

xxv

Introduction

A few years back your author attended a dress rehearsal of the Houston Grand Opera’s
production of Richard Wagner’s

Lohengrin

. I was part of an audience of maybe five
people in Houston’s great opera theater, the Wortham, and it was as though the entire
production were being put on for me personally. It was wonderfully impressive.

During one of the more spectacular scene changes, where it takes about thirty min-
utes for our hero to arrive on stage in a boat pulled by swans (figuratively speaking, at
least—the swans weren’t real), I started thinking about what I was seeing. In addition
to the dozen or so leads, there were seventy-five choristers. The orchestra in the pit had
over one hundred players. There had to be close to fifty technicians about—stage crew,
lighting engineers, the guy who ran the sur-title machine, etc.—not counting the set
designers and builders, the makeup people, the costumers, and so forth. And then
there was the Houston Grand Opera administration. Altogether, nearly three hundred
people were working together to produce one of the most spectacular pieces of stage
work I had ever seen.

In our industry, we’re lucky if we can get three people to cooperate. Why is that?

The secret to

Lohengrin

 is, of course, Richard Wagner. Some 150 years ago he con-
ceived this opera and documented it to a high degree of detail. Most significantly, he
produced the score and the libretto. Every actor, every chorister, and every musician has
a script to follow. The set designer, to be sure, has some latitude. In this case Adrianne
Lobel based the sets on the surrealist works of René Magritte. This certainly gave the
stage a distinctive appearance. But even the stage crew, who have less direct guidance
from Wagner, have tasks that follow both from the set designs and the actions on stage.

What we so often are missing in our business is the score.

Requirements analysis

 is the process of creating a score for a systems effort. What is
the objective of the effort? What are its components? Who should do what? Absent the
score, each person does what seems appropriate, given a particular view of things. The
result is neither coordinated nor integrated and often simply does not work. It certainly
does not last 150 years.

Introduction.fm Page xxv Thursday, July 18, 2002 9:14 AM

Prentice Hall PTR
This is a sample chapter of Requirements Analysis: From Business Views to Architecture
ISBN: 0-13-028228-6

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

xxvi

I

NTRODUCTION

Back in the old days, programmers simply wrote programs to perform specific tasks.
If you knew what the task was, you could write the program. Improvisation was fine
back then. Programming was more like a jazz concert than an opera. Now, however, we
are building systems to become part of the infrastructure of an organization. We cannot
build them without understanding the nature of that infrastructure and what role the
systems will play in it. You cannot construct an opera without a score.

There is an unfortunate tendency in our industry to respond to the various pressures
of system development by short-circuiting the analysis process. We don’t sit down
before creating a system to decide what it will look like and, by implication, how we
will get there. It’s not that we don’t know how. It’s just that multiple, conflicting
demands often force us to take shortcuts and skip the specification step.

This invariably costs us more later. We clearly do not produce the systems equivalent
of great opera.

One main problem with short-circuiting the analysis process is that it leads to unnec-
essarily complex systems. It is important to understand that, while simple systems are
much

easier to build

 than complex ones, simple systems are

much

harder

to design

.

You have to be able to

see

 the underlying simplicity of the problem. This is not easy.

Analysis of requirements should be done by people who are able to focus on the

nature

 of a business and what the business needs by way of information. It should

not

be done by people immersed in the technology they assume will be used for solving
whatever problems are discovered.

Consider, for example, the following poem:

Un petit d’un petit
S’etonne aux Halles
Un petit d’un petit
Ah! desgrés te fallent
Indolent qui ne sort cesse
Indolent qui ne se mène
Qu’importe un petit d’un petit
Tout Gai de Reguennes.

—Luis d’Antin van Rooten

Mots d’Heures: Gousse, Rames

 [Beer, 1979, p. 301]

If you know French, you will find this impossible to read. It looks like French. It has
all the structures of French. But it is completely wrong! It makes no sense. (“A little of a
little astonishes itself at Halles”?) On the other hand, if you don’t know French but
have a friend who does, ask that person to read it aloud. If you listen very carefully
with a non-French ear, you will figure out what it really is.

1

1. . . . and if you can’t, there’s a hint at the end of this Introduction.

