
203

C H A P T E R 7

Miscellaneous Tools

n addition to the standard development tools used in software develop-
ment projects, many other utilities are also helpful. Most of the time

these utilities are not directly related to the software development process
but are used as helping aids. This chapter provides an introduction to
some of these utilities that are extremely helpful in the software develop-
ment process. Some of the more common uses of these utilities are pre-
sented and readers are encouraged to experiment with them. If properly
utilized, they may save time and increase productivity.

The indent utility is helpful in implementing a common programming
style scheme to all source code files in a project. The sed utility is useful
for searching and replacing text across multiple files. The diff command
is used to display difference between two or more files. The cscope and
cbrowser are used to locate symbols in a software source code tree.
The strace and ltrace utilities are useful to find out system and
library calls when a program is executed. GNU binary utilities are a set of
utilities that is often used for different needs. Information about GNU util-
ities is presented in this chapter as well.

I

CH07.fm Page 203 Monday, October 7, 2002 9:12 PM

204 Chapter 7 • Miscellaneous Tools

7.1 Using indent Utility

One major objective of every software development project is that the code be well organized,
structured and easy to understand for other members of the team. Proper indentation plays an
important role in achieving these objectives. Most of the editors used in software development
can do automatic indentation if they are configured to do so. The Emacs editor is the best exam-
ple as it understands different programming languages and does indentation according to lan-
guage rules and style. However you can come across code written by others that is poorly
indented and you may like to re-indent it according to your own requirements or preferences. In
large software development projects, you may try to enforce a particular coding style, but be
assured that not everyone will follow it. The indent program is your tool to handle the situa-
tion and reformat all files in the project according to the style adopted for the project. You can do
it by creating a script that goes into each directory of the project and reformats all files. In this
section we shall explore some of its features and how to utilize it.

By default, the indent program uses the GNU style of coding and applies these rules to
input files. It creates a backup file with original contents of the file. The reformatted file is cre-
ated with the same name. The backup file ends with a tilde character ~. Note that the same
scheme of creating backup files is used by the Emacs editor.

Let us see how indent works. We will take a poorly indented file and apply the indent
program to it. Following is a listing of the poorly indented file hello.c.

 1 /**************************************
 2 * hello.c
 3 *
 4 * This file is used to demonstrate use
 5 * of indent utility
 6 *************************************/
 7 #include <stdio.h>
 8
 9 main () {
 10 char string[25] ;
 11 printf ("Enter a string of characters : ") ;
 12 scanf ("%s", string);
 13 printf ("The entered string is : %s\n ", string);
 14 }

Line numbers are added to the listing using the “cat –n hello.c” command to
explain changes. They are not part of the hello.c file. To properly indent the file hello.c,
the following command is executed:

indent hello.c

The resulting hello.c file is shown below. Note how the indent program has modi-
fied the file. Lines 10 to 14 are indented to two characters (depending upon default settings).

CH07.fm Page 204 Monday, October 7, 2002 9:12 PM

Using indent Utility 205

 1 /**************************************
 2 * hello.c
 3 *
 4 * This file is used to demonstrate use
 5 * of indent utility
 6 *************************************/
 7 #include <stdio.h>
 8
 9 main ()
 10 {
 11 char string[25];
 12 printf ("Enter a string of characters : ");
 13 scanf ("%s", string);
 14 printf ("The entered string is : %s\n ", string);
 15 }

However line 6 is still not properly indented. By default the indent program does not
modify comment lines.

To find out which version of the indent program you are using, use the following com-
mand.

[root@boota ftp-dir]# indent --version
GNU indent 2.2.6
[root@boota ftp-dir]#

7.1.1 Getting Started with Indent

The indent program may be used as a command or as a pipe. In the command mode, the
program has a general format as shown below:

indent [options] [input filename] [-o output filename]

The following two lines show the simplest use of the indent program. It takes
hello.c as input file and creates hello.c as output file and hello.c~ as backup file.

[root@boota indent]# indent hello.c
[root@boota indent]#

If you want to create an output file with a different name without modifying the original
file, you can use the –o option with indent. When multiple input files are specified,
indent reformats each file and creates a backup file for each input file. Wild card characters
can also be used with indent so that you can indent all C source code files with the
“indent *.c” command.

