
 

11

 

CHAPTER

 

2

 

Solaris Naming Services 

 

Architecture

 

The Solaris operating environment provides a sophisticated infrastructure that 
supports a variety of naming services. The architecture on which it is based is 
extensible and able to accommodate new naming services without the need for a 
rewrite of important operating system utilities that access naming services. The 
Solaris 8 LDAP naming service plugs into this architecture and is thus accessible to 
system utilities that formerly had only NIS, NIS+, and DNS available.

Reading this chapter is not an absolute requirement for deployment, but if you 
become familiar with some of the architectural nuances, you can better understand 
the deployment strategies presented in later chapters. Each naming service has its 
own unique characteristics which may dictate how you deploy them. Although the 
focus of this BluePrint is LDAP, it is helpful to understand the feature set of legacy 
Solaris naming services to see how this new technology compares.

 

Evolution of Solaris Naming Services

 

The UNIX operating system was developed to operate in a timesharing environment 
where users access the server via physically attached ASCII terminals. Users 
typically accessed only one server, so information about user accounts, group 
memberships, and so on, only needed to be maintained on that server. Storing that 
information in a text file worked quite well.

The Berkeley version of UNIX introduced the notion of distributed computing built 
on top of the TCP/IP protocol. Computers running the UNIX operating system 
could now easily communicate with one another. However, for things to work 
smoothly, information about users and other systems in the network needed to be 
maintained on each server. Storing this data in text files meant that any time 
something changed, the text files on every server needed to be updated.



 

12

 

Solaris and LDAP Naming Services

 

In 1985, Sun Microsystems produced NIS (Network Information Service), one of the 
first UNIX-based distributed naming service as a replacement for storing 
information in text files. The text files would be converted to binary maps that 
would only be stored on selected computers, called NIS servers, in the network. The 
other computers in the network would contact the NIS servers when they needed 
access to the information. 

However, some text files still needed to be maintained for two reasons: 1) some data 
was required during the booting process before access to the network was 
established and 2) there had to be a way to log in if the computer was disconnected 
from the network. Moreover, some mechanism was required so that the operating 
system utilities could search both text files and NIS, since NIS could not completely 
replace the text files.

The introduction of NIS presented a new system administration model, by which 
information was administered from a central repository and not all administrators 
were granted permission to update it. Since some users still wanted to be able to 
manage local accounts and system information, they needed some way to do this 
without administering of NIS maps.

 

NIS and Files Coexistence

 

To solve the problem of providing a centrally administered naming service while 
maintaining some local control, Sun’s first implementation of NIS searched the local 
files before the NIS naming service was consulted. A special character was inserted 
into the text files to tell the operating system when to start searching the NIS maps. 
Any line beginning with a “+” character was the signal to contact NIS. For example, 
the 

 

/etc/host

 

 file would look like this:

In this example, the 

 

/etc/hosts

 

 file would be searched for the specified host. If the 
host specified is not 

 

tiger

 

 or 

 

galaxy

 

, then the NIS host map is searched. If the host 
name does not appear in the NIS map either, an error is returned.

 

Note – 

 

The “+” character only has an effect when the Solaris 1 operating 
environment is running. It will have no effect if the Solaris 2 or later operating 

 

environment is running except when run in the Solaris 1 compatibility mode.

 

127.0.0.1 localhost

129.148.181.130 tiger

129.154.86.22 galaxy

+



 

Chapter 2 Solaris Naming Services Architecture

 

13

 

NIS and DNS Coexistence

 

About the same time that Sun introduced NIS, standards for a universal naming 
system were being defined in RFC 1034 and RFC 1035. Later, implementations of this 
specification called the Domain Naming System (DNS) began to appear, like the 
Solaris 

 

in.named

 

 program, which was derived from Berkeley Internet Name 
Demon (BIND), found in Berkeley UNIX. Although NIS worked well to store host 
names and IP addresses of computers within an organization, DNS could scale much 
better and gained industry-wide adoption.

Companies deploying NIS tended to store the host name and IP addresses of their 
Sun workstation and server networks in NIS maps, but used DNS to look up names 
of computers outside of the network. To enable the two naming services to 
interoperate, Sun added a DNS forwarding capability to the NIS server.

The way DNS forwarding works is that if a search is made in an NIS map that has 
this feature enabled, the search request is passed on to a DNS server for resolution if 
the host name is not found. To implement this idea, the 

 

hosts.byname

 

 and 

 

hosts.byaddr

 

 maps must have the 

 

YP_INTERDOMAIN

 

 key in them. Creation of 
this key requires a simple modification to the NIS 

 

Makefile

 

.

The alternative to enabling DNS forwarding is to include DNS as an option in the 

 

nsswitch.conf

 

 file which is described in the next section. It is not advisable to use 
both schemes together because redundant searches are performed if the name cannot 
be resolved, that is DNS will be searched twice.