Introduction.fm Page xxvi Thursday, July 18, 2002 9:14 AM

Introduction xxvii

The point is, your ability to see the problem depends entirely on your perspective.
No matter how hard you study it, if you come at it from the wrong direction, you sim-
ply will not see what is in front of you.

The techniques described in this book will show you how to look at problems from a
different direction in order to see the true nature of an enterprise and, with that, its
requirements for new systems. Then you can design systems that, as part of the infra-
structure of that enterprise, truly support it rather than adding yet another burden to
its operation.

About Requirements Analysis

How do we capture what is required of a new software product? How do we do so
completely enough that the requirement will last at least until the product is com-
pleted, if not longer?

In 1993, after spending over half a billion dollars on it, the London Stock Exchange
scrapped its “Taurus” project (intended to control the “Transfer and AUtomated Regis-
tration of Uncertified Stock”). It had been Europe’s biggest new software undertaking.
What went wrong?

The problem was failure to do an adequate analysis of requirements. Requirements
for the project were not clearly defined, and they were changed constantly by the myr-
iad of players in the project. “Share registrars, anxious to protect their jobs, demanded a
redesign of the system to mimic today’s paper-shuffling. Scrapping share certificates
called for 200 pages of new regulations. Computer security, with all messages
encrypted, went over the top. Companies’ insistence on the ‘name on register’ princi-
ple, which allows them to identify their shareholders instantly, made design harder.
And so on.” [

Economist,

“When the bull turned”, 1993, p. 81]

The Economist

, in an essay accompanying the story of the crash, discusses the reasons
projects fail. “Software’s intangibility makes it easy to think that the stuff has a Protean
adaptability to changing needs. This brings with it a temptation to make things up as
you go along, rather than starting with a proper design. [Even] if a proper design is there
to begin with, it often gets changed for the worse half-way through. . . . Engineers in
metal or plastic know better than to keep fiddling – and so should software engineers.

“The fact that software ‘devices’ can have flexibility designed into them should not
mislead anyone into the belief that the design process itself can be one of endless revi-
sion

“Successful software projects require two things: customers who can explain what
sort of job needs doing, and engineers who can deliver a device that will do the job at a

Introduction.fm Page xxvii Thursday, July 18, 2002 9:14 AM

xxviii

I

NTRODUCTION

price that makes doing the job worthwhile. Lacking either, engineers must be honest
enough to say that they are stymied.” [

Economist,

“All fall down”, 1993, p. 89]

This book is about understanding an organization well enough to determine “what
sort of job needs doing”. This requires several things:

• A close relationship with the project’s customers—ideally via a project cham-
pion

• Effective project management

• A known and understood set of steps

Our first requirement is for development of a special sort of relationship with our
customers, as well as skill in knowing how to capture and represent what we are told.

The second requirement, effective project management, means nothing other than
assuring that you have chosen the most capable project manager available.

The third requirement is a clearly defined set of steps. This is where this book is
especially helpful. Chapter 2 describes the steps required for success, and the remain-
ing chapters describe the work to be done during those steps.

What is this company (or government agency)?

2

 What is it about? How does it
work? If we are to create a system significant enough to affect its infrastructure, we’d
better know something about that infrastructure. This means that defining require-
ments for an enterprise begins by describing the enterprise itself. This book is primarily
a compendium of techniques to do just that.

History

There are numerous ways to describe an enterprise: data models, data flow diagrams,
state/transition diagrams, and so forth. Many people have been working for many
years to develop the techniques we use today.

Structured Techniques

In the mid-1970s Ed Yourdon and Larry Constantine wrote their seminal book,

Struc-
tured Design

,

3

 which for the first time laid out coherent criteria for the modular con-
struction of programs. It presented the

structure chart

4

 and described what makes one
modular structure effective and another not so effective.

2. Everything said about requirements analysis in this book applies equally to the public and the private sec-
tor. For this reason the word most commonly used will be “enterprise”, meaning either a company or a
government agency.

3. All of the works cited in this book are listed in the Bibliography. For this reason, and to minimize clutter,
annotations will be given only for direct quotations, listing the page number of the quotation.

