

41

C

H A P T E R

3

The Kernel: Basic
Organization

he study of a modern operating system leads down many paths and requires that we con-
sider a number of different challenges and their solutions. The HP-UX kernel is a multi-

tasking, multiuser, multiprocessor, multithreaded, load-leveling, modular operating system with
real-time scheduling extensions—to list just the highlights. To support such capabilities requires
many levels of design abstraction, data tables, and lists as well as a host of subsystems, drivers,
and dynamic modules.

In this chapter, we examine the basic organization of the kernel and its data structures, and
we consider which are dependent on the underlying hardware platform (hardware dependent-
layer, HDL) and which are independent (hardware-independent layer, HIL).

Before addressing HP-UX-specific topics, let’s stop and think about what an operating
system really is.

A Generic Overview

Approaching an operating system as a whole can be a bit overwhelming, so let’s break it down a
bit. Think of an operating system simply as a bootable piece of application code. True, it is a
somewhat large piece of application code, and it employs many diverse and complex functional-
ities (even an abstracted form of self-modifying code), but in the final analysis it is still just an
executable image!

A programmer must design and create data structures to store and manipulate data in a
logical and efficient manner to support the operation and design goals of the program. An oper-
ating system designer faces the same challenge, only in spades. Understanding and identifying
the resulting data structures and their interaction is a major focus of this book.

The UNIX operating system design is very simple.

T

42 Chapter 3 • The Kernel: Basic Organization

This statement usually draws an assortment of looks or comments; indeed, some may
question its basic premise or perhaps the qualifications of the one who spoke it! The essence that
the statement is meant to draw out is that in the design of a UNIX operating system there are a
few key elements (see Figure 3-1).

• First, and most important, a UNIX operating system is responsible for the scheduling
and management of individual threads of execution. Later, we discuss processes and
threads, but for now let’s just consider a thread of execution as an operational piece of
code, something that is accomplishing “work” on behalf of a “user.” Who gets to run,
when, and how long are the issues under the control of the operating system.

• UNIX is the ultimate control freak—it is prosecutor, judge, and jury for all code that
attempts to circumvent its authority. The kernel manages access to all system resources.
The only way executing code may make use of a system resource is to request access
through well-defined programmatic kernel hooks (called

system calls

).
• All I/O is file I/O. That is to say that all devices are defined by “special” device file

handles and treated as if they are simple files.
• All forms of synchronous and asynchronous interruptions are handled by kernel

routines. Simply put, if it is unexpected, then let the kernel figure it out.
• System resources should be available to all requestors in a balanced manner when

possible.

These are the prime directives of a UNIX kernel’s statement of design. While this may
seem an oversimplification, it is our hope that by setting these elements as our focal points and
by relating other topics and features back to them, we will stay on track.

All I/O Is File I/O 43

The UNIX kernel is very modular in its design and evolution. The design was influenced
in large part by the C programming language—itself a very modular language—in which the
bulk of UNIX kernel code is written. A lot of the personality of the original “kernel hackers” (a
term used with great respect) is still present in the heart and soul of today’s UNIX incarnations.

When studying a UNIX operating system, always be vigilant for similarities between dif-
ferent sections of the kernel code; that is, look for variations on a theme. It will help your com-
prehension to compare and contrast the various programmatic tools and tricks of the trade as
they come into focus during subsequent chapters.

All I/O Is File I/O

Continuing with the theme of simplification, let’s think about the fundamentals of process I/O
and the UNIX kernel. The UNIX kernel is charged with policing all forms of I/O as part of its
resource management duties. To simplify this task, UNIX has reduced all types of I/O to the
level of file I/O. By representing all external devices as files, the system needs only one type of
access-control mechanism. This is the infamous “rwx rwx rwx,” user group and other (or UGO)
security model presented in all introductory-level UNIX training courses and books. UNIX basi-
cally follows the KISS (keep it simple, stupid) principle of design.

Figure 3-1

The Big Picture

Memory
Management

Process
Management
Scheduling

Input/Output
Drivers

Volume
Management

File Systems

Kernel
Services

(sub-systems)

Shells

Applications Utilities

Disks – Tapes – Keyboards – Displays – Swap – Networks – etc.

System
Resources

Kernel space

 Processors – Co-processors – Memory – Internal Busses

Interface Cards – External Busses

User space

System Call Interface

Daemons

44 Chapter 3 • The Kernel: Basic Organization

Abstraction: A Fundamental of Kernel Design

How is an external tape drive or the key on a keyboard reduced to a file path? Through the use of
abstraction, a filename (known as a

device file

 or

special file

) references a driver in the kernel
and passes operational parameters to it (more on this in Chapter 10, “I/O and Device Manage-
ment.” For now, suffice it to say that things are often not what they appear to be at first glance.
The kernel contains many layers of abstraction and indirection—smoke and mirrors, my friend,
smoke and mirrors. Our challenge is to blow away the smoke and study the reflections in the
mirrors.

Is It Real or Is It Virtual?

A major portion of the UNIX operating system is devoted to the management of and translation
between “real” and “virtual” addressing modes. From the viewpoint of a process, all possible
memory locations fall within a logical address range: 32-bit applications are called

narrow

, and
64-bit applications are called

wide

. The kernel also comes in both narrow and wide versions,
usually dictated by the width of the processor architecture on which it is running.

When a program’s source code is compiled, references to individual execution modules,
library routines, and data elements are stored as symbolic names. This type of code module is
called an

object module

. A symbol table is required to define the name and attributes of each
item in the table.

When all the related modules of a program have been collected, a linking-loader is used to
create the final executable image. The

loader

 orders all the individual items within the execut-
able image, and the

linker

 replaces all the symbolic references with the logical addresses of the
objects that have been loaded. The resulting “image” is fixed within the process’s logical address
range. As the kernel and all of its processes must share the available physical, or “real,” memory,
some type of translation must be performed between the process’s logical address and the sys-
tem’s physical address. To facilitate this abstraction, an address translation scheme is used.

Most UNIX operating systems employ a concept known as

virtual addressing

. In a virtual
memory system, the kernel maintains and manages an address space that is many times larger
than the physical memory size addressable by the hardware. This address space exists only as an
organizational definition and requires constant translation to true physical addresses during pro-
gram execution. A virtual memory system requires hardware support as well as implementation
in kernel code.

The major advantage of a virtual memory system implementation is that it allows many
processes to coexist within the virtual address space (VAS). Each process is allowed its own log-
ical view. Some regions of the virtual space are kept private for a single process; others may be
maintained by the kernel as shared regions (see Figure 3-2). This is the basis for shared code and
data objects, and is the focus of an entire chapter later in this book (Chapter 10, “Memory Man-
agement”).

Abstraction Layers 45

Abstraction Layers

We have used the term

abstraction

 and should spend a moment talking about what it means with
regard to kernel design. When we consider the task of resource management, we must determine
the level of control we wish to implement in our management scheme. One of the tricks of the
trade involves grouping individual components of a system resource into uniform-sized blocks,
chunks, extents, pages, and so on. The availability of the resource is then tracked at the level of
these granular units, thus reducing the complexity of kernel data structures.

A classic case is that of memory management. A computer’s physical RAM consists of
circuits representing single bits of data storage; these are combined into sets of eight and
referred to as bytes. An operating system combines bytes into words (for HP-UX, a word is 32
bits, or 4bytes; this is true for both narrow and wide kernels). The word is still a very small
amount of storage space, and if the kernel needed to manage each word (by manage, we mean
keep track of which words are currently being used, which are free, and who is using what), the
amount of memory needed to build such structures could easily require as much space as or
more than the memory being managed!

