone and publish it to the world. This time,
however, we will use Java and implement our PizzaServer using sockets.

The Pizza Order Protocol (TPOP)
To design the protocol we need to examine what information must be passed
from the client to the server and vice versa. If the user interface for our client
application is as shown in Figure 3-1 we can readily see that to constitute an order
we need to send the name, address, phone number, pizza size (small, medium, or
large) , and which topping (Veggies, Meat, or California) is to be added to a stan-
dard cheese pizza.

The protocol that is required to place an order is pretty simple, as shown in
Table 3-4.

Let us further decide that, since we’re in this early part of design, all data
exchanged between the client and the server is to be as plain old text strings (in the
true tradition of the Internet), each of which is to be delimited by the “|” character.

The next decision we need to make is which component we will develop first: the
client or the server. If we choose to develop the client first, we won’t be able to test
it until we develop the server and then end up with the possibility of having to
use two untested pieces of software to test each other. Realizing the possible
disaster that can occur if this avenue is followed, let’s think about developing the
server first. If the server is running, we can always test it using our Telnet client.
To do this, all we do is start up our Telnet client, connect to port 8205 of the server,

JavaNetwork 03 Page 67 Monday, February 28, 2000 11:14 AM

68 Advanced Java Networking

type in the data separated by “|” characters, and press Enter. The server will pro-
cess the data, send back the price information, and, close the connection. This
approach helps set us up for success rather than failure.

The TPOP Server

Server Methodology

For every client there must somewhere be a server. In an attempt to make server
creation as simple as possible, Java provides a Server Socket class as part of
java.net. Server Sockets, once created, listen on their assigned port for client

Small

Medium

Large

Veggies

Meat

California

Reset Exit

Name:

Address:

Phone number:

Submit

Figure 3–1 A sample GUI for the PizzaTool.

Table 3–4 TPOP

Client Server

Start server listening on port 8205

Connect to port 8205 of the server

Accept the connection and spawn a thread
to handle the connection data

Send the order information and then wait
for the price to display

Receive the order, print it out, calculate the
price, return price to client application,
and break the connection

Display the price

JavaNetwork 03 Page 68 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 69

connection requests. As requests are received, they are queued up in the Server
Socket. The Server Socket accepts the connection request; as part of this acceptance
the Server Socket creates a new socket, connects it to the client, and disconnects the
connection on the Server Socket port, leaving it open for more connection requests.
The client and server now talk back and forth on the new socket connection, and
the server listens for connection requests on the Server Socket.

This all sounds pretty simple, but we haven’t mentioned anything about threads
yet. One of the basic ideas of client/server methodology is that one server should
service as many clients as possible. To do this there must be something in the rec-
ipe that provides parallelism. That something is threads. The Thread class pro-
vides Java with a consistent, operating system neutral way of using the threading
capabilities of the host operating system.

A typical TCP application opens a “well-known” port to receive connection
requests, and then it spawns a child process or a separate thread of execution to
perform the requested service. This ensures that the server is always ready for
more invocations. A single-threaded server must poll the sockets constantly.
When it detects activity, it must spawn a new process to handle the incoming
request. Our multithreaded server can simply wait for information on a socket
and spawn a thread to handle incoming requests.

The PizzaServer that we will implement will hang on port 8205 and wait for
information. When the client sends its bar-delimited request, the server will
spawn a thread to handle the request. The thread reads the information, processes
it, and sends a reply.

Setting Up the Server

We must create the PizzaServer object itself. The PizzaServer is a stand-alone
Java application with its own application main (on the accompanying CD, two

Java threads, sockets, and AWT components are similar in that the classes pro-
vided are really interfaces to the threads, sockets, and GUI widgets supplied by
the operating system that is hosting the Java virtual machine. This means that
if you are on Windows, you are really interacting with the TCP/IP protocol stack
provided by winsock.dll; if you are on a UNIX platform, you are most likely using
Berkley sockets. If you are on a Sun Solaris, you are using the threading pro-
vided by the Solaris operating system. If you are on Windows 98 using AWT wid-
gets, you are really using the widgets provided by Windows. Used this way by
Java, these components are known as peer components or objects. The add-
ing of the Swing components to Java 1.1 starts to get away from this by provid-
ing 100% Java GUI components.

JavaNetwork 03 Page 69 Monday, February 28, 2000 11:14 AM

70 Advanced Java Networking

versions of the server are provided—one with a GUI interface and one without).
We must also create a PizzaThread that inherits from the Java Thread class. This
threaded object will be created every time we detect activity on the port. As we
discussed in our Chapter 1 section on threads, it is one of two ways we could have
implemented the server object. We leave the other threaded version as an exercise
to the reader.