4. All specialized terms introduced in this book are shown in boldfaced italic and are defined again in the
Glossary.

Introduction.fm Page xxviii Thursday, July 18, 2002 9:14 AM

Introduction xxix

Mr. Yourdon next collected around himself a number of other talented people who
themselves contributed greatly to the body of system development knowledge. Among
others, these included Tom DeMarco, Chris Gane, and Trish Sarson. In 1978, Mr.
DeMarco wrote

Structured Analysis and System Specification

, and a year later, Ms. Sarson
and Mr. Gane wrote

Structured Systems Analysis: Tools and Techniques

. Both books
described the

data flow diagram

 (albeit with different notations) as a technique for rep-
resenting the flow of data through an organization. Later, in their book

Essential Systems
Analysis,

 Stephen McMenamin and John Palmer refined the data flow diagram tech-
nique with a formal way of arriving at the essential activities in a business.

Together with structured design these techniques became the industry standard for
describing information systems, although their use was limited by lack of tools for pro-
ducing the diagrams. Only those souls deeply dedicated to the principle of disciplined
system development were willing to prepare the diagrams by hand. And once they
were complete, these diagrams couldn’t be changed. They had to be re-drawn if cir-
cumstances changed.

The first CASE (computer-aided systems engineering) tools appeared in about 1980,
making the diagramming much easier to carry out and therefore more accessible to
more people. Even so, it was clear that by organizing our efforts around the activities of
a business, we were vulnerable to the fact that business processes often change. While
the use of good structured design techniques made programs more

adaptive

 to change, it
was clear that it would be nice for them to

accommodate

 change better in the first place.

Information Engineering

In 1970 Dr. E. H. Codd published “A Relational Model of Data for Large Shared Data
Banks”, defining the relational model for organizing data. While the technology for tak-
ing advantage of his ideas would not be practical for another fifteen years, he planted
the seed that there was a way to understand and organize data which was far superior
to any that had gone before. The process of

normalization

 is a profound way to under-
stand the true nature of a body of data. It provides a set of rules for assuring that each
piece of information is understood once and only once, in terms of the one thing that it
describes. Databases organized around this principle can now keep data redundancy to
an absolute minimum. In such databases, moreover, it is now possible easily to deter-
mine where each datum belongs.

From this came Peter Chen’s work in 1976, “The Entity-Relationship Model:
Towards a Unified View of Data”, in which he was the first to describe the

entity/rela-
tionship model

 (a kind of

data model

). Here you had a drawing that represented not
the

flow

 of information through an organization, but its

structure

.

Inspired by his work, Clive Finkelstein created a notation derived from Mr. Chen’s
and went on to create what he called

information engineering

, which recognized that

Introduction.fm Page xxix Thursday, July 18, 2002 9:14 AM

xxx

I

NTRODUCTION

data structure was much more stable than data flows when it came to forming the foun-
dation for computer systems.

5

 He also recognized that the process of building systems
had to begin with the strategic plans of the enterprise and had to include detailed anal-
ysis of the requirements for information. Only after taking these two steps was it appro-
priate for a system designer to bring specific technologies into play.

Mr. Finkelstein collaborated with James Martin to create the first publication about
information engineering in 1981. This was the Savant Institute’s

Technical Report

, “Infor-
mation Engineering”. Mr. Martin then popularized information engineering through-
out the 1980s. With the appearance of viable relational database management systems
and better CASE tools, information engineering, with its orientation toward data in
systems analysis and design, became the standard for the industry by the end of the
decade.

Object orientation

As these things were going on in the methodology field, object-oriented programming
was developing. Whereas programs originally tended to be organized around the pro-
cesses they performed, the real-time systems and simulation languages developed in
the 1960s revealed that organizing these programs instead around the data they manip-
ulated made them more efficient and easier to develop.

All data described “objects”, so identifying objects and defining the data describing
those objects provided a more robust program structure. In the late 1970s Messrs. Your-
don’s and Constantine’s ideas about modularization also contributed to this approach
to program architecture.

As business programs became more and more oriented toward “windows” or screen
displays, it became clear that they shared many characteristics with real-time systems,
so the object-oriented approach fit there as well.

