
Learning to Program in C++ 1

CHAPTER 1 Introduction to
Programming

“Begin at the beginning, and go on till you come to the end: then
stop.” This method of telling a story is as good today as it was when
the King of Hearts prescribed it to the White Rabbit. In this book, we
must begin with you, the reader, since my job is to explain a technical
subject to you. It might appear that I’m at a severe disadvantage; after
all, I’ve never met you.

Nevertheless, I can make some pretty good guesses about you.
You almost certainly own a computer and know how to use its most
common application, word processing. If you use the computer in
business, you probably also have an acquaintance with spreadsheets
and perhaps some database experience as well. Now you have
decided to learn how to program the computer yourself rather than
relying completely on programs written by others. On the other hand,
you might be a student using this book as a text in an introductory
course on programming. In that case, you’ll be happy to know that
this book isn’t written in the dry, overly academic style employed by
many textbook writers. I hope that you will enjoy reading it, as my
previous readers have.

Introduction to Programming

2 Learning to Program in C++

Whether you are using this book on your own or in school, there
are many good reasons to learn how to program. You may have a
problem that hasn’t been solved by commercial software; you may
want a better understanding of how commercial programs function so
you can figure out how to get around their shortcomings and
peculiarities; or perhaps you’re just curious about how computers
perform their seemingly magical feats. Whatever the initial reason, I
hope you come to appreciate the great creative possibilities opened up
by this most ubiquitous of modern inventions.1

Before we begin, however, we should agree on definitions for
some fundamental words in the computing field. Susan had some
incisive observations about the power of words. Here is our exchange
on that issue:

Susan: I will read something usually at face value, but often there
is much more to it; that is why I don’t get it. Then, when I go back
and really think about what those words mean, it will make more
sense. This book almost needs to be written in ALL CAPS to get
the novice to pay closer attention to each and every word.

Steve: IMAGINE WRITING A BOOK IN ALL CAPS! THAT
WOULD BE VERY DIFFICULT TO READ, DON’T YOU
THINK?

Many of the technical words used in this book are in the glossary at
the end of the book; it is also very helpful to have a good technical
dictionary of computer terms, as well as a good English dictionary.

Of course, you may not be able to remember all of these technical
definitions the first time through. If you can’t recall the exact
meaning of one of these terms, just look up the word or phrase in the
index, and it will direct you to the page where the definition is stated.

1. Of course, it’s also possible that you already know how to program in another
language and are using this book to learn how to do so in C++. If so, you’ll
have a head start; I hope that you’ll learn enough to repay the effort of wading
through some material you already know.

Learning to Program in C++ 3

Definitions

Before we continue, let’s check in again with Susan. The
following is from her first letter to me about the contents of this book:

Susan: I like the one-on-one feel of your text, like you are talking
just to me. Now, you did make a few references to how simple some
things were which I didn’t catch on to, so it kinda made me feel I
was not too bright for not seeing how apparently simple those
things were...

I think maybe it would have been helpful if you could have stated
from the onset of this book just what direction you were taking, at
least chapter by chapter. I would have liked to have seen a goal
stated or a least a summary of objectives from the beginning. I often
would have the feeling I was just suddenly thrown into something
as I was reading along. Also (maybe you should call this C++ for
Dummies, or is that taken already?)2, you might even define what
programming is! What a concept! Because it did occur to me that
since I have never seen it done, I really don’t know what
programming is! I just know it’s something that nerds do.

Susan’s wish is my command, so I have provided a list of objectives
at the beginning of each chapter after this one. I’ve also fulfilled her
request for a definition of some programming terms.

Definitions

An algorithm is a set of precisely defined steps to calculate an
answer to a problem or set of problems, and which is guaranteed to
arrive at such an answer eventually. As this implies, a set of steps that
might never end is not an algorithm.

2. As it happens, that title is indeed taken. However, I’m not sure it’s been
applied appropriately, since the book with that title assumes previous
knowledge of C! What that says about C programmers is better left to the
imagination.

Introduction to Programming

4 Learning to Program in C++

Programming is the art and science of solving problems by the
following procedure:3

1. Find or invent a general solution to a class of problems.

2. Express this solution as an algorithm or set of algorithms.

3. Translate the algorithm(s) into terms so simple that a stupid
machine like a computer can follow them to calculate the specific
answer for any specific problem in the class.

At this point, let’s see what Susan had to say about the above
definition and my response.

Susan: Very descriptive. How about this definition: Programming
is the process of being creative using the tools of science such as
incremental problem solving to make a stupid computer do what
you want it to. That I understand!

Your definition is just fine. A definition has to be concise and
descriptive, and that you have done — and covered all the bases.
But you know what is lacking? An example of what it looks like.
Maybe just a little statement that really looks bizarre to me, and
then say that by the end of the chapter you, the reader, will actually
know what this stuff really means! Sort of like a coming attraction
type of thing.

Steve: I understand the idea of trying to draw the reader into the
“game”. However, I think that presenting a bunch of apparent
gibberish with no warning could frighten readers as easily as it

3. This definition is possibly somewhat misleading since it implies that the
development of a program is straightforward and linear, with no revisions
required. This is known as the “waterfall model” of programming, since water
going over a waterfall follows a preordained course in one direction.
However, real-life programming doesn’t usually work this way; rather, most
programs are written in an incremental process as assumptions are changed
and errors are found and corrected.

Learning to Program in C++ 5

Definitions

might intrigue them. I think it’s better to delay showing examples
until they have some background.

 Now let’s return to our list of definitions:

Hardware refers to the physical components of a computer, the ones
you can touch. Examples include the keyboard, the monitor, the
printer.

