CHAPTER 4

Case Studies

4.1 INTRODUCTION

FL has been applied in many fields and to many applications. Frequently, one
must already be an expert in a particular field to understand the details of the
application. While it is tempting to provide the reader with many diverse appli-
cations, to demonstrate the wide-range of applicability for type-2 FLSs, I have
chosen not to do this. By now, it is already well established that FL is widely ap-
plicable, so I don’t need to further demonstrate this. Also, I don’t want the
reader who is unfamiliar with the details of an application to feel left out. So, I
have chosen two applications, which I treat as case studies, that 1 believe can be
easily understood by all readers. These applications are used throughout the rest
of this book, and are forecasting of time-series and knowledge mining using sur-
veys. Other applications are described in Chapter 14.

4.2 FORECASTING OF TIME-SERIES

Let s(k) (k=1,2,...,N) be a time series, such as daily temperatures of Sante Fe,
New Mexico, or hourly measurements of the Dow-Jones stock index. Measured
values of s(k) are denoted x(k), where x(k)=s(k)+n(k) and n(k) denotes meas-
urement errors—noise. The problem of forecasting a time-series (i.e., predic-
tion) is:

Given a window of p past measurements of s(k), namely x(k—p+1),
x(k—p+2),..., x(k), determine an estimate of a future value of s, S(k +1),
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where p and / are fixed positive integers.

Note that if the measurements are noise-free (i.e., perfect), then x(k—p+1),
x(k—p+2), ..., x(k) in this problem statement are replaced by s(k—p+1),
stk=p+2), ..., s(k).

Forecasting is a very important problem that appears in many disciplines.
Better weather forecasts can, for example, save lives in the event of a cata-
strophic hurricane; better financial forecasts can improve the return on an in-
vestment; etc.

When / = 1, we obtain the single-stage forecaster of s, when / = 2 we obtain
the two-stage forecaster of s, and, in general, for arbitrary values of /, we obtain
an /-stage forecaster. For illustrative purposes, we shall focus our attention on
the case of / = 1.

Suppose that we are given a collection of N data points, x(1),x(2),...,x(N).
Then, as is commonly done when neural networks are used to forecast a time-
series, we shall partition this data set into two subsets: a training data subset with
D data points, x(1),x(2),...,x(D), and a festing data subset with N — D data
points, x(D+1),x(D+2),...,x(N). Because we will use a window of p data points
to forecast the next data point, there are at most D—p training pairs,
xP x? . xPP where

xO = [x(1),x2),...,x(p), x(p+ DI
X = [x(2),x3),....x(p+ D, x(p+ )1 (4-1)
xPP = [x(D-p),x(D-p+1),....x(D-1), x(D)]"

In (4-1), the first p elements of x are the inputs to the forecaster and the last
element of x“ is the desired output of the forecaster, i.e.,

x =[px1input, desired output]” = [x”,x",...,x3’, x\) 1" (4-2)
where t=1,2,...,D—p. The training data are used in a fuzzy logic system (FLS)
forecaster to establish its rules.

There are at least three ways to extract rules from the numerical training
data:

1. Let the data establish the centers of the fuzzy sets that appear in the antece-
dents and consequents of the rules.
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2. Pre-specify fuzzy sets for the antecedents and consequents and then associate
the data with these fuzzy sets.

3. Establish the architecture of a FLS and use the data to optimize its parame-
ters.

We briefly describe these approaches next.

Because a predicted value of s will depend on p past values of x, there will
be p antecedents in each rule. Let these p antecedents be denoted x,x,,...,x,.

The interesting feature of time-series forecasting is that, although each rule has
p antecedents, these antecedents are all associated with the same variable, e.g.,
daily temperature in Sante Fe, and so is the consequent.

4.2.1 Extracting rules from the data

Method 1: Let the data establish the centers of the fuzzy sets that appear in
the antecedents and consequents of the rules.

For purposes of single-stage forecasting, here are D— p rules that we can
extract from the D— p training pairs, x©,x®,...,x*? [Mendel (1995)]:

R:IFx isF andx,isF, and --- andx,is F, , THEN y is G'

In this rule, which is obtained from x®, Fl1 is a fuzzy set whose membership
function is centered at x(1), le is a fuzzy set whose membership function is
centered at x(2), ..., Fpl is a fuzzy set whose membership function is centered at

x(p), and G' is a fuzzy set whose membership function is centered at x(p + 1).

