
1003

Chapter 29

Popular among fans of Java and C++, design patterns are not a topic often discussed
among PHP programmers. Yet, they are an important part of computer science. Fur-
thermore, they apply to all programming languages.

Design patterns have their root in the work of Christopher Alexander in the
context of designing buildings and cities. However, his work applies to any design
activity, and it soon inspired computer scientists. The first popular book about
software design patterns was Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
People commonly refer to them as the Gang of Four, or GoF.

29.1 Patterns Defined

Intuitively, we recognize patterns in our programming with almost every line of code.
Given an array, you have a favorite idiom for looping over it. Since the foreach state-
ment appeared in PHP, it’s been my favorite.

From a larger perspective, we encounter the familiar problem of where to place
functionality in PHP scripts. Most projects require dividing functionality into several
modules. A flat, informational site benefits well from a simple scheme using headers
and footers applied with include or require. Both examples have problems to be
solved and memorized solutions. The conditions define a problem that has a known
solution. Furthermore, after solving the problem a number of times, you gain an
appreciation for the side effects, good and bad, of the solution.

Core_PHP.book Page 1003 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1004

The formal definition of design patterns includes four parts: a name, a description
of the problem, a solution, and a set of consequences. The name gives us a
convenient way to refer to the pattern. The problem description defines a particular
set of conditions to which the pattern applies. The solution describes a best general
strategy for resolving the problem. Finally, the pattern explains any consequences of
applying the pattern.

Pattern solutions are not particularly fancy. They don’t require the use of obscure
features. They represent careful refinement over time, based on experience. They
tend to optimize for reusability rather than efficiency. Naturally, a solution optimized
for speed takes advantage of a particular situation and therefore is not well suited to
the general case. For example, if you need the sum of three numbers, you can easily
write them in a line of code. You would not use a general solution for the sum of
10,000 numbers, such as looping over an array.

Although patterns have their roots in building architecture, in the context of
computer science they are closely linked to object-oriented design. Object-oriented
programming aims to produce generalized software modules called objects. Design
patterns seek to produce generalized solutions to common problems. This avoids the
reinvention of the proverbial wheel.

Prior to PHP 5, PHP programmers found it difficult to implement design patterns
efficiently in PHP. Thanks to PHP 5’s revamped object model, design patterns are
now easy to implement and are becoming a key ingredient in development of
object-oriented PHP applications.

There are several advantages to using design patterns in your code. You don’t
need to think through the solution as long as you recognize that the problem matches
the one solved by the pattern. You don’t need to analyze the consequences of
applying the pattern. You don’t need to spend time optimizing the implementation.

Instead of having to come up with a solution, you only have to recognize what kind
of problem you are facing. If the problem has an applicable design pattern, then you
may be able to skip much of the design overhead and go directly to the
implementation phase.

The consequences of using a certain design pattern are written in the pattern
description. Instead of having to analyze the possible implications of using a certain
algorithm—or worse, figure out why the algorithm you chose is not right for you after
you implement it—you can refer to the pattern description. Implementing a solution
from a design pattern gives you a fairly good idea about the complexity, limitations,
and overhead of the solution.

The solutions supplied in design patterns tend to be efficient, especially in terms
of reducing development and maintenance times. Simply put, you put other people’s
brains to work on your problem for free, which is a bargain.

If you’ve written large applications, it’s quite possible that you would recognize
similarities between some of the algorithms you used and the algorithms described in

Core_PHP.book Page 1004 Thursday, July 10, 2003 11:23 AM

29.2 Singleton 1005

certain design patterns. That is no coincidence—design patterns are there to solve
real-world problems that you are likely to encounter regularly. It’s quite possible that
after performing a thorough investigation of a certain problem, the solution you
came up with is similar to that in the design pattern. If you were aware of design
patterns back then, it would have saved you at least some of the design time.

While this chapter is not meant to provide thorough coverage of design patterns,
it acquaints you with some of the most popular ones and includes PHP
implementation examples. If you’re interested in further enhancing your knowledge
of design patterns, definitely find a copy of the GoF book mentioned earlier. Craig
Larman’s Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process is another well-recommended resource.

29.2 Singleton

Singleton is a design pattern that is useful when you want to create an object that
should be accessible for different, distinct parts of your application. Especially if this
object is supposed to contain large chunks of information, instantiating it over and
over again may prove to be extremely inefficient. Instead, if you had a way of sharing
the same instance between all of the different parts of the application, it would be
ideal. Of course, global variables come to mind, but they require you to manage ini-
tialization. That is, you must make sure that nobody erases this variable by mistake,
that nobody instantiates another instance of this class, and so forth. Relying on the
application code to properly use the infrastructure is definitely not object-oriented.
In object-oriented design, you would instantiate your own class to expose an API
allowing you to take care of these things in the class itself instead of having to rely on
every piece of application code to maintain system integrity.

