PUBLIC
LEASKE

PRESENTATION
TIER DESIGN
CONSIDERATIONS
AND BAD
PRACTICES

r Topics in This Chapter
* Presentation Tier Design Considerations
* Presentation Tier Bad Practices

4

i

Prentice Hall PTR
This is a sample chapter of Core J2EE Patterns
ISBN: 0-13-064884-1

For the full text, visit http://www.phptr.com

©2001 Pearson Education. All Rights Reserved.

.

é\b ch03.fm Page 35 Friday, June 1, 2001 1:34 PM

Chapter

Presentation Tier Design Considerations

When developers apply the presentation patterns that appear in the
catalog in this book, there will be adjunct design issues to consider.
These issues relate to designing with patterns at a variety of levels,
and they may affect numerous aspects of a system, including secu-
rity, data integrity, manageability, and scalability. We discuss these
issues in this chapter.

Although many of these design issues could be captured in pattern
form, we chose not to do so because they focus on issues at a lower
level of abstraction than the presentation patterns in the catalog.
Rather than documenting each issue as a pattern, we have chosen to
document them more informally: We simply describe each issue as
one that you should consider when implementing systems based on
the pattern catalog.

Session Management

The term user session describes a conversation that spans multiple
requests between a client and a server. We rely on the concept of user
session in the discussion in the following sections.

35

%

ﬁ

4

7

* ‘ ch03.fm Page 36 Friday, June 1, 2001 1:34 PM ‘

36 Chapter 3 Presentation Tier Design Considerations and Bad Practices

Session State on Client

Saving session state on the client involves serializing and embedding
the session state within the view markup HTML page that is
returned to the client.

There are benefits to persisting session state on the client:

e It is relatively easy to implement.
¢ It works well when saving minimal amounts of state.

Additionally, this strategy virtually eliminates the problem of rep-
licating state across servers in those situations that implement load
balancing across physical machines.

There are two common strategies for saving session state on the cli-
ent—HTML hidden fields and HTTP cookies—and we describe these
strategies below. A third strategy entails embedding the session state
directly into the URIs referenced in each page (for example, <form
action=someServlet?varl=x&var2=y method=GET>). Although
this third strategy is less common, it shares many of the limitations of
the following two methods.

HTML Hidden Fields

Although it is relatively easy to implement this strategy, there are
numerous drawbacks to using HTML hidden fields to save session
state on the client. These drawbacks are especially apparent when
saving large amounts of state. Saving large amounts of state nega-
tively affects performance. Since all view markup now embeds or
contains the state, it must traverse the network with each request
and response.

Additionally, when you utilize hidden fields to save session state,
the persisted state is limited to string values, so any object refer-
ences must be “stringified”. It is also exposed in clear text in the gen-
erated HTML source, unless specifically encrypted.

HTTP Cookies

Similar to the hidden fields strategy, it is relatively easy to imple-
ment the HTTP cookies strategy. This strategy unfortunately shares
many of the same drawbacks as well. In particular, saving large
amounts of state causes performance to suffer, because all the ses-
sion state must traverse the network for each request and response.

We also run into size and type limitations when saving session
state on the client. There are limitations on the size of cookie head-
ers, and this limits the amount of data that can be persisted. More-

%%@%

2

4~ ¢

I é
* ‘ ch03.fm Page 37 Friday, June 1, 2001 1:34 PM
Presentation Tier Design Considerations 37

over, as with hidden fields, when you use cookies to save session
state, the persisted state is limited to stringified values.

Security Concerns of Client-Side Session State

When you save session state on the client, security issues are intro-
duced that you must consider. If you do not want your data exposed
to the client, then you need to employ some method of encryption to
secure the data.

Although saving session state on the client is relatively easy to
implement initially, it has numerous drawbacks that take time and
thought to overcome. For projects that deal with large amounts of
data, as is typical with enterprise systems, these drawbacks far out-
weigh the benefits.

Session State in the Presentation Tier

When session state is maintained on the server, it is retrieved using
a session ID and typically persists until one of the following occurs:

e A predefined session timeout is exceeded.

¢ The session is manually invalidated.
e The state is removed from the session.

Note that after a server shutdown, some in-memory session man-
agement mechanisms may not be recoverable.