 

Solaris Naming Service Switch

 

With the release of the Solaris 2 operating system, Sun introduced a new naming 
service called NIS+ and an infrastructure for managing the coexistence of multiple 
naming services. With NIS and DNS already widely deployed, and NIS+ added to 
the mix, some mechanism for easy interoperability was required. The DNS 
forwarding mechanism and “+” notation used in NIS maps were not easily 
extensible to new naming services like NIS+.

To support the switch, Sun programmers developed a new Application 
Programming Interface (API) that system utilities and other applications could use 
instead of talking directly to the naming service. Programs written to this API do not 
need to know the implementation details of the naming service they are accessing. 
The switch also gives the system administrator the flexibility to choose which 
naming services are consulted and in which order.



 

14

 

Solaris and LDAP Naming Services

 

Solaris Naming Service Switch Architecture

 

The main components that constitute the architecture are the Network Services 
libraries, the policy configuration file, and interfaces to the available naming 
services. A special tag identifies the location where the requested information is 
actually stored. As shown in 

 

FIGURE 2-1

 

 the available tags are files, 

 

nis

 

, 

 

nisplus

 

, 

 

dns

 

, 

 

compat

 

 (for 

 

passwd)

 

, with 

 

ldap

 

 added to the Solaris 8 operating 
environment.

 

FIGURE 2-1 

 

Naming Service Switch Functions

 

FIGURE 2-1

 

 shows the flow of information when an application calls the Network 
Services libraries. These library calls are in the form of 

 

get

 

X

 

by

 

Y

 

, for example, 

 

gethostbyname(),

 

 and are independent of any naming service. When the 
application makes the call, the library routine consults the 

 

nsswitch.conf

 

 file to 
determine which naming services to consult. The specified naming services are then 
searched in order until a match is found or a 

 

NOTFOUND

 

 error is returned.

 

nsswitch.conf

 

 File

 

The policies that determine which naming service sources are searched and in what 
order reside in the 

 

/etc/nsswitch.conf

 

 file. Sample configuration files that favor 
a particular naming service are provided with the Solaris operating environment in 
the 

 

/etc

 

 directory. These files are copied and automatically used as the 

 

nsswitch.conf

 

 file when a primary naming service is chosen during the Solaris 
installation process.

An example of the configuration files that favor 

 

nis

 

 follows.

getXbyY

Policies
Sources

files, nis, nisplus, dns, ldap

object value
Application

nsswitch.conf



 

Chapter 2 Solaris Naming Services Architecture

 

15

 

The objects for which search policies can be set appear on the left. The search order, 
or policy, appears to the right of the object. In the case of the 

 

passwd

 

 object, the local 

 

/etc/passwd

 

 file is checked first for the user’s name, and if the name is found, the 
password is returned. If the user’s name is not found in the 

 

/etc/passwd

 

 file, the 

 

nis

 

 

 

passwd

 

 map is searched.

The tag 

 

NOTFOUND=return

 

 is used to direct the switch to look only in the naming 
services listed to the left unless these services are not operational. In the sample file, 

 

files

 

 would only be consulted if 

 

nis

 

 is not responding. This tag speeds up search 
times by eliminating unnecessary searches and at the same time provides a backup if 
the primary naming service is down.

 

#
# /etc/nsswitch.nis:
#
# An example file that could be copied over to /etc/nsswitch.conf; it
# uses NIS (YP) in conjunction with files.
#
# "hosts:" and "services:" in this file are used only if the
# /etc/netconfig file has a "-" for nametoaddr_libs of "inet" transports.

# the following two lines obviate the "+" entry in /etc/passwd and /etc/
group.
passwd:     files nis
group:      files nis

# consult /etc "files" only if nis is down. 
hosts:      nis [NOTFOUND=return] files
ipnodes:    files

networks:   nis [NOTFOUND=return] files
protocols:  nis [NOTFOUND=return] files
rpc:        nis [NOTFOUND=return] files
ethers:     nis [NOTFOUND=return] files
netmasks:   nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey:  nis [NOTFOUND=return] files

netgroup:   nis

automount:  files nis
aliases:    files nis



 

16

 

Solaris and LDAP Naming Services

 

NIS Architecture Overview

 

Even though the first implementation of NIS appeared almost 15 years ago, NIS is 
still the most widely used Solaris naming service, and the basic architecture has not 
changed. This section looks at how NIS clients interoperate and how information is 
stored and updated in NIS.

 

NIS Client Server Architecture

 

Deployment of NIS consists of one or more servers and clients that access the 
servers. Clients and servers communicate with each other by the Remote Procedure 
Call (RPC) mechanism. NIS client and server implementations are available on many 
different platforms and can interoperate with one another.

 

FIGURE 2-2

 

 shows the major components of NIS.

 

FIGURE 2-2 

 

Major NIS Components

 

NIS uses a master-slave model by which all updates to NIS maps are performed on 
the master, then propagated to the slave servers. The propagation can be performed 
in either a push or pull manner, that is, either initiated by the master or by the client. 

