

Security

Topics in this Chapter

•

Servlet Authentication

–

Principals and Roles

–

Declarative Authentication

–

Portability

–

Types of Authentication

•

Basic Authentication

•

Digest Authentication

•

Form-Based Authentication

•

SSL and Client Certificate Authentication

•

Web Application Security Elements

•

Customizing Authentication

–

Resin

–

Tomcat 4.0

•

Programmatic Authentication

security.fm Page 250 Wednesday, May 2, 2001 2:32 PM

Prentice Hall PTR
This is a sample chapter of Advanced JavaServer Pages
ISBN: 0-13-030704-1

For the full text, visit http://www.phptr.com

©2001 Pearson Education. All Rights Reserved.

251

9

Computer security used to be the domain of hackers and their antagonists, but
with the advent of the World Wide Web, it’s become an issue for the rank and
file setting up shop on the net. Because of this growing awareness, software
developers today are far more likely to deal with security than were their
counterparts of the late 20th century.

Many books have been written about the wide ranging topic of computer
security, including Java security, and this chapter is a substitute for none of
them. This discussion is restricted to protecting web application resources with
the authentication mechanisms described in the servlet specification.

1

Servlet Authentication

Servlet authentication looks simple:

1. A user tries to access a protected resource, such as a JSP page.

2. If the user has been authenticated, the servlet container makes the resource
available; otherwise, the user is asked for a username and password.

3. If the name and password cannot be authenticated, an error is displayed and
the user is given the opportunity to enter a new username and password.

1. This chapter is based upon the 2.2 Servlet specification; for specification links,
see

http://java.sun.com/products/servlet/download.html

.

security.fm Page 251 Wednesday, May 2, 2001 2:32 PM

252

Advanced JavaServer Pages

The steps outlined above are simple, but vague. It’s not apparent who asks for a
username and password, who does the authentication, how it’s performed, or
even how the user is asked for a username and password. Those steps are
unspecified because the servlet specification leaves them up to applications and
servlet containers. This vagueness in the servlet specification has an effect on
portability; see “Portability” on page 254 for more information.

Principals and Roles

In security-speak, the user in the steps listed on page 251 is a

principal

. Principals
are named entities that can represent anything; most often, they represent
individuals or corporations.

Principals can fill one or more roles; for example, a customer could also be an
employee. Security constraints in

WEB-INF/web.xml

 associate

roles

 with
protected

resources

, like this:

<web-app>
...
 <

security-constraint

>
 <!-- web resources that are protected -->
 <web-resource-collection>
 <web-resource-name>Protected Resource</web-resource-name>
 <url-pattern>

/page_1.jsp

</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <!-- role-name indicates roles that are allowed
 to access the web resources specified above -->
 <role-name>

customer

</role-name>
 </auth-constraint>
 </security-constraint>
...
 <

security-constraint

>
 <!-- web resources that are protected -->
 <web-resource-collection>
 <web-resource-name>Protected Resource2</web-resource-name>
 <url-pattern>

/page_2.jsp

</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <!-- role-name indicates roles that are allowed
 to access the web resources specified above -->
 <role-name>

employee

</role-name>
 </auth-constraint>
 </security-constraint>
<web-app>

security.fm Page 252 Wednesday, May 2, 2001 2:32 PM

9

•

Security 253

Two security constraints are specified above that restrict access to

/page_1.jsp

and

/page_2.jsp

 to principals that are in roles

customer

 or

employee

,
respectively.

Security constraints, like those listed above, associate resources with roles. It’s up
to servlet containers or applications to associate roles with principals; for
example, with Tomcat, you edit a

tomcat-users.xml

 file that has entries like
this:

<tomcat-users>
 ...
 <user name=”rwhite” password=”tomcat” roles=”customer”, ”other”/>
 ...
</tomcat-users>

Here,

rwhite

 has a password of

tomcat

 and can fill roles

customer

 or

other

;
thus,

rwhite

 can access

/page_1.jsp

, but not

/page_2.jsp

 according to the
security constraints listed above.

Other servlet containers provide different mechanisms for associating principals
with roles; for example, “Resin” on page 264 illustrates how it’s done with Resin
for basic authentication.

Table 9-1 lists

HttpServletRequest

 methods that allow you to retrieve
information about principals and roles.

The servlet API does not provide corresponding setter methods for the getter
methods listed in Table 9-1; therefore, principals and roles can only be set by
servlet containers, meaning that applications cannot set them. This can be a
consideration if you implement programmatic authentication—see
“Programmatic Authentication” on page 271 for more information.

Table 9-1

HttpServletRequest

 Methods for Principals and Roles

Method Description

Principal getUserPrincipal()

Returns a reference to a

java.security.Principal

boolean isUserInRole(String)

Determines whether a user is in a role,
specified by the string argument

String getRemoteUser()

Returns the username that was used for login

security.fm Page 253 Wednesday, May 2, 2001 2:32 PM

254

Advanced JavaServer Pages

Table 9-2 lists other

ServletRequest

 methods that provide security
information.