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class PizzaServer

{

 public static void main(String args[])

 {

 }

 // threaded pizza!

 class PizzaThread extends Thread

 {

 }

Initializing the Server Socket

Inside the main program, we must create a ServerSocket. The ServerSocket is a
Java type whose sole purpose is to enable you to wait on a socket for activity. Ini-
tialize it by specifying the port on which you want to wait.

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class PizzaServer

{

 public static void main(String args[])

 {

 // initialize the network connection

 try

 {

 ServerSocket serverSocket = new ServerSocket(8205);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

}

// threaded pizza!

JavaNetwork 03 Page 70 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 71

class PizzaThread extends Thread

{

}

Creating the Thread

The PizzaThread object will accept one variable, the incoming socket from which
it gathers information. We need to specify this here because the main server pro-
gram has already grabbed hold of the socket, and we don’t want to do so twice.
We merely pass the socket obtained by the main program on to the thread. We
will also implement the run method for the thread.

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class PizzaServer

{

 public static void main(

 String args[]

)

 {

 // initialize the network connection

 try

 {

 ServerSocket serverSocket = new ServerSocket(8205);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

}

// threaded pizza!

class PizzaThread extends Thread

{

 // the socket we are writing to

 Socket incoming;

 PizzaThread(Socket incoming)

 {

 this.incoming = incoming;

 }

 // run method implemented by Thread class

 public void run()

 {

 }

}

JavaNetwork 03 Page 71 Monday, February 28, 2000 11:14 AM

72 Advanced Java Networking

Detecting Information and Starting the Thread

Now, we must wait on the thread until activity occurs. Once we detect some sem-
blance of information coming across the socket, we must spawn a thread auto-
matically and let the thread get and process the information. Our main program
merely delegates activity to others.

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class PizzaServer

{

 public static void main(String args[])

 {

 // initialize the network connection

 try

 {

 ServerSocket serverSocket = new ServerSocket(8205);

 // now sit in an infinite loop until we get something

 while(true)

 {

 // accept the message

 Socket incoming = serverSocket.accept();

 // spawn a thread to handle the request

 PizzaThread pt = new PizzaThread(incoming);

 pt.start();

 }

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

}

// threaded pizza!

class PizzaThread extends Thread

{

 // the socket we are writing to

 Socket incoming;

 PizzaThread(Socket incoming)

 {

 this.incoming = incoming;

 }

 // run method implemented by Thread class

 public void run()

JavaNetwork 03 Page 72 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 73

 {

 }

}

Notice also how we must call the start method explicitly on the thread. As we
discussed in the Threads section of Chapter 1, if a class inherits from the Java
Thread class, the thread must be started from outside the class.

Gathering Information

Once the thread is running, it needs to go to the socket and get information. To do
so, we must obtain input and output streams to read and write to/from the socket.
Remember that the socket is merely a construct. In order to get information from it,
it must be abstracted into an input/output mechanism. We will then be able to
read and write to the socket. As we will discuss in our client section, the data we
are going to receive is in a bar-delimited format. We must use a StringTokenizer
object to extract the information from the message.

import java.net.*;

import java.io.*;

import java.lang.*;

import java.util.*;

public class PizzaServer

{

 public static void main(String args[])

 {

 // initialize the network connection

 try

 {

 ServerSocket serverSocket = new ServerSocket(8205);

 // now sit in an infinite loop until

 // we get something

 while(true)

 {

 // accept the message

 Socket incoming = serverSocket.accept();

 // spawn a thread to handle the request

 PizzaThread pt = new PizzaThread(incoming);

 pt.start();

 }

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

}

JavaNetwork 03 Page 73 Monday, February 28, 2000 11:14 AM

74 Advanced Java Networking

// threaded pizza!

class PizzaThread extends Thread

{

 // the socket we are writing to

 Socket incoming;

 PizzaThread(Socket incoming)

 {

 this.incoming = incoming;

 }

 // run method implemented by Thread class

 public void run()

 {

 try

 {

 // get input from socket

 DataInputStream in =

 new DataInputStream(incoming.getInputStream());

 // get output to socket

 PrintStream out =

 new PrintStream(incoming.getOutputStream());

 // now get input from the server until it closes the

 // connection

 boolean finished = false;

 while(!finished)

 {

 String newOrder = in.readLine();

 // convert to a readable format

 try

 {

 StringTokenizer stk =

 new StringTokenizer(newOrder, "|");

 String name = stk.nextToken();

 String address = stk.nextToken();

 String phone = stk.nextToken();

 int size =

 Integer.valueOf(stk.nextToken()).intValue();

 int toppings =

 Integer.valueOf(stk.nextToken()).intValue();

 // no exception was thrown so calculate total

 int total = (size * 5) + (toppings * 1);

 // send the result back to the client

 out.println("$" + total + ".00");

 // put our result on the screen

 System.out.println("pizza for " + name +

 " was " + totalString);

JavaNetwork 03 Page 74 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 75

 }

 catch(NoSuchElementException exc)

 {

 finished = true;

 }

 }

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 // close the connection

 try

 {

 incoming.close();

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

}

Note in particular the two lines we actually use for reading information from the
socket and sending information back:

String newOrder = in.readLine();

// send the result back to the client

out.println("$" + total + ".00");

These two lines have the same syntax as they would if they were reading and
writing a file. In fact, as we discussed in Chapter 1’s input/output section, to the
programmer a socket is nothing more than a file. We are able to use streams, read
and write information, and save sockets just as we would files. This is an impor-
tant concept to grasp because the security restrictions that apply to sockets also
apply to files. We will discuss security in greater detail in Chapter 13, “Java and
Security.”