To reduce this management overhead, we make the managed unit size larger than a word.
In UNIX, this is accomplished by combining sequential physical words of memory into units
called

page frames

 (on HP-UX the page frame is 4096 bytes, or 1024 words). Now the task of

Figure 3-2

Virtual Memory Objects, Private and Shared

Shared
Virtual

Memory

Private
Virtual

Memory

Private
Virtual

Memory

Private
Virtual

Memory

Private
Virtual

Memory

Private
Virtual

Memory Private
Virtual

Memory

Private
Virtual

Memory

Shared
Virtual

Memory

Process “C”

Process “A” Process “B”

46 Chapter 3 • The Kernel: Basic Organization

keeping track of what is free and what is in use becomes much simpler. This is a very basic layer
of abstraction; the kernel manages page frames, which you and I know are actually blocks of
words made up of bytes that are 8-bits each.

A modern UNIX kernel may use multiple layers of abstraction. Let’s continue with our
discussion of fundamental memory management. UNIX kernels often employ a scheme
whereby a process that requires a number of page frames to hold its code is assigned an appro-
priately sized

region

 in a virtual page-frame map. Virtual page frames are mapped to specific
physical page frames by means of processor hardware and supporting kernel tables (discussed
later in this book). This additional layer of abstraction greatly simplifies issues such as allowing
two or more processes to share the same view of executable code, shared libraries, shared mem-
ory, and other process-level shared objects.

There are structures in the kernel to keep track of each element at each abstraction layer.
Entities at higher layers simply point to the tracking structures at the lower layers. Lower level
resource attributes are inherited by the upper abstraction layers.

Care must be taken in deciding the size of each management unit—too large and you may
waste a limited resource; too small and the overhead of the tracking structures may be excessive.
The kernel designer constantly walks a fine line between convenience and efficiency. As you
study resource management, note the granularity of control the kernel has over its charges.

Some Generic Kernel Techniques

The discussion of operating system internals presents many challenges and opportunities to an
author. Our approach is to discuss each area of the kernel, consider the challenges faced by ker-
nel designers, and then explore the path taken toward the final solution implemented in the HP-
UX code.

Before we talk about HP-UX specifics, let’s discuss some generic challenges faced by ker-
nel designers. As with any programming assignment, there are frequently many different ways to
approach and solve a problem. Sometimes the decision is based on the programmer’s past expe-
rience, and sometimes it is dictated by the specific requirements of each kernel design feature.
As an operating system matures, these individual point solutions are often modified or
“tweaked” in order to tune a kernel’s operating parameters and bring them into alignment with
performance objectives or system benchmark metrics. The HP-UX operating system is the prod-
uct of a continuous improvement process that has enabled the refinement of core features and
introduced many enhancements and services over the years.

Kernel Data Structures

Programmers often use algorithms or borrow coding techniques from a “bag-of-tricks” that
belongs to the software development community at large. This common knowledge base con-
tains many elements of special interest to those who craft operating system code. Let’s explore

Some Generic Kernel Techniques 47

some of the challenges that kernel programmers face and try to develop a basic understanding of
a few of the common programmatic solutions they employ.

Static Lists (Static Tables)

The kernel often needs to maintain an extensive list of parameters related to some data structure
or managed resource. The simplest way to store this type of data is to create an ordered, static
list of the attributes of each member of the list.

Each data structure is defined according to the individual pieces of data assigned to each
element. Once each parameter is typed, the size (in bytes) of the structure is known. These struc-
tures are then stored in contiguous kernel space (as an array of structures) and may be easily
indexed for fast access.

As a general observation, and by no means a hard and fast rule, the naming convention of
these lists may resemble the following pattern (see Figure 3-3). If the name of the data structure
for a single member of the list is defined as

data_t

, then the kernel pointer to the start of the
list would be

data*

. The list could also be referenced by an array named

data[

x

]

, and the
number of elements would be stored in

ndata

. Many examples in the kernel follow this con-
vention, but by no means all of them.

Pros

The space needed for a static list must be allocated during system initialization and is
often controlled by a

kernel-tunable parameter

, which is set prior to the building of the kernel
image. The first entry in a static data table has the index value of 0, which facilitates easy calcu-
lation of the starting address of each element within the table (assuming a fixed size for each
member element).

Example

Assume that each data structure contains exactly 64 bytes of data and that the begin-
ning of the static list is defined by the kernel symbol

mylist

. If you wanted to access
the data for the list member with an index number of 14, you could simply take the
address stored in the kernel pointer

mylist*

 and add 14

×

 64 to it to arrive at the byte
address corresponding to the beginning of the 15th element in the list (don’t forget that
the list index starts with 0). If the structure is defined as an array, you could simplify the
access by referencing

mylist[14]

in your code.

Cons

The main drawback to this approach is that the kernel must provide enough list elements
for all potential scenarios that it may encounter. Many system administrators are considered
godlike, but very few are truly clairvoyant! In the case of a static list, the only way for it to grow
is for the kernel to be rebuilt and the system rebooted.

48 Chapter 3 • The Kernel: Basic Organization

Another consideration is that the resource being managed must have an index number
associated with it wherever it needs to be referenced within the kernel. While this may seem
simple at first, think about the scenarios of initial assignment, index number reuse, resource
sharing and locking, and so on.

Summary

While this type of structure is historically one of the most common, its lack of dynamic
sizing and requirement to plan for the worst case has put it on the hit list for many kernel
improvement projects.

Dynamic Linked Lists (Dynamic Tables)

The individual elements of a list must be maintained in a manner that allows the kernel to moni-
tor and manage them. Unlike the elements in a static list, all the elements of a dynamic list are
not neatly grouped together in a contiguous memory space. Their individual locations and rela-
tive order are not known or predictable to the kernel (as the name “dynamic” indicates).

It is a relatively simple task to add elements to a list as they are requested (providing the
kernel has an efficient kernel memory-management algorithm, which is discussed later). Once a

Figure 3-3

Tables and Lists

Dynamic

Linked Lists

data_t

d_next*

data_t

d_next*

data_t

d_next*

data_t

d_next*

data_list*

Static
Tables

data_t

ndata =
number of entries
in the static table

data*

data[0]

data[ndata-1]

Some Generic Kernel Techniques 49

data structure has been allocated, it must be linked with other structures of the same list. Linkage
methods vary in complexity and convenience.

Once a structure has been allocated and the correct data stored, the challenge is in access-
ing the data in a timely manner. A simple index will not suffice due to the noncontiguous nature
of the individual list elements. The choice is to “walk” the list by following forward pointers
inserted into each list element as a means of building a continuous path through the list or to
implement some other type of index data structure or hash function. While a hash greatly
reduces the access/search time, it is a calculated overhead and must be used each time an item in
the list is needed.

An additional challenge comes when it is time for the kernel to clean up a structure that is
no longer needed. If the individual elements of the list have been simply linked by a single for-
ward-linkage pointer, then the task of removing a single element from the list can be time con-
suming. The list element, which points to the element to be removed, must be identified in order
to repair the break in the chain that the removal will cause. These requirements lead to the devel-
opment of bidirectional linkage schemes, which allow for quicker deletion but require additional
overhead during setup and maintenance.

Pros

The main attraction to the dynamic list is that the resources consumed by the list are only
allocated as they are needed. If the need arises for additional list elements, they are simply allo-
cated on the fly, and a kernel rebuild and reboot are not needed. In addition, when a list element
is no longer needed, its space may be returned to the kernel pool of available memory. This
could reduce the overall size of the kernel, which may positively affect performance on a system
with tight memory size constraints.

Cons

Nothing is free when it comes to programming code! The convenience of dynamic lists
comes with several associated costs. The kernel must have an efficient way to allocate and
reclaim memory resources of varying sizes (different list structures have different element size
requirements).

The challenge of how to link individual list elements together increases the complexity
and size of each data structure in the list (more choices to be evaluated by the kernel designer!).
The dynamic list creates additional challenges in the realm of searching algorithms and index-
ing.