In 1988 Sally Shlaer and Stephen J. Mellor brought the concepts underlying object-
oriented programming together with information engineering and its data-centric
approach to system architecture. In their 1988 book,

Object-oriented Systems Analysis:
Modeling the World in Data

, they renamed entity/relationship diagrams “object models”
and created their own notation for them. Thus, for the first time, a

data model

 could be
either an

entity/relationship model

or an

object model.

 Then in 1991 James Rumbaugh
and his colleagues followed with

Object-oriented Modeling and Design

, again referring to
object modeling but adding their own notation. In 1990 Ed Yourdon and Peter Coad
added their object-modeling notation in

Object-oriented Analysis

. Other books added yet
more notation schemes.

5. Indeed, in the years that followed, “computer systems” were gradually replaced by “information sys-
tems”—in the popular language at least.

Introduction.fm Page xxx Thursday, July 18, 2002 9:14 AM

Introduction xxxi

Then, in 1997, the first version of the

Unified Modeling Language

 (“

the UML

”) was
published by the Object Management Group. It was intended to replace all of the object
modeling notation schemes with a single technique for entity/object modeling. This
was brought about through the collaboration of James Rumbaugh, Grady Booch, and
Ivar Jacobson, but it was in fact based on the work of David Embley, Barry Kurtz, and
Scott Woodfield (

Object-oriented Systems Analysis: A Model-Driven Approach

, first pub-
lished in 1992). The UML has since been the basis for yet more books on the subject of
object-oriented modeling.

Note that this “object-oriented analysis” is not significantly different from informa-
tion engineering. Both are concerned with entities and entity types that are “things of
significance to the enterprise” (called “objects” and “object classes” by the object-ori-
ented community). That is, both view systems development from a data-centric point
of view.

What is new in object-oriented modeling is the combination of entity/relationship
models and behavioral models. In the object-oriented world, each object class (entity
type) has defined for it a set of activities that it can “do”. This made more sense, how-
ever, in the world of object-oriented programming, where the object and the behavior
were both bits of program code. The activities of an enterprise are often far more com-
plex than can be described on an entity-type by entity-type basis. The idea is not unrea-
sonable, but it cannot readily be done with a kind of pseudocode typically associated
with object classes. Behavior of entities in analysis is better described with a technique
called “entity life histories”. (See Chapter 7.)

From Analysis to Design

It is important not to confuse requirements analysis with system design. Analysis is con-
cerned solely with what some call the

problem space

 or the

universe of discourse

: What
is the nature of the enterprise and how does it use information? Design, in the

solution
space

, is the specific application of particular technology to address that enterprise.

In other words, analysis is concerned with

what

 is to be done, not

how

 to do it.

The models developed during analysis must be technologically neutral—models
that describe the business without regard for the technology that may be used to
address them. This allows the designers to come up with solutions that otherwise
might not have occurred to them when the project started.

There is a common tendency for designers, when they are analyzing requirements,
to construct the analysis results in terms of a particular technology that they wanted to
apply before they started. They go into the effort with preconceptions of what the solu-

Introduction.fm Page xxxi Thursday, July 18, 2002 9:14 AM

xxxii

I

NTRODUCTION

tion space is going to look like, so they seek out problems they already know how to
solve.

6

The “object-oriented analysis” referred to above is an example of this. The idea here is
that analysis should be conducted with the understanding that the solution will proba-
bly be a set of object-oriented programs, so the models should be biased to reflect that.

In my view this is wrong. I take this position, you should understand, in the face of
considerable opposition. Martin Fowler, for example, in the October 1999 issue of

Dis-
tributed Computing

 [Fowler, 1999, pp. 40–41] argues for merging analysis and design. He
begins by asserting that, however it is done, an analysis model is an artifact constructed
by the modeler. “We try to abstract, and thus simplify our analysis models, yet such
abstractions are

constructed—

you can’t really say they are

in the world

. Can we, should
we, be passive describers when we analyze? And if we are not, are we really doing
design rather than analysis?”