The TPOP Client
Clients are the end user interface to an application and end up being responsible
mainly for collecting user input and sending it to the server. Servers are the recip-
ients of that information. Think of a client approaching your restaurant with a
pocket full of money and you the owner, as the server, gladly accepting that
money for your product and services. In this section we begin our discussion of
client/server programming by developing an application that transmits informa-
tion across a network connection to another program.

JavaNetwork 03 Page 75 Monday, February 28, 2000 11:14 AM

76 Advanced Java Networking

Developing Clients for Servers

The PizzaTool we are about to create is a stand-alone Java application and will
have a fancy GUI interface that you can design yourself. Our GUI code’s frame-
work looks something like this:

import java.awt.*;

import java.net.*;

import java.io.*;

public class PizzaTool extends Frame

{

 // AWT Components

 . . . skip these for now . . .

 PizzaTool()

 {

 // initialize the application frame

 // create the GUIs

 }

 public boolean action(

 Event evt,

 Object obj

)

 {

 if(evt.target == sendButton)

 {

 }

 return true;

 }

 public static void main(

 String args[]

)

 {

 PizzaTool pizza = new PizzaTool();

 pizza.show();

 }

}

When displayed, our pizza tool GUI will look something like the one shown in
Figure 3-1.

We need to modify this working client to send its information over the network to
the other end. To do so, we must create a socket in our application’s constructor
and initialize it as we did earlier. We will use port number 8205 in this application.

import java.awt.*;

import java.net.*;

import java.io.*;

JavaNetwork 03 Page 76 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 77

public class PizzaTool extends Frame

 implements ActionListener

{

 // AWT Components

 . . . skip these for now . . .

 // network components

 Socket socket;

 DataInputStream inStream;

 PrintStream outStream;

 PizzaTool()

 {

 // initialize the application frame

 // create the GUIs

 // define Exit button handler

 // define Reset button handle

 }

 public void actionPerformed(ActionEvent e)

 {

 // handle the Submit button here, build and send the order

 }

 public static void main(String args[])

 {

 // use the constructor to build the GUI

 PizzaTool pizza = new PizzaTool();

 // show the GUI and wait for an Action Event

 pizza.show();

 }

}

Inside the actionPerformed method, we need to send the information we gather
from our GUI back to the server. The server then makes a calculation and sends us
the total for the order. First, we must send information across the socket using the
outStream variable we derived from the socket. Then, just as we did earlier, we

NOTE: As will be our practice throughout this book, we show you the com-
pleted GUI rather than showing the code development process for it. There are
several GUI builders on the market, and we hope you will choose one to assist
you. If you are a neophyte at Java, we recommend using a text editor and
Sun’s JDK (Java Development Kit) until you become proficient at Java. GUI
builders like Visual Café, J++, and JBuilder are great tools and can really
increase productivity; the problem is that they really hide a lot (especially in
building the user interface) from you. In some cases, the code produced by the
GUI builders is not necessarily good code, but it is code that will work.

JavaNetwork 03 Page 77 Monday, February 28, 2000 11:14 AM

78 Advanced Java Networking

must turn around and read information from the same socket using the inStream
variable.

import java.awt.*;

import java.net.*;

import java.io.*;

public class PizzaTool extends Frame

 implements ActionListener

{

 // AWT Components

 . . . skip these for now . . .

 // network components

 Socket socket;

 DataInputStream inStream;

 PrintStream outStream;

 PizzaTool()

 {

 // initialize the application frame

 // create the GUIs

 // define Exit button handler

 // define Reset button handler

 resetButton = new Button("Reset Order");

 resetButton.setBounds(160,270,140,60);

 add(resetButton);

 resetButton.addActionListener(

 new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 instructionField.setText("Select Pizza");

 nameField.setText("");

 addressField.setText("");

 phoneField.setText("");

 }

 }

);

 }

 public void actionPerformed(ActionEvent e)

 {

 // handle the Submit button here, build and send the order

 // create the socket and attach input and output streams

 try

 { // open the socket to the remote host

 socket = new Socket("localhost", 8205);

 in = new BufferedReader(

JavaNetwork 03 Page 78 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 79

 new InputStreamReader(socket.getInputStream()));

 outStream = new PrintStream(socket.getOutputStream());

