Chapter 1

FUNDAMENTALS OF
STREAMING MEDIA
SYSTEMS

Multimedia (MM) systems utilize audio and visual information, such as
video, audio, text, graphics, still images, and animations to provide effec-
tive means for communication. These systems utilize multi-human senses
in conveying information, and they play a major role in educational ap-
plications (such as e-learning and distance learning), library information
systems (such as digital library systems), entertainment systems (such as
Video-On-Demand and interactive TV), communication systems (such as
mobile phone multimedia messaging), military systems (such as Advanced
Leadership Training Simulation), etc. Due to the exponential improvements
of the past few years in solid state technology (i.e., processor and memory)
as well as increased bandwidth and storage capacities of modern magnetic
disk drives, it has been technically feasible to implement these systems in
ways we only could have dreamed about a decade ago.

A challenging task when implementing MM systems is to support the
sustained bandwidth required to display Streaming Media (SM) objects, such
as video and audio objects. Unlike traditional data types, such as records,
text and still images, SM objects are usually large in size. For example, a two-
hour MPEG-2 encoded movie requires approximately 3.6 gigabytes (GByte)
of storage (at a display rate of 4 megabits per second (Mb/s)). Figure 1.1
compares the space requirements for ninety minute video clips encoded in
different industry standard digital formats. Second, the isochronous nature
of SM objects requires timely, real-time display of data blocks at a pre-
specified rate. For example, the NTSC video standard requires that 30 video
frames per second be displayed to a viewer. Any deviation from this real-
time requirement may result in undesirable artifacts, disruptions, and jitters,

1

2 Fundamentals of Streaming Media Systems Chapter 1

Size [GB]
1000 791.0 —
178.0
100 —
59.3
33.0
20.4
10 -
1.9

1

MPEG-2 DV 4:1:1 DV 4:2:2 Digi Beta D1 HDTV

3Mb/s 31 Mb/s 50Mb/s 90 Mb/s 270 Mb/s 1.2 Gb/s

Figure 1.1. Storage requirements for a ninety minute video clip digitized in
different industry standard encoding formats.

collectively termed hiccups.

In the remainder of this chapter, the following topics are covered. First, in
Section 1.1, we introduce different display paradigms for SM objects. Next,
in Section 1.2, we consider the overall SM system architecture. After that, in
Section 1.3, we briefly overview data compression techniques. Subsequently,
in Section 1.4, we describe a number of networking protocols that ensure
real-time streaming over the Internet. Finally, in Section 1.5, we present an
outline for the entire textbook.

1.1 Introduction to Streaming Media Display

Many applications that traditionally were the domain of analog audio and
video are evolving to utilize digital audio and video. For example, satellite
broadcast networks, such as DirectTV™ were designed from the ground
up with a completely digital infrastructure. The proliferation of digital au-
dio and video have been facilitated by the wide acceptance of standards for
compression and file formats. Consumer electronics are also adopting these
standards in products such as the digital versatile disk (DVD! and digital

'DVD is a standard for optical discs that feature the same form-factor as CD-ROMs
but holds 4.7 GByte of data or more.

Section 1.1. Introduction to Streaming Media Display 3

Location of the SM Objects
Local Remote

None- Local Store-and-
Streaming Streaming Display

Progressive
Download

Local Remote

Streaming - X .
reaming Streaming

Streaming Capabilities of
the Server and the Network

Figure 1.2. SM Display Paradigms.

VHS? (D-VHS)). Furthermore, increased network capacity for local area net-
works (LAN) and advanced streaming protocols (e.g., RTSP?) allow remote
viewing of SM clips.

There are a number of possible display paradigms for SM objects, as
shown in Figure 1.2. These display paradigms are defined according to:

1. The location of the SM object (local vs. remote), and

2. The capabilities of the network and the servers (none-streaming vs.
streaming).

SM objects can either be displayed from a local machine (i.e., local stream-
ing) or from a remote server. In the former approach, the SM objects are
available locally in their entirety (e.g., stored on a hard disk, or available on
DVDs and/or CD-ROMs). When the user requests the display of an object,
the data blocks are retrieved from the local storage, passed to the wvideo-
card/graphics-card for decoding, and subsequently displayed to the user.
Modern personal computers (PCs) and consumer electronic devices (such
as Sony’s PlayStation™ and Microsoft’s Xboz™) can display a single SM
object without much difficulty. Local streaming does not require any guar-
antees from the remote servers and the network (for obvious reasons), and
hence, it occupies the upper and lower left quadrants of Figure 1.2.

2Video Home System: a half-inch video cassette format.
3The Real Time Streaming Protocol is an Internet Engineering Task Force (IETF)
proposed standard for control of SM on the Internet.

4 Fundamentals of Streaming Media Systems Chapter 1

When the user requests the display of an object that resides on a remote
server, the data blocks are retrieved from the remote server over a network
(e.g., the Internet or a corporate intranet), and passed to the client for
display. Depending on the capabilities of the server and the network, there
are two alternative display paradigms: 1) store-and-display paradigm, and
2) remote streaming paradigm. With the store-and-display paradigm, the
SM objects are first downloaded in their entirety from a remote server to a
local storage before initiating the display process (which is similar to local
streaming). This paradigm is favored when the server and/or the network
cannot guarantee the isochronous nature of SM objects (upper right quadrant
of Figure 1.2). With the remote streaming paradigm, the data blocks are
retrieved from the remote server over a network and processed by the client
as soon as they are received; data blocks are not written to the local storage
(although they might be buffered). This paradigm is possible only when
both the server and the network can guarantee the isochronous nature of
the SM object (lower right quadrant of Figure 1.2). In the remainder of this
book, we will be referring to remote streaming as streaming.