It is clearly preferable for applications with large amounts of ses-
sion state to save their session state on the server. When state is
saved on the server, you are not constrained by the size or type limi-
tations of client-side session management. Additionally, you avoid
raising the security issues associated with exposing session state to
the client, and you do not have the performance impact of passing
the session state across the network on each request.

You also benefit from the flexibility offered by this strategy. By
persisting your session state on the server, you have the flexibility to
trade off simplicity versus complexity and to address scalability and
performance.

If you save session state on the server, you must decide how to
make this state available to each server from which you run the
application. This issue is one that requires you to deal with the repli-
cation of session state among clustered software instances across
load-balanced hardware, and it is a multidimensional problem. How-
ever, numerous application servers now provide a variety of

%%@%

2

4~ ¢

* ‘ ch03.fm Page 38 Friday, June 1, 2001 1:34 PM

*

38

Chapter 3 Presentation Tier Design Considerations and Bad Practices

out-of-the-box solutions. There are solutions available that are above
the application server level. One such solution is to maintain a
“sticky” user experience, where you use traffic management soft-
ware, such as that available from Resonate [Resonate], to route users
to the same server to handle each request in their session. This is
also referred to as server affinity.

Another alternative is to store session state in either the business
tier or the resource tier. Enterprise JavaBeans components may be
used to hold session state in the business tier, and a relational data-
base may be used in the resource tier. For more information on the
business-tier option, please refer to “Using Session Beans” on
page 55.

Controlling Client Access

There are numerous reasons to restrict or control client access to cer-
tain application resources. In this section, we examine two of these
scenarios.

One reason to restrict or control client access is to guard a view, or
portions of a view, from direct access by a client. This issue may
occur, for example, when only registered or logged-in users should be
allowed access to a particular view, or if access to portions of a view
should be restricted to users based on role.

After describing this issue, we discuss a secondary scenario relat-
ing to controlling the flow of a user through the application. The lat-
ter discussion points out concerns relating to duplicate form
submissions, since multiple submissions could result in unwanted
duplicate transactions.

Guarding a View

In some cases, a resource is restricted in its entirety from being
accessed by certain users. There are several strategies that accom-
plish this goal. One is including application logic that executes when
the controller or view is processed, disallowing access. A second
strategy is to configure the runtime system to allow access to certain
resources only via an internal invocation from another application
resource. In this case, access to these resources must be routed
through another presentation-tier application resource, such as a
servlet controller. Access to these restricted resources is not avail-
able via a direct browser invocation.

One common way of dealing with this issue is to use a controller as
a delegation point for this type of access control. Another common

%

4

i

*

%%@%

2

I Gé
* ‘ ch03.fm Page 39 Friday, June 1, 2001 1:34 PM
Presentation Tier Design Considerations 39

variation involves embedding a guard directly within a view. We
cover controller-based resource protection in “Presentation Tier
Refactorings” on page 73 and in the patterns catalog, so we will focus
here on view-based control strategies. We describe these strategies
first, before considering the alternative strategy of controlling access
through configuration.

Embedding Guard Within View

There are two common variations for embedding a guard within a
view’s processing logic. One variation blocks access to an entire
resource, while the other blocks access to portions of that resource.

Including an All-or-Nothing Guard per View

In some cases, the logic embedded within the view processing code
allows or denies access on an all-or-nothing basis. In other words,
this logic prevents a particular user from accessing a particular view
in its entirety. Typically, this type of guard is better encapsulated
within a centralized controller, so that the logic is not sprinkled
throughout the code. This strategy is reasonable to use when only a
small fraction of pages need a guard. Typically, this scenario occurs
when a nontechnical individual needs to rotate a small number of
static pages onto a site. If the client must still be logged into the site
to view these pages, then add a custom tag helper to the top of each
page to complete the access check, as shown in Example 3.1.

Example 3.1 Including an All-or-Nothing Guard per View

<%@ taglib uri="/WEB-INF/corej2eetaglibrary.tld"
prefix="corePatterns" %>

<corePatterns:guard/>
<HTML>

</HTML>

Including a Guard for Portions of a View

In other cases, the logic embedded within the view processing code
simply denies access to portions of a view. This secondary strategy
can be used in combination with the previously mentioned
all-or-nothing strategy. To clarify this discussion, let’s use an analogy
of controlling access to a room in a building. The all-or-nothing guard

%%@%

2

4~ ¢

* ‘ ch03.fm Page 40 Friday, June 1, 2001 1:34 PM

*

40

Chapter 3 Presentation Tier Design Considerations and Bad Practices

tells users whether they can walk into the room or not, while the sec-
ondary guard logic tells users what they are allowed to see once they
are in the room. Following are some examples of why you might want
to utilize this strategy.