 }

 catch (Exception e)

 {

 System.out.println(IO Exception: " + e.toString());

 }

 // Send the order to the server

 instructionField.setText("Sending order");

 try

 {

 outStream.println(

 nameField.getText() + "|" +

 addressField.getText() + "|" +

 phoneField.getText() + "|" +

 size + "|" +

 toppings);

 }

 catch (Exception e)

 {

 System.out.println("Error: " + e.toString());

 }

 // read the price from the server

 String totalString = new String();

 try

 {

 totalString = inStream.readLine();

 }

 catch (Exception e)

 {

 System.out.println("Error: " + e.toString());

 }

 }

 public static void main(String args[])

 {

 // use the constructor to build the GUI

 PizzaTool pizza = new PizzaTool();

 // show the GUI and wait for an Action Event

 pizza.show();

 }

}

Please check out the bold, italicized text that defined the Reset button and its
event handler. This looks a little strange but really isn’t; what you are looking at
is an anonymous inner class being used as the event handler. With the new event
model that came about with JDK 1.1 came some improved event handling. Using
an anonymous inner class, the event handler can be kept right with the code

JavaNetwork 03 Page 79 Monday, February 28, 2000 11:14 AM

80 Advanced Java Networking

(this aids maintainability) and eliminates the need for large if/then/else struc-
tures for decoding what caused the event. This makes the code run considerably
faster.

Notice also how we send information to the server. We have created our own pro-
tocol and message format to use to send the three important customer fields, as
well as the kind of pizza ordered, directly to the pizza server. The format is delim-
ited by the bar sign (“|”) and, as we will see in a moment, is interpreted on the
server end.

outStream.println(

 nameField.getText() + "|" +

 addressField.getText() + "|" +

 phoneField.getText() + "|" +

 size + "|" +

 toppings);

Once complete, our application then is able to publish the information it received
from the server.

Socket programming is at the heart of everything we discuss in this book. Every
communication technology involved with computers uses sockets in some fash-
ion. Often, having control over the format and length of messages between clients
and servers is of great importance. We could just as easily have created our pizza
application using a mechanism found in other parts of this book. However, by
using sockets, we had full control over how the communication (protocol) is
implemented.

Clients and Servers in Short

So far we have implemented an application for which we know what is on both
ends. This form of point-to-point communication is one way to create a net-
worked application. We created a message, located the destination for the mes-
sage, and shipped it off. While reliable, point-to-point communication is
important, we also want to be able to form a message and broadcast it. In so
doing, anyone anywhere can grab the message and act on it. This form of broad-
cast communication can also be accomplished using Java sockets and is discussed
in the next section.

NOTE: In order to conserve paper (save some trees), we have not shown you
the entire code listing for both the GUI and the network portion of our applica-
tion. As always, a full, working version of this application can be found on the
CD-ROM that accompanies this book.

JavaNetwork 03 Page 80 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 81

UDP Client
We have spoken so far about TCP communication, which we have mentioned is a
point-to-point, reliable protocol. Well, what makes an unreliable protocol? An
unreliable protocol is one in which you send a chunk of information, and if it gets
lost along the way, nobody really minds. TCP provides an infrastructure that
ensures a communication is sent and arrives safely. Another protocol, User Data-
gram Protocol (UDP), is a “spit in the wind” protocol. One day, you wake up, spit
into the wind, and hope it will land somewhere. Likewise, with datagrams you
can easily form a message, send it, and hope it gets to the other end. There are no
guarantees that it will ever arrive, so be careful when choosing to use a UDP
socket over a TCP-based socket for your application.

Datagrams

In the last chapter, we referred to datagrams as letters that we send to a mailbox.
In fact, a datagram is a chunk of memory, not unlike a letter—a chunk of paper
into which we put information and send off to a mailbox. Just as with the U.S.
Postal Service, there is absolutely no guarantee that the letter will ever arrive at its
destination.

Here’s a sample “receive buffer” datagram:

DatagramPacket packet = new DatagramPacket(buf, 256);

You must give the constructor the name of a byte or character array to receive the
data and the length of the buffer in bytes or characters. You get data as follows:

socket.receive(packet);

where socket is created as follows:

socket = new DatagramSocket();

The DatagramSocket class is an endpoint (mailbox) for UDP communication. Like
the Socket class (which uses TCP), there is no need for a programmer to specify
the transport-level protocol to use.