There are several advantages of streaming paradigm versus store-and-
display paradigm:

1. No waiting for downloads (well, not much waiting).

2. No physical copies of the content are stored locally. reducing the pos-
sibility of copyright violations (if any).

3. No storage (or limited storage) requirements at the client side.
4. Support of live events.

On the other hand, there are a number of limitations to the streaming
paradigm:

1. It requires real-time guarantees from the server and the network.

2. Lost or damaged packets (blocks) or missed deadlines may cause a
hiccup in the display of the SM object.

It is important to note that streaming is not a progressive download, where
the display starts as soon as enough of the data is buffered locally while the
remainder of the file is being retrieved and stored on the local disk (i.e., at
the end of the display the entire SM object is stored locally). Progressive
download can be identified as a special case of the steaming paradigm (if the

Section 1.2. Streaming Media System Architecture 5

system can guarantee the hiccup-free display of the SM objects), or a special
case of store-and-display paradigm.

In this book, we focus on the design of Steaming Media Servers (SM
Servers) that guarantee the continuous display of SM objects, assuming that
the network delivers the data blocks in a timely fashion. We ignore for the
most part design issues related to SM encoding standards (such as MPEG*
standards) and SM networking®.

1.2 Streaming Media System Architecture

To support the streaming paradigm, servers and the network must guarantee
the continuous display of the SM object without disruptions (i.e., hiccups).
To illustrate, assume a SM object X that consists of n equi-sized blocks: Xy,
X1, ..., Xn—1, and resides on a SM server, as shown in Figure 1.3. There are
some important observations when streaming this object:

1. The display time of each block is a function of the display requirements
of each object and the size of the block. For example, if the display
requirement of the object X is 4 Mb/s and the size of each block,
X;, is 1 MByte, then the display time of each block, X;, is 2 seconds.
However, it is important to note that SM objects can be encoded using
either constant bit-rate (CBR) or variable bit-rate (VBR) schemes. As
the name implies, the consumption rate of a CBR media is constant
over time, while VBR streams use variable rates to achieve maximum
compression. We will assume CBR media throughout the book to
provide a focused discussion, unless indicated otherwise.

2. The retrieval time of each block is a function of the transfer rate of
the SM server, and it is primarily related to the speed of the storage
subsystem.

3. The delivery time of each block from the SM server to the display
station is a function of the network speed, traffic, and protocol used.

Assume that a user requests the display of object X from the SM server,
as depicted in Figure 1.3. Using the above information, the SM server sched-
ules the retrieval of the blocks, while the network ensures the timely delivery

“Motion Picture Encoding Group (MPEG) (http://mpeg.telecomitalialab.com/) has
standardized several audio and video compression formats, such as MPEG-1, MPEG-2,
and MPEG-4.

5In this chapter, we present an overview of SM encoding standards and introduce a
number of networking technologies that make SM possible over the Internet.

6 Fundamentals of Streaming Media Systems Chapter 1

Display Station

,,,,,,,,,,,,,,,,,,,,

SM Server

|
|
|
|
|
|
|
.-Xo .-Xl .-Xz -
|
|
|
|
|
|

Request display of SM object X |

Figure 1.3. System Architecture.

Retreva Time
Network

Deli\?elv';o’ll.“ime Iij

D eill;ftr::me E E Buffer is empty

Display Time Xo Xi Xz

Time Period * hiccup

Figure 1.4. Timing of retrieval, delivery, and display of object X.

of these blocks to the display station. The SM server stages a block of X (say
X;) from the disk into main memory and initiates its delivery to the display
station (via the network). The SM server schedules the retrieval and the
delivery of X;,1 prior to the completion of the display of X;. This ensures a
smooth transition between the two blocks in support of continuous display.
This process is repeated until all blocks of X have been retrieved, delivered,
and displayed. The periodic nature of the data retrieval and display process
gives rise to the definition of a time period (T},): it denotes the time required
to display one data block. Note that the display time of a block is in general

Section 1.2. Streaming Media System Architecture 7

significantly longer than its retrieval and delivery time from the SM server to
the display station. Thus, the SM server can be multiplexed among several
displays.

The display station in turn might buffer enough data (i.e., blocks) in its
memory, such that any delays in data delivery due to network or SM server
delays are tolerated® (see Figure 1.3). To guarantee the continuous display
of object X without any hiccups, it is critical that prior to the completion of
the display of block X;, block X;.; is available in the buffer at the display
station. For example, consider the retrieval times, delivery times, and the
display times shown in Figure 1.4. Block X; is retrieved and delivered to
the display station, and the display station delays the display of the block
to reduce the probability of hiccups (e.g., due to network delays). For block
X1, the network delivers the block in a shorter time, and hence, the block
is buffered for a longer period of time. If the network delay becomes longer
than anticipated, as shown in Figure 1.4 for block X5, then the display of
the object might suffer a hiccup. Conversely, if the delivery of the blocks
becomes faster than the display rate of the object, then the display station’s
buffer might overflow. In this case, the display station might have to either:
1) discard blocks, or 2) send a signal to the SM server to slow down or
to pause the retrieval. The former will cause retransmissions of the blocks
(increasing the network traffic) and extra load on the SM server, or it might
cause hiccups in the display. The later will affect retrieval schedule at the
SM server.