The map transfer protocol was not designed to accommodate large maps. Instead of 
only propagating incremental changes, entire maps are transferred. Careful planning 
of scheduling policies for map transfers is advisable to prevent overloading of a 
network during peak time.

Master
Server

Slave
Server

 NIS Maps

NIS Clients

ypbind

ypbind

ypbind

ypbind

NIS Maps



 

Chapter 2 Solaris Naming Services Architecture

 

17

 

How NIS Clients Bind to the NIS Server

 

A system running the Solaris operating environment typically becomes an NIS client 
at installation, although it could be configured as one later. A client is only required 
to supply two pieces of information: 1) the domain name it is joining and 2) how to 
locate the NIS server(s). 

The domain name of the NIS client must exactly match the domain name of the NIS 
server to establish a connection. Unlike DNS domain names, NIS client names are 
case sensitive. A Solaris system can belong to both an NIS and a DNS domain. These 
domains could have the same or different names. The connection from client to 
server is referred to as 

 

binding

 

 which takes place at boot time. An NIS client can 
potentially bind to either an NIS master or an NIS slave server. There are two 
methods for locating a NIS server to bind to.

 

■

 

Broadcast method — Send out a broadcast message and bind to the first server 
that responds.

 

■

 

Specified Server method — Specify a server or list of servers to bind to.

The Broadcast method only works if there is an NIS server on the same subnet. The 
Specified Server method works regardless of where the NIS server resides.  ”NIS 
High Availability Architecture Features“ on page 19, discusses the pros and cons of 
using each method.

 

NIS Maps

 

NIS uses a flat namespace where a series of maps reside. Each NIS domain contains 
its own set of maps. There is no relationship between maps or between NIS 
domains. The maps contain a pair of entries: the first is the keyword and the second 
is the value retrieved. 

 

TABLE 2-1 and TABLE 2-2 show examples of two different NIS 
maps.

TABLE 2-1 hosts.byname

Keyword Value

tulip 192.9.200.1

geranium 192.9.200.2

sunflower 192.9.200.3

marigold 192.9.200.4



18 Solaris and LDAP Naming Services

In the preceding examples, the two maps contain the same information, but in 
different order. This ordering is necessary so a search can be performed both on a 
host name and an IP address. So that the two maps do not get out of sync, they are 
automatically created together whenever the map data is updated.

Creating NIS Maps

NIS maps are converted from text files to a binary dbm file by the makedbm 
command as shown in FIGURE 2-3.

FIGURE 2-3 Creation of NIS Maps

In FIGURE 2-3 the source, or master, for the NIS maps is contained in text files shown 
on the left. The best practice is to create a copy of one of these files and only edit the 
copy. These files should be stored in a secure area and backed up frequently.

Once the source files have been created, the makedbm command is used to generate 
the new maps. To make things easier to administer a default, Makefile, is provided 
to perform the makedbm operation for the standard NIS maps. 

TABLE 2-2 hosts.byaddr

Keyword Value

192.9.200.1 tulip

192.9.200.2 geranium

192.9.200.3 sunflower

192.9.200.4 marigold

 

 
passwd.byuid

hosts.byname

hosts.byaddr

 

passwd.byname

makedbm

hosts

passwd

NIS Master



Chapter 2 Solaris Naming Services Architecture 19

Note – Updates to NIS maps are always performed on the NIS master server that 
owns the map.

Although it is possible to have NIS maps owned by different masters within a 
domain, joint ownership is not advisable. In this scenario, an NIS server could act as 
a master to some maps and as a slave to others. Keeping track of which server is 
master to which maps could be an administrative nightmare, so it is best to make 
one server master of all the maps.

NIS High Availability Architecture Features
The main high availability feature of NIS is master-slave data replication. All 
updates are performed on the master, then propagated to the slaves. If one of the 
NIS servers fails, an NIS client can bind to another one. However, if the master NIS 
fails, no updates can occur until it comes back online or another NIS master is 
created. This may seem like a severe restriction, but in practice the information 
stored in NIS maps is relatively static, so a few hours of downtime is usually 
acceptable.

How the NIS client handles the failover from one NIS server to another is 
determined by the method it uses to bind to its NIS server. FIGURE 2-4 and FIGURE 2-5 
illustrate how NIS client failover is handled with both the Broadcast and Specified 
Server methods.

FIGURE 2-4 NIS Client Failover with the Broadcast Method

ybind

Broadcast Method
OK

NIS1NIS2
Client



20 Solaris and LDAP Naming Services

FIGURE 2-5 NIS Client Failover with the Specified Server Method

In the Broadcast method, the NIS client sends out a broadcast to locate an NIS server 
in the domain of which it is a member. The client then binds to the first server that 
responds to the broadcast. If the NIS server to which the NIS client binds to fails, 
then the next time an NIS look up is performed, the operation will time out and the 
client will issue another ypbind broadcast.

