
1

C H A P T E R 1

REGULAR
EXPRESSIONS AND
METACHARACTERS

Regular expressions are like opinions: Everyone has them, but not every-
one uses them wisely.

f you have not encountered regular expressions before, this chapter
will help you gain an understanding of how to use and become effec-

tive in writing regular expressions. If you have encountered and used reg-
ular expressions within the UNIX shell, differences exist between regular
expressions used within the shell and regular expressions used within
grep, awk, and sed. This chapter does not explain those differences.
Rather, we discuss and understand regular expressions as used within
grep, sed, and awk. We do explain differences among regular expressions
used by grep and sed, and regular expressions used by awk and egrep
whenever possible. If you already feel comfortable with regular expres-
sions as used in grep, awk, and sed, you still might want to work out the
problems and exercises as a review.

CHAPTER OBJECTIVES

In this chapter, you will learn about:

✓ Using the Period and Backslash Metacharacters Page 2

I

ch01.fm Page 1 Tuesday, December 8, 1998 1:18 PM

2 Chapter 1: Regular Expressions And Metacharacters

L A B 1.1

USING THE PERIOD
AND BACKSLASH

METACHARACTERS

This Lab briefly describes what a regular expression is and lists all the
metacharacters used within this book. The best way to learn regular
expressions is to learn the functions performed by the metacharacters and
the result of using them in a regular expression. Therefore, the best way to

LAB OBJECTIVES

After this Lab, you will be able to:

✓ Identify the Operands and Operators of a Regular
Expression

✓ Understand the Results of a Regular Expression
Consisting of Operands and Operators

✓ Identify When a Regular Expression Is Evaluated
✓ Understand the Results of Evaluating the Expression

as a Pattern

✓ Understand the Wildcard Metacharacter

ch01.fm Page 2 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 3

LAB
1.1

learn regular expressions is by example. The chapters that follow show
many examples of regular expressions and the metacharacters that are
used within them.

OPERANDS AND OPERATORS

Like an arithmetic expression, a regular expression contains operands and
operators. Therefore, you can think of a regular expression as an expres-
sion like any other expression that contains operands and operators. In
arithmetic expressions, operands are numbers, and operators are the plus
sign for addition, the minus sign for subtraction, and so forth. In regular
expressions, the operands are strings of characters, and the operators are
the various metacharacters.

■ FOR EXAMPLE:

Consider the following regular expression:

chapter *[0-9]+

The operands are the characters “chapter ,” 0, and 9. The operators are
the * , [] , - , and + metacharacters. Like arithmetic expressions, the opera-
tors use the operands to perform some kind of evaluation that produces
some result.

Unlike an arithmetic expression, which usually results in a single value,
the result of a regular expression is a list of substrings. The list of sub-
strings form a subset of all substrings that are possibly formed from com-
bining all characters that are printable from length one (single character)
to the largest string that can be stored on a computer. Therefore, after
evaluating the preceding regular expression, the result would be the list of
strings:

{chapter 0, chapter 1, chapter 2, chapter 3, chapter
4, …, chapter9, chapter0, …, chapter9}

Here, each value between commas is a substring that results from evaluat-
ing the expression. Therefore, you can think of a regular expression as a
notation for specifying a subset of strings, or equivalently, a list of sub-
strings. In other words, in our example, the notation chapter *[0-9]+

ch01.fm Page 3 Tuesday, December 8, 1998 1:18 PM

4 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

specified a list of substrings that begin with the text chapter followed by
an optional space, followed by at least one occurrence of the digits 0-9.

Now, consider the following regular expression:

yes

When evaluated, this expression results in a single value:

yes

The regular expression forms a single substring of length three with the
letters y followed by e followed by s . In these examples, a single element
(in the last example, the single element is yes —that is, y literally fol-
lowed by e followed by s) is selected from a subset of all possible sub-
strings that could have been formed as regular expressions.

When a regular expression that contains metacharacter operators, called a
metacharacter expression, is evaluated, the result is more than one sub-
string. A regular expression that results in a single element is referred to as
a literal regular expression, and therefore contains no metacharacter oper-
ators. In the preceding examples, the regular expression chapter *[0-
9]+ contains several metacharacters, as you saw, and resulted in more
than one substring. The regular expression yes , on the other hand, con-
tains no metacharacters and resulted in the single substring yes . There-
fore, the simplest notation within regular expressions is to specify a single
element from the set of all possible substrings or a literal regular expres-
sion.