Due to the size and the isochronous characteristic of SM objects, the
design of servers in support of SM has been different from that of conven-
tional file servers and associated storage systems [175], [59]. The fundamen-
tal functionality of SM servers is a hiccup-free display of SM. However, just
supporting a continuous display is not enough in the design of SM servers
because many real applications, especially commercial ones such as movie-on-
demand systems that concurrently service multiple users, require maximizing
the performance of servers for cost-effective solutions. Thus, the following
performance metrics are important: 1) the number of simultaneous displays
that can be supported by a SM server, i.e., throughput, and 2) the amount
of time elapsed from when a display request arrives at the system until the
time the actual display is initiated by the system on behalf of this request,
i.e., startup latency. Throughput, in general, is closely related to another
important metric of SM servers, cost per stream. If a technique supports a
higher throughput with fixed resources than others, it provides for a more

SNote that network and SM server delays can either be deterministic or otherwise.

8 Fundamentals of Streaming Media Systems Chapter 1

cost-effective solution. Throughout this book, we compare alternative de-
signs based on these metrics.

1.3 Data Compression

A ninety minute uncompressed video clip digitized in High Definition Televi-
sion (HDTV) format at 1.2 gigabits per second (Gb/s) requires 791 GByte of
storage. Even though modern storage devices, such as magnetic disk drives,
provide large storage capacities, it might not be economical to store SM ob-
jects uncompressed. Moreover, the data transfer rate of magnetic disks is not
high enough to retrieve multiple high bit rate objects in real time. A more
serious problem arises when transferring a large number of SM objects over
the network. Even though network speeds are rapidly increasing, it is not
economically feasible to handle the simultaneous display of a large number
of SM objects over existing networks.

To resolve these problems and to efficiently handle large number of SM
objects, we need to compress these objects, where a smaller SM object re-
quires less disk storage space and less network bandwidth. In the remainder
of this section, we briefly overview data compression techniques.

1.3.1 Information vs. Data

Data is an individual fact or multiple facts, or a value, or a set of values. For
example, a collection of digitally captured pixel values of an image is data.
Information is data in a usable form, usually interpreted in a predefined way.
For example, the content of an image is information. In general, information
is meaningful to us and it is stored and handled as data in computer systems.
Thus, the main goal of compression techniques is to reduce the size of data
while maintaining as much information as possible.

A popular approach in multimedia data compression is perceptual coding
that hides errors where humans will not see or hear them. Based on the
studies of human hearing and vision to understand how we see/hear, per-
ceptual coding exploits the limit of human perception. For example, human
audio perception ranges between 20 Hz and 20 KHz but most voice sounds
are in low frequencies (below 4 KHz). Thus, audio signals above 4 KHz are
eliminated in telephone systems. Human visual perception is strongly influ-
enced by edges and low frequency information such as big objects. Thus,
many detailed patterns in an image can be ignored in the coding process.
Perception coding takes advantage of this fact and encodes only those signals
that will be perceived by humans, eliminating lots of imperceptible signals.

Section 1.3. Data Compression 9

1.3.2 Coding Overview

Good compression algorithms should satisfy the following objectives:

e Achieve high compression ratios. It is obvious that a higher compres-
sion ratio is more beneficial.

e Ensure a good quality of the reconstructed information, i.e., it is im-
portant to maintain a good or acceptable quality while providing a
high compression ratio.

e Minimize the complexity of the encoding and decoding process, i.e., if
it takes too long to encode and/or decode the SM objects, then the
usage of the algorithm might become limited. For real time encoding
and decoding, coding and decoding processes must be fast.

Some other general requirements include independence of specific size and
frame rate and support various data rates of an object.

Depending on the importance of the original information, there are two
types of compression: lossless compression and lossy compression. Using
lossless compression, the reconstructed information is mathematically equiv-
alent to the original information (i.e., reconstruction is perfect). Thus, it
does not lose or alter any information in the process of compression and de-
compression. For example, documents, databases, program executable files,
and medical images, to name a few, do not tolerate a loss or alteration of in-
formation. Lossless compression reduces the size of data for these important
types of information by detecting repeated patterns and compressing them.
However, it achieves only a modest level of compression (about a factor of
5), which may not be sufficient for SM objects.

While lossless compression is desirable for information that cannot toler-
ate a loss of even a bit, some media types are not very sensitive to the loss
of information. Human eyes usually do not detect minor color changes be-
tween the original image and the reconstructed one, and usually such small
changes do not pose a problem in many practical applications. Thus, lossy
compression achieves a very high degree of compression (compression ratios
up to 200) by removing less important information such as imperceptible
audio signals in music. Using lossy compression, reconstructed images may
demonstrate some degradation in the quality of the image. The practical ob-
jective of lossy compression is to maximize the degree of compression while
maintaining the quality of the information to be virtually lossless.

10 Fundamentals of Streaming Media Systems Chapter 1

Entropy and Source Encoding

Entropy is a measure of amount of information. If N states are possi-
ble, each characterized by a probability p;, with sz\; 1pi = 1, then § =
— ZZ]\L 1 pilogop; is the entropy which is the lowest bound on the number
of bits needed to describe all parts of the system. It corresponds to the
information content of the system. For example, when there are only two
symbols, S1 (0.9) and S2 (0.1), the entropy is 0.910g20.9 — 0.1l0g20.1 = 0.47.
Another typical example is as follows. In an image with uniform distribution
of gray-level intensity, i.e., p; = 1/256, the number of bits needed to code
each gray level is 8 bits. Thus, the entropy of this image is 8.