Figure 29.1 shows the structure of a Singleton implementation in PHP.

Analyzing this class, you can spot three key features: a private, static property
holding the single instance; a public, static method that returns the single instance;
and a private constructor.

A private, static property holds a single instantiation of the class. As previously
mentioned in the description of static class properties, static variables are similar to
global variables. In this case, however, we take advantage of our ability to make this
property private, thereby preventing application code from reading it or changing it.

A public, static method returns the only instantiation of the class. This single
access point allows us to initialize the variable exactly once, before the application
code accesses it. Thanks to its being static, we don’t need to instantiate an object
before we can call this method.

Core_PHP.book Page 1005 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1006

Figure 29.1 Singleton pattern.

The constructor is private. A Singleton class is one of the few situations in which it
makes sense to use a private constructor. The private constructor prevents users from
instantiating the class directly. They must use the getInstance method. Trying to
instantiate the class using $obj = new Singleton will result in a fatal error, since
the global scope may not call the private constructor.

One real-world example with which you can use the Singleton class is a
configuration class, which wraps around your application’s configuration settings.
Listing 29.1 is a simple example. Thanks to the Singleton pattern, there’s never more
than one copy of the configuration file in memory. Any changes made to the
configuration automatically persist.

Listing 29.1 Configuration Singleton

<?php
/*
** Configuration file singleton
*/
class Configuration

class Singleton
{

static private $instance = NULL;

private function __construct()
{

… perform initialization as necessary …
}

static public function getInstance()
{

if (self::$instance == NULL)
{

self::$instance = new Singleton();
}

return self::$instance;
}

… class logic goes here …
}

Core_PHP.book Page 1006 Thursday, July 10, 2003 11:23 AM

29.2 Singleton 1007

{
static private $instance = NULL;
private $ini_settings;
private $updated = FALSE;
const INI_FILENAME = "/tmp/corephp.ini";

private function __construct()
{

if(file_exists(self::INI_FILENAME))
{

$this->ini_settings =
parse_ini_file(self::INI_FILENAME);

}
}

private function __destruct()
{

//if configuration hasn't changed, no need
//to update it on disk
if(!$this->updated)
{

return;
}

//overwrite INI file with the
//version in memory
$fp = fopen(self::INI_FILENAME, "w");
if(!$fp)
{

return;
}

foreach ($this->ini_settings as $key => $value)
{

fputs($fp, "$key = \"$value\"\n");
}

fclose($fp);
}

public function getInstance()
{

if(self::$instance == NULL)
{

self::$instance = new Configuration();
}

Listing 29.1 Configuration Singleton (cont.)

Core_PHP.book Page 1007 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1008

29.3 Factory

Factory is a design pattern aimed at decoupling the instantiation of your objects
from the application code that uses them. For example, you may want to use differ-
ent kinds of objects depending on the situation. If you have two rendering classes,
HtmlRenderer and WmlRenderer, and want your application to transparently use the
right one depending on what kind of client is connected, you can easily do that using
the Factory design pattern.

return self::$instance;
}

public function get($name)
{

if(isset($this->ini_settings[$name]))
{

return $this->ini_settings[$name];
}
else
{

return(NULL);
}

}

public function set($name, $value)
{

//update only if different from what
//we already have
if(!isset($this->ini_settings[$name]) OR

($this->ini_settings[$name] != $value))
{

$this->ini_settings[$name] = $value;
$this->updated = TRUE;

}
}

}

//Test the class
$config = Configuration::getInstance();
$config->set("username", "leon");
$config->set("password", "secret");
print($config->get("username"));

?>

Listing 29.1 Configuration Singleton (cont.)

Core_PHP.book Page 1008 Thursday, July 10, 2003 11:23 AM

29.3 Factory 1009

There are many different variants of the Factory design pattern. In Figure 29.2 we
pick a simple one, which simply uses a global function.

Figure 29.2 Factory pattern.

<?php
//define abstract factory class
class Renderer
{

private $document;

abstract function render()
{
}

function setDocument($document)
{

$this->document = $document;
}

}

class HtmlRenderer extends Renderer
{

function render()
{

... HTML rendering ...
}

}

class WmlRenderer extends Renderer
{

function render()
{

... WML rendering ...
}

}

//Create the right kind of Renderer
function RendererFactory()
{

$accept = strtolower($_SERVER["HTTP_ACCEPT"]);
if(strpos($accept, "vnd.wap.wml") > 0)
{

return new WmlRenderer();
}
else
{

return new HtmlRenderer();
}

}

//Application code
$renderer = RendererFactory();
$renderer->setDocument(…content…);
$renderer->render();

?>

Core_PHP.book Page 1009 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1010

The Factory method receives no arguments, but in many situations you may wish
to pass information to the Factory that will help it determine what kind of object
should be instantiated. Nothing in the Factory pattern prevents you from passing
arguments to the constructor.