However, thinking and describing regular expressions just as a means of
simply selecting substrings tells half the story; it does not say what it will
be used for and how it will be used. The result of a regular expression will
be used for matching a possible set of strings. The set of strings to be
matched is usually a line of text.

■ FOR EXAMPLE:

Consider the following regular expression:

her

ch01.fm Page 4 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 5

LAB
1.1

and the following line of text:

feathered,

The literal regular expression her would match the string feathered
(the string her is contained within the string feathered starting at the
fifth character). Be sure to understand the view of a regular expression
that, when evaluated, results in a string or set of strings that is used for
matching (I say string(s) because when you use metacharacters, more
than one string results and is used in matching). Also be sure to know
that her exactly matches her as well as longer substrings that contain
her , such as feathered .

Now that we know that regular expressions are used to match another
substring, it’s time to see where they are used and at what time the regular
expression gets evaluated. You will see in more detail when we go over
each utility (awk, sed, and grep) in what context regular expressions are
used, but for now a couple of examples, without getting into details,
should help more clearly define what they are. In grep, you usually want
to find out within a line of text from an input file whether a particular
string occurs. Therefore, in grep, the particular string to find is a regular
expression, and the substring to match is each line in the file.

■ FOR EXAMPLE:

Consider the following:

grep her input-file

Here, the literal regular expression her is determined by grep as a regular
expression matching argument to be compared with each line in the file
input-file . If a match occurs, then the entire line is printed out.
Within the grep program the literal regular expression is evaluated as an
expression, not at the command line. This fact is important to know,
because if the regular expression argument contains any metacharacters
that are also interpreted as metacharacters at the command line, then the
regular expression argument must be quoted, like so:

grep “her*” input-file

ch01.fm Page 5 Tuesday, December 8, 1998 1:18 PM

6 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

Here, the asterisk has special meaning at the command line, so to keep its
regular expression meaning, it must be quoted.

Don’t worry about syntax of grep at this point; that is covered in full detail
in later chapters.

MICROCOSM/MACROCOSM

When working with regular expressions, two views are constructed that
help determine the results of evaluating regular expressions, understand-
ing what strings the regular expressions match, and finally constructing
regular expressions. The two views are the macrocosm and microcosm.
You can interpret the views as a partial (microcosm) or a whole (macro-
cosm) relationship.

In the macrocosm, we are concerned only about the results of evaluating
a regular expression as a whole.

■ FOR EXAMPLE:

In the previous examples, we are concerned in the macrocosm that the
regular expressions her and chapter *[0-9]+ result as a whole in the
regular expressions:

yes
chapter 1
chapter 2
chapter 3, and so on

We are also concerned in the macrocosm with the strings that the regular
expressions match. In the macrocosm, the regular expression chapter 1
matches the following strings:

chapter 1
chapter 11.
In chapter 1

ch01.fm Page 6 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 7

LAB
1.1

The previous discussion has centered around the regular expression in the
macrocosm. This view centered on a regular expression as an expression
in the whole (operands, operators, results as sets).

In the microcosm, we are concerned with the regular expression and the
result of each individual operation.

In the previous example, we are concerned with what results when we
evaluate [0-9] . The expression results in

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

In other words, in the microcosm, we are concerned how the parts build
up and result in the whole, the macrocosm. As another example, consider
the regular expression her . In the microcosm, this is constructed by tak-
ing the characters h and e and concatenating them to form he , which is
then concatenated to the character r to form the regular expression her .

In the microcosm, we are also concerned with the matching process itself.
In other words, what in the regular expression matching process did a reg-
ular expression character match in the matching substring? In this pro-
cess, we view regular expressions as patterns; like other patterns, the
regular expressions specify a sequence and arrangement of characters that
have to appear in the matching substring. In the previous regular expres-
sion her , the regular expression specifies that the arrangement of charac-
ters or pattern is such that the first character is an h, the second is an e,
and the next character is an r , and that taken together they should be
used to find out whether another string contains the same pattern. This
suggests that, taken as the view of a pattern, a regular expression performs
the following algorithm. We assume that the regular expression is her
and the matching string is feathered .