Entropy encoding ignores semantics of input data and compresses me-
dia streams by regarding them as sequences of bits. Run-length encoding
and Huffman encoding are popular entropy encoding schemes. On the con-
trary, source encoding optimizes the compression ratio by considering media-
specific characteristics. It is also called sematic-based coding. Many advanced
schemes such as DPCM, DCT, FFT, and Wavelet fall into this category. In
reality, most practical compression algorithms employ a hybrid of the source
and entropy coding such that a source encoding is applied at the early stage
of compression and then an entropy encoding is applied to results in an
attempt to further reduce the data size.

Run-length Encoding

This is one of the simplest compression techniques. It replaces consecutive
occurrences of a symbol with the symbol followed by the number of times it
is repeated. For example, the string, “a a a a a” can be represented by the
following two bytes, “ba”. The first byte shows the number of occurrences
of the character, and the second byte represents the character itself. This
scheme is naturally lossless and its compression factor ranges from 1/2 to
1/5 depending on the contents of objects. This scheme is most useful where
symbols appear in long runs: e.g., for images that have areas where the pixels
all have the same value, cartoons for example. However, this may not be
efficient for complex objects where adjacent symbols are all different.

Relative Encoding

This is a technique that attempts to improve efficiency by transmitting only
the difference between each value and its predecessor. In an image, based on
the fact that neighboring pixels may be changing slowly in many cases, one
can digitize the value at a pixel by using the values of the neighboring pixels
and encode the difference between two. A differential PCM coder (DPCM)

Section 1.3. Data Compression 11

quantizes and transmits the difference, d(n) = z(n)z(n —1). The advantage
of using difference d(n) instead of the actual value x(n) is the reduced number
of bits to represent a sample. For example, the series of pixel values “60 105
161 129 78”, can be represented by “60+45+56-32-51”. By reducing the size
of each value (in the example, 6 bits are enough to represent the difference
while 8 bits are required to represent the original values), assuming the
difference is far smaller than the original value, it can reduce the overall size
of data. This scheme works well when the adjacent values are not greatly
changing, such as voice signals. Furthermore, the transmitter can predict
each value based on a mathematical model and transmit only the difference
between the predicted and actual values, further reducing the size of required
bits to represent a value (predictive coding).

Huffman Encoding

Huffman encoding is a popular compression technique that assigns variable
length codes to symbols, so that the most frequently occurring symbols have
the shortest codes. Thus, more frequently occurring values are assigned fewer
bits exploiting the statistical distribution of the values within an object. To
correctly decompress the encoded data, encoder and decoder must share the
same codebook. Huffman coding is particularly effective where the data
are dominated by a small number of symbols. Suppose that one wants to
encode a source of N = 8 symbols: a,b,c,d,e,f,g,h. The probabilities of these
symbols are: P(a) = 0.01, P(b) = 0.02, P(c) = 0.05, P(d) = 0.09, P(e) =
0.18, P(f) = 0.2, P(g) = 0.2, P(h) = 0.25. If we assign 3 bits per symbol
(N = 23 = 8), the average length of the symbols is: L = Z?zl 3P(i) =3
bits/symbol. The minimum average length we could ever achieve is equal to
the entropy (according to Shannon’s theorem): S = — Z§:1 P(i)loga P(1) =
2.5821 bits/symbol = 0.86 x L.

The Huffman code assignment procedure is based on a binary tree struc-
ture. This tree is developed by a sequence of pairing operations in which the
two least probable symbols are joined at a node to form two branches of a
tree.

e Step 1. The list of probabilities of the source symbols are associated
with the leaves of a binary tree.

e Step 2. Take the two smallest probabilities in the list and generate an
intermediate node as their parent and label the branch from parent to
one of the child nodes 1 and the branch from parent to the other child
0.

12 Fundamentals of Streaming Media Systems Chapter 1

e Step 3. Replace the probabilities and associated nodes in the list by
the single new intermediate node with the sum of the two probabilities.
If the list contains only one element, quit. Otherwise, go to step 2.

It is very important to estimate the probability p;, the relative frequency
of the symbols. To decode the variable length codes, Huffman encoding
uses prefix codes, which have the property that no codeword can be the
prefix (i.e., an initial segment) of any other codeword. Note that there is no
guarantee that the best possible codes always reduce the size of sources. In
the worst case, there is no compression.

Transform Coding

In transform coding, using a mathematical transformation, the original data
to be coded is converted into new data (transform coefficients) which is more
suitable for compression. This process is reversible such that the original
data can be recovered through inverse transformation. For example, Fourier
transform and Cosine transform convert signals from space domain into fre-
quency domain to obtain the frequency spectrum with which one can easily
separate low frequency information.

Transform coefficients represent a proportion of energy contributed by
different frequencies. In data compression using transform coding, it is im-
portant to choose a transformation so that only a subset of coefficients have
significant values. In other words, energy is confined to a subset of impor-
tant coefficients, known as energy compaction. Energy compaction is good
for coding because we can consider only significant coefficients. If the num-
ber of significant coefficients is far smaller than the number of samples in
original sequence, compression is possible. In practice, one can code signif-
icant coefficients accurately using a greater number of bits while allocating
fewer or no bits to other less meaningful coefficients (which offer less per-
ceptible information to humans). Moreover, many low energy coefficients
can even be discarded through quantization. In practice, many algorithms
apply transform coding at block level. For example, an N x N image is di-
vided into several n x n blocks and each n x n block undergoes a reversible
transformation.