Of course it is true that analysis is all about constructing artifacts. The whole point of
this book is to describe the artifacts analysts create as they move from the business
experts’ views of things to what will here be called “the architect’s view”. That is, the
analyst will indeed construct artifacts, but the purpose of these artifacts is to describe
the fundamental structures and concepts behind the world that the business people see.
This is not the business owner’s view, and it is not the designer’s view, either. The
architect’s view is of structures and concepts without regard for technology. To move
from the architect’s view to the designer’s view will require a second translation.

Mr. Fowler recognizes this and points out that there is then a cost associated with
transforming a technologically neutral analysis description of the business “to the tech-
nology we eventually build with, and if we want to keep the analysis picture up to date
we will pay an ongoing cost”. This is true, just as there was a cost to translating the
business owners’ views into the architects’ views in the first place. But the benefit of
making the steps

explicit

 is that the process can be better monitored and controlled.The
position taken in this book is that the translations are well worth their costs.

If a programmer speaks to a business expert and then turns around and produces a
system, he or she has just done those two translations—unconsciously. The problem is
that no one is in a position to evaluate the quality of either translation. There has been
no publication of either the business owners’ views or the architect’s views. If (dare it
be said?) errors were made in either or both translations, they will not be evident until
the final product is created.

Imagine, for example, an analyst who looked at an airline with the assumption that
any new system would be concerned with issuing paper tickets. That analyst would
completely miss the opportunity to issue electronic tickets instead. (Indeed that ana-

6. This is an example of the old maxim, “When all you have is a hammer, every problem looks like a nail.”

Introduction.fm Page xxxii Thursday, July 18, 2002 9:14 AM

Introduction xxxiii

lyst’s client would be left in the dust when its competitors did just that.) The analyst,
however, who recognized that the problem was getting passengers on the plane—not
the issuance of tickets—would be in a much better position to help the client lead the
way into the new marketplace.

What is the cost of the wrong system? What is the cost of a system that is built of
technology that becomes obsolete quickly? What is the cost of myriad systems that
don’t communicate with each other very well? These costs should be considered when
evaluating the costs of analyzing requirements first.

Mr. Fowler goes on: “My view is that the key to the usefulness of an analysis model
is that it’s a communication medium between the software experts and the business
experts. The software experts need to understand what the model means in terms of
building software, and the business experts need to understand that the business pro-
cess is properly described so the software experts are understanding the right thing.”

In this he is absolutely correct. But that is precisely the point of organizing our efforts
around a framework that recognizes differences among the perspectives of the various
players. These perspectives must be addressed, and the two translations to get from the
business experts’ views to the designer’s view must be made explicit. For the transla-
tions to reside only in the heads of programmers is very dangerous indeed.

The models used during analysis, then, are different from the models that will be
used in design. On the data side, for example, entity/relationship models or business-
object models must be translated into table designs or computer-object classes. In pro-
cessing, a business data flow diagram or function hierarchy chart must be translated
into one or more program structure charts—and so forth. In both cases, the translation
may be straightforward, but even if it is not, there must be a translation. The points of
view are very different.

About This Book

This book addresses requirements analysis in terms of two different conceptual struc-
tures:

•

The System Development Life Cycle

:

 the set of steps required to build and
implement a system

•

The Architecture Framework

:

the perspectives of the players in the develop-
ment process, and the things they will see from those perspectives

Introduction.fm Page xxxiii Thursday, July 18, 2002 9:14 AM

xxxiv

I

NTRODUCTION

System Development Life Cycle

Many methodologies are organized around the “system development life cycle”—the
set of steps required to develop systems. The names vary, but in principle the steps are
these:

•

Strategy

:

 The view of the enterprise as a whole. What is the overall systems-
development effort going to look like? What are the overall things of signifi-
cance to a business? What parts of the business should be addressed with new
information systems? What priorities apply to those things?

•

Requirements Analysis

:

 The detailed examination of a particular area of the
business. In that area, what are the fundamental, underlying structures, what
are the information-processing gaps, and what kinds of information technol-
ogy might address these? What data are required, when, and where, for each
function to be performed? What roles perform each function, and why? What
constraints are in effect?

•

Design

:

The application of technology to address the gaps identified during the
requirements analysis phase. Here, for example, the data structures become
database designs or object classes and the function definitions become program
specifications. At this point, in the interest of defining the behavior of a pro-
spective system, attention is also paid to the human interface.