After a datagram is received, you can find out where it came from as follows:

address = packet.getAddress();

port = packet.getPort();

and you can return a reply as follows:

packet = new DatagramPacket(buf, buf.length, address, port);

socket.send(packet);

This datagram will go out the same UDP port (akin to a “mailbox”), to the other
process-receiving datagrams on that UDP port number. A UDP server can specify
its service port number in its constructor, in this case port number 31543.

socket = new DatagramSocket(31543);

JavaNetwork 03 Page 81 Monday, February 28, 2000 11:14 AM

82 Advanced Java Networking

Creating a UDP Sender

To pay homage to Lucy and Ethel in our own bizarre, twisted way, let’s create a
cookie factory! In our factory, we will be able to build chocolate chip cookies and
specify the number of chips we want in each one. Then we will send them along
the conveyor belt to be packaged and shipped off to some Java engineer turned
writer who is in desperate need of a Scooby Snack.

Real-world implementations of broadcast communication include stock tickers
that constantly publish stock quotes for NASDAQ or the New York Stock
Exchange. By simply plugging your receiver into the port, you can grab that infor-
mation and do something with it (like displaying it as a ticker tape message across
the bottom of your screen). Modifying our sample program to similarly broadcast
and grab information is quite simple.

To begin our sender program, we must create a Java application for our Cookie-
Bakery. The application will have a simple GUI in which you can specify the num-
ber of chips in the cookie using a slider and then simply press a button to send the
cookie to the conveyor belt.

The GUI framework looks like this:

import java.awt.*;

import java.net.*;

public class CookieBakery extends Frame

{

 // AWT components

 CookieBakery() //constructor

 {

 // initialize the application frame

 // build the GUI and event handlers

 sendButton = new Button("Send Cookie");

 sendButton.setBounds(10,270,290,60);

 add(sendButton);

 sendButton.addActionListener(

NOTE: Datagrams are sort of like that old “I Love Lucy” episode in which Lucy
and Ethel go to work in a candy factory. As they stand in front of a conveyor
belt, little candies begin to flow out. Lucy and Ethel are able to wrap and pack-
age the candies as they come out. Soon, their boss speeds up the belt, and
the candies begin to flow out really fast; Lucy and Ethel are unable to keep up.
Similarly, datagrams happen along the port and are picked up by receiver pro-
grams that happen to be listening. Unlike Lucy and Ethel, however, if you miss
one, nothing bad will happen.

JavaNetwork 03 Page 82 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 83

 new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 // determine the number of chips

 int numChips = chipsScrollbar.getValue();

 String messageChips = numChips + " chips";

 // build the message and send it

 // display final result

 instructionField.setText(

 "Sent Cookie with " +

 numChips + " chips!");

 }

 }

 // all events handled by inner classes, this is required

 public void actionPerformed(Event e){;)

 public static void main(String args[])

 {

 CookieBakery cookies = new CookieBakery();

 cookies.show();

 }

}

The GUI itself will resemble that shown in Figure 3-2 with a slider to select the
number of chips and a button to press so that you can “bake” it.

Formatting a UDP Packet. In order to send a packet to the server, we must
create and format one. Packets are created using buffers and contain an array of
bytes. Therefore, any string message that you wish to send must be converted to
an array of bytes. We will do this in a moment. Also, we need to define and obtain

Number of Chips

Bake Cookie

Exit

Figure 3–2 Sample GUI for the CookieBakery.

JavaNetwork 03 Page 83 Monday, February 28, 2000 11:14 AM

84 Advanced Java Networking

the Internet address of the machine on which this application runs. UDP requires
it as part of its protocol.

import java.awt.*;

import java.net.*;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class CookieBakery extends Frame

{

 // AWT components

 CookieBakery() //constructor

 {

 // initialize the application frame

 // build the GUI and event handlers

 sendButton = new Button("Send Cookie");

 sendButton.setBounds(10,270,290,60);

 add(sendButton);

 sendButton.addActionListener(

 new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 // determine the number of chips

 int numChips = chipsScrollbar.getValue();

 String messageChips = numChips + " chips";

 // convert the chip message to byte form

 int msgLength = messageChips.length();

 byte[] message = new byte[msgLength];

 message = messageChips.getBytes();

 // send a message

 try

 {

 // format the cookie into a UDP packet

 instructionField.setText(

 "Sending Cookie...");

 DatagramPacket packet = new DatagramPacket(

 message, msgLength,

 internetAddress, 8505);

 // send the packet to the server

 DatagramSocket socket = new

 DatagramSocket();

 socket.send(packet);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " +

 exc.toString());

JavaNetwork 03 Page 84 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 85

 }

 // display final result

 instructionField.setText(

 "Sent Cookie with " +

 numChips + " chips!");

 }

 }

 public void actionPerformed(Event e){;}

 public static void main(String args[])

 {

 CookieBakery cookies = new CookieBakery();

 cookies.show();

 }

 }

}

Sending the Packet to the Server. In order to send the cookie to the con-
veyor belt, we must create a DatagramSocket. Then we can send the packet we just
created using the send routine.

import java.awt.*;

import java.net.*;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class CookieBakery extends Frame