Like the methods listed in Table 9-1 on page 253, the servlet API does not provide
corresponding setter methods for those methods listed in Table 9-2. This means
that the authentication type and transport scheme can only be set by servlet
containers.

Declarative Authentication

Declarative authentication requires no programming because authentication is

declared

 with XML tags in a deployment descriptor and implemented by the
servlet container. Declarative authentication is attractive because it’s easy, but it’s
not as flexible as other approaches that require you to write code.

At one end of the spectrum is declarative authentication, with 100% servlet
container implemented and 0% application code; at the other end is
programmatic authentication, with 0% servlet container and 100% application
code.

Most servlet containers provide access to the middle of that spectrum by
providing hooks so that you can replace their default authentication mechanism.

“Basic Authentication” on page 256 provides an example of declarative
authentication, “Customizing Authentication” on page 263 illustrates
customizing authentication, and programmatic authentication is discussed in
“Programmatic Authentication” on page 271.

Portability

The servlet specification leaves enough security details unspecified that servlet
containers must fill in the gaps with nonportable functionality. For example, the
servlet specification does not specify a default authentication mechanism, so

Table 9-2

 Other

ServletRequest

 Security Methods

1

1.

getAuthType()

 is from

HttpServletRequest

.

Method Description

String getAuthType()

Returns the authentication type:

BASIC

,

SSL

, or

null

boolean isSecure()

Returns

true

 if the connection is

HTTPS

String getScheme() Scheme represents transport mechanism: http, https...

security.fm Page 254 Wednesday, May 2, 2001 2:32 PM

9• Security 255

servlet containers implement their own; for example, Tomcat uses an XML file to
specify usernames and passwords, whereas Resin requires you to implement an
authenticator.

Because of nonportable security aspects of servlet containers and depending upon
your choice for authentication, you may need to write some nonportable code,
such as a Resin authenticator or a Tomcat realm, both of which are discussed in
“Customizing Authentication” on page 263.

On the other hand, you can use declarative authentication to minimize any code
you have to write.

Types of Authentication

A servlet-based web application can choose from the following types of
authentication, from least secure to most:

• Basic authentication

• Form-based authentication

• Digest authentication

• SSL and client certificate authentication

All of the authentication mechanisms listed above are discussed in this chapter.
Basic and digest authentication are discussed in much detail in RFC2617, which
can be found at ftp://ftp.isi.edu/in-notes/rfc2617.txt.

You select one of the authentication mechanisms listed above in
/WEBINF/web.xml, like this:

<web-app>
...
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Basic Authentication Example</realm-name>
 </login-config>
...
</web-app>

Although basic and form-based authentication are not secure, you can use them
in combination with SSL for secure transport.

You can find out the authentication method for a request with
HttpServletRequest.getAuthType—see Table 9-2 on page 254.

security.fm Page 255 Wednesday, May 2, 2001 2:32 PM

256 Advanced JavaServer Pages

Basic Authentication
Basic authentication is defined by the HTTP/1.1 specification. When a client
attempts to access a protected resource, the server prompts for a username and
password. If the server can authenticate that username and password, access is
granted to the resource; otherwise, the process repeats. The server retries a server-
specific number of times, three being typical.

The most notable aspect of basic authentication is its total lack of security.
Passwords are transmitted with base64 encoding, which provides no encryption,
thus making the passwords vulnerable.

Figure 9-1 illustrates basic authentication with Tomcat 4.0.

From top to bottom in Figure 9-1: An attempt is made to access a protected JSP
page—/protected-page.jsp—and the user is presented with a dialog. After
the dialog is filled out and the username and password are authenticated, the JSP
page is displayed. That JSP page is listed in Example 9-1.a.

Figure 9-1 Basic Authentication with Tomcat 4.0

security.fm Page 256 Wednesday, May 2, 2001 2:32 PM

9• Security 257

Example 9-1.a /protected-page.jsp

<html><head><title>A Protected Page</title></head>
<body>

<%@ include file=’show-security.jsp’ %></p>
<p>
<% if(request.isUserInRole(“tomcat”)) { %>
 You are in <i>tomcat</i> role

<% } else {%>
 You are not in <i>tomcat</i>

<% } %>

<% if(request.isUserInRole(“role1”)) { %>
 You are in <i>role1</i>

<% } else {%>
 You are not in <i>role1</i>

<% } %>
</p>

</body>
</html>

The JSP page listed in Example 9-1.a prints security information and the
principal’s role—tomcat or role1. Security information is printed by a JSP page
that’s listed in Example 9-1.b.

Example 9-1.b /show-security.jsp

Security Information:

<p>
User principal: <%= request.getUserPrincipal().getName() %>.

User name: <%= request.getRemoteUser() %>.

Request Authenticated with: <%= request.getAuthType() %>.

<% if(request.isSecure()) { %>
This connection is secure.

<% } else { %>
This connection is not secure.