In the Specified Server method, the NIS client maintains a list of potential NIS 
servers. When the client boots, it attempts to bind to the first server in the list. If that 
server is unavailable, then the client attempts to bind to the next server in the list 
and so on. The downside of this method is that the time-out period can be lengthy, 
which gives the impression that the service is down.

A form of load balancing can be achieved with the Broadcast method since the least 
busy NIS server will respond to the clients ypbind request. The disadvantage is that 
multiple NIS servers must reside on each subnet. 

NIS+ Architecture Overview
Sun introduced NIS+ as part of the Solaris 2 operating environment as a replacement 
for NIS. Several deficiencies in NIS were addressed in the NIS+ architecture. These 
included:

■ Lack of hierarchal namespace
■ Weak authentication
■ No incremental updates between master and slaves

At the time NIS was developed, Sun’s major business focus was the technical 
computing market. A typical network of Sun systems consisted of a couple of 
servers and maybe 20-30 workstations that were used by engineers working on the 
same design project. Verifying the authenticity of a NIS client was not an issue since 
networks were small and everyone knew who was attached to it. 

ybind  Specified Server Method

NIS1NIS2
Client

NIS1

NIS2 Server List



Chapter 2 Solaris Naming Services Architecture 21

Because not many companies were wired end to end, the number of names stored in 
NIS maps was limited and there was little interaction with groups in different 
locations. A flat namespace, where one NIS domain is not related to another, was 
sufficient, and since the number of NIS map entries was relatively small, 
propagating whole maps from master to slave servers was not a major problem.

However, as Sun moved into corporate data centers and companies began creating 
wide area networks (WANs), networks became larger and the need for a more 
scalable business-wide naming service became obvious. 

NIS+ Client Server Architecture
The architecture of NIS+ is similar to that of NIS in that both naming services 
employ a master server, in which updates are made, and slave servers or replicas, in 
which a mirror of the data contained on the master is maintained. However, the 
similarity ends there.

NIS+ supports two types of masters: 

■ Root domain master
■ Subdomain master

The root master, as the name suggests, acts as the top node in the hierarchal tree. 
Below the root masters are subdomain masters with other subdomain masters below 
them. At each level, replica servers can exist to provide redundancy for that section 
of the tree.

Note – An interesting feature of NIS+ is that the subdomain master is actually a 
client to the master above it, with the exception of the root master. The ramification 
of this is that NIS+ must be deployed in a top-down fashion since the domain above 
it must be configured before a subdomain master is configured.

Propagation of changes from master to replicas is different from NIS. Instead of 
pushing an entire map when changes are made, NIS+ propagates only the 
incremental changes. FIGURE 2-6 shows the NIS+ architecture.



22 Solaris and LDAP Naming Services

FIGURE 2-6 NIS+ Architecture

How NIS+ Clients Bind to the NIS+ Server
Unlike NIS, which does not authenticate its clients, NIS+ implements the notion of 
credentials. Two types of credentials exist in the NIS+ world: 

■ User credentials
■ Workstation credentials

The process of creating credentials is quite complex and is beyond the scope of this 
book. Essentially, the process creates a private/public key pair and stores it in a 
secure area. During authentication only the public key is passed between the sender 
and the receiver. Data encrypted with one’s private key can be decrypted with one’s 
public key.

Unlike NIS client requests, NIS+ servers perform authentication to see who is 
sending the request, then authorize that user to perform specific types of access such 
as read, write, or modify. To gain access to the NIS+ tables, users must provide their 
credentials, that is in the form of UID@domainname. The exchange of credentials is 
protected by public and private key encryption. If the user is logged in as root, then 
additional credentials that identify the workstation must also be provided.

FIGURE 2-7 summarizes the NIS+ security process.

root master

subdomain subdomain replica

replica

replica

replica

subdomainsubdomain



Chapter 2 Solaris Naming Services Architecture 23

FIGURE 2-7 NIS+ Security Process

As shown in FIGURE 2-7, the following steps take place:

1. The client sends a request for access to the namespace along with its credentials. 

2. The server authenticates the client’s request by examining the sender’s 
credentials. 

3. The server examines the object’s definition to determine access rights granted to 
the sender, or principal, as it is called. 

4. The server then determines the class of principal: Owner, Group, World, or 
Nobody. 

5. The server determines access rights granted to the principal’s class.

6. If the access rights granted to the principal’s class match the type of operation, the 
operation is performed.

NIS+ Tables
NIS+ stores information in tables that have a column-entry structure rather than the 
key-value structure of NIS maps. A client can access information not just by a key, 
but by any column that is searchable. This approach eliminates the need to create 
maps that have duplicate information. 

request/credentials

Object

owner
group
world
nobody

read
modify
create
destroy

NIS+
Server

NIS+ Client



24 Solaris and LDAP Naming Services

The NIS+ tables in TABLE 2-3 come preconfigured and can be populated with the 
information shown.