1. Start at the leftmost character, f , in the matching string
feathered .

2. Ask whether this character, f , is equal to the first character
in the regular expression, or h.

3. Because the answer is no, the next leftmost character is
used, e.

4. Repeat asking whether the next leftmost character in the
matching substring is equal to the first character in the reg-
ular expression h.

ch01.fm Page 7 Tuesday, December 8, 1998 1:18 PM

8 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

5. We continue to answer no until we reach the h in the
matching string feathered .

6. Here, the answer is yes, the next leftmost character in the
matching substring is equal to the first character of the reg-
ular expression (h is equal to h).

7. We then ask whether the next leftmost character in the
regular expression, e, is equal to the next leftmost charac-
ter in the matching string, feathered .

8. Because the answer is yes, we continue to match the next
leftmost character until all characters in the regular expres-
sion are matched in the matching substring, IN ORDER!!

9. Of course, if we reach the end of the matching substring
before we reach the end of the regular expression, then the
strings did not match.

At any time if the current leftmost character of the matching substring
does not match the current character in the regular expression, then the
current character in the regular expression is reset to the first character of
the regular expression and the matching continues.

When we use regular expressions in examples and discussions of meta-
characters in this chapter and in grep, sed, and awk, the macrocosm is
used to show what the result of a regular expression is as a whole and
the strings the regular expression matched as a whole. We use the micro-
cosm view to describe each metacharacter and what characters or pat-
terns they create and match and to explain the matching process.
Maintain this part/whole view to better understand the functionality of
each metacharacter expression and to make constructing and writing
your own metacharacter regular expressions easier.

WILDCARD

I briefly mentioned that a metacharacter operator is a mechanism
whereby more than one element may be selected from a list of all possible
substrings. The first one discussed here is the wildcard metacharacter, and
you will see what types of patterns the wildcard metacharacter matches.
The wildcard metacharacter is denoted by the period character (.). In the
previous discussion on literal regular expressions, you selected a single
element or pattern from a list of many possible patterns. Sometimes,

ch01.fm Page 8 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 9

LAB
1.1

however, the set of substrings you wish to match is too large to list out
individually, so you need some notation that can be used to specify a
number of substrings, or patterns, without having to individually list
them all out. For example, suppose you wanted to specify all two-charac-
ter substrings or patterns that start with the letter a. Having to type out
aa , ab , ac , ..., az every time you wanted to specify two characters that
start with the letter a would be tedious. The wildcard regular expression
operator allows you to avoid this tedious task and provides a notation to
instruct that when the wildcard is encountered, any character will match
it. So the regular expression that provides this instruction is:

a.

In the macrocosm, the set of substrings from all substrings that will result
from the evaluation of this regular expression are:

aa
ab
ac
az and so on

In the microcosm, the previous wildcard regular expression means that
any pattern that contains the letter a followed by any other character will
match the regular expression. Therefore, the following substrings will all
match a:

aa
alfred - a followed by l, l matches the wildcard
anytime - a followed by n, n matches the wildcard

In the following wildcard regular expression, c.i , if the matching sub-
string is chip , then the first character of the regular expression matches
the first character of the matching substring. The second character of the
regular expression is the wildcard metacharacter, so no comparison needs
to be made in the matching substring (it will match), and the comparison
moves to the next character position for both the regular expression and
matching substring. This is continued until either a match is made or we
reach the end of the matching substring. So anytime the wildcard meta-
character is encountered, it acts like a skip function. That is, we can skip
the comparison for both the current character in the regular expression
and the current character in the matching substring and move on to the

ch01.fm Page 9 Tuesday, December 8, 1998 1:18 PM

10 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

next character(s) in both and continue making comparisons. The only
exception to the rule is the newline character. The wildcard metacharacter
will not match the newline character. So consider the following wildcard
regular expression:

chapter.

and matching substrings that are contained in a file one line after the
other:

chapter
chapter one.