The output of another command can also be piped into the indent command. The fol-
lowing command does the same thing as indent hello.c but writes the output on STDOUT
instead of writing it to a file.

cat hello.c | indent

CH07.fm Page 205 Monday, October 7, 2002 9:12 PM

206 Chapter 7 • Miscellaneous Tools

This is sometimes useful if you just want to test the behavior of indent without modify-
ing a file.

The most efficient use of indent is through a shell script that goes into each directory of
the source code tree and indents each and every file in the project. You may also create a rule in
the makefile of a project to indent all files in one or all directories. A typical makefile rule may
look like the following:

indent:
 indent *.c
 indent *.cpp
 indent *.h

In the case of a project with multiple subdirectories, you can have a more sophisticated
rule. Taking an example from Chapter 4, where we have four subdirectories, you can use the fol-
lowing rule to go into each directory and indent all C source code files.

SUBDIRS = $(COMDIR) $(FTPDIR) $(TFTPDIR) $(DNSDIR)
indent:
 for i in $(SUBDIRS) ; do \
 (cd $$i ; indent *.c) ; \
 done

Keep in mind that after indenting all of the files, you may have to build the whole project
because source code files have been modified. In big projects this process may take a while.

Indent uses a configuration file called .indent.pro, which should be present in the
current directory or in your home directory. You can use this file to set options that you always
use. If the file is present in the current directory, it is used instead of the file in the home direc-
tory of the user. By creating a different .indent.pro file in different directories of a project,
you can apply different indentation rules in different directories. This is especially useful when a
project uses multiple languages. For example, indentation rules may be different for C, C++ and
assembly language files.

7.1.2 Selecting Coding Styles

Different coding styles are in use by programmers. Some common styles are defined in
indent program and these may be invoked by a single option at the command line. The most
common style of coding in the open source is the GNU style. This style can be applied using –gnu
option at the command line. Options, which are used with the GNU style, are listed below:

-nbad

-bap

-nbc

-bbo

-bl

-bli2

CH07.fm Page 206 Monday, October 7, 2002 9:12 PM

Using indent Utility 207

-bls

-ncdb

-nce

-cp1

-cs

-di2

-ndj

-nfc1

-nfca

-hnl

-i2

-ip5

-lp

-pcs

-nprs

-psl

-saf

-sai

-saw

-nsc

-nsob

A list of all the options and their meanings are presented later in this chapter. You can
override a particular option in a style by explicitly typing it on the command line.

The other commonly used style is Kernighan and Ritchie style, also known as K&R style.
This style is applied using the –kr option at the command line and it sets the following options.

-nbad

-bap

-bbo

-nbc

-br

-brs

-c33

-cd33

CH07.fm Page 207 Monday, October 7, 2002 9:12 PM

208 Chapter 7 • Miscellaneous Tools

-ncdb

-ce

-ci4

-cli0

-cp33

-cs

-d0

-di1

-nfc1

-nfca

-hnl

-i4

-ip0

-l75

-lp

-npcs

-nprs

-npsl

-saf

-sai

-saw

-nsc

-nsob

-nss

Again, you can override some of these options by specifying them on the command line.
The Berkley style is used by –orig option at the command line and it sets the following

options.

-nbad

-nbap

-bbo

-bc

-br

-brs

CH07.fm Page 208 Monday, October 7, 2002 9:12 PM

Using indent Utility 209

-c33

-cd33

-cdb

-ce

-ci4

-cli0

-cp33

-di16

-fc1

-fca

-hnl

-i4

-ip4

-l75

-lp

-npcs

-nprs

-psl

-saf

-sai

-saw

-sc

-nsob

-nss

-ts8

7.1.3 Blank Lines and Comments

Blank lines can be used in the source code files to add clarity. The indent program
allows you to add or remove blank lines from the source code files. Most commonly used
options to handle blank lines are as follows:

-bad This option adds a blank line after declarations.

-bap This option is used to add a blank line after a procedure body. Using this option
will create a blank line after each function.

CH07.fm Page 209 Monday, October 7, 2002 9:12 PM

210 Chapter 7 • Miscellaneous Tools

By adding n in the start of these options, their effect may be reversed. For example, the
-nbad option will not add any blank line after declaration.