NIS+ Interaction with DNS
Unlike NIS, NIS+ has no automatic forwarding feature. To forward requests from 
NIS+ to DNS, the Naming Service Switch on the client must be configured to search 
DNS for hosts resolution.

Note – If an NIS+ server is run in NIS compatibility mode, the Naming Service 
Switch on the NIS+ server needs to be configured to search DNS.

TABLE 2-3 NIS+ Tables

Table Name Information Contained

Hosts Network address and host name of workstations in the domain

Bootparams Location of the root, swap, and dump partition of diskless 
client in the domain

Passwd User account information for or about every user in the domain

Cred Credentials for principals who belong to the domain

Group The group password, group ID, and members of every UNIX 
group in the domain

Netgroup Netgroups to which workstations and users in the domain 
belong

Mail_Aliases Information about the mail aliases of users in the domain

Timezone Time zone of every workstation in the domain

Networks Networks in the domain and their canonical names

Netmasks Networks in the domain and their associated netmasks

Ethers Ethernet address of every workstation in the domain

Services Names of IP services used in the domain and their port 
numbers

Protocols List of IP protocols used in the domain

RPC RPC program numbers for RPC services available in the 
domain

Auto_Home Location of all users’ home directories in the domain

Auto_Master Automounter map information



Chapter 2 Solaris Naming Services Architecture 25

NIS+ High Availability Architecture Features
The availability architecture for NIS+ is similar to that of NIS, but with the following 
key differences:

■ Initialization of NIS+ clients
■ Propagation of updates from master to replicas
■ Format of mastered data

Unlike NIS clients, which do not require any authentication, NIS+ clients must 
present credentials to gain access to the service. These credentials are stored in the 
client’s home domain. NIS+ can be initialized with one of three methods:

■ Broadcast
■ Specified Server
■ Cold Start File

The Broadcast and Specified Server methods are similar to what NIS clients do. The 
Cold Start File method provides a file to a client that contains information about 
how to locate directory objects and also provides a set of credentials. This is the 
preferred method since it provides additional security. Only a trusted server can 
provide a Cold Start File.

Instead of pushing entire maps no matter how many changes are made, NIS+ 
masters only push out incremental changes. These changes are batched, then pushed 
out. The result is that the replicas are more likely to be in sync. Also, a transaction 
log keeps track of changes in case of a system failure before they can be pushed out. 

Unlike NIS where the mastered data is kept in text files, NIS+ keeps mastered data 
in a binary format. This means that not only do these files need to be backed up, 
they also need to be checked periodically for corruption.

Solaris DNS Architecture Overview
The Domain Name System was created to solve the problem of locating computers 
on ARPANET, the forerunner of the Internet. As more and more systems were 
added, resolving hosts names to IP addresses by means of text files became 
unworkable. Large hosts files had to be maintained and propagated to every 
system in the network. Today, DNS is a requirement for access to the Internet.



26 Solaris and LDAP Naming Services

DNS Client Architecture
Solaris system utilities that access DNS do so by using the resolver on the client. The 
resolver is actually a set of library routines that perform various types of queries. 
These queries get information about the location of the DNS servers by looking in 
the /etc/resolv.conf file. The following shows the format of this file:

As you can see, more than one DNS server can be specified. In normal operation the 
resolver tries to contact the first server in the list. If contact cannot be established, 
the second server is tried, then the third. The current limit in the Solaris operating 
environment is three.

DNS Server Architecture
DNS supports a hierarchal namespace and replica or caching servers. The 
namespace is separated into zones that can have primary and secondary servers. 
Primary servers act as masters from which information is updated and then pushed 
out to the secondary servers. 

The Berkeley Internet Name Domain (BIND) is the name server (named) that runs 
on a designated host in your organization. Since there are different features that 
are available in different versions, it is helpful to know what version you are 
running. TABLE 2-4 correlates the BIND version with the Solaris operating 
environment that it appears in.

domainname mydomain.com
nameserver IPaddr1
nameserver IPaddr2
nameserver IPaddr3

TABLE 2-4 Solaris Versions of BIND

Solaris OE Version BIND Version

SunOS 4.x 4.8.1

SunOS 2.0-2.5 4.8.3

SunOS 2.6 4.9.4-P1

SunOS 5.7 8.1.2

SunOS 5.8 8.1.2



Chapter 2 Solaris Naming Services Architecture 27

DNS High Availability Features
DNS provides features for making itself more available and also features for making 
applications more available. Caching servers, which contain the same information 
and are synchronized, can be configured. Multiple IP addresses can be listed for a 
specific host name in a DNS record. Each time a request is made for that host, the 
next IP address in the list is handed out. This technique is often referred to as round 
robin; it is useful when a DNS client is provided with the address of an application 
server that is not operational because, with the round robin technique, the client will 
try again and get a different address.

DNS servers can be clustered to provide automatic failover of master servers, 
although this feature is not part of the architecture. With this technology, updates to 
DNS records can still be performed in case the master DNS server fails.