<% } %>
</p>
Remote Addr: <%= request.getServerName() %>

Remote Host: <%= request.getRemoteHost() %>

Remote Addr: <%= request.getRemoteAddr() %>

The JSP page listed in Example 9-1.b can be handy for debugging authentication.

security.fm Page 257 Wednesday, May 2, 2001 2:32 PM

258 Advanced JavaServer Pages

The protected JSP page listed in Example 9-1.b is specified as a protected resource
in the application’s deployment descriptor, which is listed in Example 9-1.c.

Example 9-1.c /WEB-INF/web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

<web-app>
 <security-constraint>
 <!-- web resources that are protected -->
 <web-resource-collection>
 <web-resource-name>A Protected Page</web-resource-name>
 <url-pattern>/protected-page.jsp</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <!-- role-name indicates roles that are allowed
 to access the web resource specified above -->
 <role-name>tomcat</role-name>
 <role-name>role1</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Basic Authentication Example</realm-name>
 </login-config>
</web-app>

The deployment descriptor listed above restricts access to
/protectedpage.jsp to principals in either tomcat or role1 roles, and
BASIC is specified as the authentication method.

With Tomcat, usernames and passwords are associated with roles in
$TOMCAT_HOME/conf/tomcat-users.xml, which is listed in Example 9-1.d.

Example 9-1.d $TOMCAT_HOME/conf/tomcat-users.xml

<tomcat-users>
 <user name=”tomcat” password=”tomcat” roles=”tomcat” />
 <user name=”role1” password=”tomcat” roles=”role1” />
 <user name=”both” password=”tomcat” roles=”tomcat,role1” />
</tomcat-users>

security.fm Page 258 Wednesday, May 2, 2001 2:32 PM

9• Security 259

The configuration file listed in Example 9-1.d binds the username tomcat and
password tomcat, which were used in the application shown in Figure 9-1 on
page 256, to the tomcat role. That’s why the application shows that the principal
is in tomcat role, but not in role1.

The entry for username both in Example 9-1.d illustrates how you can associate a
single principal with multiple roles using Tomcat. In Figure 9-1 on page 256, if we
had logged in as both, we would be in both tomcat and role1 roles.

Digest Authentication
Digest authentication is just like basic authentication, except digest authentication
uses encryption to protect passwords. In fact, digest authentication transmits a
password’s hash value, not the password itself.2

Figure 9-2 illustrates digest authentication with Tomcat. Notice the differences
between the dialog in Figure 9-2, which declares this web site to be secure, and the
dialog in Figure 9-1 on page 256, which does not.

2. Digest authentication is also specified by the HTTP/1.1 specification; see
ftp://ftp.isi.edu/in-notes/rfc2617.txt.

Figure 9-2 Digest Authentication with Tomcat

security.fm Page 259 Wednesday, May 2, 2001 2:32 PM

260 Advanced JavaServer Pages

Digest authentication is specified in an application’s deployment descriptor, like
this:

<login-config>
 <auth-method>DIGEST</auth-method>
 <realm-name>Digest Authentication Example</realm-name>
 </login-config>
</web-app>

The only difference between basic and digest authentication is the specification of
the authentication method, as listed above.

Note: The digest authentication example discussed in this section works with
Tomcat 4.0, but not with Tomcat 3.2.1.

Form-Based Authentication
Form-based authentication allows you to control the look and feel of the login
page. Form-based authentication works like basic authentication, except that you
specify a login page that is displayed instead of a dialog and an error page that’s
displayed if login fails.

Like basic authentication, form-based authentication is not secure because
passwords are transmitted as clear text. Unlike basic and digest authentication,
form-based authentication is defined in the servlet specification, not the HTTP
specification.

Form-based login allows customization of the login page, but not the
authentication process itself. If you’re interested in customizing the
authentication of usernames and passwords, see “Customizing Authentication”
on page 263.

Form-based authentication requires the following steps:

1. Implement a login page.

2. Implement an error page that will be displayed if login fails.

3. In the deployment descriptor, specify form-based authentication and the
login and error pages from step #2.

Figure 9-3 shows an application that illustrates form-based authentication.

The top pictures in Figure 9-3 show a failed login, and the bottom pictures show
subsequent success. Notice that the login form is displayed in the browser, not in
a dialog, as is the case for basic and digest authentication.

security.fm Page 260 Wednesday, May 2, 2001 2:32 PM

9• Security 261

The login form used in Figure 9-3 is listed in Example 9-2.a.

Example 9-2.a /login.jsp

<html><head><title>Login Page</title></head>
<body>
Please Login<hr>

<form action=’j_security_check’ method=’post’>
<table>
 <tr><td>Name:</td>
 <td><input type=’text’ name=’j_username’></td></tr>
 <tr><td>Password:</td>
 <td><input type=’password’ name=’j_password’ size=’8’></td>
 </tr>
</table>

 <input type=’submit’ value=’login’>
</form></body>
</html>

Figure 9-3 Form-Based Authentication with Tomcat

security.fm Page 261 Wednesday, May 2, 2001 2:32 PM

262 Advanced JavaServer Pages

The login page listed in Example 9-2.a is unremarkable except for the names of
the name and password fields and the form’s action. Those names, j_username,
j_password, and j_security_check, respectively—which are defined in the
Servlet Specification—must be used for form-based login. Table 9-3 summarizes
those names.