7.1.4 Formatting Braces

People have different tastes about how braces should be formatted in C language. Using
indent you can specify different ways of formatting braces. Let us consider a poorly formatted
piece of C source code and see different ways of formatting it. The input segment of source code
is shown below:

if (counter > 0)

{

counter-- ;

printf ("Counter value is: %d \n");

}

else

{

printf("Counter reached zero. Resetting counter\n");

counter = 100;

}

The default indentation of this segment of code is shown below. This is the default GNU
indentation when you use no command line switches with indent.

if (counter > 0)

 {

 counter--;

 printf ("Counter value is: %d \n");

 }

else

 {

 printf ("Counter reached zero. Resetting counter\n");

 counter = 100;

 }

-bbb This option is used to add a blank line before a boxed comment. An example of a
boxed comment is shown below.

/**************************************
 * hello.c
 *
 * This file is used to demonstrate use
 * of indent utility
 *************************************/

-sob This option is used to remove unnecessary blank lines from the source code.

CH07.fm Page 210 Monday, October 7, 2002 9:12 PM

Using indent Utility 211

Among other things, note that indent has placed a space after the second printf func-
tion call. This is the default style of putting braces in C code. Since the GNU formatting style is
used with GNU indent by default, and it uses the –bl option, the result is as shown above. To
put the starting brace on the same line, you can use the –br command line switch and the result
is as follows:

if (counter > 0) {
 counter--;
 printf ("Counter value is: %d \n");
}
else {
 printf ("Counter reached zero. Resetting counter\n");
 counter = 100;
}

Other forms of indent can be used with different statements. See the manual pages of
indent for a detailed list of all options.

7.1.5 Formatting Declarations

You can tell indent to handle the variable declarations in other ways by using different
options to separate the declaration lines from other code. The most common method is to
place a blank line after the declaration’s end. As an example, if you use the –bad option
(blank line after declarations), indent will place a blank line wherever it finds end of the
declaration part. In the previous example of hello.c program, the result of using this option
will be as follows:

 1 /**************************************
 2 * hello.c
 3 *
 4 * This file is used to demonstrate use
 5 * of indent utility
 6 *************************************/
 7 #include <stdio.h>
 8
 9 main ()
 10 {
 11 char string[25];
 12
 13 printf ("Enter a string of characters : ");
 14 scanf ("%s", string);
 15 printf ("The entered string is : %s\n ", string);
 16 }

Note that line number 12 is inserted into the file. You can also use the –di option with
indent to align an identifier to a particular column. For example, using –di8 will align all
identifiers to column number 8. Consider the following two lines in a C source code file.

CH07.fm Page 211 Monday, October 7, 2002 9:12 PM

212 Chapter 7 • Miscellaneous Tools

int i;
char c;
long boota ;

After using indent with –di8 option, the output will be as follows:

int i;
char c;
long boota;

You can also force creation of a new line for each identifier, using the –bc option. Con-
sider the following code segment:

int i, j, k;
char c;
long boota ;

After using the “indent –di8 –bc” command on these three lines, the result will be
as follows:

int i,
 j,
 k;
char c;
long boota;

In addition to these common methods, there are other ways to arrange identifiers in decla-
ration sections.

7.1.6 Breaking Long Lines

Long lines can be broken using indent at a defined length. The –l option controls this
behavior. Consider the following line of code:

printf ("This is example of a long line.");

This line is 43 characters long. If we set the line limit to 40 characters using –l40 com-
mand line option, the line will be broken as follows:

printf
 ("This is example of a long line.");

Lines with conditional operators may be broken more intelligently. Consider the following
if statement:

if(((counter == 100) && (color == RED)) || (string[0] == 'S'))

Using options “–l30 –bbo” (break before Boolean operator) will be as follows:

if (((counter == 100)
 && (color == RED))
 || (string[0] == 'S'))

CH07.fm Page 212 Monday, October 7, 2002 9:12 PM

Using indent Utility 213

Using the –nbbo option results in the following output.

if (((counter == 100) &&
 (color == RED)) ||
 (string[0] == 'S'))

The indent utility may also be used to handle new line characters in a special way using
the –hnl option. You are encouraged to experiment with this option.