R*:IFx isF andx,is Fy and --- and x, is F, , THEN y is G*

In this rule, which is obtained from x‘®, F;Z is a fuzzy set whose membership
function is centered at x(2), F22 is a fuzzy set whose membership function is
centered at x(3), ..., sz is a fuzzy set whose membership function is centered at

x(p+ 1), and G is a fuzzy set whose membership function is centered at x(p +
2).
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R”?:TFx is F°? and x, is F,"” and --- and x, is F , THEN y is G”*

In this rule, which is obtained from x°”, F;D"’ is a fuzzy set whose member-
ship function is centered at x(D - p), FZD_” is a fuzzy set whose membership
function is centered at x(D - p + 1), ..., FPD—” is a fuzzy set whose membership

function is centered at x(D - 1), and G”? is a fuzzy set whose membership
function is centered at x(D).

In this first approach to obtaining rules from numerical data, we see that the
centers of the antecedent and consequent membership functions are completely
determined by the data that are used to create the rules. Usually, all other mem-
bership function parameters (e.g., the standard deviation of a Gaussian member-
ship function) are specified ahead of time by the designer.

Method 2: Pre-specify fuzzy sets for the antecedents and consequents and
then associate the data with these fuzzy sets.

In this second approach ([Wang (1992a, 1994)], [Wang and Mendel
(1992¢)]), we begin by establishing fuzzy sets for all the antecedents and the
consequent. This is done by first establishing domain intervals for all input and
output variables. For the example of time-series forecasting, these domain in-
tervals are all the same, because Xy Xgseeis X, and y are all sampled values of the

measured time series, x(k) (k =1, 2, ...). Let us assume that, by examining the
measured time-series, we establish that x(k)e€[X™,X"] for Vk. Next, we divide
this domain interval into a pre-specified number of overlapping regions, where
the lengths of these overlapping regions can be equal or unequal. Each overlap-
ping region is then labeled and is assigned a membership function. Resolution in
forecasting can be controlled by the coarseness of the fuzzy sets that are associ-
ated with x(k). Measured values of x(k) are permitted to lie outside of its do-
main interval, because if x(k)>X" then u,(x(k))=1, or if x(k)<X  then
iy (x(k)) = 0.

Fuzzy rules are generated from the given data pairs using the following
three-step procedure [Wang and Mendel (1992¢)]:

1. Determine the degrees (i.e., the membership function values) of the elements
of x”. As an example, in Figure 4-1 we consider the case when p = 5. We
see that x{” has degree 0.45 in B2 and 0.75 in B1, x.” has degree 0.2 in S1

and 0.75 in S2, x{” has degree 0.45 in S2 and 0.6 in S3, x{’ has degree 0.4
in S1 and 0.75 in CE, x!” has degree 1.0 in S1 and 0.2 in CE, and x” has
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degree 0.3 in B3 and 0.6 in B2.

2. Assign each variable to the region with maximum degree, e.g., x* is con-
sidered to be B1, x.” is considered to be $2, x{” is considered to be S3, x{”
is considered to be CE, x” is considered to be S1, and x{” is considered to
be B2.

3. Obtain one rule from one pair of input—output data, e.g.,

IF x{” is Bl and x{” is S2 and x{” is $3 and x{” is CE and x{” is S1,

THEN y© is B2

This three-step procedure is repeated for the D—p training pairs in equation
4-1),ie.,t=1, ..., D-p.

Because there can be lots of data, it is quite likely that there will be some
conflicting rules, i.e., rules with the same antecedents but different consequents.
We resolve this by assigning a degree, D(R’), to each rule and accept only the
rule from a conflict group that has maximum degree, where

D(R') = py () (557) -+ i () ) 5 (4-3)

hence, there will be at most D—p linguistic rules of the form just obtained for
R" in step 3. For our example, we find, from step 1 of our three-step proce-
dure, that D(R’)=0.75x0.75 x0.60x0.75x1.0x0.60 = 0.1519.

A generalized version of this procedure is described in Chapter 5 as the
“one-pass method.” By “one-pass” we mean that the data are used just one time
to obtain all of the rules. Note that, according to this definition, Method 1 can
also be referred to as a one-pass method.