The error page for the application shown in Figure 9-3 is listed in Example 9-2.b.

Example 9-2.b /error.jsp

<html> <head> <title>Error!</title></head>
<body>

 The username and password you supplied are not valid.
</p>
Click <a href=’<%= response.encodeURL(“login.jsp”) %>’>here
to retry login

</body>
</form>
</html>

The error page displays an error message and provides a link back to the login
page. The deployment descriptor for the application shown in Figure 9-3 is listed
in Example 9-2.c.

Example 9-2.c /WEB-INF/web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

<web-app>
 <security-constraint>
 <web-resource-collection>

Table 9-3 Login Form Attributes for Form-Based Login

Attribute Description

j_username The name of the username field

j_password The name of the password field

j_security_check The login form’s action

security.fm Page 262 Wednesday, May 2, 2001 2:32 PM

9• Security 263

 <web-resource-name>A Protected Page</web-resource-name>
 <url-pattern>/protected-page.jsp</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>tomcat</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

The deployment descriptor listed in Example 9-2.c specifies a security constraint
that restricts access to /protected-page.jsp to principals in the role of
tomcat. The authentication method is specified as FORM, and the login and error
pages are identified.

SSL and Client Certificate Authentication
Secure sockets layer (SSL) is a secure transport mechanism that ensures privacy
and data integrity through encryption. Additionally, SSL allows verification of
client and server identity. For more information on SSL, see
http://home.netscape.com/eng/ssl3/3-SPEC.HTM.

SSL is designed so that it can be layered on top of existing servers. The details of
adding SSL to a web server are server dependent; see your server documentation
for details. Resin’s technical FAQ provides detailed instructions for layering SSL
on stand-alone Resin; it can be found at
http://www.caucho.com/products/resin/ref/faq.xtp.

Client certificate authentication is implemented with SSL and requires the client
to possess a public key certificate. Although Tomcat 4.0 plans to support client
certificate authentication, at the time of this writing it did not.

Customizing Authentication
There are two aspects to authentication: challenging principals for usernames and
passwords and authenticating usernames and passwords. The servlet specification
requires servlet containers to allow customization of the former with form-based

security.fm Page 263 Wednesday, May 2, 2001 2:32 PM

264 Advanced JavaServer Pages

authentication, as discussed in “Form-Based Authentication” on page 260. The
servlet specification does not require servlet containers to allow customization of
the latter, but most servlet containers let you do so.

Because the servlet specification does not provide a standard mechanism for
customizing authentication of usernames and passwords, that kind of
customization is inherently nonportable. This section describes how to customize
authentication with Resin and Tomcat and should give you a good idea of what to
look for if you are using a different servlet container.

Resin

Resin authenticates usernames and passwords with authenticators, which are
classes that implement the Resin Authenticator interface.

The default Resin authenticator will authenticate any combination of username
and password—a useful feature if you are using Resin in combination with
Apache or IIS, because you can rely on the web server’s authentication. If you are
using Resin in stand-alone mode, then you need to implement an authenticator
for basic authentication.

Figure 9-4 shows a basic authentication example with Resin.

Figure 9-4 Customizing Basic Authentication with Resin

security.fm Page 264 Wednesday, May 2, 2001 2:32 PM

9• Security 265

The protected page shown in Figure 9-4 is listed in Example 9-3.a.

Example 9-3.a /protected-page.jsp

<html><head><title>A Protected Page</title></head>
<body>

<%@ include file=’show-security.jsp’ %></p>
<p>
<% if(request.isUserInRole(“resin-user”)) { %>
 You are in <i>resin-user</i> role

<% } else {%>
 You are not in <i>resin-user</i> role

<% } %>
</p>
</body>
</html>

The JSP page listed in Example 9-3.a relies on the show-security JSP page to
print security information; see “Basic Authentication” on page 256 for more
information about that page. The JSP page listed in Example 9-3.a also verifies the
user’s role.

Example 9-3.b lists the deployment descriptor for the application shown in Figure
9-4.

Example 9-3.b /WEB-INF/web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

<web-app>
 <security-constraint>
 <!-- web resources that are protected -->
 <web-resource-collection>
 <web-resource-name>A Protected Page</web-resource-name>
 <url-pattern>/protected-page.jsp</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>resin-user</role-name>
 </auth-constraint>
 </security-constraint>

security.fm Page 265 Wednesday, May 2, 2001 2:32 PM

266 Advanced JavaServer Pages

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Basic Authentication Example</realm-name>

<!-- The authenticator tag is Resin-specific -->
<authenticator id=’beans.SimpleAuthenticator’/>

 </login-config>
</web-app>

The deployment descriptor listed in Example 9-3.b restricts access to
/protected-page.jsp to principals in the role of resin-user and specifies
BASIC as the authentication method. That deployment descriptor also contains a
Resin-specific authenticator tag that specifies the authenticator to use for this
authentication. That authenticator is listed in Example 9-3.c.