{

 // AWT components

 CookieBakery() //constructor

 {

 // initialize the application frame

 // build the GUI and event handlers

 sendButton = new Button("Send Cookie");

 sendButton.setBounds(10,270,290,60);

 add(sendButton);

 sendButton.addActionListener(

 new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 // determine the number of chips

 int numChips = chipsScrollbar.getValue();

 String messageChips = numChips + " chips";

 // convert the chip message to byte form

 int msgLength = messageChips.length();

 byte[] message = new byte[msgLength];

 message = messageChips.getBytes();

JavaNetwork 03 Page 85 Monday, February 28, 2000 11:14 AM

86 Advanced Java Networking

 // send a message

 try

 {

 // format the cookie into a UDP packet

 instructionField.setText(

 "Sending Cookie...");

 DatagramPacket packet = new DatagramPacket(

 message, msgLength,

 internetAddress, 8505);

 // send the packet to the server

 DatagramSocket socket =new DatagramSocket();

 Socket.send(packet);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " +

 exc.toString());

 }

 // display final result

 instructionField.setText(

 "Sent Cookie with " +

 numChips + " chips!");

 }

 }

 public void actionPerformed(Event e){;}

 public static void main(String args[])

 {

 CookieBakery cookies = new CookieBakery();

 cookies.show();

 }

 }

}

Now that we have created an application that sends a message containing “xx
chips” to a port, we need something on the other end to receive and decode the
message into something useful. After all, we don’t want to waste our delicious
chocolate chip cookies!

Creating a UDP Receiver. The UDP Receiver we will create will listen in on
a port and wait for cookies. When it gets one, our CookieMonster will let us know
by printing a “Yummy, tastes good” message. As with our CookieBakery, the
CookieMonster will listen in on port 8505, a totally random selection. To start our
CookieMonster, first we must create the CookieMonster object with its own appli-
cation main containing the packet that we will read and the socket from which we
will get it. Note that we are importing the java.net.* package once again.

JavaNetwork 03 Page 86 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 87

import java.awt.*;

import java.net.*;

public class CookieMonster

{

 public static void main(

 String args[]

)

 {

 // our socket

 DatagramSocket socket = null;

 // our packet

 DatagramPacket packet = null;

 }

}

Now we must create and initialize the packet that we will receive. Note that we
have to specify a buffer into which the packet will read the message. A packet by
itself is composed of four elements. The first is shown in the following code.

import java.awt.*;

import java.net.*;

public class CookieMonster

{

 public static void main(

 String args[]

)

 {

 // our socket

 DatagramSocket socket = null;

 // our packet

 DatagramPacket packet = null;

 // create a receive buffer

 byte[] buffer = new byte[1024];

 // create a packet to receive the buffer

 packet = new DatagramPacket(buffer, buffer.length);

 }

}

NOTE: We find throughout this book that servers, in this case a receiver, must be
applications, whereas clients very easily can be applets as well. The reason is
that Java’s security mechanism will not allow a downloaded applet to have
unlimited access to a port on the machine to which it is downloaded. Because
of the Java security model, you are prevented from developing downloadable
servers. This may change with the introduction of browsers that are able to
change those security restrictions.

JavaNetwork 03 Page 87 Monday, February 28, 2000 11:14 AM

88 Advanced Java Networking

Once our packet is put together, we need to sit on a socket and wait for someone
to fill it with information. We use the DatagramSocket’s receive routine to hang
on a UDP port and get information. We must pass the packet to the sockets
receive method so that the packet knows where to put the information it gets.

import java.awt.*;

import java.net.*;

public class CookieMonster

{

 public static void main(

 String args[]

)

 {

 // our socket

 DatagramSocket socket = null;

 // our packet

 DatagramPacket packet = null;

 // create a receive buffer

 byte[] buffer = new byte[1024];

 // create a packet to receive the buffer

 packet = new DatagramPacket(buffer, buffer.length);

 // now create a socket to listen in

 try

 {

 socket = new DatagramSocket(8505);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 // now sit in an infinite loop and eat cookies!

 while(true)

 {

 // sit around and wait for a new packet

 try

 {

 socket.receive(packet);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

 }

}

JavaNetwork 03 Page 88 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 89

So now we have a cookie in our hands, and we have to somehow eat it. To do so,
we must first extract the cookie from the packet by retrieving the packet’s buffer.

import java.awt.*;

import java.net.*;

public class CookieMonster

{

 public static void main(

 String args[]

)

 {

 // our socket

 DatagramSocket socket = null;

 // our packet

 DatagramPacket packet = null;

 // create a receive buffer

 byte[] buffer = new byte[1024];

 // create a packet to receive the buffer

 packet = new DatagramPacket(buffer, buffer.length);

 // now create a socket to listen in

 try

 {

 socket = new DatagramSocket(8505);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 // now sit in an infinite loop and eat cookies!

 while(true)

Because we specified the buffer size when we created the
packet, the CookieMonster waits until the buffer is filled before
it returns the packet. This means that if the packets on the
sending end are smaller than the packets we are reading
here, we will end up with a packet, plus a little bit of the
packet that comes down the pike afterwards, causing havoc
in our messaging system. If our buffer is too large on the
sending end, we will receive only a little bit of the message. It
is important that you synchronize both the receiver and the
sender so that they receive and send the same size buffer.