1.3.3 JPEG

JPEG (Joint Photographic Expert Group) is an international compression
standard for continuous-tone still images, both gray-scale and color. Its de-
velopment was motivated by the fact that the compression ratio of lossless
methods such as Huffman is not high enough for many applications such as

Section 1.3. Data Compression 13

Quan. Tables +—————— ‘
! |
F(u,v, [
DCT (w.y) » Quantization Fa(uv) |
|
] |
8x8 8x8 }
|
i Coding | __ Header |
Zig-zag Tables | |
+ c—» Tables |lea—————-
DC
» DPCM >
Entropy -
1x64 Coding » Data
» RLC >
AC

Figure 1.5. JPEG overview.

high quality gray-scale images, photographic images, and still video. JPEG
achieves a high compression ratio by removing spatial redundancy (i.e., cor-
relation between neighboring pixels) within an image, which is basically a
lossy process.

Figure 1.5 shows the components and sequence of JPEG. JPEG utilizes
discrete cosine transform (DCT), which is one of the best known transforms
and is a close approximation to the optimal for a large class of images. DCT
transforms data from a spatial domain to a frequency domain and separates
high frequency information and low frequency information.

Discrete Cosine Transform (DCT)

As the first step in JPEG compression, an original image is partitioned into
8x8 pixel blocks and the algorithm independently applies DCT to each block.
DCT transforms data from the spatial domain to the frequency domain in
which they can be more efficiently encoded.

The definition of forward discrete cosine transform (FDCT) and inverse
discrete cosine transform (IDCT) is as follows:

7T

Flu,v) = EC(U)C(U)[Z S £(i,) * cos

i=0 j=0

21+1 27+ 1
(20 4+)mrcos(j+ 1o

16 6 LY

14 Fundamentals of Streaming Media Systems Chapter 1

L (20 + Dur (25 + or

fi,j) = i[z Z C(u)C(v)F(u,v) * cos 15 cos 15] (1.2)
u=0 v=0

where: C(u),C(v) = 1/v/2 for u,v =0, C(u),C(v) = 1 otherwise.

Using FDCT, original pixel values, f(i,j) where 0 < i,j < 8, are trans-
formed into F(u,v) named DCT coefficient. The output DCT coefficient
matrix represents information of the 8x8 block in frequency domain. DCT
enhances compression by concentrating most of the energy in the signal in the
lower spatial frequencies. The left upper corner of the matrix represents low
frequency information while the right lower corner represents high frequency
information. IDCT restores original pixel values from DCT coefficients.

Quantization

The purpose of quantization is to achieve high compression by representing
DCT coefficients with no greater precision than necessary by discarding infor-
mation which is not visually significant to human perception. After FDCT,
each of the 64 DCT coefficients is quantized: F'[u,v] = Round(F'[u,v]/q[u,v]).
For example, assume a DCT coefficient, 101101 = 45 (6 bits). If it is quan-
tized by a quanta value, g[u,v] = 4, the original DCT value is truncated
to 4 bits, 1011 = 11, reducing the required number of bits to represent a
DCT coefficient. Due to many-to-one mapping, quantization is a fundamen-
tally lossy process, and is the principal source of lossiness in DCT-based
encoders. There are two different types of quantization: uniform and non-
uniform. Uniform quantization divides each F[u,v] by the same constant
N. Non-uniform quantization uses a quantization table from psychovisual
experiments to exploit the limits of the human visual system.

Zig-Zag Sequence

After quantization, the 8x8 matrix of quantized coefficients is ordered into a
one-dimensional array (1x64) using the zig-zag sequence (Figure 1.6). This
is to facilitate entropy coding by placing low-frequency coefficients on the
top of the vector (maps 8x8 to 1x64 vector).

Entropy Coding

In order to achieve additional compression losslessly by encoding the quan-
tized DCT coefficients more compactly based on statistics, JPEG applies
Differential Pulse Code Modulation (DPCM) on the DC component which
is a measure of the average value of the 64 image samples. DPCM is useful
because there is usually a strong correlation between the DC coefficients of

Section 1.3. Data Compression 15

DC ACoq ACo7
AR,
AC7o AC77

Figure 1.6. Zig-zag sequence.

adjacent 8x8 blocks. Run Length Encoding (RLE) is applied on AC com-
ponents which usually have lots of zeros. For further compression, Huffman
coding is used for both DC and AC coefficients at the last stage.

JPEG Operating Modes

JPEG supports the following operation modes to meet the various needs of
many applications:

e Sequential Mode:
Each image component is encoded in a single left-to-right, top-to-
bottom scan as explained in this section.

e Lossless Mode:
A special case of the JPEG where indeed there is no loss. It does not
use a DCT-based method. Instead, it uses a predictive (differential
coding) method. Typical compression ratio is 2:1.

e Progressive Mode:
Each image is coded in multiple scans with each successive scan refining
the image until a desired quality of image is achieved. Display of the
encoded image follows the same steps: a coarser image is displayed first,
then more components are decompressed to provide a finer version of
the image.

16 Fundamentals of Streaming Media Systems Chapter 1

e Hierarchical Mode:
An image is compressed to multiple resolution levels. This makes it
possible to display a high resolution image on a low resolution monitor
by accessing a lower resolution version without having to decompress
the full version.

1.3.4 MPEG

JPEG achieves intra-frame compression for still images by exploiting the re-
dundancy in images (spatial redundancy). This intra-frame compression is
not enough for video because it doesn’t consider inter-frame compression be-
tween successive frames. We need a different scheme for video to exploit both
spatial redundancy and temporal redundancy. MPEG is a de facto compres-
sion standard for video, audio, and their synchronization. MPEG (Moving
Picture Coding Experts Group) was established in 1988 to create standards
for delivery of video and audio. MPEG achieves intra-frame encoding using
DCT-based compression for the reduction of spatial redundancy (similar to
JPEG). Its inter-frame encoding utilizes block-based motion compensation
for the reduction of temporal redundancy. Specifically, MPEG uses bidirec-
tional motion compensation.