Example 9-3.c /WEB-INF/classes/beans/SimpleAuthenticator.java

package beans;

import com.caucho.server.http.AbstractAuthenticator;
import com.caucho.server.http.BasicPrincipal;
import java.security.Principal;

public class SimpleAuthenticator extends AbstractAuthenticator {
 public Principal authenticate(String user, String password) {
 boolean valid = password != null &&
 password.equals(“resin”) &&
 user != null && user.equals(“resin”);

 if(valid) return new BasicPrincipal(user);
 else return null;
 }
 public boolean isUserInRole(Principal user, String role) {
 return user.getName().equals(“resin”) &&
 role.equals(“resin-user”);
 }
}

The authenticator listed in Example 9-3.c extends the Resin
AbstractAuthenticator class and overrides the authenticate and
isUserInRole methods, both of which are defined in the Authenticator
interface and given default implementations in AbstractAuthenticator.

The authenticate method returns an instance of BasicPrincipal, which is a
Resin-specific class from com.caucho.server.http, if the username and
password are authentic; otherwise, the method returns null.

security.fm Page 266 Wednesday, May 2, 2001 2:32 PM

9• Security 267

Tomcat 4.0

Tomcat 4.0 uses realms, which are similar in principle to Resin’s authenticators, to
authenticate usernames and passwords. Unlike Resin, Tomcat does not require
special tags in /WEB-INF/web.xml; instead, Tomcat specifies a realm in
$TOMCAT_HOME/conf/server.xml, like this:

...
<!-- From $TOMCAT_HOME/conf/server.xml -->
<!-- Example Server Configuration File -->
<!-- Note that component elements are nested corresponding to their
 parent-child relationships with each other -->

<Server port=”8005” shutdown=”SHUTDOWN” debug=”0”>
...
 <!-- Because this Realm is here, an instance will be

shared globally
 <Realm className=”org.apache.catalina.realm.MemoryRealm” />

 -->
 <Realm className=”CustomRealm”/>
...
</Server>

Just inside the Server start tag, Tomcat specifies a default realm—
org.apache.catalina.realm.MemoryRealm—which is shared by all
contexts.3 To replace the default realm, comment out the default and insert your
own, as listed above.

Tomcat custom realms typically extend the Tomcat RealmBase abstract class,
which implements the Realm interface. RealmBase defines three abstract
methods that extensions must implement. Those methods are listed in Table 9-4.

3. Tomcat realms can also be specified for individual web applications.

Table 9-4 Tomcat 4.0 RealmBase Abstract Methods

Method Intent

boolean hasRole(Principal principal,
String role)

Returns true if a role is suitable for
a principal

String getPassword(String user) Returns a password associated with
a user

Principal getPrincipal(String user) Returns a principal associated with
a user

security.fm Page 267 Wednesday, May 2, 2001 2:32 PM

268 Advanced JavaServer Pages

The CustomRealm class referred to in the server.xml file listed above is listed
in Example 9-4.

Example 9-4 A Tomcat Custom Realm

import java.security.Principal;
import org.apache.catalina.realm.RealmBase;

public class CustomRealm extends RealmBase {
 public boolean hasRole(Principal principal, String role) {
 String name = principal.getName();

 if(name.equals(“tomcat”))
 return role.equals(“tomcat”);

 if(name.equals(“role1”))
 return role.equals(“role1”);

 if(name.equals(“both”))
 return role.equals(“tomcat”) || role.equals(“role1”);

 return false;
 }
 protected String getPassword(String username) {
 return “tomcat”;
 }
 protected Principal getPrincipal(String username) {
 return new CustomPrincipal(username);
 }
 class CustomPrincipal implements Principal {
 private final String name;

 public CustomPrincipal(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public String toString() {
 return getName();
 }
 }
}

The custom realm listed in Example 9-4 is designed to work with the default
entries from $TOMCAT_HOME/conf/tomcat-users.xml, which is listed in
Example 9-1.d on page 258. For example, hasRole returns true if the principal

security.fm Page 268 Wednesday, May 2, 2001 2:32 PM

9• Security 269

and role correspond to those specified in tomcat-users.xml. The
getPassword method returns tomcat, which is the password used for all of the
users defined in tomcat-users.xml. The getPrincipal method returns a
custom principal, which is a simple implementation of the
java.security.Principal interface.

Custom realms must be made available to Tomcat at startup, which requires that
custom realm classes reside in a JAR file in $TOMCAT_HOME/server. So, for the
example listed above to work, CustomRealm.java is compiled, yielding two
class files. Those class files are placed in a JAR file and copied to
$TOMCAT_HOME/server.

Note: The code in this section is based on a beta version of Tomcat 4.0, so that
code may need to be modified by the time you read this.

Web Application Security Elements
This section provides a reference to security elements from the Servlet 2.2
specification. A number of the examples in this chapter have illustrated the use of
most of these elements; for example, see Example 9-1.c on page 258.

Table 9-5 lists the elements contained within a security-constraint element,
which is the outermost security element in a deployment descriptor.

Web resource collections identify one or more protected resources, and
authorization constraints specify one or more roles that can access those
resources. User data constraints specify how data should be protected while in
transit.