Portions of View Not Displayed Based on User Role

A portion of the view might not be displayed based on the user’s role.
For example, when viewing her organizational information, a man-
ager has access to a subview dealing with administering review
materials for her employees. An employee might only see his own
organizational information, and be restricted from the portions of
the user interface that allow access to any review-related informa-
tion, as shown in Example 3.2.

Example 3.2 Portions of View Not Displayed Based on User Role

<%@ taglib uri="/WEB-INF/corej2eetaglibrary.tld"
prefix="corePatterns" %>

<HTML>

<corePatterns:guard role="manager">
This should be seen only by managers!
<corePatterns:guard/>

</HTML>

Portions of View Not Displayed Based on System State or
Error Conditions

Depending on the system environment, the display layout may be
modified. For example, if a user interface for administering hard-
ware CPUs is used with a single-CPU hardware device, portions of
the display that relate solely to multiple CPU devices may not be
shown.

Guarding by Configuration

To restrict the client from directly accessing particular views, you
can configure the presentation engine to allow access to these
resources only via other internal resources, such as a servlet control-

%

4

i

*

%%@%

2

I é
* ‘ ch03.fm Page 41 Friday, June 1, 2001 1:34 PM
Presentation Tier Design Considerations 41

ler using a RequestDispatcher. Additionally, you can leverage the
security mechanisms that are built into the Web container, based on
the servlet specification, version 2.2 and later. Security constraints
are defined in the deployment descriptor, called web.xm1.

The basic and form-based authentication methods, also described
in the Servlet specification, rely on this security information. Rather
than repeat the specification here, we refer you to the current speci-
fication for details on these methods. (See htip://java.sun.com/
products/ servlet/index.html.)

So that you understand what to expect when adding declarative
security constraints to your environment, we present a brief discus-
sion of this topic and how it relates to all-or-nothing guarding by con-
figuration. Finally, we describe one simple and generic alternative
for all-or-nothing protection of a resource.

Resource Guards via Standard Security Constraints

Applications may be configured with a security constraint, and this
declarative security may be used programmatically to control access
based on user roles. Resources can be made available to certain roles
of users and disallowed to others. Moreover, as described in “Embed-
ding Guard Within View” on page 39, portions of a view can be
restricted based on these user roles as well. If there are certain
resources that should be disallowed in their entirety for all direct
browser requests, as in the all-or-nothing scenario described in the
previous section, then those resources can be constrained to a secu-
rity role that is not assigned to any users. Resources configured in
this manner remain inaccessible to all direct browser requests, as
long as the security role remains unassigned. See Example 3.3 for an
excerpt of a web.xml configuration file that defines a security role to
restrict direct browser access.

The role name is “sensitive” and the restricted resources are
named sensitivel.jsp, sensitive2.jsp, and sensitive3.jsp.
Unless a user or group is assigned the “sensitive” role, then clients
will not be able to directly access these Java Server Pages (JSPs). At
the same time, since internally dispatched requests are not restricted
by these security constraints, a request that is handled initially by a
servlet controller and then forwarded to one of these three resources
will indeed receive access to these JSPs.

Finally, note that there is some inconsistency in the implementa-
tion of this aspect of the Servlet specification version 2.2 across ven-

%%@%

2

4~ ¢

* ch03.fm Page 42 Friday, June 1, 2001 1:34 PM

42 Chapter 3 Presentation Tier Design Considerations and Bad Practices

dor products. Servers supporting Servlet 2.3 should all be consistent
on this issue.

Example 3.3 Unassigned Security Role Provides All-or-Nothing Control

<security-constraint>
<web-resource-collection>
<web-resource-name>SensitiveResources
</web-resource-name>
<description>A Collection of Sensitive Resources
</description>
<url-pattern>/trade/jsp/internalaccess/
sensitivel.jsp</url-pattern>
<url-pattern>/trade/jsp/internalaccess/
sensitive2.jsp</url-pattern>
<url-pattern>/trade/jsp/internalaccess/
sensitive3.jsp</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>sensitive</role-name>
</auth-constraint>
</security-constraint>

Resource Guards via Simple and Generic Configuration

There is a simple and generic way to restrict a client from directly
accessing a certain resource, such as a JSP. This method requires
no configuration file modifications, such as those shown in
Example 3.3. This method simply involves placing the resource
under the /WEB-INF/ directory of the Web application. For exam-
ple, to block direct browser access to a view called info. jsp in the
securityissues Web application, we could place the JSP source
file in the following subdirectory:

/securityissues/WEB-INF/internalaccessonly/info.jsp.