7.1.7 Summary of Options

Options with the indent program can be used in two ways: the long way that starts with
two hyphen characters and the short way that starts with a single hyphen character. Options used
with the indent command are listed below. These are taken from the manual page of the
indent command. The long method also describes the meaning of an option.

 -bc --blank-lines-after-commas
 -bad --blank-lines-after-declarations
 -bap --blank-lines-after-procedures
 -bbb --blank-lines-before-block-comments
 -bl --braces-after-if-line
 -bli --brace-indent
 -bls --braces-after-struct-decl-line
 -br --braces-on-if-line
 -brs --braces-on-struct-decl-line
 -nbbo --break-after-boolean-operator
 -bbo --break-before-boolean-operator
 -bfda --break-function-decl-args
 -clin --case-indentation
 -cbin --case-brace-indentation
 -cdb --comment-delimiters-on-blank-lines
 -cn --comment-indentation
 -cin --continuation-indentation
 -lp --continue-at-parentheses
 -cdw --cuddle-do-while
 -ce --cuddle-else
 -cdn --declaration-comment-column
 -din --declaration-indentation
 -nbfda --dont-break-function-decl-args
 -npsl --dont-break-procedure-type
 -ncdw --dont-cuddle-do-while
 -nce --dont-cuddle-else
 -nfca --dont-format-comments
 -nfc1 --dont-format-first-column-comments
 -nlp --dont-line-up-parentheses
 -nss --dont-space-special-semicolon
 -nsc --dont-star-comments
 -cpn --else-endif-column

CH07.fm Page 213 Monday, October 7, 2002 9:12 PM

214 Chapter 7 • Miscellaneous Tools

 -fca --format-all-comments
 -fc1 --format-first-column-comments
 -gnu --gnu-style
 -hnl --honour-newlines
 -nhnl --ignore-newlines
 -npro --ignore-profile
 -in --indent-level
 -kr --k-and-r-style
 -nsob --leave-optional-blank-lines
 -lps --leave-preprocessor-space
 -dn --line-comments-indentation
 -ln --line-length
 -nbc --no-blank-lines-after-commas
 -nbad --no-blank-lines-after-declarations
 -nbap --no-blank-lines-after-procedures
 -nbbb --no-blank-lines-before-block-comments
 -ncdb --no-comment-delimiters-on-blank-lines
 -ncs --no-space-after-casts
 -nip --no-parameter-indentation
 -nsaf --no-space-after-for
 -npcs --no-space-after-function-call-names
 -nsai --no-space-after-if
 -nprs --no-space-after-parentheses
 -nsaw --no-space-after-while
 -nut --no-tabs
 -nv --no-verbosity
 -orig --original
 -ipn --parameter-indentation
 -pin --paren-indentation
 -pmt --preserve-mtime
 -psl --procnames-start-lines
 -cs --space-after-cast
 -saf --space-after-for
 -sai --space-after-if
 -prs --space-after-parentheses
 -pcs --space-after-procedure-calls
 -saw --space-after-while
 -ss --space-special-semicolon
 -st --standard-output
 -sc --start-left-side-of-comments
 -sbin --struct-brace-indentation
 -sob --swallow-optional-blank-lines
 -tsn --tab-size
 -ut --use-tabs
 -v --verbose

CH07.fm Page 214 Monday, October 7, 2002 9:12 PM

Using sed Utility 215

7.2 Using sed Utility

The sed utility is a stream editor that can be used for different file editing purposes when used
as a filter. The most common task for software development purposes is the use of sed to search
and replace text in source code files. Let us take the example of the following C source code file
hello.c.

#include <stdio.h>

main ()
{
 char string[25];

 printf ("Enter a line of characters : ");
 scanf ("%s", string);
 printf ("The entered string is : %s\n ", string);
}

In order to replace every occurrence of word string with the word STRING, you can use
sed. The sed filter command and its result on this file are shown below.

[root@boota]# cat hello.c | sed s/string/STRING/
#include <stdio.h>

main ()
{
 char STRING[25];

 printf ("Enter a line of characters : ");
 scanf ("%s", STRING);
 printf ("The entered STRING is : %s\n ", string);
}
[root@boota indent]#

The sed command understands UNIX regular expressions. Regular expressions can be
used for a higher level of stream editing. You can also use sed in shell scripts as well as make-
files to carry out tasks in the entire source code directory tree. You can also use –f options fol-
lowed by a filename. The filename contains sed commands. Please refer to the sed man pages
for a complete set of options.