•

Construction

:

 The actual building of the system.

•

Transition

:

 The implementation of the system to make it part of the new infra-
structure of the organization. This involves education, training, definition of
new organizational structures and roles, and the conversion of existing data.

•

Production

:

 The ongoing monitoring of the system to make sure that it contin-
ues to meet the needs of the organization.

In terms of the system development life cycle, then, this book is concerned with the

analysis

 phase of this process, along with descriptions of that phase’s relationship with
strategy on one side and design on the other.

Architecture Framework

In 1987 John Zachman published his ideas about the structure of the body of informa-
tion that constitutes the systems development effort. In his “Framework for an Infor-
mation Systems Architecture”, he made two important observations about the system
development life cycle:

• First, rather than the “phases” or “steps” in the effort, he is interested in the

per-
spective

 of each set of players in the development process. It is as important, he
asserts, to recognize that systems are developed by distinct groups with differ-
ent points of view as it is to see the movement of systems from one step to

Introduction.fm Page xxxiv Thursday, July 18, 2002 9:14 AM

Introduction xxxv

another. These views correspond approximately, but not exactly, to system-
development life-cycle phases.

• Second, he addresses more than data and functions. He establishes a matrix
that encompasses, for each perspective, not only data and function but also
location, people, time, and motivation.

The framework for system architecture, then, is a matrix of rows and columns,
where the rows are the different perspectives and the columns are the things to be
viewed from each perspective.

The framework is described in more detail in Chapter 1. Briefly, the perspectives are
the following:

• The first is the

 planner’s view

, which is of the enterprise as a whole. This also
defines the boundaries of specific projects to be undertaken as well as the rela-
tionships among them.

• The

business owner’s view

 is that held by the people who run the business,
with their particular jargon and technology.

• Row Three is the

architect’s view

.

7

 The architect attempts to understand the
fundamental underlying structures of the business. These structures will be the
basis for any new systems-development effort.

• The

 designer’s view

 is the first one concerned with the technology of new sys-
tems. The designer looks at the structures the architect describes and the infor-
mation requirements they imply, and he applies his knowledge of technology
to design new systems.

• The

builder’s view

 is the perspective of the person actually dealing with the
nuts and bolts of designing the system.

• The final view is that of the

production system—

that is, the view of the new
world created by the system analysts, designers, and builders.

The columns in the matrix represent what is seen from each perspective. Mr. Zach-
man began with

data

, activities, and locations. Then, with John Sowa in 1992, the frus-
trated journalism student in him recognized that he had addressed only three of the
journalistic interrogatives: what, how, and where. There were three more: people and
organizations (who), timing (when), and motivation (including business rules) (why).

It turns out that the entire body of knowledge currently available in the information-
processing world fits into the cells of this matrix. It also turns out that the most passion-
ate arguments occur because different people are viewing things from different per-
spectives. In the data column, the designer is interested in the design of a database,
while the architect is trying to build a conceptual model of the business data. The busi-

7. As will be discussed in Chapter 1, the terminology used here varies somewhat from that used by Mr.
Zachman. For example, he calls the third row “the information system designer’s view”.

Introduction.fm Page xxxv Thursday, July 18, 2002 9:14 AM

xxxvi INTRODUCTION

ness owner, on the other hand, is concerned with the tangible things that come up
every day. If they all understand the differences in perspective, they can translate. The
people who argue most violently are those who do not recognize these differences in
perspective.

The Framework and Requirements Analysis
In terms of this framework, then, requirements analysis can be seen as the process of
translating the business owners’ views of an enterprise into an architect’s view that can
be the basis for future systems development. That is, the models and techniques in this
book will be concerned with describing what actually happens in a business and with
the inherent structures that underlie what happens.

The book will cover all the columns of the framework. Many methodologies address
only activities, data, and sometimes timing, but most do not address network locations,
people and organizations, or business rules. All of those will be covered here.

 By the way, “Un petit . . .” when read in French, sounds a lot like “Humpty . . .”

Introduction.fm Page xxxvi Thursday, July 18, 2002 9:14 AM