Table 9-5 <security-constraint> Elements

Element Type1

1. + = one or more? = one, optional

Description

web-resource-collection + A subset of a web application’s resources to
which security constraints apply

auth-constraint ? Authorization constraints placed on one or
more web resource collections

user-data-constraint ? A specification of how data sent between a
client and a container should be protected

security.fm Page 269 Wednesday, May 2, 2001 2:32 PM

270 Advanced JavaServer Pages

Table 9-6 lists web resource collection elements.

Each web resource collection is associated with the name of a resource and an
optional description of that resource. One or more URL patterns are associated
with a resource name.

HTTP methods may also be associated with a web resource collection; for
example, if GET is specified as the HTTP method, the security constraint is only
enforced for GET requests. If no HTTP methods are specified, the corresponding
security constraint applies to all HTTP requests for the specified resources.

Table 9-7 lists authorization constraint elements.

Authorization constraints specify one or more roles that are allowed access to
protected resources. Optionally, those roles can be accompanied by a description.

Table 9-8 lists user data constraint elements.

User data constraints consist of a transport-guarantee and an optional
description. That guarantee can be either NONE, INTEGRAL, or CONFIDENTIAL. A
guarantee of NONE means there are no restrictions on the transport of data, and
INTEGRAL means the servlet container must ensure that data cannot be changed

Table 9-6 <web-resource-collection> Elements

Element Type1

1. 1 = one, required? = zero or more* = one or more

Description

web-resource-name 1 The name of a web resource

description ? A description of a web resource

url-pattern * A url pattern associated with a web resource

http-method ? An HTTP method associated with a web resource

Table 9-7 <auth-constraint> Elements

Element Type1

1. ? = zero or more* = one or more

Description

description ? A description of an authorization constraint

role-name * The role(s) to which a constraint applies

Table 9-8 <user-data-constraint> Elements

Element Type1

1. ? = zero or more 1 = one, required

Description

description ? A description of a user data constraint

transport-guarantee 1 NONE, INTEGRAL, or CONFIDENTIAL

security.fm Page 270 Wednesday, May 2, 2001 2:32 PM

9• Security 271

in transit. A value of CONFIDENTIAL means that the data cannot be read while in
transit.

The servlet specification does not specify how servlet containers should implement
transport guarantees; however, a value of INTEGRAL or CONFIDENTIAL typically
indicates a secure transport layer, such as SSL. Resin, for example, will only provide
access to confidential data if ServletRequest.isSecure returns true.4

Programmatic Authentication
The word programmatic here means implemented from scratch, which is a good
choice for authentication if you must have portability or if you want total control.
Because it’s more work than relying on your servlet container, programmatic
authentication can be a bad choice if you are not interested in those benefits.

Another drawback to programmatic authentication is that
HttpServletRequest.getUserPrincipal,
HttpServletRequest.getRemoteUser, and
HttpServletRequest.isUserInRole are rendered useless for applications
with programmatic authentication. Programmatic authentication requires you to
implement, and use, your own API because setting principals and roles is strictly
for servlet containers. See “Principals and Roles” on page 252 for more
information about setting principals and roles.

The rest of this section discusses an authentication mechanism implemented from
scratch; if you’re interested in something similar, you can use it for ideas or
perhaps as a starting point.

The authentication mechanism discussed in this section entails protecting JSP
pages with a custom tag, like this:

<!--A protected JSP page-->
...
<%@ taglib=’/WEB-INF/tlds/security’ prefix=’security’ %>
...
<!-- errorPage is optional; if unspecified, control goes back to

loginPage if login fails -->

<security:enforceLogin loginPage=’/login.jsp’
 errorPage=’/error.jsp’/>

<!--The rest of the file is accessed only if a user has logged
into this session -->

...

4. See page 465 for more information on the CONFIDENTIAL transport guarantee
and SSL.

security.fm Page 271 Wednesday, May 2, 2001 2:32 PM

272 Advanced JavaServer Pages

The enforceLogin tag looks for a user in session scope. If the user is in the
session, the tag does nothing; if not, the tag forwards to the login page. The login
page is specified with the loginPage attribute.

If login fails, control is forwarded to the error page. The errorPage attribute is
optional; without it, the login page is redisplayed if login fails.

When login succeeds, a user is created and placed in session scope, and the rest of
the page after the enforceLogin tag is evaluated.

Figure 9-5 provides a more visual representation of the sequence of events
initiated by the enforceLogin tag.

If no user is in session scope, three session attributes, listed in Table 9-9, are set by
the enforceLogin tag.

The attributes listed in Table 9-9 determine how the request is subsequently
handled; the first two correspond to the loginPage and errorPage attributes
of the enforceLogin tag, respectively. The protected-page attribute
represents the URI of the protected page.

Figure 9-5 Enforce Login Tag Sequence Diagram

security.fm Page 272 Wednesday, May 2, 2001 2:32 PM

9• Security 273

The login page submits the login form to a servlet. If that servlet authenticates the
username and password, it redirects the request to the protected page; otherwise,
it forwards to the error page, if specified, or back to the login page, if not.