7.3 Using diff Utility

The diff utility is another useful tool that developers may need. It is used to find out the differ-
ences between two files. If you are using CVS, differences between different versions of a file in
the CVS repository can be found using the cvs (cvs diff) command as well. However, if
you want to find out the difference between two files that are not in the CVS repository, the
diff utility may be quite handy. One common use may be to find out the difference between
the working copy and the backup copy of a source code file. This will enable you to find out

CH07.fm Page 215 Monday, October 7, 2002 9:12 PM

216 Chapter 7 • Miscellaneous Tools

what changes have been made in the working copy of the file. The output of the diff utility fol-
lows similar rules to those used in the CVS diff command. The following command shows
that files hello.c and hello.c~ are different at line number 11. The line starting with the
less-than symbol is taken from the first file (hello.c) and the line starting with the greater-
than symbol is taken from the file hello.c~.

[root@boota]# diff hello.c hello.c~
11c11
< char string[30];

> char string[25];
[root@boota]#

The first line of the output contains the character c (changed) that shows that line 11 in the
first file is changed to line 11 in the second file.

You can also use “unified diff” that tells you additional information about the file
and displays a few lines before and after the lines that are different. See the following output of
the unified diff command:

[root@boota]# diff hello.c hello.c~ -u

--- hello.cTue Jun 25 14:43:30 2002
+++ hello.c~Tue Jun 25 14:43:38 2002
@@ -8,7 +8,7 @@

 main ()
 {

- char string[30];
+ char string[25];

 printf ("Enter a line of characters : ");
 scanf ("%s", string);
[root@boota]#

You can also use the –p option with the command to display the name of the function in
which the modified line(s) exist.

 If you add a line after line 15 in hello.c file and run the diff command once again,
the result will be as follows:

[root@boota]# diff hello.c hello.c~
11c11

< char string[30];

> char string[25];

16d15
< printf ("End of program\n");
[root@boota]#

CH07.fm Page 216 Monday, October 7, 2002 9:12 PM

Using diff Utility 217

The first part of the output is familiar. The second part shows that line 16 in the first file,
which is printed next, is not present in the second file. Sometimes it is useful to display two files
being compared in side-by-side format. This can be done by using the –y option. The following
command shows how to use side-by-side output. The CVS rules of displaying output are used
here to show modified, added or removed lines.

[root@boota]# diff -y --width 60 hello.c hello.c~
/*************************** /***************************
 * hello.c * hello.c
 * *
 * This file is used to demo * This file is used to demo
 * of indent utility * of indent utility
 *************************** ***************************
#include <stdio.h> #include <stdio.h>

main () main ()
{ {
 char string[30]; | char string[25];

 printf ("Enter a string of printf ("Enter a string of
 scanf ("%s", string); scanf ("%s", string);
 printf ("The entered strin printf ("The entered strin
 printf ("End of program\n" <
} }
[root@boota]#

The --width option is used to specify width of columns in the output. As you can see
the | symbol is used to show a modified line and < or > symbols are used to show added or
deleted lines.

The diff utility can also be used on directories. When comparing directories, diff com-
pares files of the same name in the two directories. Directories can also be compared recursively.

Many options are used with the diff command, the most common are listed in Table 7-1.
All these options start with a hyphen character.

Table 7-1 Common options used with the diff command

Option Description

-b Ignore changes in white spaces

-B Ignore changes that are related to insertion of deletion of blank lines

-i Ignore changes in case

-u Unified output

-p Used with –u option. Shows the function name also.

CH07.fm Page 217 Monday, October 7, 2002 9:12 PM

218 Chapter 7 • Miscellaneous Tools

7.3.1 Other Forms of diff Utility

There are two other important forms of the diff utility. These are diff3 and sdiff.
The diff3 utility is used to compare three files and its general format is shown below.

diff3 [options] mine older yours

Suppose you and your colleague start working on a file simultaneously. The original file is
the older file. Now you have your copy of the file (the mine file) and your colleague has his own
copy of the file (the yours file). If you want to compare both of these modified copies of the file
with the original older file, diff3 is a useful tool. See man pages of the diff3 command for
more details.