Direct public access is disallowed to the /WEB-INF/ directory, its
subdirectories, and consequently to info.jsp. On the other hand, a
controller servlet can still forward to this resource, if desired. This is
an all-or-nothing method of control, since resources configured in
this manner are disallowed in their entirety to direct browser access.

For an example, please refer to “Hide Resource From a Client” on
page 100.

4~ ~3

I é
* ‘ ch03.fm Page 43 Friday, June 1, 2001 1:34 PM
Presentation Tier Design Considerations 43

Duplicate Form Submissions

Users working in a browser client environment may use the Back
button and inadvertently resubmit the same form they had previ-
ously submitted, possibly invoking a duplicate transaction. Simi-
larly, a user might click the Stop button on the browser before
receiving a confirmation page, and subsequently resubmit the same
form. In most cases, we want to trap and disallow these duplicate
submissions, and using a controlling servlet provides a control point
for addressing this problem.

Synchronizer (or Déja vu) Token

This strategy addresses the problem of duplicate form submissions.
A synchronizer token is set in a user’s session and included with
each form returned to the client. When that form is submitted, the
synchronizer token in the form is compared to the synchronizer
token in the session. The tokens should match the first time the form
is submitted. If the tokens do not match, then the form submission
may be disallowed and an error returned to the user. Token mis-
match may occur when the user submits a form, then clicks the Back
button in the browser and attempts to resubmit the same form.

On the other hand, if the two token values match, then we are con-
fident that the flow of control is exactly as expected. At this point,
the token value in the session is modified to a new value and the
form submission is accepted.

You may also use this strategy to control direct browser access to
certain pages, as described in the sections on resource guards. For
example, assume a user bookmarks page A of an application, where
page A should only be accessed from page B and C. When the user
selects page A via the bookmark, the page is accessed out of order
and the synchronizer token will be in an unsynchronized state, or it
may not exist at all. Either way, the access can be disallowed if
desired.

Please refer to “Introduce Synchronizer Token in the “Presenta-
tion Tier Refactorings section for an example of this strategy.

Validation

It is often desirable to perform validation both on the client and on
the server. Although client validation processing is typically less
sophisticated than server validation, it provides high-level checks,
such as whether a form field is empty. Server-side validation is often
much more comprehensive. While both types of processing are

%%@%

2

- 4~ ¢

* ‘ ch03.fm Page 44 Friday, June 1, 2001 1:34 PM

44

Chapter 3 Presentation Tier Design Considerations and Bad Practices

appropriate in an application, it is not recommended to include only
client-side validation. One major reason not to rely solely on cli-
ent-side validation is that client-side scripting languages are
user-configurable and thus may be disabled at any time.

Detailed discussion of validation strategies is outside the scope of
this book. At the same time, we want to mention these issues as ones
to consider while designing your systems, and hope you will refer to
the existing literature in order to investigate further.

Validation on Client

Input validation is performed on the client. Typically, this involves
embedding scripting code, such as JavaScript, within the client view.
As stated, client-side validation is a fine complement for server-side
validation, but should not be used alone.

Validation on Server

Input validation is performed on the server. There are several typical
strategies for doing server validation. These strategies are form-cen-
tric validation and validation based on abstract types.

Form-Centric Validation

The form-centric validation strategy forces an application to include
lots of methods that validate various pieces of state for each form
submitted. Typically, these methods overlap with respect to the logic
they include, such that reuse and modularity suffer. Since there is a
validation method that is specific to each Web form that is posted,
there is no central code to handle required fields or numeric-only
fields. In this case, although there may be a field on multiple differ-
ent forms that is considered a required field, each is handled sepa-
rately and redundantly in numerous places in the application. This
strategy is relatively easy to implement and is effective, but it leads
to duplication of code as an application grows.

To provide a more flexible, reusable, and maintainable solution,
the model data may be considered at a different level of abstraction.
This approach is considered in the following alternative strategy,
“Validation Based on Abstract Types. An example of form-centric
validation is shown in the listing in Example 3.4.