JavaNetwork 03 Page 89 Monday, February 28, 2000 11:14 AM

90 Advanced Java Networking

 {

 // sit around and wait for a new packet

 try

 {

 socket.receive(packet);

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 // extract the cookie

 String cookieString = new String(buffer, 0, 0,

 packet.getLength());

 // now show what we got!

 System.out.println("Yummy! Got a cookie with " +

 cookieString);

 }

 }

}

Now that we have learned how to create point-to-point and broadcast commu-
nication mechanisms, let’s apply our knowledge to implement our featured
application. In this real-world scenario, we must create a mechanism that
enables a client to change its state and to send that information to a server to be
stored and retrieved at a later date. To develop such an application, we need a
point-to-point protocol because reliability is of the utmost premium. After all,
we don’t want to schedule an appointment and not know if it actually got on
our calendar.

Featured Application
As we discussed in Chapter 1, “Advanced Java,” we will reimplement the same
“featured application” in this chapter and in each of the next four chapters.
We hope that this gives you an insight into the advantages and disadvantages
of each of the major communication alternatives that we present in this book.
Our socket implementation needs to be preceded by a discussion on how we
plan to implement messaging between the client and the server. Once that is
complete, we can implement the client and the server to exchange information
in that format.

Messaging Format

Our messaging format must incorporate the two major elements contained in
our notion of an appointment—the time of the appointment and the reason for
the appointment. Therefore, we will create a message format akin to the Pizza

JavaNetwork 03 Page 90 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 91

Tool’s message. In the Pizza Tool we implemented a few sections ago, we delim-
ited our message with the bar symbol (“|”). Once again, we will use the bar
symbol to separate the time and reason in our message from the client to the
server.

From the server to the client, we need a slightly similar but more robust format.
When the server sends information to the client, we will need to string a variable
number of bar-delimited appointments together. The client can then use the
StringTokenizer object to extract the information it needs.

But, the client cannot accept messages without asking for them first. Therefore,
we need a header to the message. When we schedule an appointment (i.e., send a
message from the client to the server), we precede the message by the word
“store.” When we merely prompt the server to send the client a message (i.e., the
client sends a message to the server telling it to go ahead and reply), we precede
the message with the word “retrieve.”

Therefore, our message will be in one of the following two formats:

store|Take Fleagle to dentist|1

retrieve

The retrieve message prompts the server to send a message back with appoint-
ments strung together but delimited by the bar symbol.

Client

Because implementing the client for the featured application is quite similar to the
Pizza Tool’s client, the code we are about to produce will look remarkably similar
to the code for the Pizza Tool. In order to plug our featured application socket
implementation directly into the Calendar Manager, we must implement the
NetworkModule that we declared in Chapter 1.

public class NetworkModule

{

 public void scheduleAppointment(String reason, int time);

 public Vector getAppointments();

 public void initNetwork();

 public void shutdownNetwork();

}

Specifically, we need to implement the scheduleAppointments and getAppoint-
ments methods. We will also have to create and implement a constructor to open
and establish the socket connection. We will first implement the constructor. The
code is basically cut and pasted directly from the Pizza Tool:

import java.awt.*;

import java.util.*;

JavaNetwork 03 Page 91 Monday, February 28, 2000 11:14 AM

92 Advanced Java Networking

import java.net.*;

import java.io.*;

public class NetworkModule

{

 // network components

 Socket socket;

 DataInputStream inStream;

 PrintStream outStream;

 NetworkModule()

 {

 try

 {

 socket = new Socket("localhost", 8205);

 inStream = new BufferedReader(

 new InputStreamReader(

 socket.getInputStream()));

 outStream = new

 PrintStream(socket.getOutputStream());

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 }

 public void scheduleAppointment(

 String appointmentReason,

 int appointmentTime)

 {

 }

 public Vector getAppointments()

 {

 }

 public void initNetwork()

 {

 }

 public void shutdownNetwork()

 {

 }

}

Now we must implement the scheduleAppointment method that goes to the
server with a formatted message containing the new appointment. Notice how
we put together the message so that it conforms to the messaging format we just
agreed upon.

public void scheduleAppointment(

JavaNetwork 03 Page 92 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 93

 String appointmentReason,

 int appointmentTime)

{

 try

 {

 outStream.println(

 "store|" +

 appointmentReason + "|" +

 appointmentTime + "|");