The regular expression would match only the second line. The reason the
first line is not matched is that it contains the string chapter , which is
followed by the newline. Because the newline does not match the wild-
card metacharacter, the matching string does not match the regular
expression (a newline occurs at the end of every line in the input file)

THE BACKSLASH METACHARACTER

Earlier in this chapter, I said that a literal regular expression is a regular
expression that contains no metacharacters and results in a single string,
and a regular expression that contains a metacharacter results in more
than one single string. The backslash metacharacter is the only exception
to the rule that any regular expression that contains a metacharacter will
result in more than one string. The backslash metacharacter, denoted by
the backslash character, \ , results in a single literal regular expression.

■ FOR EXAMPLE:

Consider the following string:

 “chapter.”

We would like to use the string as a regular expression and match it with
all lines containing the word chapter followed by a period. How can we
construct this regular expression while at the same time not having the
period be evaluated as the wildcard metacharacter, which matches any

ch01.fm Page 10 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 11

LAB
1.1

character? We need some mechanism so that we may interpret the period
literally and not as the period metacharacter.

The backslash metacharacter enables us to instruct that the character fol-
lowing the backslash metacharacter be interpreted literally and not as a
metacharacter. Any metacharacter operator may be used as a literal char-
acter by preceding it with the backslash metacharacter. So in the previous
example, we would write our regular expression as follows:

chapter\.

This would correctly select any substring with the pattern chapter.
Again, the backslash character does not result in multiple strings being
constructed as a result of the evaluation. Unlike all other metacharacters,
it results in a literal or single element and can be interpreted as a literal
regular expression. The duality that metacharacters are both operators
and literal characters forces the need of the backslash metacharacter.

LAB 1.1 EXERCISES

These exercises will test your understanding of the discussion presented
in this chapter. A number of these exercises will not be very difficult. We
will challenge and reinforce your knowledge of regular expressions more
as we go over more metacharacters. For now, the more important goal is
that you understand the basics and answer simple questions before
attempting more advanced questions.

What are the operands and operators of the following regular expressions?

a) Her

b) feathered

1.1.1 IDENTIFY THE OPERANDS AND OPERATORS OF A
REGULAR EXPRESSION

ch01.fm Page 11 Tuesday, December 8, 1998 1:18 PM

12 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

c) Her.

d) Feathered\.

e) 2*.

f) chapter\n

What type of regular expression is each of the following?

g) the

h) the.

i) the\.

What are the results of evaluating the following regular expressions? Think of
the expressions as operators and operands, and the results as a set of literal
strings.

1.1.2 UNDERSTAND THE RESULTS OF A REGULAR EXPRESSION
CONSISTING OF OPERANDS AND OPERATORS

ch01.fm Page 12 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 13

LAB
1.1

a) a.b

b) 80.86

c) her

d) \.

e) \\t

a) Identify when the regular expressions in the following code or
invocations are evaluated as a regular expression.
grep t* input-file

awk { x = 3
 if ($0 ~ x) print $0
 }

grep ‘t*’ input-file

1.1.3 IDENTIFY WHEN A REGULAR EXPRESSION IS EVALUATED

ch01.fm Page 13 Tuesday, December 8, 1998 1:18 PM

14 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

Use the following regular expressions and matching substrings to answer the
questions in this Exercise.

reg_expr = her
match string = her, hereafter. Heresy

reg_expr = a.c
match string = abc, acdc, a$c, access

reg_expr = try\.
match string = trying, try$, try.

a) Which matching strings match the regular expression?

b) At what character position(s) does the first character of the regu-
lar expression match in the matching string?

c) At what character position(s) in the matching string does a match
not occur?

1.1.4 UNDERSTAND THE RESULTS OF EVALUATING THE
EXPRESSION AS A PATTERN

ch01.fm Page 14 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 15

LAB
1.1

What strings do the following wildcard regular expressions produce?

a) the.

b) .ed

LAB 1.1 EXERCISE ANSWERS

This section gives you some suggested answers to the questions
in Lab 1.1, with discussions related to those answers. Your
answers may vary, but the most important thing is whether or
not your answers work. Use these discussions to analyze differ-
ences between your answers and those presented here.