Method 3: Establish the architecture for a FLS and then use the data to
optimize its parameters.

In this third approach, we fix the architecture of the FLS ahead of time,
e.g., we fix the number of rules, the number of rule-antecedents, the shapes of
the antecedent and consequent membership functions, the inference method, the
t-norm, the kind of fuzzification, and the kind of defuzzifier. The resulting FLS
has parameters associated with it that have to be specified. These parameters are
optimized by using the data. Sometimes the data are only used one time to do
this, in which case even this method could be called “one-pass;” however, many
times the data are used multiple times to obtain the best possible performance,
in which case this is a multiple-pass method.
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Figure 4-1: Construction to determine degrees of
the elements of x for a representative time-
series. The time-series is in the right-hand plot.
Membership functions for seven fuzzy sets are in
the left-hand plot. Each dashed line projects from a
value of the sampled time-series to its intersections
with one or two fuzzy sets, which provide the mem-
bership function values for that point.

4.2.2 Mackey-Glass chaotic time-series

In the rest of this book (except for Chapters 13 and 14), we shall direct our at-
tention at single-stage forecasting for a specific time-series, one that is chaotic
and obtained from the Mackey—Glass equation.

Today, chaos is having an impact on many different fields including phys-
ics, biology, chemistry, economics, and medicine (e.g., [Casdagli (1992)],
[Farmer (1982)], and [Rasband (1990)]). Very briefly, chaotic behavior can be
described as bounded fluctuations of the output of a non-linear system with high
degree of sensitivity to initial conditions [Casdagli (1992)], i.e., trajectories with
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nearly identical initial conditions can differ a lot from each other. A system ex-
hibiting chaotic dynamics evolves in a deterministic manner; however, the cor-
relation of observations from such a system appears to be limited, so the obser-
vations appear to be uncorrelated; thus, forecasting for such a system is particu-
larly difficult [Rasband (1990)].

In 1977 Mackey and Glass published an important paper in which they “as-
sociate the onset of disease with bifurcations in the dynamics of first-order dif-
ferential-delay equations which model physiological systems.” Equation (4b) of
that paper has become known as the Mackey—Glass equation. It is a non-linear
delay differential equation, one form of which is

ds(t) _ 0.2s(:-7)
at  1+5°¢-1)

—0.1s(2) (4-4)

For 7>17 (4-4) is known to exhibit chaos.

To demonstrate the qualitative nature of the Mackey—Glass equation, we
display representative portions of the associated Mackey—Glass time series [i.e.,
the solution of (4-4)] for two values of 7 in Figure 4-2 (a) and (b). We also de-
pict the corresponding two-dimensional phase plots in Figure 4-2 (c) and (d).
From these plots we are able to distinguish periodic behavior for small values of
7 and chaotic behavior for larger values of 7.

The Mackey—Glass time series (for 7>17) has become one of the bench-
mark problems for time-series prediction in both the neural network and fuzzy
logic fields (e.g., [Lapedus and Farber (1987)], [Moody (1989)], [Moody and
Darkin (1989)], [Jones et al. (1990)], [Sanger (1991)], [Wang (1994)], [Hohen-
son and Mendel (1996)], and [Jang et al. (1997)]).

As we mentioned earlier, all of the single-stage forecasters that we shall de-
sign in the rest of this book (except for Chapter 13), using different kinds of
FLSs, are based on D — p training pairs. These training pairs are obtained by
simulating (4-4) for 7 =30, which we did by converting (4-4) to a discrete-time
equation by using Euler’s method with a step size equal to 1 [Quinney (1985)].
Because of the 30 time-unit delay, the resulting discrete-time equation requires
31 initial values. These first 31 values of s(k) (i.e., s(1),s(2),...,5(31)) were cho-
sen randomly a number of times until a time series was obtained that looked in-
teresting (see Figure 5-11a). Thereafter, the same 31 initial values were used to
produce a deterministic (albeit, chaotic) time series that is used in the forecast-
ing studies that are described in Chapters 5, 6, and 10—12.