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

}

Once again, the StringTokenizer comes to our rescue as we begin to decode the
server’s message to us in the getAppointments method. In order for the server to
send us a message, we must prompt it to do so. That way, a socket connection is
established, and a reply can be sent along the same route. It isn’t entirely neces-
sary to do things this way, but it is the preferred and time-honored method. Once
we get our string from the server, we must tokenize it, step through each field,
and convert it into a Vector.

public Vector getAppointments()

{

 // the variable to store all of our appointments in

 Vector appointmentVector = new Vector();

 // the string to put our appointments in

 String appointmentString = new String();

 // now get the appointments

 try

 {

 // tell the server we want the appointments it has

 outStream.println("retrieve|");

 // now listen for all the information we get back

 appointmentString = inStream.readLine();

 }

 catch(Exception exc)

 {

 System.out.println("Error! - " + exc.toString());

 }

 // tokenize the string

 StringTokenizer stk =

 new StringTokenizer(appointmentString, "|");

 // translate into a Vector

 while(stk.hasMoreTokens())

 {

JavaNetwork 03 Page 93 Monday, February 28, 2000 11:14 AM

94 Advanced Java Networking

 // create a variable to stick the appointment in

 AppointmentType appointment = new AppointmentType();

 // now get the next appointment from the string

 appointment.reason = stk.nextToken();

 appointment.time =

 Integer.valueOf(stk.nextToken()).intValue();

 // put the appointment into the vector

 appointmentVector.addElement(appointment);

 }

 // return the Vector

 return appointmentVector;

}

Server

To implement the server, we will blatantly plagiarize code from the pizza applica-
tion earlier in this chapter. Basically, we take all the server code from there,
including the thread portion, and modify it for our needs. First, we need to imple-
ment the Store method. We will store our appointments in a Vector for simplic-
ity’s sake. The code snippet that follows is from the Run method of the
CalendarThread.

// convert to a readable format

try

{

 StringTokenizer stk =

 new StringTokenizer(newOrder, "|");

 String operation = stk.nextToken();

 if(operation.equals("store"))

 {

 String reason = stk.nextToken();

 int time =

 Integer.valueOf(stk.nextToken()).intValue();

 // no exception was thrown so store the appointment

 AppointmentType appt = new AppointmentType();

 appt.reason = reason;

 appt.time = time;

 appointmentVector.addElement(appt);

 // put our result on the screen

 System.out.println("stored" + reason + "|" + time);

NOTE: You could just as easily use some kind of serialization or even a file to
keep your appointments persistent. When the server shuts down, we will lose all
the appointments in our current implementation. Our server keeps data in a
transient state, meaning that it is not maintained between executions.

JavaNetwork 03 Page 94 Monday, February 28, 2000 11:14 AM

3 • Java Sockets and URLs 95

 }

}

catch(NoSuchElementException exc)

Now we must implement the retrieve function. The retrieve function creates a
new string, delimited by the bar symbol, of course, that contains every appoint-
ment in our Vector. It then sends that information back to the client using the
same socket on which it received the original message.

else

{

 String returnValue = new String();

 // put together a string of appointments

 for(int x = 0; x < appointmentVector.size(); x++)

 {

 AppointmentType appt =

 (AppointmentType)appointmentVector.elementAt(x);

 returnValue += appt.reason + "|" + appt.time + "|";

 }

 // now write the appointments back to the socket

 out.println(returnValue);

}

Summary
Sockets are the backbone of any communication mechanism. Everything we talk
about in this book from here on will use them in some way or another. For exam-
ple, in the past some CORBA implementations used UDP for their socket infra-
structure, eliminating complex webs of point-to-point connections. This sped up
their implementation because they spent less time routing messages and more
time sending them. When new objects were added to the system, UDP enabled
them to be plugged in with little effort and little impact on the rest of the system.
Lately, however, the onset of TCP-based IIOP has pushed almost all CORBA ven-
dors to the more reliable protocol.

TCP is a reliable protocol system that has been used by generations of computer
programmers. We all somehow, somewhere get our start in network program-
ming by first using TCP/IP and writing to pipes and sockets. In the next chapter,
we will explore Database access using Java Database Connectivity. JDBC is a tech-
nology that is basic to the concept of enterprise programming (i.e., tying our
applications to our corporate databases). Although hidden from us by the API, at
the very heart of JDBC are sockets. From JDBC we’ll examine two examples of
network object technologies. First we’ll look at Java Remote Method Invocation,
an all Java approach to distributed object computing. After RMI we’ll look at the
Java version of the grandfather of distributed object computing, CORBA. What
we’ll see when examining these technologies is that the abstractions of the object

JavaNetwork 03 Page 95 Monday, February 28, 2000 11:14 AM

96 Advanced Java Networking

models entirely hides the need to do socket level programming; this is done to
simplify how we program. By eliminating the need to do our own socket pro-
gramming, the abstractions provided by network object models provide a simpler
programming model for us to deal with.

JavaNetwork 03 Page 96 Monday, February 28, 2000 11:14 AM