If you have alternative answers to the questions in this Exer-
cise, you are encouraged to post your answers and discuss
them at the companion Web site for this book, located at:

http://www.phptr.com/phptrinteractive/

I cannot emphasize enough that the best way to learn computer lan-
guages and utilities is by practicing. Try out sample queries on your own.
In addition, I have found that sometimes the best way to learn is by your
own mistakes. Try figuring out where you went wrong, and try entering a
query that you suspect might not work. You might be surprised at the
result.

1.1.5 UNDERSTAND THE WILDCARD CHARACTER

ch01.fm Page 15 Tuesday, December 8, 1998 1:18 PM

16 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

What are the operands and operators of the following regular expressions?

a) Her

Answer: Operands: H, e , and r Operator: concatenation

No explicit operator exists, and the implicit operator concatenation is
used to concatenate h with e and then r .

b) feathered

Answer: Operand: feathered Operator: concatenation

Same reasoning as the previous example.

c) Her.

Answer: Operand: H, e , and r , and all single characters Operator: concate-
nation , wildcard

In this particular expression, we encounter the wildcard operator. The
operand to this operator are all single characters, by definition, of the
wildcard operator. This is concatenated with the literal expression Her ,
which was constructed by concatenating h, e, and r .

d) Feathered\.

Answer: Operand: Feathered. Operator: concatenation, back-
slash

The backslash operator is encountered next, whose operand is the period.
This is concatenated to the literal string Feathered .

e) 2*.

Answer: Operand: 2, * , all single characters Operator: concatenation ,
backslash , wildcard

Here, the wildcard operator has as its operands all single characters,
which are concatenated to the character * , which is the operand to the
backslash, which is then concatenated to the literal character 2.

1.1.1 ANSWERS

ch01.fm Page 16 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 17

LAB
1.1

f) chapter\n

Answer: Operand: chapter , newline character Operator: concatena-
tion , backslash

What type of regular expression is each of the following?

g) the

Answer: Literal regular expression, no metacharacters.

h) the.

Answer: Metacharacter regular expression. In particular, a wildcard metacharacter
regular expression.

i) the\.

Answer: Literal regular expression; it has a metacharacter but the backslash still evalu-
ates to a literal.

What are the results of evaluating the following regular expressions? Think of
the expressions as operators and operands, and the results as a set of literal
strings.

a) a.b

Answer: {aab,…,azb,a1b, ..,a9b,a!b, ..,a\fb}

In other words, all three character strings, including punctuation and
non-printable characters like the form feed. Everything except the new-
line character.

b) 80.86

Answer: Again, because the wildcard matches all characters except the newline, the
result is the same as before, except that this one is prefixed by 80 and suffixed by 86 .

c) her

Answer: {her} —the single element her .

1.1.2 ANSWERS

ch01.fm Page 17 Tuesday, December 8, 1998 1:18 PM

18 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

d) \.

Answer: {. } —the single element period, which was the operand to the backslash.
Therefore, the backslash returns the operand following it literally.

e) \\t

Answer: {\t } —the single element consisting of two characters, a backslash, and the
character t . The backslash operator has as its operand a backslash. Therefore, the
backslash will be taken literally, and the literal character t is concatenated to it.

a) Identify when the regular expressions in the following code or invoca-
tions are evaluated as a regular expression.
grep t* input-file

Answer: No regular expression exists.

The shell will evaluate the asterisk, because it is not quoted. The shell
interprets the expression t* as a filename.

awk { x = 3
 if ($0 ~ x) print $0
 }

The regular expression x will be evaluated as a regular expression when awk is exe-
cuting, and awk reaches the line of code if ($0 ~ x) print $0 .

In awk, frequently we would like to know whether a string pattern or sub-
string is contained within a line of text from a file. In awk, unlike grep, we
would also like to know whether a substring is contained within a portion
(or field) of the input line. We might also want to know simply whether a
substring or pattern is contained within a variable that contains a string.
Therefore, because awk allows string variable assignment, it does not limit
the string to which the regular expression will match simply to an input
line like grep.