A popular case for using factory methods is implementing an unserializer—a
piece of code that takes a two-dimensional, serialized stream and turns it into objects.
How do we write general-purpose code that will be able to instantiate any type of
object that may appear in the stream? What if you want to specify different
arguments to the constructor, depending on the type of object you’re instantiating?
Listing 29.2 contains an implementation.

Listing 29.2 Registered classes with the Factory pattern

<?php
class Factory
{

private $registeredClasses = array();
static private $instance = NULL;

private function __construct() {}

static function getInstance()
{

if(self::$instance == NULL)
{

self::$instance = new Factory();
}
return self::$instance;

}

function registerClass($id, $creator_func)
{

$this->registeredClasses[$id] = $creator_func;
}

function createObject($id, $args)
{

if(!isset($this->registeredClasses[$id]))
{

return(NULL);
}
return($this->registeredClasses[$id]($args));

}
}

Core_PHP.book Page 1010 Thursday, July 10, 2003 11:23 AM

29.4 Observer 1011

Those of you who are familiar with the bits and bytes of PHP’s syntax know that
there’s a simpler way of doing it. Listing 29.2 demonstrates a more object-oriented
way to solve the problem, as it is done in other languages. It also allows for flexibility
should you wish to implement additional logic in the creator (possibly sending some
information to the constructor). In practice, it’s accurate to say that PHP has built-in
support for factory methods, utilized by simply writing $object = new $classname.

29.4 Observer

Observer is one of the most useful design patterns for developing large-scale
object-oriented applications. It allows you, with the use of messages, to interconnect
objects without their having to know anything about each other. At the heart of the
Observer pattern are two main actors: observers and subjects. Observer objects find
subject objects interesting and need to know when the subject changes. Typically,
multiple observers monitor a single subject.

class MyClass
{

private $created;
public function __construct()
{

$created = time();
}

public function getCreated()
{

return($this->created);
}

}

function MyClassCreator()
{

return(new MyClass());
}

$factory = Factory::getInstance();
$factory->registerClass(1234, "MyClassCreator");
$instance = $factory->createObject(1234, array());

?>

Listing 29.2 Registered classes with the Factory pattern (cont.)

Core_PHP.book Page 1011 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1012

Listing 29.3 contains a simple implementation of the Observer pattern.

Listing 29.3 Observer pattern

<?php
interface Message
{

static function getType();
};

interface Observer
{

function notifyMsg(Message $msg);
};

class Subject
{

private $observers = array();

function registerObserver(Observer $observer, $msgType)
{

$this->observers[$msgType][] = $observer;
}

private function notifyMsg(Message $msg)
{

@$observers = $this->observers[$msg->getType()];
if(!$observers)
{

return;
}

foreach($observers as $observer)
{

$observer->notifyMsg($msg);
}

}

function someMethod()
{

//fake some task
sleep(1);

//notify observers
$this->notifyMsg(new HelloMessage("Zeev"));

}
}

Core_PHP.book Page 1012 Thursday, July 10, 2003 11:23 AM

29.4 Observer 1013

The beauty in the Observer pattern is that it allows subject objects to activate
Observer objects without the subjects having any knowledge about the objects that
observe them other than that they support the notification interface. The Observer
pattern enables developers to connect dependent objects in different parts of the
application, dynamically and as necessary, without having to provide specialized APIs

class HelloMessage implements Message
{

private $name;

function __construct($name)
{

$this->name = $name;
}

function getMsg()
{

return "Hello, $this->name!";
}

static function getType()
{

return "HELLO_TYPE";
}

}

class MyObserver implements Observer
{

function notifyMsg(Message $msg)
{

if ($msg instanceof HelloMessage)
{

print $msg->getMsg();
}

}
}

$subject = new Subject();
$observer = new MyObserver();
$subject->registerObserver($observer,

HelloMessage::getType());
$subject->someMethod();

?>

Listing 29.3 Observer pattern (cont.)

Core_PHP.book Page 1013 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1014

for each type of dependency. It also allows different Observer objects to select what
kind of information interests them without having to change any code in the subject
object.

One thing to worry about when implementing Observer is cyclic notification
paths. An object may both observe other objects and be observed by other objects—
that is, be both a Subject and an Observer. If two objects observe each other and
deliver messages that trigger another message in their observing object, an endless
loop occurs. In order to avoid it, it’s best if you avoid delivering notification messages
in your notification handler. If it’s not possible, try to create a simple, one-sided flow
of information, which will prevent cyclic dependencies.