One of the important features of time-series forecasting is that it can be
used to illustrate all of the FLSs that are covered in the rest of this book. Table
4-1 summarizes six situations that are covered in later chapters. These situations
are distinguished from one another by the natures of the signal, additive meas-
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urement noise, training and testing data, and measurements after the design of
the forecaster is completed.
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Figure 4-2: (a) and (b) are representative samples of the Mackey-Glass
time-series after letting transients relax. (c) and (d) are the corresponding
phase plots of the time segments depicted in (a) and (b). Note that “d” in
s(t—d) on the vertical axis denotes the delay used in the Mackey—Glass
equation; it is 13 for (c) and 30 for (d).

BERBEBERBE



118 Case Studies

Table 4-1: Forecasters covered in later chapters of this book. Measurements = signal + noise.

Distinguishing Features

Training  Measure-

Measure- and ments After

Name of ment Testing the Design is
Forecaster Chapter Signal Noise Data Completed
Singleton type-1 5 Deterministic None Noise free  Noise free
Non-singleton

type-1 6 Deterministic ~ Stationary Noisy Noisy
Singleton type-2 10 Deterministic ~ Stationary Noisy Noise free
Non-singleton

type-2 with

type-1 inputs 11 Deterministic ~ Stationary Noisy Noisy
Non-singleton

type-2 with Non-

type-2 inputs 12 Deterministic stationary Noisy Noisy
TSK 13 Random None Noise free  Noise free

4.3 KNOWLEDGE MINING USING SURVEYS

Knowledge mining,' as used in this book, means extracting information in
the form of IF-THEN rules from people. These rules can be modeled using a
FLS, which can then be used as a fuzzy logic advisor (FLA) to make decisions or
judgments. By “judgment” we mean an assessment of the Jevel of a variable of
interest. For example, in everyday social interaction, each of us is called upon to
make judgments about the meaning of another’s behavior (e.g., kindness, gener-
osity, flirtation, harassment). Such judgments are far from trivial, since they
often affect the nature and direction of the subsequent social interaction and
communications. Although a variety of factors may enter into our decision, be-
havior (e.g., touching, eye contact) is apt to play a critical role in assessing the
level of the variable of interest.

As an engineering example, consider one of the traffic control functions
for an asynchronous transfer mode network, called connection admission con-
trol (CAC).? CAC decides whether to accept or reject a telephone call based on
the availability of network capacity required to support its quality of service.
Here the judgment is associated with the variable CAC. For example, if the total

' Another term for this is knowledge engineering.
>CAC is described in more detail in Section 14.7.
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average input rate of real-time voice and video traffic is moderately high and
the total average input rate of non-real-time data traffic (e.g., fax) is low, then
the confidence of accepting a call is a moderate amount.

4.3.1 Methodology for knowledge mining

In developing a FLA for engineering or social variables, it is useful to adopt the
following methodology [Mendel et al. (1999)]:

1. Identify the behavior of interest. This step, although obvious, is highly ap-
plication dependent. For social judgments, we have already mentioned the
behaviors of kindness, generosity, flirtation, and harassment; other social
variables of interest might be level of violence or amount of sexually explicit
material in a television program (leading to, perhaps, a FL V-chip). For en-
gineering judgments, we have mentioned connection admission control; other
engineering variables of interest might include toxicity, video quality, sound
quality, environmental contamination level, etc.

2. Determine the indicators of the behavior of interest. This sometimes re-
quires:

a. Establishing a list of candidate indicators (e.g., for flirtation [Mendel et al.
(1999)], six candidate indicators are touching, eye contact, acting witty,
primping, smiling, and complementing).

b. Conducting a survey in which a representative population is asked to rank-
order in importance the indicators on the list of candidate indicators. In some
applications it may already be known what the relative importance of the indi-
cators is, in which case a survey is not necessary.

c¢. Choosing a meaningful subset of the indicators, because not all of them may be
important. In Step 6, where people are asked to provide consequents for a col-
lection of IF-THEN rules by means of a survey, the survey must be kept man-
ageable, because most people do not like to answer lots of questions; hence, it
is very important to focus on the truly significant indicators. Factor analysis,
from statistics, can be used to help establish the relative significance of indica-
tors.