Summary

The current movement is clearly toward a totally dynamic kernel, which necessitates
incorporation of an ever-increasing number and variety of dynamic lists. The challenge for the
modern kernel designer is to help perfect the use and maintenance of dynamic lists. There is

50 Chapter 3 • The Kernel: Basic Organization

ample opportunity here to think outside the box and create unique solutions to the indexing and
linkage challenges.

Resource Allocation

An early challenge for a kernel designer is to track the usage of a system resource. The resource
may be memory, disk space, or available kernel data structures themselves. Any item that may
be used and reused throughout the operational life cycle of the system must to be tracked by the
kernel.

Bit Allocation Maps

A bitmap is perhaps one of the simplest means of keeping track of resource usage. In a bitmap,
each bit represents a fixed unit of the managed resource, and the state of the bit tracks its current
availability.

A resource must be quantified as a fixed unit size, and the logic of the bitmap must be
defined (does a 0 bit indicate an available resource or a used resource?). Once these ground rules
have been determined, the map may be populated and maintained.

Example

In practices a resource bit map requires relatively low maintenance overhead. The
actual size of the map will vary according to the number of resource units being
mapped. As the unit size of the resource increases, the map becomes proportionally
smaller, and vice versa. The size of the map comes into play when it is being searched:
the larger the map, the longer the search may take. Let’s assume that we have reserved
a contiguous 32-KB block of kernel memory and we want to store data there in 32-byte
structures. It becomes a fairly simple issue to allocate a 1024-bit bitmap structure (128
bytes) to track our resource’s utilization. When you need to find an available storage
location, you perform a sequential search of the bitmap until you find an available bit,
set the bit to indicate that the space is now used, and translate its relative position to
indicate the available 32-byte area in the memory block.

Pros

The relative simplicity of the of the bitmap approach makes it an attractive first-pass solu-
tion in many instances. A small map may be used to track a relatively large resource. Most pro-
cessors feature assembly language–level bit-test, bit-set, and bit-clear functions that facilitate the
manipulation of bitmaps.

Cons

As the size of the bitmap increases, the time spent locating an available resource also
increases. If there is a need for sequential units from the mapped space, the allocation algorithms
become much more complex. A resource map is a programmatic agreement and is not a resource

Some Generic Kernel Techniques 51

lock by any means. A renegade section of kernel code, which ignores the bitmapping protocol,
could easily compromise the integrity of the bitmap and the resource it manages.

Summary

If a system resource is of a static size and always utilized as a fixed-sized unit, then a bit-
map may prove to be the most cost-effective management method.

Resource Maps

Another type of fixed resource mapping involves the utilization of a structure known as a

resource map

 (see Figure 3-4). The following is a generic explanation of the approach as there
are many differing applications of this technique. In the case of a resource map, you have a
resource of a fixed size against which individual allocations of varying sizes need to be made.

Example

For our example, let’s consider a simple message board. The message board has 20
available lines for message display; each line has room for 20 characters. The total
resource has room for 400 characters, but individual messages must be displayed on
sequential lines. Consider posting the two following messages:

Figure 3-4

Resource Maps

Busy block

Busy block

Busy block

Busy block

Busy block

Busy block

Busy block

Busy block

Busy block

Resource
Map

map*
map_t

2 *

4 *

2 *

1 *

1 *

0 0

Fixed
Size

Resource

First block

Third block

Second block

Need to find a
location for a
3 block object

First block

Third block

Second block

52 Chapter 3 • The Kernel: Basic Organization

House broken

Beagle puppy

Free to good home

12-year-old boy

Seeks lawns to mow

If the lines of each message were not assigned sequential space on the message board, you
could end up with the following mess!

Beagle puppy

Seeks lawns to mow

House broken

12-year-old boy

Free to good home

To avoid such a situation, a resource map could be employed to allocate sequential lines.
Each entry in the resource map would point to the next block of available line(s) on the board.

If the message board were blank, then there would be only one entry in our resource
map pointing to the first line and stating that 20 lines were sequentially available. To
list the first message, we would allocate the first three lines from the board, adjust our
resource map entry to point to the fourth line, and adjust the count to 17. To add the
second message to the board, we would allocate two more lines and adjust the first
entry in the map to point to the sixth line, with the count adjusted to 15.

In effect a resource map points to the unused “holes” in the resource. The size of the
resource block tracked by each map entry varies according to usage patterns.

Pros

A resource map requires relatively few actual entries to manage a large number of
resources. If the allocation block size varies and needs to be contiguously assigned, then this
may be your best bet.

Cons

Map entries are constantly being inserted and deleted from the maps. This requires con-
stant shifting of the individual map entries (the saving grace here is that there are relatively few
entries). Another concern is the size of the resource map itself: if you run out of entries, then
freed resources may not be accounted for and in effect will be lost (a type of memory leak) to
system usage until a reboot.

Some Generic Kernel Techniques 53

Summary

Resource maps have long been utilized by System V Interprocess communication kernel
services, and if care is taken in their sizing, they are very efficient.

Searching Lists and Arrays

Where there are arrays and lists of data structures, there is always a need to search for specific
elements. In many cases, one data structure may have a simple pointer to related structures, but
there are times when all you know is an attribute or attributes of a desired structure and not an
actual address.

Hashtables: An Alternative to Linear Searches

Searching a long list item by item (often called a sequential or linear search) can be very time
consuming. To reduce the latency of such searches,

hash

 lists are created. Hashes are a type of
indexing and may be used with either static arrays or linked lists to speed up the location of a
specific element in the list.

To use a hash, a known attribute of the item being searched for is used to calculate an off-
set into the hashtable (hash arrays are frequently sized to a power of two to assist in the calcula-
tion and truncation of the hashed value to match the array size). The hashtable will contain a
pointer to a member of the list that matches the hashed attribute. This entry may or may not be
the actual entry you are looking for. If it is the item you seek, then your search is over; if not,
then there may be a forward

hash-chain

 pointer to another member of the list that shares the
same hash attribute (if one exists). In this manner, you will have to follow the hash-chain point-
ers until you find the correct entry. While you will still have to perform a search of one or more
linked items, the length of your search will be abbreviated.

The efficiency depends on how evenly distributed the attribute used for the hash algorithm
is within the members of the list. Another key factor is the overall size of the hashtable.

Example

Suppose you have a list of your friends’ names and phone numbers. As you add names
and numbers to the list, they are simply placed in an available storage slot and not
stored in any particular order. Traditionally, you might sort the list alphabetically each
time an entry is made, but this would require “reordering the deck.” Consider instead
using a hashtable.

As each entry is made, the number of letters in each name is counted; if there are
more than nine, then only the last digit of the count is kept. A separate

hashtable

 array
with 10 entries is also maintained with a pointer to a name in the list with that

hash
count

. As each name is added to the list, it is linked to all the other list members with
the same hash count. See Figure 3-5.

54 Chapter 3 • The Kernel: Basic Organization

If your list had 100 names in it and your were looking for

Fred Flintstone

, the system
would first total the character count (

Fred

has 4 and

Flintstone

 has 10, a total of 15 counting the
space between the names), which would send us to

hash[5]

. This entry would point to a name
whose hash count is 5; if this were not the

Fred Flintstone

 entry, you would simply follow the
embedded hash-chain pointer until you found Fred’s entry (or reached the end of the list and
failed the search).

If there were 100 entries in the table and 10 entries in the hashtable, using a standard dis-
tribution, then each hash chain would have 10 entries. On average, you would have to follow an
individual chain for half of its length to get the data you wanted. That would be a five-linkage
pointer search in our example. If we had to perform a sequential search on the unordered data,
the average search length would have been 50 elements! Even considering the time required to
perform the hash calculation, this could result in considerable savings.

While this example is greatly simplified, it does demonstrate the basics of hash-headers
and hash chains to speed up the location of the “right” data structure in a randomly allocated
data table.