%

4

i

*

%%@%

2

* ch03.fm Page 45 Friday, June 1, 2001 1:34 PM

Presentation Tier Design Considerations 45

Example 3.4 Form-Centric Validation

/**If the first name or last name fields were left
blank, then an error will be returned to client.
With this strategy, these checks for the existence
of a required field are duplicated. If this valida-
tion logic were abstracted into a separate compo-
nent, it could be reused across forms (see
Validation Based on Abstract Types strategy) **/

public Vector validate()

{

Vector errorCollection = new Vector () ;

if ((firstname == null) ||
(firstname.trim.length() < 1))
errorCollection.addElement ("firstname required") ;
if ((lastname == null) || (lastname.trim.length/()
< 1))
errorCollection.addElement ("lastname required") ;
return errorCollection;

}

Validation Based on Abstract Types

This strategy could be utilized on either the client or server, but is
preferred on the server in a browser-based or thin-client environ-
ment.

The typing and constraints information is abstracted out of the
model state and into a generic framework. This separates the valida-
tion of the model from the application logic in which the model is
being used, thus reducing their coupling.

Model validation is performed by comparing the metadata and
constraints to the model state. The metadata and constraints about
the model are typically accessible from some sort of simple data
store, such as a properties file. A benefit of this approach is that the
system becomes more generic, because it factors the state typing and
constraint information out of the application logic.

An example is to have a component or subsystem that encapsu-
lates validation logic, such as deciding whether a string is empty,
whether a certain number is within a valid range, whether a string
is formatted in a particular way, and so on. When various disparate
application components want to validate different aspects of a model,
each component does not write its own validation code. Rather, the
centralized validation mechanism is used. The centralized validation

4~ ~3

* ‘ ch03.fm Page 46 Friday, June 1, 2001 1:34 PM ‘

46 Chapter 3 Presentation Tier Design Considerations and Bad Practices

mechanism will typically be configured either programmatically,
through some sort of factory, or declaratively, using configuration
files.

Thus, the validation mechanism is more generic, focusing on the
model state and its requirements, independent of the other parts of
the application. A drawback to using this strategy is the potential
reduction in efficiency and performance. Also, more generic solu-
tions, although often powerful, are sometimes less easily understood
and maintained.

An example scenario follows. An XML-based configuration file
describes a variety of validations, such as “required field,”
“all-numeric field,” and so on. Additionally, handler classes can be
designated for each of these validations. Finally, a mapping links
HTML form values to a specific type of validation. The code for vali-
dating a particular form field simply becomes something similar to
the code snippet shown in Example 3.5.

Example 3.5 Validation Based on Abstract Types

//firstNameString="Dan"

//formFieldName="forml.firstname"

Validator.getInstance () .validate (firstNameString,
formFieldName) ;

Helper Properties—Integrity and Consistency

JavaBean helper classes are typically used to hold intermediate
state when it is passed in with a client request. JSP runtime engines
provide a mechanism for automatically copying parameter values
from a servlet request object into properties of these JavaBean help-
ers. The JSP syntax is as follows:

<jsp:setProperty name="helper" property="*"/>

This tells the JSP engine to copy all matching parameter values
into the corresponding properties in a JavaBean called “helper,”
shown in Example 3.6:

%%@%

2

* ‘ ch03.fm Page 47 Friday, June 1, 2001 1:34 PM

Presentation Tier Design Considerations 47

Example 3.6 Helper Properties - A Simple JavaBean Helper

public class Helper

{
private String first;
private String last;

public String getFirst ()
{

return first;

}

public void setFirst(String aString)
{

first=aString;

}

public String getLast()
{

return last;

}

public void setlLast (String aString)
{
last=aString;

}
}

How is a match determined, though? If a request parameter exists
with the same name and same type as the helper bean property, then
it is considered a match. Practically, then, each parameter is com-
pared to each bean property name and the type of the bean property
setter method.

Although this mechanism is simple, it can produce some confusing
and unwanted side effects. First of all, it is important to note what
happens when a request parameter has an empty value. Many devel-
opers assume that a request parameter with an empty string value
should, if matched to a bean property, cause that bean property to
take on the value of an empty string, or null. The spec-compliant
behavior is actually to make no changes to the matching bean prop-
erty in this case, though. Furthermore, since JavaBean helper
instances are typically reused across requests, such confusion can
lead to data values being inconsistent and incorrect. Figure 3.1
shows the sort of problem that this might cause.