29.5 Strategy

The Strategy pattern applies when you have a general problem to be solved by two or
more algorithms. The choice of solutions represents a decision the user makes. For
example, a graphics program allows for saving an image in many different formats, each
with unique code for writing a file. The input to each of these routines is identical.

This pattern can also solve the problem of presenting a Web application in various
languages or styles. Very simple schemes can get by with an array of translated words
or colors for a theme, but complex customization may require code to produce
dynamic results. I encountered this situation when trying to allow for international
versions of an e-commerce site.

Aside from differences in language, people of the world format numbers
differently. The number_format function goes a long way to solve this problem, of
course. It doesn’t address figures of money. Americans use $ to the left of numbers to
represent dollars. Europeans may expect EUR, the symbol for a Euro. It’s possible
prices for Japanese customers should have yen to the right of the figure, depending
on the situation.

To implement the strategy pattern, you must define a shared interface for all
algorithms. You may then proceed with various implementations of this interface. In
PHP we can implement this by defining a general class and extending it with
subclasses. We can take advantage of polymorphism to promote a consistent
interface to the functionality.

Listing 29.4 contains the base class, localization. It defines two methods,
formatMoney and translate. The first method returns a formatted version of a
money figure. The second method attempts to translate an English phrase into a
local representation. The base class defines default functionality. Subclasses can
choose to use the defaults or override them.

Core_PHP.book Page 1014 Thursday, July 10, 2003 11:23 AM

29.5 Strategy 1015

Listing 29.5 contains an English subclass of localization. This class takes
special care to place negative signs to the left of dollar signs. It doesn’t override the
translate method, since input phrases are assumed to be in English.

Listing 29.4 Strategy pattern

<?php
//Strategy superclass
class Localization
{

function formatMoney($sum)
{

number_format($sum);
}

function translate($phrase)
{

return($phrase);
}

}
?>

Listing 29.5 English subclass

<?php
//get Localization
include_once('29-4.php');

class English extends Localization
{

function formatMoney($sum)
{

$text = "";

//negative signs precede dollar signs
if($sum < 0)
{

$text .= "-";
$sum = aba($sum);

}

$text .= "$" . number_format($sum, 2, '.', ',');

return($text);
}

}
?>

Core_PHP.book Page 1015 Thursday, July 10, 2003 11:23 AM

Chapter 29 � Design Patterns1016

Listing 29.6 contains a German subclass of localization. This class uses periods
to separate thousands and commas to separate decimals. It also includes a crude
translate method that handles only yes and no. In a realistic context, the method
would use some sort of database or external interface to acquire translations.

Finally, Listing 29.7 is an example of using the localization subclasses. A script
can choose between available subclasses based on a user’s stated preference or some
other clue, such as HTTP headers or domain name. This implementation depends
on classes kept in files of the same name. After initialization, all use of the
localization object remains the same for any language.

Listing 29.6 German subclass

<?php
include_once('29-4.php');

class German extends Localization
{

public function formatMoney($sum)
{

$text = "EUR " . number_format($sum, 2, ',', '.');

return($text);
}

public function translate($phrase)
{

if($phrase == 'yes')
{

return('ja');
}

if($phrase == 'no')
{

return('nein');
}

return($phrase);
}

}
?>

Core_PHP.book Page 1016 Thursday, July 10, 2003 11:23 AM

29.5 Strategy 1017

One advantage of this pattern is the elimination of big conditionals. Imagine a
single script containing all the functionality for formatting numbers in every
language. It would require a switch statement or an if-else tree. It also requires
parsing more code than you would possibly need for any particular page load.

Also consider how this pattern sets up a nice interface that allows later extension.
You can start with just one localization module, but native speakers of other
languages can contribute new modules easily. This applies to more than just
localization. It can apply to any context that allows for multiple algorithms for a given
problem.

Keep in mind that Strategy is meant for alternate functionality, not just alternate
data. That is, if the only difference between strategies can be expressed as values,
the pattern may not apply to the particular problem. In practice, the example given
earlier would contain much more functionality differences between languages,
differences which might overwhelm this chapter.

You will find the Strategy pattern applied in PEAR_Error, the error-handling class
included in PEAR. Sterling Hughes wrote PEAR’s error framework so that it uses a
reasonable set of default behaviors, while allowing for overloading for alternate
functionality depending on context.

Listing 29.7 Using localization

<?php
print("Trying English
\n");
include_once('29-5.php');
$local = new English;
print($local->formatMoney(12345678) . "
\n");
print($local->translate('yes') . "
\n");

print("Trying German
\n");
include_once('29-6.php');
$local = new German;
print($local->formatMoney(12345678) . "
\n");
print($local->translate('yes') . "
\n");

?>

Core_PHP.book Page 1017 Thursday, July 10, 2003 11:23 AM