Figure 9-6 shows an example that uses the programmatic authentication
discussed in this section.

Table 9-9 Session Attributes Set by the enforceLogin Tag

Attribute Name Description

login-page The enforceLogin tag forwards to this page if there’s no
user in the session. If login subsequently fails and no error
page is specified, control is returned to this page.

error-page An optional error page that’s displayed when login fails

protected-page The page with the enforceLogin tag; when login
succeeds, the rest of the page after that tag is evaluated.

Figure 9-6 Programmatic Authentication

security.fm Page 273 Wednesday, May 2, 2001 2:32 PM

274 Advanced JavaServer Pages

The top two pictures in Figure 9-6 show a failed login, and the bottom two show
subsequent success. Figure 9-7 shows the files involved in the application shown
in Figure 9-6.

The application maintains a makeshift database of users. That database is an
instance of LoginDB and users are User instances; those classes are listed in
Example 5-1.b on page 139 and Example 5-1.a on page 138, respectively. This
implementation of LoginDB adds a default user, as listed in Example 9-5.a.

Example 9-5.a /WEB-INF/classes/beans/LoginDB.java

// The User class is listed in Example 5-1.a on page 138.
...
public class LoginDB implements java.io.Serializable {

 private Vector users = new Vector();
 private User[] defaultUsers = {
 new User(“wtell”, “william”, “my first name”),
 };

Figure 9-7 Files for the Programmatic Authentication Example

JSP Java XML Tag Library Descriptor

When the login form in
this page is submitted,
this servlet is invoked

This page is protected by

at the top of the file
inclusion of this tag

security.fm Page 274 Wednesday, May 2, 2001 2:32 PM

9• Security 275

 public LoginDB() {
 for(int i=0; i < defaultUsers.length; ++i)
 users.add(defaultUsers[i]);
 }
 public void addUser(String uname, String pwd, String hint) {
 users.add(new User(uname, pwd, hint));
 }
 // The rest of this class is identical to LoginDB listed in
 // Example 5-1.b on page 139.
 ...
}

The application shown in Figure 9-6 has one protected page, listed in Example
9-5.b.

Example 9-5.b /protectedPage.jsp

<html><head><title>A Protected Page</title></head>
<%@ taglib uri=’security’ prefix=’security’ %>
</body>

<!-- Without the errorPage attribute, control is forwarded back
 to the login page if login fails. -->

<security:enforceLogin loginPage=’/login.jsp’
 errorPage=’/error.jsp’/>

<jsp:useBean id=’user’ type=’beans.User’ scope=’session’/>

This is a protected page. Welcome <%= user.getUserName() %>.

</body>
</html>

The protected page accesses the user in the session to display a welcome message.
The enforceLogin tag handler is listed in Example 9-5.c.

Example 9-5.c /WEB-INF/classes/tags/EnforceLoginTag.java

package tags;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.TagSupport;

public class EnforceLoginTag extends TagSupport {
 private String loginPage, errorPage;

security.fm Page 275 Wednesday, May 2, 2001 2:32 PM

276 Advanced JavaServer Pages

 public void setLoginPage(String loginPage) {
 this.loginPage = loginPage;
 }
 public void setErrorPage(String errorPage) {
 this.errorPage = errorPage;
 }
 public int doEndTag() throws JspException {
 HttpSession session = pageContext.getSession();
 HttpServletRequest req = (HttpServletRequest)pageContext.
 getRequest();
 String protectedPage = req.getRequestURI();

 if(session.getAttribute(“user”) == null) {
 session.setAttribute(“login-page”, loginPage);
 session.setAttribute(“error-page”, errorPage);
 session.setAttribute(“protected-page”, protectedPage);

 try {
 pageContext.forward(loginPage);
 return SKIP_PAGE;
 }
 catch(Exception ex) {
 throw new JspException(ex.getMessage());
 }
 }
 return EVAL_PAGE;
 }
 public void release() {
 loginPage = errorPage = null;
 }
}

If there’s a user in the session, the tag handler listed in Example 9-5.c returns
EVAL_PAGE and the rest of the page after the tag is evaluated. If the user is not in
the session, the attributes listed in Table 9-9 on page 273 are set and control is
forwarded to the login page.

The login page is listed in Example 9-5.d.

Example 9-5.d /login.jsp

<html><head><title>Login Page</title></head>
<%@ taglib uri=’/WEB-INF/tlds/security.tld’ prefix=’security’ %>
<body>

<security:showErrors/>

<p>Please Login<hr>
<form action=’<%= response.encodeURL(“authenticate”) %>’

security.fm Page 276 Wednesday, May 2, 2001 2:32 PM

9• Security 277

 method=’post’>
 <table>
 <tr>
 <td>Name:</td>
 <td><input type=’text’ name=’userName’/>
 </td>
 </tr><tr>
 <td>Password:</td>
 <td><input type=’password’ name=’password’ size=’8’></td>
 </tr>
 </table>

 <input type=’submit’ value=’login’>
</form></p>

Note: valid name is <i>wtell</i> and valid
password is <i>william</i>

</body>
</html>

The login form is submitted to the authenticate servlet, which generates error
messages in session scope if authentication fails. Those messages are displayed by
the security:showErrors tag at the top of the login page. The mappings
between the name authenticate and the authenticate servlet are specified in
web.xml, which is listed in Example 9-5.e.