.
4~ ~3

* ‘ ch03.fm Page 48 Friday, June 1, 2001 1:34 PM

*

48

Chapter 3 Presentation Tier Design Considerations and Bad Practices

Request 1 Helper bean

first

last

Request 2 Helper bean

first

last

Figure 3.1 Helper properties.

Request 1 includes values for the parameter named “first” and the
one named “last,” and each of the corresponding bean properties is
set. Request 2 includes a value only for the “last” parameter, causing
only that one property to be set in the bean. The value for the “first”
parameter is unchanged. It is not reset to an empty string, or null,
simply because there is no value in the request parameter. As you
can see in Figure 3.1, this may lead to inconsistencies if the bean val-
ues are not reset manually between requests.

Another related issue to consider when designing your application
is the behavior of HTML form interfaces when controls of the form
are not selected. For example, if a form has multiple checkboxes, it is
not unreasonable to expect that unchecking every checkbox would
result in clearing out these values on the server. In the case of the
request object created based on this interface, however, there would
simply not be a parameter included in this request object for any of
the checkbox values. Thus, no parameter values relating to these
checkboxes are sent to the server (see htip://www.w3.org for full
HTML specification).

Since there is no parameter passed to the server, the matching bean
property will remain unchanged when using the <jsp:setProperty>
action, as described. So, in this case, unless the developer manually
modifies these values, there is the potential for inconsistent and incor-
rect data values to exist in the application. As stated, a simple design
solution to this problem is to reset all state in the JavaBean between
requests.

%

4

i

*

2

* ‘ ch03.fm Page 49 Friday, June 1, 2001 1:34 PM

*

.

A

Presentation Tier Bad Practices 49

Presentation Tier Bad Practices

Bad practices are less than optimal solutions that conflict with many
of the patterns’ recommendations. When we documented the pat-
terns and best practices, we naturally discarded those practices that
were less than optimal.

In this part of the book, we highlight what we consider to be bad
practices in the presentation tier.

In each section, we briefly describe the bad practice and provide
numerous references to design issues, refactorings, and patterns
that provide further information and preferable alternatives. We do
not provide an in-depth discussion of each bad practice, but rather
present a brief synopsis as a starting point for further investigation.

The “Problem Summary” section provides a quick description of a
less than optimal situation, while the “Solution Reference” section
includes references to:

® Patterns that provide information on context and trade-offs;

Design considerations that provide related details;
Refactorings that describe the journey from the less than
optimal situation (bad practice) to a more optimal one, a best
practice, or pattern.

Consider this part of the book as a roadmap, using the references
to locate further detail and description in other parts of the book.

Control Code in Multiple Views

Problem Summary

Custom tag helpers may be included at the top of a JSP View to per-
form access control and other types of checks. If a large number of
views include similar helper references, maintaining this code
becomes difficult, since changes must be made in multiple places.

Solution Reference

Consolidate control code, introducing a controller and associated
Command helpers.

¢ See “Introduce a Controller” on page 74.

Refactoring e See “Localize Disparate Logic” on page 83.

%

i

*

%%@%

2

* ‘ ch03.fm Page 50 Friday, June 1, 2001 1:34 PM

50

Pattern

Pattern

Design

Chapter 3 Presentation Tier Design Considerations and Bad Practices

e See “Front Controller — “Command and Controller Strategy”
on page 179.
When there is a need to include similar control code in multiple
places, such as when only a portion of a JSP View is to be restricted
from a particular user, delegate the work to a reusable helper class.

e See “View Helper” on page 186
¢ See “Guarding a View” on page 38.

Exposing Presentation-Tier Data Structures to
Business Tier

Problem Summary

Presentation-tier data structures, such as HttpServletRequest,
should be confined to the presentation tier. Sharing these details
with the business tier, or any other tier, increases coupling between
these tiers, dramatically reducing the reusability of the available
services. If the method signature in the business service accepts a
parameter of type HttpServletRequest, then any other clients to this
service (even those outside of the Web space) must wrap their
request state in an HttpServletRequest object. Additionally, in this
case the business-tier services need to understand how to interact
with these presentation tier-specific data structures, increasing the
complexity of the business-tier code and increasing the coupling
between the tiers.