LDAP Architecture Overview
The Lightweight Directory Access Protocol (LDAP) is the newest addition to the list 
of Solaris naming services. Although included in the Solaris 8 release, it is an 
optional naming service that can coexist with legacy Solaris naming services. LDAP 
shares some characteristics with NIS and NIS+, but it is more sophisticated in the 
way data is structured and the methods used to access data.

LDAP’s complex architecture is easier to explain if we divide it into the four models 
it supports and describe each model separately, as we do in the following sections. 
The four models are:

1. Information Model

2. Naming Model

3. Functional Model

4. Security Model

Each of these models are discussed in the following sections.

LDAP Information Model
The LDAP information model defines how entries in the directory are organized in 
the directory. Entries are arranged in a tree-like structure called the Directory 
Information Tree (DIT). At the top of the DIT is the directory root, which is identified 



28 Solaris and LDAP Naming Services

by the server name and port number on which the directory service is running. 
Multiple instances of the directory service can be running on the same server with 
each instance having its own DIT.

Below the directory root is the directory suffix, of which there may be several per 
DIT. Suffixes can be expressed as an organization (o=) or as an Internet style domain 
component (dc=). The LDAP predecessor, X.500, dictated a specific format which 
included a country, locality, and organization. These names were registered to avoid 
duplication. Since LDAP does not enforce the same stringent naming rules as X.500 
any organization name can be specified. The domain-based format typically mirrors 
a company’s DNS domain address and is expressed as domain component (dc) 
entries. Since most companies have a registered DNS name which ensures 
uniqueness, this format essentially replaces the old X.500 style format.

FIGURE 2-8 is an example of a DIT:

FIGURE 2-8 Sample Directory Information Tree

Located below the suffix are organization unit (ou) entries. These entries can nested, 
so an ou can contain other organization units. The name chosen for an ou only needs 
to be unique at the level at which it resides. You can use the same ou in a different 
portion of the DIT without creating a conflict. An ou entry called ou=People is 
created during the default iPlanet Directory Server installation; this entry is the 
default location for storing user account information, but any ou can be used for that 
purpose.

If you have multiple directory servers in a network, they can be linked by LDAP 
referrals. A referral is a mechanism that instructs an LDAP client searching the 
directory to continue the search on another directory server. The referral 

 

ou=Engineering

cn=Ann Toy

Directory Root

dc=sun,dc=com

ou=Sales

cn=Joe Buck cn=Ted Sanders

ou=Corporate



Chapter 2 Solaris Naming Services Architecture 29

accomplishes this instruction by passing a uniform resource locator (URL) back to 
the client. Once the client receives the URL, it can access the specified directory 
server.

Overall, the topology of the directory resembles that of a Solaris file system. It is a 
hierarchal structure which has containers (ou entries) where directory entries reside. 
Referrals are similar to NFS mount points in concept, though implemented 
differently. Unlike the naming convention of a file system, that of an LDAP directory 
is quite different and the entries stored are much more complex than those in Solaris 
files.

LDAP Naming Model
Understanding the LDAP naming model is key to knowing how to configure and 
administer native Solaris LDAP. Most Solaris administrators are unfamiliar with this 
model and often are tripped up by some of the naming conventions. While the 
LDAP naming model may seem cryptic at first, keep in mind the goals of LDAP. It is 
designed to be flexible, but at the same time to provide a structure so that LDAP 
clients can access data in any LDAP-compliant directory.

Before a client can access data in a directory it must know how to locate that data. 
Unlike a Solaris file system where a search can always be initiated from the root file 
system (/), LDAP begins a search by specifying one specific entry, such as 
dc=blueprints, dc=com, as a search base. The entry name is specified as a 
distinguished name (DN) which is a series of relative distinguished names (RDNs). 
Each directory server contains a single root directory specific entry (DSE) which 
contains basic information about the LDAP server. The DSE is specified during base 
level searches on a directory when you do not know the name of a particular suffix.

As previously mentioned, each entry is identified by its DN. The DN is similar to a 
Solaris file system pathname, but is specified in the reverse order. However, for 
directory entries, unlike files, it is the value of their attributes which make each entry 
unique. To understand the role of attributes, a discussion on the structure of 
directory entries is useful.

Directory Objects and Attributes

The structure of a directory entry is defined by the object class to which it belongs. 
An object class defines a set of attributes that can be stored in a directory entry. 
LDAP object classes are extensible by creation of a new class that is a child of an 
existing one. All the attributes defined in the parent class are inherited by the child. 
The name of an object class must be unique within the directory server and can be 
registered as a standard LDAP object. These objects are assigned a numeric object 
identifier (OID) to ensure they will not conflict with another object class.



30 Solaris and LDAP Naming Services

Attribute names are unique within the directory server and can be contained in more 
than one object class. The type of data that can be stored in an attribute is well-
defined, as is the way LDAP searches treat the data. For example, data stored in a 
string can either be case sensitive or not. If the data is not case sensitive any 
combination of upper and lowercase characters in a string results in a match. If the 
data is case sensitive, an exact match is required. Attributes can also contain more 
than one value and can have aliases.