Software refers to the nonphysical components of a computer, the
ones you cannot touch. If you can install it on your hard disk, it’s
software. Examples include a spreadsheet, a word processor, a
database program.

Source code is a program in a form suitable for reading and writing
by a human being.

An executable program (or an executable, for short) is a program in
a form suitable for running on a computer.

Object code is a portion of a program in a form suitable for
incorporation into an executable program.

Compilation is the process of translating source code into object
code. Almost all of the software on your computer was created by this
process.

A compiler is a program that performs compilation as defined above.

How to Write a Program

Now you have a definition of programming. Unfortunately, however,
this doesn’t tell you how to write a program. The process of solving a
problem by programming in C++ follows these steps:

Introduction to Programming

6 Learning to Program in C++

1. Problem: After discussions between the user and the programmer,
the programmer defines the problem precisely.

2. Algorithms: The programmer finds or creates algorithms that will
solve the problem.

3. C++: The programmer implements these algorithms as source
code in C++.

4. Executable: The programmer runs the C++ compiler, which must
already be present on the programmer’s machine, to translate the
source code into an executable program.

5. Hardware: The user runs the resulting executable program on a
computer.

These steps advance from the most abstract to the most concrete,
which is perfectly appropriate for an experienced C++ programmer.
However, if you’re using this book to learn how to program in C++,
obviously you’re not an experienced C++ programmer, so before you
can follow this path to solving a problem you’re going to need a fairly
thorough grounding in all of these steps.

This description is actually a bit oversimplified, as we’ll see in the
discussion of linking in Chapter 5, “Functional Literacy”. For now,
let’s see what Susan thinks about this issue.

Susan: With all the new concepts and all the new language and
terms, it is so hard to know what one thing has to do with the other
and where things are supposed to fit into the big picture. Anyway,
you have to understand; for someone like me, this is an enormous
amount of new material to be introduced to all at once. When you
are bombarded with so many new terms and so many abstract
concepts, it is a little hard to sort out what is what. Will you have
guidelines for each of the steps? Since I know a little about this
already, the more I look at the steps, I just know that what is coming
is going to be a big deal. For example, take step 1; you have to give
the ingredients for properly defining a problem. If something is left
out, then everything that follows won’t work.

Learning to Program in C++ 7

Baby Steps

Steve: I hope you won’t find it that frustrating, because I explain
all of the steps carefully as I do them. Of course, it’s possible that I
haven’t been careful enough, but in that case you can let me know
and I’ll explain it further.

Unfortunately, it’s not possible for me to provide a thorough guide
to all of those steps, as that would be a series of books in itself.
However, there’s a wonderful small book called How to Solve It by
G. Polya, that you should be able to get at your local library. It was
written to help students solve geometry problems, but the
techniques are applicable in areas other than geometry. I’m going to
recommend that readers of my book read it if they have any trouble
with general problem solving.

The steps for solving a problem via programming might sound
reasonable in the abstract, but that doesn’t mean that you can follow
them easily without practice. Assuming that you already have a pretty
good idea of what the problem is that you’re trying to solve, the
algorithms step is likely to be the biggest stumbling block. Therefore,
it might be very helpful to go into that step in a bit more detail.

Baby Steps

If we already understand the problem we’re going to solve, the next
step is to figure out a plan of attack, which we will then break down
into small enough steps to be expressed in C++. This is called
stepwise refinement, since we start out with a “coarse” solution and
refine it until the steps are within the capability of the C++ language.
For a complex problem, this may take several intermediate steps, but
let’s start out with a simple example. Say that we want to know how
much older one person is than another. We might start with the
following general outline:

1. Get two ages from user.

Introduction to Programming

8 Learning to Program in C++

2. Calculate difference of ages.

3. Print the result.

This in turn can be broken down further, as follows:

1. Get two ages from user.

a. Ask user for first age.

b. Ask user for second age.

2. Subtract second age from first age.

3. Print result.

This looks okay, except that if the first person is younger than the
second one, then the result will be negative. That may be acceptable.
If so, we’re just about done, since these steps are simple enough for
us to translate them into C++ fairly directly. Otherwise, we’ll have to
modify our program to do something different, depending on which
age is higher. For example,

1. Get two ages from user.

a. Ask user for first age.

b. Ask user for second age.

2. Compute difference of ages.

a. If first age is greater than second, subtract second age from first
age.

b. Otherwise, subtract first age from second age.

3. Print result.

You’ve probably noticed that this is a much more detailed description
than would be needed to tell a human being what you want to do.
That’s because the computer is extremely stupid and literal: it does
only what you tell it to do, not what you meant to tell it to do.

Learning to Program in C++ 9

Baby Steps

Unfortunately, it’s very easy to get one of the steps wrong, especially
in a complex program. In that case, the computer will do something
ridiculous, and you’ll have to figure out what you did wrong. This
debugging, as it’s called, is one of the hardest parts of programming.
Actually, it shouldn’t be too difficult to understand why that is the
case. After all, you’re looking for a mistake you’ve made yourself. If
you knew exactly what you were doing, you wouldn’t have made the
mistake in the first place.

I hope that this brief discussion has made the process of
programming a little less mysterious. In the final analysis, it’s
basically just logical thinking.4

On with the Show

Now that you have some idea how programming works, it’s time to
see exactly how the computer actually performs the steps in a
program, which is the topic of Chapter 2, “Hardware Fundamentals”.

4. Of course, the word just in this sentence is a bit misleading; taking logical
thinking for granted is a sure recipe for trouble.