Block-based Motion Compensation

To exploit the temporal redundancy between adjacent video frames, differ-
ence coding compares pixels in the current frame with ones in the previous
frame so that only changed pixels are recorded. In this way, a fraction of
the number of pixel values will be recorded for the current frame. In prac-
tice, pixels values are slightly different even with no movement of objects.
This can be interpreted as lots of changes and result in less compression.
Thus, difference coding needs to ignore small changes in pixel values and it
is naturally lossy.

For more efficient compression, difference coding is done at the block
level. Block-based difference coding receives a sequence of blocks rather
than frames. For example, a 160 x 120 image (19200 pixels) can be divided
into 300 8x8 blocks. If a block in the current frame is similar to the one in
the same location of the previous frame, the algorithm skips it or stores only
the difference. If they are different, a whole block of pixels is updated at
once. Limitations of difference coding are obvious. It is useless where there
is a lot of motion (few pixels unchanged). What if objects in the frame move
fast? What if a camera itself is moving?

Motion compensation assumes that the current frame can be modelled as

Section 1.3. Data Compression 17

a translation of the previous frame. As in block-based difference coding, the
current frame is divided into uniform non-overlapping blocks. Each block in
the current frame to be encoded is compared to areas of similar size from
the preceding frame in order to find an area that is similar, i.e., the best
matching block. The relative difference in locations is known as the motion
vector. The matching process can be based on prediction or interpolation.
Because fewer bits are required to code a motion vector than to code an
actual block, compression is achieved. Motion compensation is the basis of
most video compression algorithms.

For further and better compression, bidirectional motion compensation
can be used. Areas just uncovered in the current frame are not predictable
from the past, but they can be predicted from the future. Thus, bidirectional
motion compensation searches in both past and future frames to find the best
matching block. Moreover, the effect of noise and errors can be reduced by
averaging between previous and future frames. Bidirectional interpolation
also provides a high degree of compression. However, it requires that frames
be encoded and transmitted in a different order from which they will be
displayed. In reality, because exact matching is not possible, it is a lossy
compression.

Group of Pictures

MPEG defines a set of pictures to form a group of pictures (GOP) consisting
of the following types (Figure 1.7):

e [frame: Intra-coded picture
e P frame: Unidirectionally predicted picture
e B frame: Bidirectionally predicted picture

I-frames are encoded using intra-frame compression that is similar to JPEG.
Thus, they can be decoded without other frames. I-frames are used as access
points for random access. P-frames are predicted frames with reference to a
previous I or P frame. B-frames are bidirectional frames encoded using the
previous and the next I/P frames.

MPEG Standards

MPEG-1 (ISO/IEC 11172) is a standard for storing and playing video on a
single computer at low bit-rates up to 1.5 Mb/s. MPEG-2 (ISO/IEC 13818)
is a standard for high quality video such as digital TV (HDTV and DVD).
MPEG-2 builds upon MPEG-1 standard and supports both field prediction

18 Fundamentals of Streaming Media Systems Chapter 1

Forward Prediction

L

N N N

Bidirectional Prediction

Figure 1.7. A group of pictures in MPEG.

and frame prediction (interlaced video format). While MPEG-2 aims at high
quality video, MPEG-4 standard (ISO/IEC 14496) supports low bit-rate en-
coding of audio and video, user interactivity, and the special requirements
for next generation broadcast services. MPEG-7 standard (ISO/IEC 15938)
provides a set of standardized tools to describe multimedia content: meta-
data elements and their structure and relationships, that are defined by the
standard in the form of Descriptors and Description Schemes. Officially,
MPEG-7 is called Multimedia Content Description Interface [129]. MPEG-
21 standard (ISO/IEC 21000) is being developed to define a multimedia
framework in order to enable transparent and augmented use of multime-
dia resources across a wide range of networks and devices used by different
communities.

Hierarchical Coding

Hierarchical coding in MPEG encodes images in a manner that facilitates ac-
cess to images at different quality levels or resolutions. This makes the pro-
gressive transmission possible: Partial image information is transmitted in
stages, and at each stage, the reconstructed image is progressively improved.
Hierarchical coding is motivated by the need for transmitting images over
low-bandwidth channels. Progressive transmission can be stopped either if
an intermediate version is of satisfactory quality or the image is found to
be of no interest. Hierarchical coding is also very useful in multi-use envi-
ronments where applications need to support a number of display devices
with different resolutions. It could optimize utilization of storage server and

Section 1.4. Delivery of Streaming Media Over Internet 19

network resources.

MPEG Issues

The following issues are commonly considered in the design of streaming
applications using MPEG:

e Avoiding propagation of errors. Due to the dependency among suc-
cessive frames, errors such as missing frames or packets transfer over
multiple frames. We can avoid this problem by sending an I-frame
every once in a while (e.g., by setting a reasonable group of pictures).

e Bit-rate control. In general, complicated images result in a less com-
pression and a higher bit-rate than simple images. To regulate the out-
put bit-rate, a simple feedback loop based on buffer fullness is used. If
the buffer is close to full, MPEG increases the quantization scale factor
to reduce the size of data.

e Constant Bit Rate (CBR) vs. Variable Bit Rate (VBR). MPEG streams
can be encoded either as constant bit rate or as variable bit rate. CBR
approach is more appropriate for video broadcasting through fixed
bandwidth channels while VBR supports fixed quality of images such
as DVD better than CBR.