Figure 3-5

Hashtables and Chains

Array of data structures

Hash
table

hash[0]

hash[1]

hash[2]

hash[3]

hash[4]

hash[5]

hash[6]

hash[7]

hash[8]

hash[9]

George Jetson next_hash*

Wazoo next_hash*

Fred Flintstone next_hash*

Barney Rubble next_hash*

*

*

*

*

*

*

*

*

*

*

Some Generic Kernel Techniques 55

Pros

Hashing algorithms offer a versatile indexing method that is not tied to basics such as
numerical sequence or alphabetic order. Relevant attributes are used to calculate an offset into
the hash-chain header array. The header points to a linked list of all items sharing the same hash
attribute, thus reducing the overall search time required to locate a specific item in the list.

Cons

The specific attributes used for the hash may be somewhat abstract in concept and must be
carefully considered to assure that they are not artificially influenced and do not result in uneven
distributions to the individual chains. If the size of the resource pool being hashed grows, the
length of the individual chains may become excessively long and the payback may be dimin-
ished.

While the basic concept of hashing is very simple, each implementation is based on spe-
cific attributes, some numeric, some character-based, and so on. This requires the programmer to
carefully study the data sets and identify which attribute to use as a key for the hash. Frequently,
the most obvious one may not be the most efficient one.

Summary

Hashing is here to stay (at least for the foreseeable future). Make your peace with the con-
cept, as you will see various implementations throughout all areas of kernel code.

Binary Searches

When it comes to searching a fixed list for a value, there are many approaches. The brute-force
method is to simply start with the first element and proceed in a linear manner through the entire
list. In theory, if there were 1024 entries in the list, the average search time would be 512 tests
(sometimes the item you are looking for would be at the front of the list and sometimes toward
the end, so the average would be 1024/2 or 512).

Another method involves the use of a

binary search algorithm

. The decision branch
employed by the algorithm is based on a binary-conditional test: the item being tested is either
too high or too low. In order for a binary search to work, the data in the list must be ordered in an
increasing or decreasing order. If the data is randomly distributed, another type of search algo-
rithm should be used.

Consider a 1024-element list. We would start the search by testing the element in the mid-
dle of the list (element 512). Depending on the outcome of this test, we would then check either
element 256 or 768. We would keep halving the remaining list index offset until we found the
desired element.

56 Chapter 3 • The Kernel: Basic Organization

Pros

Following this method, the worst-case search length for our theoretical 1024-element list
would be 10! Compare this to 1024 for the brute-force linear search method.

Cons

While the reduction in the number of individual comparisons is impressive, the basic list
elements must be ordered. The impact of this on list maintenance (adding items to or removing
them from the list) should not be underestimated. An unordered list may be easily managed
through the use of a simple

free-list

 pointer and an embedded linkage pointer between all the
unused elements of a list. If the list is ordered, then many of its members may need to be moved
each time an item is added or removed from the list.

Summary

We have considered only a very basic form of binary search. Kernels employ many varia-
tions on this theme, each tuned to match the needs of a specific structure.

Partitioned Tables

Modern architectures present kernel designers with many challenges; one is the mapping of
resources (both contiguous and noncontiguous). Consider the task of tracking the page-frames
of physical memory on a system. If physical memory is contiguous, then a simple usage map
may be created, one entry per pageframe, the page number would be the same as the index into
the array.

On modern cell-oriented systems, there may be multiple memory controllers on separate
busses. Often, the hardware design dictates that each bus be assigned a portion of the memory
address space. This type of address allocation may result in “holes” in the physical memory
map. The use of

partitioned tables

 offers a method to efficiently map around these holes.

Example

Consider the greatly simplified example in Figure 3-6. In order to manage a resource of
16, items we could use a simple 16-element array (as shown on the left side of the fig-
ure). In this example, there is a hole in the resource allotment; physically, the 5th
through 14th elements are missing. If we use the simple array method, 16 elements will
still be needed in the array if we want to preserve the relationship between the array
index and the corresponding address of the resource.

Some Generic Kernel Techniques 57

By switching to a two-tier partitioned table, we can map the resources on both
sides of the hole and reduce the amount of table space needed. The first tier is a simple
array of four elements, each either a valid pointer to a block of data structures or a null
pointer signifying that the associated block of resources does not exist.

In addition to the pointer, an offset value is stored in each element. This is used in
the case where the hole extends partially into a block’s range (as does the last pointer in
our example). The offset allows us to skip to the element containing the first valid data
structure.

Let’s compare the effort required to locate a data structure. If you needed the infor-
mation related to the 15th resource and were using the simple array approach, you
would only have to index into the 15th element of the array (

data[14]

).

If the partitioned approach were being used, you would first divide the element
address by the size of the second-tier structures. For our example that would be 14/4,
which would yield 3 with a remainder of 2. You would then index into the first-tier
array to the fourth element (index = 3), follow the pointer found there, and use the
remainder to offset into the partitioned table to the third element (index = 2).

In our simplified example, the single array approach required room for 16 data structures
even though there were only six resources being mapped. The partitioned approach required
room for only eight data structures (in two partitioned tables of four elements each) plus the very
simple four-element first-tier structure.

Figure 3-6

Partitioned Tables

data[0]

data[1]

data[2]

data[3]

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data[10]

data[11]

data[12]

data[13]

data[14]

data[15]

Simple table

resource 0

resource 1

resource 2

resource 3

hole

hole

hole

hole

hole

hole

hole

hole

hole

hole

resource 14

resource 15

Resource being
Managed,

data[0]

data[1]

data[2]

data[3]

data[12]

data[13]

data[14]

data[15]

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data[10]

data[11]

2tier
partitioned

table

$ oset0

null pointer

null pointer

$ oset2

58 Chapter 3 • The Kernel: Basic Organization

At first glance, it may not seem that the payback is worth the extra effort of navigating two
tables, but this is a very simple example. As we mentioned earlier, the approach is used to man-
age tables large enough to map all the physical page-frames of a modern enterprise server! There
can be millions of potential pages needing their own data structures (and large holes may exist).
We will see partition tables in use when we discuss memory management.

Pros

The value of partitioned tables is in the reduction of kernel memory usage. The less mem-
ory used by the kernel, the more available for user programs!

Cons

The method actually has very few drawbacks; the referencing of a map element is now a
two-step process. The map element number must be divided by the number of elements in each
partitioned table structure (second-tier structure) to yield an index into the first-tier structure.
The remainder from this operation is the offset into the second-tier structure for the desired ele-
ment. In practice, the partitioned tables are often sized to a power of two, which reduces the cal-
culation of the offsets to simple bit-shifting operations.

Summary

Partitioned tables are dictated by the architecture and are a necessary tool in the kernel
designer’s bag of tricks.

The B-Tree Algorithm
The b-tree is a somewhat advanced binary search mechanism that involves making a series of
index structures arranged in a type of relational tree. Each structure is known as bnode; the
number of bnodes depends on the number of elements being managed. The first bnode is
pointed to by a broot structure, which defines the width and depth of the overall tree.

One of the interesting and powerful aspects of the b-tree is that it may be expanded on the
fly to accommodate a change in the number of items being managed. B-trees may be used to
map a small number of items or hundreds of thousands by simply adjusting the depth of the
structure.

The simple bnode consists of an array of key-value pairs. The key data must be ordered
in an ascending or descending manner. To locate a needed value, a linear search is performed on
the keys. This may seem to be an old-fashioned approach, but let’s consider what happens as the
data set grows.

The first issue is the size of the bnode. A b-tree is said to be of a particular order. The
order is the number of keys in the array structure (minus 1—we will explain this as we discuss a

Some Generic Kernel Techniques 59

simple example). If we have a third-order b-tree, then at most we would have three keys to check
for each search. Of course, we could only reference three values with this simple structure!

In order to grow the scope of our b-tree’s usefulness, we have to grow the depth of the tree.
Once a b-tree expands beyond its order, additional bnodes are created and the depth of the tree
is increased.