3. Establish scales for each indicator and the behavior of interest. If an indica-
tor is a physically measurable quantity (e.g., temperature, pressure), then the
scale is associated with the expected range between the minimum and maxi-
mum values for that quantity. On the other hand, many indicators are not
measurable by means of instrumentation (e.g., touching, flirtation, harass-
ment, video quality, etc.). Such indicators need to have a scale associated
with them, or else it will not be possible to design or activate a FLA. Com-
monly used scales are 1 through 5, 0 through 5, 0 through 10, etc.
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4. Establish names and interval information for each of the indicator’s fuzzy
sets and behavior of interest’s fuzzy sets. The issues here are:

a. What names should be used for the fuzzy sets so that each indicator’s scale and
the behavior of interest’s scale are completely covered by the fuzzy sets?

b. What are the numerical intervals that a representative group (who will later take
the survey in Step 6) associate with the named fuzzy sets?

c. What is the smallest number of fuzzy sets that should be used for each indicator
and behavior of interest?

Surveys can be used to provide answers to each of these questions. We have
already demonstrated in Chapter 2 that words can mean different things to
different people; hence, the results of this step’s surveys can be used to pro-
vide the FOUs for all of the fuzzy sets that will be used in the FLA.

5. Establish the rules. Rules are the heart of the FLA; they link the indicators
of a behavior of interest to that behavior. The following issues need to be ad-
dressed:

a. How many antecedents will the rules have? As mentioned earlier, people gener-
ally do not like to answer complicated questions; so, we advocate using rules
that have either one or two antecedents. An interesting (non-engineering) in-
terpretation for a two-antecedent rule is that it provides the correlation effect
that exists in the mind of the survey respondent between the two antecedents.
Using only one or two antecedents does not mean that a person does not use
more than this number of indicators to make a judgment; it means that a per-
son uses the indicators one or two at a time (this should be viewed as a conjec-
ture).

b. How many rule bases need to be established? Each rule base leads to its own
FLA. When there is more than one rule base, each of the advisors is a FL sub-
advisor, and the outputs of these sub-advisors can be combined to create the
structure of the overall FLA. If, e.g., we had established that four indicators were
equally important for the judgment of flirtation, then there could be up to four
single-antecedent rule bases as well as six two-antecedent rule bases. A deci-
sion must be made about which of the rule bases would actually be used. This
can be done by means of another survey in which the respondents are asked to
rank-order the rule bases in order of importance. Later, when (and if) the out-
puts of the different rule bases are combined, they can be weighted using the
results of this step.

6. Survey people (experts) to provide consequents for the rules. If, e.g., a single
antecedent has five fuzzy sets associated with it, then respondents would be
asked five questions. For two-antecedent rules, where each antecedent is again
described by five fuzzy sets, there would be 25 questions. The order of the
questions should be randomized so that respondents don’t correlate their an-
swers from one question to the next. In Step 4 earlier, the names of the con-
sequent fuzzy sets were established. Each rule is associated with a question
of the form:
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IF antecedent 1 is (state one of antecedent 1’s fuzzy sets) and antecedent 2 is
state one of an nt 2’s fuz , THEN there is

ior.

The respondent is asked to choose one of the given names for the conse-
quent’s fuzzy sets. The rule base surveys will lead to rule consequent histo-
grams, because everyone will not answer a question the same way.

4.3.2 Survey results

of the behav-
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Here we present survey results that will be used in later chapters of this book to
design FLAs. We do this for a generic behavior, to illustrate our design proce-
dures, so as not to get lost in the details of a specific social or engineering be-
havior. Based on the results described in Chapter 2, we used the following five
terms for antecedents and consequent: none to very little, some, a moderate
amount, a large amount, and a maximum amount. Table 4-2, which is a repeat
of Table 2-3, summarizes the data collected from the Step 4 survey for these

labels.

Table 4-2: Processed survey results for labels of fuzzy sets.

Mean Standard Deviation
Start End Start End
No.  Range Label (a) (b) (o,) (o,)
1 Nore to very little (NVL) 0 1.9850 0 0.8104
2 Some (S) 2.5433  5.2500 0.9066 1.3693
3 A moderate amount (MOA)  3.6433  6.4567 0.8842 0.8557
4 A large amount (LA) 6.4833  8.7500 0.7484 0.5981
5 A maximum amount MAA)  8.5500 10 0.7468 0