Solution Reference

Instead of sharing data structures specific to the presentation tier
with the business tier, copy the relevant state into more generic data
structures and share those. Alternatively, extract and share the rele-
vant state from the presentation tier-specific data structure as indi-
vidual parameters.

Refactoring e See “Hide Presentation Tier-Specific Details From the Busi-

ness Tier” on page 91.

4

i

*

%%@%

2

* ‘ ch03.fm Page 51 Friday, June 1, 2001 1:34 PM

*

.

A

Presentation Tier Bad Practices 51

Exposing Presentation-Tier Data Structures to Domain
Objects

Problem Summary

Sharing request handling data structures, such as HttpServletRe-
quest, with domain objects needlessly increases the coupling
between these two distinct aspects of the application. Domain objects
should be reusable components, and if their implementation relies
on protocol or tier-specific details, their potential for reuse is
reduced. Furthermore, maintaining and debugging tightly coupled
applications is more difficult.

Solution Reference

Instead of passing an HttpServletRequest object as a parameter,
copy the state from the request object into a more generic data struc-
ture and share this object with the domain object. Alternatively,
extract the relevant state from the HttpServletRequest object and
provide each piece of state as an individual parameter to the domain
object.

Refactoring ® See “Hide Presentation Tier-Specific Details From the Busi-

ness Tier” on page 91.

Allowing Duplicate Form Submissions

Problem Summary

One of the limitations of the browser-client environment is the lack
of control an application has over client navigation. A user might
submit an order form that results in a transaction that debits a
credit card account and initiates shipment of a product to a resi-
dence. If after receiving the confirmation page, the user clicks the
Back button, then the same form could be resubmitted.

Solution Reference

Refactoring

Refactoring
Design

To address these issues, monitor and control the request flow.

¢ See “Introduce Synchronizer Token” on page 77.

¢ See “Controlling Client Access” on page 38.
e See “Synchronizer (or Déja vu) Token” on page 43.

%

i

*

.

2

* ‘ ch03.fm Page 52 Friday, June 1, 2001 1:34 PM

52 Chapter 3 Presentation Tier Design Considerations and Bad Practices

Exposing Sensitive Resources to Direct Client Access

Problem Summary

Security is one of the most important issues in enterprise environ-
ments. If there is no need for a client to have direct access to certain
information, then this information must be protected. If specific con-
figuration files, property files, JSPs, and class files are not secured
appropriately, then clients may inadvertently or maliciously retrieve
sensitive information.

Solution Reference

Protect sensitive resources, disallowing direct client access

Refactoring e See “Hide Resource From a Client” on page 100.
Refactoring o See “Controlling Client Access” on page 38.

Assuming <jsp:setProperty> Will Reset Bean Properties

Problem Summary

While the expected behavior of the <jsp:setProperty> standard
tag is to copy request parameter values into JavaBean helper prop-
erties of the same name, its behavior when dealing with parameters
that have empty values is often confusing. For example, a parameter
with an empty value is ignored, although many developers incor-
rectly assume that the matching JavaBean property will be assigned
a null or empty string value.

Solution Reference

Take into account the less than intuitive nature of how properties
are set when using the <jsp:setProperty> tag, and initialize bean
properties before use.

Design e See “Helper Properties—Integrity and Consistency” on
page 46.

iy

i

*

%%@%

2

* ‘ ch03.fm Page 53 Friday, June 1, 2001 1:34 PM

Presentation Tier Bad Practices 53

Creating Fat Controllers

Problem Summary

Control code that is duplicated in multiple JSP views should, in
many cases, be refactored into a controller. If too much code is added
to a controller, though, it becomes too heavyweight and cumbersome
to maintain, test, and debug. For example, unit testing a servlet con-
troller, particularly a “fat controller,” is more complicated than unit
testing individual helper classes that are independent of the HTTP
protocol.

Solution Reference

Refactoring

Pattern

Refactoring
Pattern

A controller is typically the initial contact point for handling a
request, but it should also be a delegation point, working in coordi-
nation with other control classes. Command objects are used to
encapsulate control code to which the controller delegates. It is much
easier to unit test these JavaBean command objects, independent of
the servlet engine, than it is to test less modular code.

See “Introduce a Controller” on page 74.

¢ See “Front Controller—“Command and Controller Strategy” on
page 179.

See “Localize Disparate Logic” on page 83.

See “View Helper” on page 186.

i

*

2