To promote interoperation, a set of standard LDAP object classes and attributes have 
been defined. Definitions of these ship with most LDAP servers in the form of 
schema configuration files. If they do not exist on a server, you can add the content of 
these schema files to your LDAP configuration files. For example, to use native 
LDAP, you need to add extra object classes and attributes to the iPlanet Directory 
Server configuration files, as discussed in Chapter 5, ”Solaris 8 Native LDAP 
Configuration.”

Directory Schema

The information specified in a directory schema includes the object class name, 
required and allowed attributes, an optional OID number, and the allowable 
syntax. TABLE 2-5 shows the schema definition for the posixAccount object class 
attributes that stores Solaris user account information.

In this example, cn is a case-insensitive string that can contain multiple values. The 
gidNumber and uidNumber are integers, and homePhone is represented by a 
special data type used for telephone numbers. Note that the LDAP uid, which is a 
string, is not the same as the numeric Solaris UID, which is represented by the LDAP 

TABLE 2-5 posixAccount Attributes

Attribute Description Syntax

cn(commonName) Common Name of the POSIX account cis (1-many)

gidNumber Unique integer identifying group 
membership

int (single)

homePhone The entry’s home phone number tel

uid(userID) The user’s login name cis, 1

uidNumber An integer uniquely identifying a user int

description A human-readable description of the object. cis

gecos GECOS comment field cis

loginShell Path to the login shell ces (single)

userPassword Entry’s password and encryption method bin, 1



Chapter 2 Solaris Naming Services Architecture 31

attribute uidNumber. A complete description of all iPlanet Directory Server schema 
definitions can be found under documentation on the iPlanet Web site: 
iplanet.com. 

Distinguished Names

Recall that a directory entry is identified by its DN, which is similar to a file system 
path name. However, entries are composed of many attributes, some of which are 
the same as other entries. To distinguish between entries that may have the same 
values for some attributes, one attribute is usually singled out as being unique. For 
user account entries defined in the posixAccount object class, that attribute is uid. 
To prevent duplicate values being used, the iPlanet Directory Server is configured by 
default to enforce uid attribute uniqueness. Entries that do not have a uid attribute 
are typically identified by the commonName (cn) attribute, which is available in most 
object classes, but is not required by all object classes such as organization (o) and 
organization unit (ou). 

The form of a DN is:

attribute=value,container,suffix

where there may be multiple containers depending on the DIT topology. An example 
of a DN for an user account is:

cn=Cathy Miller,ou=People,dc=blueprints,dc=com

The RDN specifies the left-most portion of the DN, which uniquely identifies the 
entry relative to its parent. For example:

cn=Cathy Miller

In this case, cn=Cathy Miller has to be unique within the ou=People container.

LDAP Functional Model
Clients needing to access data on an LDAP server must begin by performing a bind 
operation. The bind operation requires, at a minimum, the DN of the user account 
entry the client wishes to bind as. If the entry has a password, then it is passed along 
with the DN. Alternatively, the client can perform an anonymous bind, which does 
not require a particular user name or password.

The type of authentication the directory server requires is specified as part of the 
bind request. The default is simple authentication, which compares the password 
sent with the password stored for the specified DN. Other authentication methods 
such as secure socket layer (SSL), CRAM-MD5, or Kerberos can be invoked instead 
by addition of another parameter to the bind operation call.



32 Solaris and LDAP Naming Services

If the bind operation is successful, the client is considered authenticated. All 
subsequent client requests made on the connection established as a result of the bind 
are performed as the authenticated user. After the LDAP client requests are 
complete, an unbind operation is performed to release the connection. Chapter 5, 
”Solaris 8 Native LDAP Configuration” describes how the Solaris LDAP client 
binds to an LDAP server.

Note – If an LDAP bind operation is made with a DN, with no password, the bind 
is successful, but is considered an anonymous bind.

LDAP Security Model
Access to LDAP entries on the server is protected by the rights established for the 
authenticated user. The rights can be assigned at the container, object, or attribute 
level. A portion of the DIT can be assigned stricter (or looser) control than other 
parts of the DIT. All entries of the same object class type can be assigned the same 
control. Control can also be established at the attribute level to protect certain 
information. For example, an employee’s password might have restricted access, 
while other information is available to everyone.

The mechanism used to assign access rights is called the access control instruction 
(ACI). A single ACI can protect the entire DIT, or several can be used to provide 
finer-grained protection. When multiple ACIs are created, the ACIs specifying deny 
access takes precedence. For example, if access is granted to everyone at the top level 
of the DIT but denied access to ou=Contractors, then the permissions set for 
ou=Contractors is enforced.

Note – ACIs are not defined in the LDAP v3 standard. Currently, each LDAP 
directory implementation has its own representation of ACIs.