1.4 Delivery of Streaming Media Over Internet

Due to its ubiquitous existence, the Internet has become the platform of
most networking activities including SM applications, where users require
the integration of multimedia services. However, as a shared datagram net-
work, the Internet is not naturally suitable for real-time traffic, such as SM.
Dedicated links are not practical in many ways for transmitting SM data
over the Internet. Moreover, because of the store-and-forwarding in routers
and internetworking devices, Internet Protocol (IP) has some fundamental
problems in transmitting real-time data. Thus, delivery of SM over the In-
ternet requires special installation and new software development so that
packets experience as little delay as possible. ATM is promising in transmit-
ting real-time data because it supports high bandwidth connection-oriented
transmission and various quality of service (QoS) for different applications.
However, it is expensive and not widely available at user sites.

In general, the following issues must be resolved to stream multimedia
data over the Internet.

20 Fundamentals of Streaming Media Systems Chapter 1

c
2
& [mrsp | [mRsw | [RCP | [RTP |
g ‘ *
=< v v v \ \

| TCP || UDP |

v v v

§ | IPv4, IPv6 |
(%]
= y \ Y v

| PPP | [AAL34 | | AALS | PPP

v v v

Sonet | ATM | | Ethernet | V.34

Figure 1.8. Network protocols for SM over the Internet.

e High Bandwidth
The underlying hardware has to provide enough bandwidth to handle
large size of multimedia data.

e Multicast
Applications need to take into account multicast in order to reduce the
traffic.

e Guaranteed Bandwidth
There should be some mechanisms for real-time applications to reserve
resources along the transmission path in order to guarantee QoS.

e Out of Order Delivery
Applications need to take care of the timing issues so that audio and
video data can be played back continuously with correct timing and
synchronization. Applications also need to define standard operations
for applications to manage the delivery and present the multimedia
data.

This section explains several network protocols needed to support QoS
over the Internet for many SM applications. Figure 1.8 shows their relations
with other well-known protocols.

1.4.1 RTP

Media transport in many streaming applications is mainly implemented
with RTP (Real-time Transport Protocol, RFC 1889) [148], which is an

Section 1.4. Delivery of Streaming Media Over Internet 21

IP-based transport protocol for audio and video conferences and other multi-
participant real-time applications. It is a lightweight protocol without error
correction or flow control functionality. Thus, it guarantees neither QoS nor
resource reservation along the network path. RTP is also designed to work
in conjunction with the auxiliary control protocol, RT'CP, to get feedback
on quality of data transmission and information about participants in the
ongoing session. RTP is primarily designed for multicast of real-time data,
but it can be also used in unicast. It can be used for one-way transport such
as video-on-demand as well as interactive services such as Internet telephony.

Multimedia applications require appropriate timing in data transmission
and playing back. To support real-time SM data transmission, RTP provides
timestamping, sequence numbering, and other mechanisms. Through these
mechanisms, RTP provides end-to-end transport for real-time data over the
datagram network.

o Timestamping is the most important information for real-time appli-
cations. The sender sets the timestamp when the packet was sampled.
The receiver uses the timestamp to reconstruct the original timing. It
can be also used to synchronize different streams with timing proper-
ties, such as audio and video data in MPEG. However, RTP itself is
not responsible for the synchronization. This has to be done at the
application level.

e Sequence numbers are used to determine the correct order because UDP
does not deliver packets in timely order. It is also used for packet loss
detection. Notice that in some video formats, when a video frame is
split into several RTP packets, all of them can have the same times-
tamp. So timestamp alone is not enough to put the packets in order.

e The payload type identifier specifies the payload format as well as the
encoding/compression schemes. Using this identifier, receiving appli-
cation knows how to interpret and play out the payload data. Exam-
ple specifications include PCM, MPEG1/MPEG?2 audio and video, et
al. More payload types can be added by providing a profile and pay-
load format specification. At any given time of transmission, an RTP
sender can only send one type of payload, although the payload type
may change during transmission, for example, to adjust to network
congestion.

e Source identification allows the receiving application to know where
the data is coming from. For example, in an audio conference, from
the source identifier a user could tell who is talking.

22 Fundamentals of Streaming Media Systems Chapter 1

RTP is typically run on top of UDP. RTP is primarily designed for multicast,
the connection-oriented TCP does not scale well and therefore is not suitable.
For real-time data, reliability is not as important as timely delivery. Even
more, reliable transmission provided by retransmission as in TCP is not
desirable. RTP and RTCP packets are usually transmitted using UDP /TP
service.

1.4.2 RTCP

RTCP (RTP Control Protocol) is the control protocol designed to work in
conjunction with RTP. In an RTP session, participants periodically send
RTCP packets to convey feedback on quality of data delivery and information
of membership:

e RR (receiver report): Receiver reports reception quality feedback about
data delivery, including the highest packet number received, the num-
ber of packets lost, inter-arrival jitter, and timestamps to calculate the
round-trip delay between the sender and the receiver.

e SR (sender report): Sender reports a sender information section, pro-
viding information on inter-media synchronization, cumulative packet
counters, and number of bytes sent.

e SDES (source description items): Information to describe the sources.

e APP (application specific functions): It is now intended for experimen-
tal use as new applications and new features are developed.