We limited our FLA to rule bases for one- and two-antecedent rules. In the
spirit of generic results, we use x; and x, to denote the generic antecedents and
y to denote the generic consequent for these rules. Tables 4-3 through 4-5 pro-
vide the data collected from 47 respondents to the Step 6 surveys. The antece-
dents for each rule appear in the parentheses after the rule number.
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Table 4-3: Histogram of survey responses for single-antecedent rules between indicator x,
and consequent y. Entries denote the number of respondents out of 47 that chose the conse-

quent.
Consequent
None to A Moderate A Large A Maximum
Very Little Some Amount Amount Amount
Rule No. (NVL) (S) (MOA) (LA) (MAA)
1 (NVL) 42 3 2 0 0
2(S) 33 12 0 2 0
3(MOA) 12 16 15 3 1
4 (LA) 3 6 11 25 2
5(MAA) 3 6 8 22 8

Table 4-4: Histogram of survey responses for single-antecedent rules between indicator x,
and consequent y. Entries denote the number of respondents out of 47 that chose the consequent.

Consequent

None to A Moderate A Large A Maximum

Very Little Some Amount Amount Amount
Rule No. (NVL) (S) (MOA) (LA) (MAA)
I(NVL) 36 7 4 0 0
2(S) 26 17 4 0 0
3MoA) 2 16 27 2 0
4 (LA) 1 3 11 22 10
5(MAA) 0 3 7 17 20

4.3.3 Methodology for designing a FLA

In Chapter 5 we design a singleton type-1 FLA in which all uncertainties
from the surveys, which are summarized in Tables 4-2 through 4-5, are ignored.
In Chapter 10, on the other hand, we design a singleton type-2 FLA in which all
of the uncertainties from the surveys are accounted for. From the results in Ta-
bles 4-2 through 4-5, we see that two sources of uncertainties that were discussed
in Chapter 2 are indeed present, namely uncertainties about the words used for
the antecedents and consequents (Table 4-2) and uncertainties about the rule
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consequents (Tables 4-3 through 4-5). Why we will limit our attention just to
singleton designs (i.e., to designs in which the FLA is activated by crisp meas-
urements) is clarified next, when we explain how one would make use of a FLA
after it is designed.

Table 4-5: Histogram of survey responses for two-antecedent rules between indicators x; and X,
and consequent y. Entries denote the number of respondents out of 47 that chose the consequent.

Consequent
None to A Moderate A Large A Maximum
Very Little Some Amount Amount Amount

Rule No. (NVL) (S) (MOA) (LA) (MAA)
1 (NVL/NVL) 38 7 2 0 0

2 (NVL/S) 33 11 3 0 0

3 NVL/MOA) 6 21 16 4 0

4 (NVL/LA) 0 12 26 8 1

5 (NVL/MAA) 0 9 16 19 3

6 (S/NVL) 31 11 4 1 0

7 (S/S) 17 23 7 0 0

8 (S/MOA) 0 19 19 8 1

9 (S/LA) 1 8 23 13 2

10 (S'MAA) 0 7 17 21 2

11 MOA/NVL) 7 23 16 1 0

12 (MOA/S) 5 22 20 0 0

13 (MOA/MOA) 2 7 22 15 1

14 (MOA/LA) 1 4 13 17 12

15 MOA/MAA) 0 4 12 24 7

16 (LA/NVL) 7 13 21 6 0

17 (LA/S) 3 11 23 10 0

18 (LA/MOA) 0 3 18 18 8

19 (LA/LA) 0 1 9 17 20

20 (LA/MAA) 1 2 6 11 27

21 MAA/NVL) 2 16 18 11 0

22 (MAAY/S) 2 9 22 13 1

23 (MAA/MOA) 0 3 15 18 11

24 (MAA/LA) 0 1 7 17 22

25 MAA/MAA) O 2 3 12 30
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4.3.4 How to use a FLA

Each FLA that we shall design can be referred to as a consensus FLA, because it
is obtained by using survey results from a population of people. In this section
we describe how one can use the resulting FLAs.

Figure 4-3 depicts one way to use a FLA to advise an individual about a so-
cial judgment. It assumes that an individual is given the same questionnaire that
was used in Step 6 of the knowledge mining process, which led to the consensus
FLA. Their completed questionnaire can be interpreted as the individual’s FLA,
and its output can be plotted on the same plot as the output of the consensus
FLA. These outputs can then be compared, and if some or all of the individual’s
outputs are “far” from those of the consensus FLA, then some action could be
taken to sensitize the individual about these differences. Figure 4-4 depicts this
for a type-1 consensus FLA, whereas Figure 4-5 depicts this for a type-2 con-
sensus FLA.