Only bnodes at the lowest level of the tree contain key-value data. The bnodes at all
other levels contain key-pointer data. This means that in order to find a specific value, we must
conduct a search of a bnode at each level of the tree. Each search, on average, requires half as
many compare operations as there are keys in the bnode (the order). This means that the aver-
age search length is defined as (order/2) × depth. Optimization is achieved by adjusting both the
order and the depth of the b-tree.

Example: Growing the b-tree

From Figure 3-7, consider a very simple example of a third-order b-tree. The original
bnode has keys: 1, 2, 3. Everything fits in a single bnode, so the depth is simply 1.

When we add a fourth key, 4, to the tree, it fills the bnode to capacity and causes
the growth of the tree. If the number of keys in a bnode exceeds the order, then it is
time to split the node and grow the tree.

To grow this simple tree, we create two new bnode structures and move half of
the existing key–value pairs to each. Notice that the data is packed into the first two
entries of each of the new bnodes, which allows for room to grow.

Next, we must adjust the depth value in the broot data structure that defines the
tree. The original bnode must also be reconfigured. First, it is cleared, and a single key
is created.

Let’s take a closer look at the bnode structure. Notice that there are actually more
value slots than there are key slots. This allows for two pointers to be created in relation
to each key entry. The pointer down and to the left is used if you are seeking a key of a
lower value. The pointer down and to the right is used if you are looking for one that is
greater than or equal to the key.

Let’s try locating a value given a key = 2:

Follow the broot pointer to the first-level bnode.

Search for a key = 2. Because there is no perfect match, we look for a key that is >
2 and follow the pointer down and to the left of that key to the next bnode.

Search for a key = 2. A match here will yield the appropriate value. We know that
this is a value and not another pointer, since the broot structure told us we had a depth
of two!

60 Chapter 3 • The Kernel: Basic Organization

Note that the key values do not have to be sequential and may be sparse as long as they are
ordered. Searches on the lowest level of the tree return either a value or a “no match” message.

The search for a key always attempts to find a perfect match yielding either a value or a
pointer to the next lower level. If no match is found and we are not on the lowest level, the fol-
lowing logic is used. If your search key lays between two adjacent key entries, the pointer to the
next level lies below and between them. A search key less than the first key entry uses the first
pointer in the bnode. If your search key is larger than the last valid key in the bnode, then the
last valid pointer is used.

Pros

B-trees may be grown dynamically, while their table maintenance is modest. This makes
them ideal for managing kernel structures that vary in size. Key values may be packed or sparse
and added to the table at any time, providing for a flexible scope.

Cons

Another benefit is that given a sufficiently sized order, a b-tree may grow to manage a
large number of items while maintaining a fairly consistent search time. Consider a 15th-order
b-tree: the first depth would map 16 items, the second depth would map 256 items, and the third

Figure 3-7 B-Trees

1 2 3

value valuevalue

1 2 3

value

4

valuevaluevalue
Add a 4th key-value

Grow the tree
Increase the depth

Multi-Level B-Tree
3rd Order

2 Deep
1st level
bnode

2nd level
bnodes

3 4

valuevalue

1 2

valuevalue

3

**

Simple B-tree
3rd Order

Single Deep

order=3
depth=2
bnode*

broot_t

order=3
depth=1
bnode*

broot_t

Some Generic Kernel Techniques 61

depth would yield a scope of 4096 while only requiring the search of three bnodes! This type of
exponential growth makes it very popular for management of small to large resources.

The b-tree, binary-tree, and balanced-tree belong to a family of related search structures.
While the b-tree has a modest maintenance overhead due to its simple top-down pointer logic, its
growth algorithm may result in sparsely populated bnodes. This increases the number of nodes
required to map a given number of data values. As with most approaches, we trade table size for
maintenance cost.

Another issue is that while the b-tree may grow its depth to keep up with demand, it may
not change its order (without basically cutting it down to the ground and rebuilding it from
scratch). This means that designers need to pay attention to its potential usage when sizing the
order in their implementations.

Summary

The b-tree requires a bit of study prior to its implementation but offers an effective method
for the mapping of ordered dynamic lists ranging in size from slight to huge. We will see a prac-
tical application of the b-tree when we examine kernel management of virtual memory region
structures.

Sparse Tables
We discussed the use of a hash to speed access to members of a static, unordered array. What
would happen if the hash size were aggressively increased (even to the size of the array it refer-
enced or larger)? At first you might think this would be a great solution: simply create a hashing
algorithm with enough scope, and lookups become a single-step process. The problem is that the
kernel data array and its corresponding hash could become prohibitively large in order to guar-
antee a unique reference.

A compromise is to size the data structure large enough to hold your worst-case element
count and hope that the hashing algorithm is fully distributive in its nature. In an ideal situation,
no two active elements would share the same hash.

In the less-than-ideal real world, there will be cases where two data elements do share a
common hash. We may solve the problem by dynamically allocating an additional data structure
outside the fixed array and creating a forward hash-chain link to it.

Usually, this step is not necessary if the hash formula is sufficiently distributive. In prac-
tice, a forward pointer may only be needed in a very small percentage of the cases (less than 1%
or 2%). In the very rare case where a third element must share the same hash, an additional
structure would be chained to the second, one and so on (reference Figure 3-8).

62 Chapter 3 • The Kernel: Basic Organization

Pros

Sparse lists greatly reduce the average search time to locate items in unordered tables or
lists.

Cons

Sparse lists require the kernel to manage the available sparse data-element locations as yet
another kernel resource. As there is a possibility that the data element first pointed to may not be
the actual one you are searching for, the target structure must contain enough data to validate
that it is or is not the one you want. If it isn’t, a routine needs to be developed to “walk the
chain.”

Summary

Spare lists work best when there is some known attribute(s) of the desired data set that
may be used to generate a sufficiently large and distributive hash value. The odds of needing to
create a forward chain pointer decrease greatly as the scope of the hash increases. We will see an
example of this approach in the HP-UX kernel’s virtual-to-physical page-frame mapping. In
actual use, it is a one-in-a-million chance to find a hash-chain with more than three linked ele-
ments!

Figure 3-8 Sparse Tables

data next*

data next*

data next*

data next*

hash*

hash*

hash*

hash*

hash*

hash*

hash*

hash*

Hash table

data next*

data next*

data next*

data next*

data next*

data next*

data next*

data next*

Fixed length table
(first reference)

Some Generic Kernel Techniques 63

The Skip List
In the world of search algorithms, the skip list is a new kid on the block. Its use was first outlined
in the 1990s in a paper prepared for the Communications of the Association for Computing
Machinery (CACM) by William Pugh of the University of Maryland. For additional informa-
tion, visit ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.ps.Z.

The algorithm may be employed to reduce search times for dynamic linked lists. The indi-
vidual list elements must be assigned to the list according to some ordered attribute. This
approach works well for linked lists with only a dozen or so members and equally as well for
lists of several hundred members.

At first glance, skip lists appear to be simply a series of forward- and reverse-linkage
pointers. Upon closer examination, we see that some point directly to a neighbor, while others
skip several in-between structures. The surprising part is that the number of elements skipped is
the result of random assignment of the pointer structures to each list member as it is linked into
the list.

List maintenance is fairly simple. To add a new member element, we simply skip through
the list until we find its neighboring members. We then simply link the new structure between
them. The removal of a member follows the same logic in reverse.

When a new member is added, we must decide at which levels it will be linked. The imple-
mentation used in the HP-UX pregion lists uses a skip pointer array with four elements. All
members have a first-level forward pointer. The odds are one in four that it will have a second-
level pointer, one in four of these will have a third-level pointer, and one in four of these will
have a fourth-level pointer. As elements may be added or removed from the list at any time, the
actual distribution of the pointers takes on a pseudorandom nature.

To facilitate the method, a symbolic first element is created, which always contains a for-
ward pointer at each of the skip levels. It also stores a pointer to the highest active level for the
list. See Figure 3-9.