Chapter 9, ”Preventive Maintenance” discusses how ACIs are created and 
provides a more in-depth explanation of how they work. Establishing the correct 
ACI is critical to configuring the iPlanet Directory Server to support native 
Solaris LDAP, so Chapter 5, ”Solaris 8 Native LDAP Configuration” provides 
examples. Note that the ACI syntax is not part of the LDAP specification, so the 
examples are specific to the iPlanet Directory Server implementation.



Chapter 2 Solaris Naming Services Architecture 33

LDAP Replication
Replication is the mechanism by which directory data is automatically copied from 
one directory server to another. Using replication, you can copy anything from entire 
directory trees to individual directory entries between servers. Beside providing 
high data availability, some additional benefits include:

■ Higher performance — By replicating directory entries to a location close to your 
users, you can vastly improve directory response times.

■ Load balancing — By replicating your directory tree across multiple servers, you 
can reduce the access time load on any given machine, thereby improving server 
response time. 

■ Local data management — Replication allows you to own data locally and share 
it with other directory servers across your company. 

To understand how replication works, you must first understand the roles LDAP 
servers play. To begin, every directory object must be mastered by one and only one 
directory server. The mastering directory server is called the Supplier server because 
it supplies the objects to other servers. Servers that receive directory objects from 
supplier servers are called Consumer servers. 

Note – Any given directory server can be both a supplier of directory objects as well 
as a consumer of objects supplied to it from other servers. In future releases of 
iPlanet Directory Server, multi-master replication is supported which allows 
directory data to be updated by more than one server.

A Supplier server is responsible for the following:

■ Managing any requests for changes to the replicated directory data. That is, 
whenever a request to add, delete, or change an entry in a replicated tree is 
received by a Consumer server, the request is referred to the Supplier server 
where the request is actually performed.

■ Tracking the changes to the objects that it masters so that those changes can be 
replicated to Consumer servers.

You can configure the Supplier server to initiate replication, or you can configure 
your Consumer server(s) to initiate the replication process.

Consumer servers contain at least one directory entry that has been copied to it by a 
supplier server. Consumer servers can contain the following:

■ The Supplier server’s entire tree.
■ A subsection, or subtree, of the Supplier server’s directory tree.

Only read operations occur on the Consumer server. All other operations are 
handled on the Supplier server. Whenever an LDAP client tries to modify entries in 
a replicated tree, the Consumer server automatically refers the LDAP client’s request 
to the supplying server.



34 Solaris and LDAP Naming Services

FIGURE 2-9 and FIGURE 2-10 are examples of replication configurations:

FIGURE 2-9 Full Tree Replication

FIGURE 2-10 Subtree Replication

You choose which form of synchronization is used for each replication agreement. 
Replication synchronization can be initiated by either the Supplier or the Consumer 
server. A replication agreement indicates which directory entries will be replicated, 
which servers are participating in the replication, and when the replication can 
occur.

To decide on a synchronization method, follow these guidelines:

■ If you want your consumer servers to be updated instantly, use Supplier-initiated 
replication.

■ If you are using a dial-up connection to update your Consumer servers, use 
Consumer-initiated replication.

ou=people ou=groups
dc=blueprints, dc=com

ou=people ou=groups

Consumer

dc=blueprints, dc=com

Supplier

dc=blueprints,dc=com

ou=people ou=groups
ou=groups

dc=blueprints,dc=com



Chapter 2 Solaris Naming Services Architecture 35

Comparison with Legacy Naming 
Services
Naming, or directory, services technology has evolved with the rise of network 
computing as the central concept of information technology. Host-based naming 
services, such as DNS, are widely deployed and have provided a key component of 
the network infrastructure in place today. Desktop LAN-based naming services like 
NIS have enjoyed much success in Solaris and UNIX environments but have not 
been widely accepted outside of these environments. Standards-based LDAP 
directories are starting to gain wide acceptance and look to be the backbone of 
corporate directory infrastructures in the future.

With so many Solaris naming services available, it is not always easy to keep the 
differences straight. To help you out, TABLE 2-6 summarizes the key features found in 
each of the naming services discussed in this chapter.

Hierarchal Directory Information Base (DIB) — The ability to organize the name 
space in a layered, tree-like structure.

Dynamic Updates — The ability to add, modify, and delete information in the name 
space and have those changes be immediately visible to users of the service.

Distributed Directory Information Base (DIB) — The ability to service the 
namespace from multiple nodes on the network.

Dynamic Replication — The ability to dynamically propagate changes made to the 
DIB to other nodes that serve the DIB.

Extensible Directory Information Base — The ability to dynamically expand the 
type of information stored as part of the namespace.

TABLE 2-6 Naming Service Feature Comparison

Naming 
Service

Hierarchal 
DIB

Dynamic 
Updates

Distributed 
DIB

Dynamic 
Replication

Extensible 
DIB

NIS

NIS+ X X X X

DNS X X X X

LDAP X X X X X



36 Solaris and LDAP Naming Services