Using the above messages, RTCP provides the following services to con-
trol data transmission with RTP:

e QoS monitoring and congestion control. RTCP provides feedback to an
application about the quality of data distribution. Sender can adjust its
transmission based on the receiver report feedback. Receivers can know
whether a congestion is local, regional or global. Network managers
can evaluate the network performance for multicast distribution.

e Source identification. RTCP SDES (source description) packets con-
tain textual information called canonical names as globally unique iden-
tifiers of the session participants. They may include a user’s name,
telephone number, e-mail address and other information.

e Inter-media synchronization. RTCP sender reports contain an indica-
tion of real time and the corresponding RTP timestamp. This can be
used in inter-media synchronization like lip synchronization in video.

Section 1.4. Delivery of Streaming Media Over Internet 23

e Control information scaling. RTCP packets are sent periodically among
participants. In order to scale up to large multicast groups, RT'CP has
to prevent the control traffic from overwhelming network resources.
RTP limits the control traffic to at most 5% of the overall session traf-
fic. This is enforced by adjusting the RTCP generating rate according
to the number of participants.

1.4.3 RTSP

RTSP (Real Time Streaming Protocol, RFC 2326) is a client-server multi-
media presentation protocol to enable controlled delivery of streamed multi-
media data over IP network. RTSP provides methods to realize commands
(play, fast-forward, fast-rewind, pause, stop) similar to the functionality pro-
vided by CD players or VCRs. RTSP is an application-level protocol designed
to work with lower-level protocols like RTP and RSVP to provide a complete
streaming service over the Internet. It can act as a network remote control
for multimedia servers and can run over TCP or UDP. RTSP can control
either a single or several time-synchronized streams of continuous media.
RTSP provides the following operations:

e Retrieval of media from media server. The client can request a pre-
sentation description, and ask the server to setup a session to send the
requested data.

e Invitation of a media server to a conference. The media server can be
invited to the conference to play back media or to record a presentation.

e Adding media to an existing presentation. The server and the client
can notify each other about any additional media becoming available.

In RTSP, each presentation and media stream is identified by an RTSP
URL. The overall presentation and the properties of the media are defined
in a presentation description file, which may include the encoding, language,
RTSP URLs, destination address, port, and other parameters. The presen-
tation description file can be obtained by the client using HT'TP, e-mail or
other means. RTSP aims to provide the same services for streamed audio
and video just as HT'TP does for text and graphics. But RTSP differs from
HTTP in several aspects. First, while HT'TP is a stateless protocol, an RTSP
server has to maintain “session states” in order to correlate RT'SP requests
with a stream. Second, HT'TP is basically an asymmetric protocol where the
client issues requests and the server responds, but in RTSP both the media
server and the client can issue requests. For example, the server can issue a
request to set playback parameters of a stream.

24 Fundamentals of Streaming Media Systems Chapter 1

1.44 RSVP

RSVP (Resource reSerVation Protocol) is the network control protocol that
allows the data receiver to request a special end-to-end quality of service
for its data flows. Thus, real-time applications can use RSVP to reserve
necessary resources at routers along the transmission paths so that the re-
quested bandwidth can be available when the transmission actually takes
place. RSVP is a main component of the future Integrated Services Internet
which can provide both best-effort and real-time service.

RSVP is used to set up reservations for network resources. When an
application in a host (the data stream receiver) requests a specific quality
of service (QoS) for its data stream, it uses RSVP to deliver its request
to routers along the data stream paths. RSVP is responsible for the ne-
gotiation of connection parameters with these routers. If the reservation is
set up, RSVP is also responsible for maintaining router and host states to
provide the requested service. Each node capable of resource reservation
has several local procedures for reservation setup and enforcement. Policy
control determines whether the user has administrative permission to make
the reservation (authentication, access control and accounting for reserva-
tion). Admission control keeps track of the system resources and determines
whether the node has sufficient resources to supply the requested QoS.

RSVP is also designed to utilize the robustness of current Internet rout-
ing algorithms. RSVP does not perform its own routing; instead it uses
underlying routing protocols to determine where it should carry reservation
requests. As routing changes paths to adapt to topology changes, RSVP
adapts its reservation to the new paths wherever reservations are in place.

1.5 OQutline of the Book

The book is organized into the following chapters:

Chapter 2 concentrates on single disk platform SM server design, by
presenting different techniques in support of a hiccup-free display. Even
though a single disk server is not practical in many applications, however, it
presents the fundamental concepts and techniques in designing SM servers.

Chapter 3 extends the discussion to multiple disk platform SM server
design. It introduces possible design approaches: 1) cycle-based scheduling
with round-robin data placement approach and 2) deadline-driven scheduling
with unconstrained data placement approach. In addition, it presents a
number of optimization techniques and an online reconfiguration process.

Chapter 4 deals exclusively with deadline-driven scheduling and uncon-

Section 1.5. OQutline of the Book 25

strained media placement approach. It quantifies the hiccup probability of
this approach and presents techniques to reduce this probability.

Chapter 5 extends the discussion to a heterogenous disk platform. It
presents a number of techniques that take advantage of the rapid develop-
ment in disk storage devices.

Chapter 6 deals with fault-tolerance issues in SM servers. It presents
techniques for homogenous disk platforms, then it extends the discussion to
a heterogenous disk platform.

Chapter 7 is devoted to hierarchical storage system design for SM servers.
It presents a pipelining technique to ensure the continuous display from tape
jukeboxes and data placement techniques to improve the access time to tape
resident SM objects.

In Chapter 8 and Chapter 9, the concept of distributed SM servers are
introduced. Chapter 8 presents RedHi, a distributed SM server and its
network components. Chapter 9 presents a super-streaming mechanism that
takes advantage of a distributed system.

Chapter 10 presents a case study on the design of a second generation SM
server, namely Yima, while Appendix A provides instructions on installing
a personal version of Yima.