64 Chapter 3 • The Kernel: Basic Organization

Example

From Figure 3-9, let’s assume that we need to locate the structure with the attribute
9678. In the list nexus structure, we see that the highest level active pointer is at
next[2], so we follow it. This structure has an attribute value of 5255, so we need to
continue our search at this level.

We arrive back at the starting point structure, so we backtrack to the 5255 struc-
ture, drop down a level to next[1], and continue.

We now arrive at the structure with the 9678 attribute—it’s a match! Our search is
over.

In the example, it took only three searches. A simple binary search would have
taken four searches.

Pros

The skip list offers an interesting approach for searching that often results in a reduction of
search times when compared to a simple binary method. Adding and removing members to and
from the list is reasonably quick.

Figure 3-9 Skip List

next[1]*

next[2]*

next[0]*

5255

next[0]*

4467

9679

next[0]* 5015

next[5]*

next[0]*

next[1]*

9678

next[0]*

4128

next[1]*

next[0]*

nexus
start=2

next[1]*

next[2]*

next[0]*

1678
next[0]*

3362

next[0]*

2579

next[1]*

8853

next[0]*
5258

next[0]*

Start
Here

Looking
For
9678

1st search

2ndsearch

3rd search

next[3]*

Some Generic Kernel Techniques 65

Cons

It requires the creation of a multielement array for the forward linkages. The random
nature of the pointer assignment does not take into account the relative size or frequency of use
of the various list elements. A frequently referenced structure might be inefficiently mapped by
the luck-of-the-draw (in our example we beat the binary method, but other members of our list
would not: try searching for the 5015 structure).

Summary

Despite the random nature of this beast, the overall effect may be a net-sum gain if the
ratio between the number of items and the number of levels is carefully tuned.

Operations Arrays
Modern kernels are often required to adapt to a variety of different subsystems that may provide
competing or alternate approaches to the same management task. A case in point is that of a ker-
nel that needs to support multiple file system implementations at the same time.

To accomplish this goal, specific file systems may be represented in the kernel by a virtual
object. Virtual representation masks all references to the actual object. This is all well and good,
but what if kernel routines needed to interact with the real object required code and supporting
data dependent upon type-specific attributes? An operations array, or vectored jump table, may
be of service here.

Example

Consider Figure 3-10. Here we see a simple kernel table with four elements, each rep-
resenting a member of a virtual list. Each list member has its actual v_type regis-
tered, a type-specific v_data[] array, and a pointer to a v_ops[] operational array.

For this model to work, the number of entries in the operational array and the func-
tions they point to must be matched for each type the kernel is expected to handle. In
our example, there are four operational target functions: open(), close(),
read(), and write(). Currently, our system has only two variations labeled type: X
and Y.

When a routine is called through a vectored jump referenced through v_ops[x],
it is passed the address of the virtual objects v_data[] array. This allows the final
type-specific function to work with a data set type that it understands.

The end result is that all other kernel objects need only to request a call to
v_ops[0] to instigate an open() of the virtual object without concern or knowledge
of whether it is of type X or Y. The operations array will handle the redirection of the
call. In practice, we will see many examples of this type of structure in the kernel.

66 Chapter 3 • The Kernel: Basic Organization

Pros

The cost of redirecting a procedure call through a vector jump table is very low and for the
most part transparent to all that use it.

Cons

In debugging, this is yet one more level of indirection to contend with.

Summary

The vectored jump table, or operational array, provides a very effective abstraction layer
between type-specific, kernel-resident functions, and other kernel subsystems.

The HP-UX Kernel Overview
Now that we have spent some time considering a generic UNIX kernel, the tools of the trade,
and some of the challenges faced by the kernel designers, let’s turn our attention to the specifics
of the HP-UX kernel.

The current release of the Hewlett-Packard HP-UX Operating System is HP-UX 11.i (the
actual revision number is 11.11). We concentrate on the current release, but as many production

Figure 3-10 Operations Arrays: A Vectored Jump Table

virtual[]

v_type = Y
y_ops*

v_data[]

v_type = X
y_ops*

v_data[]

v_type = X
y_ops*

v_data[]

v_type = Y
y_ops*

v_data[]

open()

close()

read()

write()

Type X routines

open*

close*

read*

write*

Type X
ops. array

open()

close()

read()

write()

Type Y routines

open*

close*

read*

write*

Type Y
ops. array

Fundamental Kernel Data structures: A First Pass 67

systems are still running HP-UX 10.20 and HP-UX 11.0, where appropriate we try to cover
material relevant to these releases as well.

The HP-UX kernel is a collection of subsystems, drivers, kernel data structures, and ser-
vices that has been developed and modified for the past 20 years. This legacy has yielded the
kernel we present in this book. Over the years, virtually no part of the kernel has gone undis-
turbed: the engineers and programmers at HP have shown an unwavering commitment to the
continuous process-improvement cycle that defines the HP-UX kernel. The authors of this book
tip our collective hat to their continuing efforts and vision.

In its current incarnation HP-UX runs primarily on systems built on the Hewlett-Packard
Precision Architecture processor family. This was not always the case. Early versions ran on
workstations designed on the Motorola 68xxx family of processors. As in the past when HP-UX
was ported to the HP-PA RISC chip set, today we are on the threshold of another port of this
operating system to an emerging new platform: the Intel IA-64 processor family. In this book,
we concentrate on the HP PA-RISC implementation.

Fundamental Kernel Data Structures: A First Pass
HP-UX kernel data structures are a key focus of our discussion. We break them down into sev-
eral key areas: kernel memory tables, process tables, disk space tables, file system tables, and
input/output tables. As we explore these various areas, keep your eyes open for similarities in
approach and design. Many teams of programmers work on the various modules and subsystems
that make up the kernel. They frequently borrow methods and algorithms from one another, and
there seems to be a never-ending attempt to tweak and tune them for improved performance.
This type of crosspollination helps the kernel mature and improve.

Kernel Memory Tables
A prime concern of the kernel is the management of the system memory resources (see Figure 3-
11). Memory comes in many flavors and types: physical, virtual, and logical.

68 Chapter 3 • The Kernel: Basic Organization

Physical Memory
HP-UX runs on processors that have a 32-bit instruction word size. The primary memory alloca-
tion size is called a physical pageframe. On current HP-UX systems, a pageframe is 4096 bytes
(or 1024 words); this has been constant for many years. While this reduces the number of on-
demand page-in operations required for a process and its threads, it creates challenges for the
memory management schemes. We explore this fully in Chapter 6.

Several primary data structures are required to track and map the system’s physical mem-
ory. The pfdat_ptr[x] array is commonly called the free-page table and is used to keep
track of which pages are currently in use by the kernel and which have been assigned to a pro-
cess. This table is a partitioned table to allow for the mapping of physical memory around holes
in the physical memory map. As a general rule, if a table name ends in _ptr, it is most likely a
partitioned table.

With the release of HP-UX 11.i, a process may be assigned larger contiguous sets of phys-
ical page-frames under a newly introduced Variable Page Size (VPS) feature. This is also called
Performance-Optimized Page size (POPs) in some sales and training literature. To accommodate
these features, the pfdat_ptr table has been modified to allow the pooling of contiguous free
pages into larger views, ponds, and pools of various colors.

Figure 3-11 Kernel Memory Tables

memory pages
region

vfd | dbd

vfd | dbd

vfd | dbd

vfd | dbd

free

free

pfdat_ptr[]

front store

a.out

swap

back store
(swap)

swap

Hardware
 pdir

 Kernel
htbl2.0[]

ppn � vpn

ppn � alias

pfn_to_virt_ptr[]

vpn

vpn

Fundamental Kernel Data structures: A First Pass 69

Virtual Address Space

The VAS does not reference a physical system entity; instead it is the conceptual memory
space onto which the underlying hardware platform (HP PA-RISC) and the kernel must map all
potential regions of use. This phantom map is a key concept to master as we study the kernel’s
theory of operation.