This awk snippet searches for the literal regular expression 3 but further
searches whether the regular expression is contained within the string vari-
able $0 and not an entire input line of text. The tilde (~) is an awk regular
expression matching operator. When awk encounters the operator, the
operator requires that one of its arguments be a regular expression that

1.1.3 ANSWERS

ch01.fm Page 18 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 19

LAB
1.1

needs to be evaluated. Because a regular expression is enclosed in slashes in
awk, it recognizes the second argument (rightmost operand) /her/ as the
regular expression that needs to be evaluated and uses her as the regular
expression.

It then determines whether the regular expression her is contained
within the substring that is stored in the variable word . In awk, a regular
expression is recognized not simply as a string, but as an expression, a
regular expression, that needs to be evaluated. We could have rewritten
the awk snippet of code as:

awk ‘{reg_expr = “her”
 word ~ reg_expr
}’

This would have returned equivalent results. However, the string her was
not evaluated as a regular expression in the assignment statement, but
simply as a string. Only when the string is encountered with a regular
expression operator is the string recognized as a regular expression to be
evaluated. Therefore, the context in which the string is used determines
whether it is a regular expression or not.

grep ‘t*’ input-file

Answer: The regular expression is evaluated when grep is executing.

Use the given regular expressions and matching substrings to answer the ques-
tions in this Exercise.

a) Which matching strings match the regular expression?

Answer: her —matches her and hereafter , but not Heresy ; the first charac-
ter of Heresy is capitalized.

a.c —matches, abc , a$c , and access , but does not match acdc . The pattern
of the character a followed by any character and then a c never occurs in acdc .

try\. —matches only try. . The others do not have the period character following
the string try .

1.1.4 ANSWERS

ch01.fm Page 19 Tuesday, December 8, 1998 1:18 PM

20 Lab 1.1: Using the period and backslash metacharacters

LAB
1.1

b) At what character position(s) does the first character of the regular
expression match in the matching string?

Answer: her —the first character, h, matches in position 1 in her and hereaf-
ter , and never matches in Heresy .

a.c —the first character, a, matches in position 1 for all matching strings.

try\. —the first character, t , matches in all substrings.

c) At what character position(s) in the matching string does a match not
occur?

Answer: her , hereafter —no positions do not match (positions 1, 2, and 3 are
matched and the matching stops).

Heresy —no position is a match.

abc , a$c , access —no positions match.

acdc —positions 2, 3, and 4 do not match.

What strings do the following wildcard regular expressions produce?

a) the.

Answer: {thea, …, thez, theA, .., theZ, the1, .., the9,
the$, .., the\f, theaa, theaz, … }

All strings length four and greater that are prefixed by the string the .
Newline cannot follow the string the , but could come after it.

b) .ed

Answer: {aed, .., zed, Aed, …, Zed, 1ed, .., 9ed, $ed, .., \fed, aeda, .. zeda, ..}

All strings that have any character suffixed by ed , and followed by zero or
more characters after the three characters preceding it.

1.1.5 ANSWERS

ch01.fm Page 20 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 21

LAB
1.1

LAB 1.1 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.
In each of the following multiple choice questions, the answer may be one or
more of the available choices.

1) Which of the following are a result of evaluating the regular expression
123*[a-c] ?
a) _____ 12
b) _____ 12a
c) _____ 123ad
d) _____ 12cc
e) _____ 12d

2) What type of regular expression is chapter\. ?
a) _____literal
b) _____metacharacter
c) _____it is not a regular expression

3) What characters does . match?
a) _____a letter a-z or A-Z
b) _____a number
c) _____a metacharacter

4) What are the operands of the regular expression cd*e ?
a) _____c
b) _____d
c) _____e
d) _____1
e) _____3

5) Does the string sentence. need the backslash metacharacter to be
interpreted literally?
a) _____yes
b) _____no

Quiz answers appear in Appendix A, Lab 1.1.

ch01.fm Page 21 Tuesday, December 8, 1998 1:18 PM

22 Chapter 1: Regular Expressions And Metacharacters

C H A P T E R 1

TEST YOUR THINKING
The projects in this section are meant to have you utilize all of the skills
that you have acquired throughout this chapter. The answers to these
projects can be found at the companion Web site to this book, located at:

http://www.phptr.com

Visit the Web site periodically to share and discuss your answers.