Consensus FLA Ye(X)

X . -
Action/Decision

Individual’s FLA

y,(x)

Figure 4-3: One way to use the FLA for a social judgment.

We immediately see a problem with the type-1 comparisons, namely, how
“far” must the differences be between the individual FLA and the consensus FLA
before some action (e.g., sensitivity training) is taken? This can be difficult to
establish when we are comparing two functions, especially since “far” is in itself
a fuzzy term.

This problem is handled directly with the type-2 comparisons in Figure
4-5. Note that the individual’s FLA is still type-1, and has not changed from
Figure 4-4 to 4-5. It is treated as type-1 because the individual takes the survey
only one time; hence, there is no uncertainty associated with his or her conse-
quents. The type-2 consensus FLA is represented on Figure 4-5 by two curves,

Yoo (%) and y, .(x). These represent the left-hand and right-hand curves, re-

spectively, for the type-reduced sets (which are described in Chapters 9 and 10)
of the type-2 consensus FLA. The difference between these curves represents a
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measure of the uncertainties due to the words used in the surveys as well as the
consensus consequents. Observe from Figure 4-5 that the individual’s FLA curve
falls within the bounds of the type-reduced set; hence, no actions need to be
taken. This conclusion is quite different from the one that might have been
reached by examining the curves in Figure 4-4 where it appears that there is a
significant difference between the individual’s behavior level and the consensus
FLA’s behavior level for larger values of x. How to design the type-1 and type-2
FLAs will be described in Chapters 5 and 10, respectively.

A Behavior
level

Figure 4-4: Comparison of a type-1 consensus FLA
behavior level and an individual’s FLA behavior level.

Another way to use a FLA is depicted in Figure 4-6. After the consensus
FLA has been designed, it is exposed to a situation, say x =x" (in this discussion
X is assumed to be a scalar indicator, x), for which it provides the consensus out-
put y_(x"). Then some action or decision occurs. The problem that was associ-
ated with the type-1 FLA for a social judgment is the same for an engineering
judgment, namely, we would have to take an action or make a decision based
only on a point value. This is again resolved by using a type-2 consensus FLA,
as depicted in Figure 4-7. Now the region defined by the type-reduced set (i.e.,
the “uncertain” region) is one where the designer is free to make a decision. For
any y.,,(x)< f(x)<y,r(x), using a different decision boundary will lead to dif-

ferent engineering judgment. For example, if we use y,,,(x) we accept a call
when x =x", or, on the other hand, if we use y,, .(x) we reject the call when
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x=x". This kind of soft decision has the potential to be used in network con-
trol, signal detection and classification, communication receivers, etc.

X
A Behavior Yoo, (%)

level

ch,L(x)

»x

Figure 4-5: Comparison of a type-2 consensus FLA
behavior level and an individual’s FLA behavior level.

’

X

——p{  Consensus FLA ﬂ} Action/Decision

Figure 4-6: A way to use the FLA for an engineering
judgment.

EXERCISES

4-1: The way in which we have established the training data to forecast a time-series is to ensure
maximum overlap between successive training elements. Many other ways can be created to
use the training data that either do not have so much overlap, or do not have any overlap at
all between successive training elements.
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(a) For the same N data points, create a training set that advances two points to
the right, from one element in the training set to the next, instead of just one
point to the right [as in (4-1)]. Suppose that the training set is to consist of
50% of all the data. What are the rules for this set of training data? How many
rules will there be? What are the testing elements?

(b) For the same N data points, create a training set that has no overlap from one
element in the training set to the next. As in part (a), suppose that the training
set is to consist of 50% of all the data. What are the rules for this set of train-
ing data? How many rules will there be? What are the testing elements?

4-2: Explain some other ways to use a FLA for:

(a) social judgments

(b) engineering judgments

4-3: Suppose that the FLA is comprised of 3 FL sub-advisors. Explain how to use this FLA to
make: (a) a social judgment decision, or (b) an engineering judgment decision or action.

A Level of Yeral%)
variable of interest
y c2,L (x )
A
N t
/ Rele
’ ” n > x

Figure 4-7: A way to use the FLA for an engineering
judgment. The judgments are to accept when x=x’,
reject when x=x", and must be further clarified when
x=x".