The kernel memory management structures must allow the hardware to map virtual page-
frames to the physical page-frames that contain current process code or data. The primary data
structure for this task is the htbl2.0[x]. If the needed page-frame is not currently memory-
resident, then it is up to the kernel to handle the resulting page fault and get it loaded as soon as
possible.

The HP-PA RISC hardware as well as the HP-UX kernel requires this virtual-to-physical
page-frame map. The hardware calls this table the page directory (or pdir[x]) and uses its
entries, defined as page data entries (or pdes), to update the CPU translation lookaside buffer
(TLB). The hardware and kernel names are different to illustrate that the hardware does not
specify the use of all the various bits in this structure: the kernel designers use the undefined bits
for their own purposes.

N O T E On the older 32-bit HP PA-RISC–based systems (called narrow
systems), this table is named htbl[x].

The htbl2.0[x] only provides for the mapping of virtual pageframes to physical page-
frames. While this is the direction of translation most frequently needed by kernel functions,
occasionally there is a requirement to identify which virtual pageframe has been assigned to a
particular physical pageframe. This requirement is fulfilled by the pfn_to_virt_ptr[x]
table. In addition to this basic feature, it is also used to link alias data structures if they are
required. An alias is used if more than one virtual pageframe has been mapped to a single
physical page-frame, an important feature allowing copy-on-write semantics during the
fork() system call.

Process Logical Memory Space

As a matter of concept, we need to consider a process’s view of memory. Linking-loaders create
executable image files (for C, the common name is a.out). These files and their headers con-
tain information about which system resources will be needed for the program to run. For a pro-
gram to run, its page images must be loaded into consecutive pages in the VAS. This is because
when the image was created, all references to data and procedure calls were coded as absolute
addresses within the process’s logical address space.

To facilitate the sharing of process code, dynamic shared library code, shared memory-
mapped files, and other shared objects and related consecutive pages in the program’s image are
said to occupy regions of address space. The mapping of these logical process address regions to
kernel-managed virtual memory regions is the job of the kernel’s many region data structures.

70 Chapter 3 • The Kernel: Basic Organization

The region structure contains a database with a page-by-page description that indicates
if a page is currently in physical memory, stored as an image on a front-store (an executable pro-
gram file), stored as an image on a back-store (a swap page), or still awaiting initialization (used
for uninitialized data pages, BSS).

Managing Memory for Internal Kernel Usage
So far, we have discussed only the structures used for managing memory for use by the system’s
many processes. This type of memory management is done at the granularity of the page-frame.
Additional structures are used inside the kernel for the allocation of smaller sized blocks of
memory to be used by the kernel’s many dynamic tables and linked lists. Until the 11.i release,
HP-UX utilized the rather classic “kernel bucket” memory allocation scheme. This has been
replaced with an “arena” allocation approach. This change was made to improve flexibility,
reduce waste, and facilitate page reclamation.

All Together Now
It may seem at first glance that many structures are playing in the same sandbox. To some
degree, this is an accurate assessment, and for it to work, all of the tables must play nice
together! Each table has been optimized to provide support for a particular piece of the puzzle
and must be meticulously managed to avoid system corruption. There are many levels of checks
and balances used to maintain the memory management system’s integrity.

Kernel Process Tables
The process is truly the king of the HP-UX operating system, the primary entity managed by the
kernel. In general, the prime directive for the HP-UX kernel is to level the playing field and
make sure every process thread gets a chance to run.

The Process Table
Threads are the schedulable entity, but it is the venerable process that owns resources (at least as
long as it is active). As such, the process table (see Figure 3-12) is the starting point for all pro-
cess and thread management-related activities in the kernel. HP-UX 11.i features a dynamic pro-
cess table. Entries are created as needed by allocating memory from a kernel memory arena and
adding it to the linked list of active processes. The beginning of the process list is pointed to by
the kernel pointer proc_list*.

Prior to the HP-UX 11.i release, the process table was a fixed-length table initialized at
system boot, pointed to by the kernel pointer proc*, and defined in size by the tunable kernel
parameter nproc. The original nproc parameter has been maintained through the current
release for a couple of reasons. There are several static kernel tables that are sized directly in
proportion to the process table. While the process table is now dynamic, not all related structures

Kernel Process Tables 71

have made this change. It is reasonable to assume that in future releases this may not continue to
be an issue, but for now nproc needs to be declared. This parameter also serves as a maximum
limit for the growth of a system’s process table.

Process management starts by using the phash[x] to locate a specific entry in the pro-
cess table. Once we have located the appropriate proc structure, we follow its pointers to other
key kernel tables.

The kthread Table
kthread structures are also dynamically allocated from a kernel memory arena and

linked onto a list of active kthreads. In addition, all kthread structures belonging to a single
process are linked together and to the parent process proc structure. Such threads are com-
monly called siblings. The process table has a pointer to the first and last of its sibling threads
and maintains a count of how many it has spawned.

Prior to HP-UX 11.i, the kthread table was also a static array allocated at system boot
and sized by the kernel parameter kthreadNTHREAD.

Figure 3-12 Kernel Process Tables

thread
table

file descriptorsprocess
table

proc_list* System
File Table

vas

pregion pregion pregion pregion pregion

uarea

uarea

region regionregion region region

phash[]

72 Chapter 3 • The Kernel: Basic Organization

The vas and pregion Tables
In the grand scheme of things, a pregion contains the address offset and size of a pro-

cess’s logical region, access identifier information, and a type designator that specifies the usage
mode. The pregion also maps a process’s logical region into the system’s VAS and creates a
linked list of a process’s virtual memory elements. When a process causes a page fault (requests
access to a virtual page that is not currently memory-resident), the fault handler must search the
process’s linked list of pregions to determine which kernel region contains the necessary data
for obtaining the faulting page. These structures and the underlying kernel region structures are
the backbone of memory fault handling and have been optimized for function and efficiency.In
addition to keeping track of its threads, a process table must also provide a map to each of the
memory regions it will require for execution. To this end, a structure called a vas is created and
linked to the proc of the process. The vas is the nexus of a linked list of pregion structures
connected by a skip list. Each pregion links the process and its threads to a kernel-managed
region structure. The pregion-to-region abstraction layer facilitates the mapping of
shared objects by the kernel.

Process File Descriptors
All sibling threads share access to any file that has been opened in the name of its parent process.
Each open() system call results in an entry in the process’s file descriptor table. The size of
this table is controlled by the kernel-tunable parameter nfile and prevents unlimited opens by
a runaway thread.

All I/O is file I/O, and as such the file descriptor table represents the process’s gateway to
the “real world.” File descriptors are required for each read and write operation. For example,
consider the shell’s default STDIN, STDOUT, and STDERR descriptors. As is the case with the
shell, multiple file descriptors may point to the same file path, some for reading and some for
writing.

The uarea Structure
An additional structure being introduced here is the uarea. The uarea is implemented as a
kernel memory region, and unlike the other regions mapped in the parent process’s pregion
chain, access to the uarea is private to a single kthread. If there are multiple siblings, then
there is an equal number of uarea pregions linked to the process’s vas. An interesting note
is that the uarea is mapped into a process’s vas but never directly accessed by a user thread.
The kernel has exclusive usage rights and stores the threads register image, known as a process
control block (PCB) prior to a context switch-out. It then loads the next thread on the run
queue’s PCB from its uarea prior to switching it in.

The Kernel File System Tables 73

The Kernel File System Tables
The kernel must maintain a complete list of all opened files on the system, active mount points,
and what is mounted there. Performance requires that many file system structures be maintained
in core-resident inode caches and buffer caches as well as in a variety of tables.