In the rest of this section we will explore additional metacharacters including the
asterisk, plus, and question mark metacharacters. These three metacharacters are
described in the following table:

Table 1.1 ■ Asterisk, Plus, Question Mark, and Positional Metacharacters

Operator Description Usage

Asterisk
Metacharacter (*)

A* matches
zero or more
occurrences
of A in a
matching sub-
string

Regular expression a* matches substrings a,
aa, after, daal, fred. In the first substring a,
the regular expression a*; a occurs one time
in a. In the substring aa, the regular expres-
sion a*; a occurs twice in aa, and daal. In the
substring fred, the regular expression a*; a
occurs zero times. (remember that the aster-
isk metacharacter specifies that zero or more
occurrences of the character immediately
preceding the asterisk metacharacter may
occur in the matching substring

Plus
Metacharacter (+)

A+ matches one or
more occurrences
of A in a matching
substring

Regular expression a+ matches the same
substrings a, aa, after, daal but does not
match fred. The plus metacharacter specfies
that at least one occurrence of the character
immediately preceding the plus metacharac-
ter may occur in the matching substring.
The matching substring fred has zero occur-
rences of a in the string fred.

ch01.fm Page 22 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 23

Each of the above metacharacters differs from the metacharacters in Lab 1.1 in that
the metacharacters in Table 1.1 specify and affect metacharacters and literals not at
the current character position but at a position that immediately precedes the meta-
character or immediately follows the metacharacter.

1) For each of the following expressions, identify the subset of values that
would result.

a) AB+C

b) AB?C

c) AB*C

d) ^AB*C

e) AB*C$

f) ^AB*C$

2) Explain verbally what the following regular expression produces. Which lines
does it match and match?

 “ book.* ”

Question Mark
Metacharacter (?)

A? matches
exactly zero or
one occurrences
of A in a matching
susbtring

Regular expression a? matches the sub-
strings a, after, and fred but does match aa,
and daal. In a, and after the regular expres-
sion a? matches one occurrence of a. In fred
the regular expression a matches zero occur-
rences of a.

Positional
Metacharacters
(^,$)

^A matches A at the
very beginning
(first character)
of a matching sub-
string

A$ matches A at the
very end (last
character) of a
matching substring

Regular expression ^a matches the sub-
strings a, after, but does match fred, and
daal. In a, and after the regular expression
^a matches the a in the beginning (first
character) of the substring a. and after. In
fred , and daal, the regular expression ^a
does not match an a in the beginning (first
character is d and f and not a) of the sub-
strings fred and daal.

Table 1.1 ■ Asterisk, Plus, Question Mark, and Positional Metacharacters

ch01.fm Page 23 Tuesday, December 8, 1998 1:18 PM

24 Chapter 1: Regular Expressions And Metacharacters

Use the following input file called mic.dat for this section.

There are two principal types of transducers used in
mics: dynamic and

condensor. Dynamics are often favored for miking
individual

instruments because they add a favorable color to
the sound. Condensor

mics are generally more accurate than dynamic and
are preferable for

audience recording.

1) What is the result of the following regular expressions used within grep?

Try to figure not only what the regular expression matched when
you execute it at the terminal, but what other strings in other files it
might match.

a) grep ‘dynamic ’ mic.dat

b) grep ‘dynamic[.?!]’ mic.dat

c) grep ‘condenser’ mic.dat

d) grep ‘\. *’ mic.dat

e) grep ‘\. *D’ mic.dat

f) p [TD]* mic.dat

2) Suppose you wanted to find all matching strings that have a file name that
starts with AVL and has a file extension of .h (the rest of the name you do
not care about).

g) Write a regular expression that would perform this search.

ch01.fm Page 24 Tuesday, December 8, 1998 1:18 PM

Chapter 1: Regular Expressions And Metacharacters 25

3) For the following regular expressions, explain verbally what each does.

h) ^.*$

i) ^$

j) “[.?!:] +[a-zA-Z]”

k) ^[+-]?[0-9]+[.]?[0-9]*$

l) ^[0-9][0-9]$

ch01.fm Page 25 Tuesday, December 8, 1998 1:18 PM

ch01.fm Page 26 Tuesday, December 8, 1998 1:18 PM