Example 9-5.e /WEB-INF/web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
 “http://java.sun.com/j2ee/dtds/web-app_2.2.dtd”>

<web-app>
 <servlet>
 <servlet-name>authenticate</servlet-name>
 <servlet-class>AuthenticateServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>authenticate</servlet-name>
 <url-pattern>/authenticate</url-pattern>
 </servlet-mapping>

 <taglib>
 <taglib-uri>/WEB-INF/tlds/security.tld</taglib-uri>

security.fm Page 277 Wednesday, May 2, 2001 2:32 PM

278 Advanced JavaServer Pages

 <taglib-location>/WEB-INF/tlds/security.tld</taglib-location>
 </taglib>
</web-app>

Example 9-5.f lists the authenticate servlet.

Example 9-5.f /WEB-INF/classes/AuthenticateServlet.java

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import java.io.IOException;
import beans.LoginDB;
import beans.User;

public class AuthenticateServlet extends HttpServlet {
 private LoginDB loginDB;

 public void init(ServletConfig config) throws ServletException{
 super.init(config);
 loginDB = new LoginDB();
 }
 public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException {
 HttpSession session = req.getSession();
 String uname = req.getParameter(“userName”);
 String pwd = req.getParameter(“password”);
 User user = loginDB.getUser(uname, pwd);

 if(user != null) { // authorized
 String protectedPage = (String)session.
 getAttribute(“protected-page”);
 session.removeAttribute(“login-page”);
 session.removeAttribute(“error-page”);
 session.removeAttribute(“protected-page”);
 session.removeAttribute(“login-error”);

 session.setAttribute(“user”, user);
 res.sendRedirect(res.encodeURL(protectedPage));
 }
 else { // not authorized
 String loginPage = (String)session.
 getAttribute(“login-page”);
 String errorPage = (String)session.
 getAttribute(“error-page”);

security.fm Page 278 Wednesday, May 2, 2001 2:32 PM

9• Security 279

 String forwardTo = errorPage != null ? errorPage :
 loginPage;
 session.setAttribute(“login-error”,
 “Username and Password are not valid.”);

 getServletContext().getRequestDispatcher(
 res.encodeURL(forwardTo)).forward(req,res);
 }
 }
}

The authenticate servlet obtains the username and password from the request and
attempts to obtain a reference to a corresponding user in the login database. If the
user exists in the database, session attributes generated by the servlet and the
enforceLogin tag are removed from the session and the request is redirected to
the protected page. Figure 9-8 shows the sequence of events for a successful login.

Figure 9-8 Login Succeeds Sequence Diagram

security.fm Page 279 Wednesday, May 2, 2001 2:32 PM

280 Advanced JavaServer Pages

If the user is not in the login database, a login-error session attribute is set and
the request is forwarded to the error page, if specified, or back to the login page, if
not. Figure 9-9 shows the sequence of events for a failed login.

The error page for the application in Figure 9-6 on page 273 is listed in Example
9-5.g.

Example 9-5.g /error.jsp

<html><head><title>Login Error</title></head>
<%@ taglib uri=’/WEB-INF/tlds/security.tld’ prefix=’security’ %>
<body>

Login failed because:<p>
<security:showErrors/></p>

Click here to retry login.

</body>
</html>

Figure 9-9 Login Fails Sequence Diagram

security.fm Page 280 Wednesday, May 2, 2001 2:32 PM

9• Security 281

Like the login page, the error page uses the security:showErrors tag, whose
handler is listed in Example 9-5.h.

Example 9-5.h /WEB-INF/classes/tags/ShowErrorsTag.java

package tags;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.TagSupport;

public class ShowErrorsTag extends TagSupport {
 public int doStartTag() throws JspException {
 String error = (String)pageContext.getSession().
 getAttribute(“login-error”);
 if(error != null) {
 try {
 pageContext.getOut().print(error);
 }
 catch(java.io.IOException ex) {
 throw new JspException(ex.getMessage());
 }
 }
 return SKIP_BODY;
 }
}

The showErrors tag handler prints the value of the login-error session
attribute that was set by the authenticate servlet.

Conclusion
Security is an important aspect of applications that transport sensitive data over
the Internet. Because of this requirement, the servlet specification requires servlet
containers to provide implementations of basic and digest authentication, as
defined in the HTTP/1.1 specification. Additionally, servlet containers must
provide form-based security that allows developers to control the look and feel of
login screens. Finally, servlet containers may provide SSL and client certificate
authentication, although containers that are not J2EE compliant are not required
to do so.

Unlike other aspects of web applications implemented with JSP and the Java
programming language, security typically requires some nonportable code. If
portability is a high priority, you can implement security from scratch by using
JSP and servlets, as illustrated in “Programmatic Authentication” on page 271.

security.fm Page 281 Wednesday, May 2, 2001 2:32 PM