The System File Table
Each discrete, open system call results in an entry to the system file table (see Figure 3-13). If
the same file is opened 20 times, there will be 20 separate entries in the table. Discrete entries
are required because this table keeps track of the type of open (read or write), the current offset
into the file, and the number of linkages to it. As the various processes are terminated, their file
descriptors are closed, and the linkage count in the system file table is decremented. If the link-
age count goes to zero, then the entry is placed on a free list and may be reused.

The Virtual File System
The HP-UX kernel supports access to several different types of file systems. On earlier versions
of the operating system, the specifics of each supported file system type was crafted into the ker-
nel’s core image. Changing file system attributes was a major challenge and required patching

Figure 3-13 Kernel File System Tables

system file table

inode

vnode

inode

vnode

inode

vnode

inode cache

buffer

buffer

buffer

buffer

buffer cache

 virtual file system

File System

data

data

data

data inode

inode
inode

superblock

rootvfs*

F/S mount
info

superblock

mount point

root directory

74 Chapter 3 • The Kernel: Basic Organization

the kernel. To move away from this dependency, a virtual file system interface was designed and
implemented in the kernel.

The virtual file system treats all file system types the same. It is primarily concerned with
their type, where they are mounted, a pointer to core-resident copies of any metadata that may be
required to manage them, a cached copy of their respective root directories, and a pointer to an
operational array of routines customized to handle their specific type.

The Inode Cache
The inode is the heart and soul of a UNIX file; it contains all attribute information with respect
to a specific file. As the file is the basic object of all I/O operations, the inode attribute infor-
mation is the key to access rights and data security within the system.

File attribute information is needed each time a thread requests access to file data or to
modify the inode data itself. To speed this operation, an in-core copy is maintained of the
inode data for each open file on the system. This is known as an inode cache.

As each file system type may define different inode data structures (different sizes, dif-
ferent block location schemes, different immediate data storage methods), it is the job of each
configured file system type to define and build its own inode cache. To mask this difference
from the higher levels of the kernel, an abstraction layer is added in which each file has assigned
to it a systemwide unique virtual node (or vnode). Actions aimed at the vnode are translated
through an operations array to file system type-specific routines in the kernel.

The Buffer Cache
Just as we keep copies of file attributes in an inode cache, the system maintains and manages a
memory-resident buffer cache to hold recently requested copies of file data. When a process
requests a read or write of file data, the buffer cache is checked first to see if a copy is present. If
a cached copy is present, then the system merely needs to perform a memory-to-memory trans-
fer of the requested buffer to or from the program’s data space. Memory-to-memory transfers of
this nature are called logical reads or logical writes. If a requested buffer is not present or the
buffer is filled, a transfer must take place between the buffer cache and the physical disk. This
constitutes a physical read or physical write.

When a read or write request results in an immediate physical action, it is said to be a
buffer cache miss. The ratio between logical and physical reads and writes is called the hit rate
and may be viewed using tools such as HP’s glance or gpm.

The Kernel Input/Output Tables
The HP-UX kernel allows no direct access to physical devices. All I/O must be requested
through the proper channel: the system call interface. A key component of this model is the ker-

The Kernel Input/Output Tables 75

nel’s extensive set of drivers, device maps, and the overall system’s general input/output (GIO)
system.

A large portion of the kernel memory space is occupied by these various components. The
modern HP-UX kernel provides for the dynamic mapping of some of these should it be required.

The I/O Tree

A key table is appropriately named the I/O tree. This tree structure is actually a collection of
linked objects used to identify and map system hardware devices to specific software drivers.
The tree’s roots stretch back to the system initialization, occurring even before the HP-UX ker-
nel is loaded into memory. A subsection of this structure is the more elemental kernel I/O tree
and is created in memory visible to the processor-dependent code (sometimes called the boot-
rom) to be used in the event of a system crash.

The individual nodes of the I/O tree contain basic information about the hardware address:
its type, which software has claimed it (driver association), and which context it belongs to.
Additional properties, such as a kernel-assigned instance number and pointers to its parent, sib-
ling, and children, are also present.

The I/O tree follows an object model; nodes lower down in the tree structure inherit
attributes from their parents and pass them on to their children. We explore this fully in Chapter
10, “I/O and Device Management.”

System Interruptions

In addition to the I/O tree, the I/O subsystem is responsible for the detection and response to
interruptions. You may notice that we use the word interruption, not interrupts: HP-UX
describes all categories of events affecting normal processor execution as being system interrup-
tions. They are broken into four categories: faults, traps, interrupts, and checks.

To further complicate the topic, there are internal (CPU hardware, clocks, timers, etc.) and
external (I/O devices, interface cards, physical device) interrupts, not to mention process signal
handling!

As shown in Figure 3-14, internal interruptions are registered by a CPU and cause a vec-
tored branch to memory-resident handling routines contained in an array called the interrupt
vector table (IVT). Each entry in this table consists of a 32-byte block of code in which the ini-
tial portion of the interruption handler must be loaded. Also note that control register CR14
contains the interrupt vector address (IVA), the starting address of the IVT. As each physical
processor maintains its own register set, it would be possible to have interruption handlers spe-
cific to each processor. This is not generally the case, but it is an interesting option.

76 Chapter 3 • The Kernel: Basic Organization

An interesting interruption (registered as internal interrupt #4) is called the external inter-
rupt and evokes routines vectored through an array named the external interrupt receipt register
switch table, or simply the eirr_switch[x]. In most cases, this vectored switch table points
toward the interrupt handling routine entry points associated with the kernel’s various hardware
drivers. Two additional control registers assist in registering and enabling the various external
interrupts: CR23 (the eirr) and CR15 (the external interrupt enabling mask, or eiem).

Drivers and Switch Tables
The bottom portion of Figure 3-14 shows two switch tables. One is used for accessing block
device drivers and the other for raw device drivers. A raw device is one to which data is trans-
ferred in byte streams of varying sizes.

A raw device may receive a single byte or many megabytes in a single transfer (or even
gigabytes in today’s computing climate). Raw device access is also used to talk to and configure
device controllers and interface cards when necessary.

Block devices hold mountable file systems. All I/O to a block device is directed through
the system’s buffer cache to reduce physical requests to logical requests whenever possible for
speed and convenience

Figure 3-14 Kernel I/O Tables

Kernel I/O Tree

Block
Driver

Device
Major#

bdevsw[]

Block
Driver

Block
Driver

cdevsw[]

Device
Major#

Raw
Driver

Raw
Driver

Raw
Driver

eirr_switch[]IVT

IVA (CR14)

EIRR (CR23)

EIEM (CR15)

Io_tree_root*

Summary 77

As drivers are built into the kernel image or registered for future dynamic loading, they are
assigned a driver number, often called their major number. Many of the major numbers are
reserved and always assigned to a specific driver; for example, the logical volume manager
pseudodriver is always assigned major number 64, while others are assigned from a dynamic
pool of available numbers. This major number is visible through the ll or ls –l commands.
To list all the currently used major numbers for an HP-UX kernel, enter the lsdev command.
In general, many more devices have raw drivers than have block drivers.

The device switch tables are arrays of operational pointers. Each entry in the table consists
of a subarray of jump points. The routines pointed to are entered in a documented order and
cover actions such as open, close, read, write, and several more. If it sounds like we are talking
about file I/O, you are absolutely correct—but remember that in the world of HP-UX (and UNIX
in general), all types of I/O are treated like file I/O. No matter what type of physical device a
driver was created to work with, to system process threads, first you open it, then you read or
write to it, and when you are through you close it!

Summary
This concludes our first pass through the kernel designer’s tool kit. Knowledge of these struc-
tures and tables and how they work will help prepare us for an in-depth examination of the HP-
UX kernel. HP-UX and UNIX in general have many nooks and crannies to be explored and
understood. Please reference the generic algorithm explanations offered in this chapter as we
encounter specific examples of their usage in the chapters to come.

78 Chapter 3 • The Kernel: Basic Organization