Another important utility is sdiff that finds difference between two files and merges
these two files into a third file. The general format of sdiff is as follows.

sdiff –o outfile [options] file1 file2

The sdiff is useful when you want to interactively merge two files. This is the case
when two people have made changes to a source file and at some point you want to merge these
changes into a single file. The sdiff utility is interactive and it displays two files being com-
pared in side-by-side fashion. It stops on each difference with a % sign prompt. On this sign you
can press different characters to make a decision. Common responses on the % prompt are
shown in Table 7-2.

-c Context output

-n RCS style of output

-r Compare directories recursively

-y Use side-by-side format

Table 7-2 Commands used on % prompt of sdiff

Command Description

L Use the left side of the version

R Use the right side of the version

e l Edit and then use the left side

e r Edit and use the right side

Q Quit

Table 7-1 Common options used with the diff command (Continued)

Option Description

CH07.fm Page 218 Monday, October 7, 2002 9:12 PM

Using cscope and cbrowser 219

7.4 Using cscope and cbrowser
The cscope is a very useful utility to browse through the source code tree of a large project. It
was originally written by Santa Cruz Operations and made public later on. You can download it
from http://cscope.sourceforge.net. For Linux, it is available in RPM format as well.

It is a text-mode screen-oriented utility. When you start it using the cscope command,
the initial screen looks like the one shown in Figure 7-1.

When invoked, cscope first creates its symbol file cscope.out in the current direc-
tory that contains a reference to symbols in source code files. This reference is generated from
files with the extensions .c and .h. You can also use command line options to create this sym-
bol file from a particular type of source code files.

The bottom part of the screen shows options that can be used to look up a symbol in the
source code. The cursor is blinking at the first option and can be moved to other options using
arrow keys. For example, if you want to look up symbol “msg” in all source code files, just type
it in at the first line and press the Enter key. You will see a listing of files containing this symbol
as shown in Figure 7-2.

Figure 7-1 The cscope initial screen.

CH07.fm Page 219 Monday, October 7, 2002 9:12 PM

220 Chapter 7 • Miscellaneous Tools

As you can see, there are five files listed in the top part of the screen that contain this sym-
bol. This listing contains five columns as below:

1. Number of row, starting with zero.
2. File name that contains the symbol.
3. Function name where symbol is used. If the symbol is not inside a function, it is

marked as global.
4. Line number where symbol is present in that file.
5. The line showing the definition or use of the symbol.

You can move the cursor to a particular line and press the Enter key to edit that file. By
default the file is opened in vi editor. However, you can configure to use an editor of your choice.
To move back to the bottom part of the screen to search for another symbol, you can use the Tab
key. Use the Ctrl+D key combination to quit the program.

The utility is also very useful if you want to find non-utilized code in a software project.
For example, if a function is present in the source code but never used anywhere in the project, it
can be detected using cscope. It is also useful when you want to modify a particular symbol
throughout the source code tree. Common options used with cscope are listed in Table 7-3.

Figure 7-2 List of files with symbol msg.

CH07.fm Page 220 Monday, October 7, 2002 9:12 PM

Using cscope and cbrowser 221

Use the manual pages of cscope to view a complete list of options. Its web site is also a
good reference for updates and new features.

The cbrowser is a GUI interface to cscope and can be downloaded from its web site,
http://cbrowser.sourceforge.net.

At the time of writing this book, version 0.8 of this utility is available. When you invoke
cbrowser, it displays its initial window where you can select a cscope symbol reference file
and use the same type of queries as are available on cscope text window. The cbrowser win-
dow is shown in Figure 7-3.

To use a particular cscope symbol file, use the “Selected Database” drop-down menu in
the GUI. Click the “Symbols” button to pull down a menu of different options used with
cscope. The box next to this button is used to type in the symbol for which you want to search.
When you press the “Submit” button after typing in the symbol name, cbrowser displays a list
of files where this symbol is used or defined as shown in Figure 7-3. An additional benefit of
using cbrowser is that the bottom part of the window also shows the contents of the selected
file. You can use cursor keys to select a different file. You can also edit these files by using
options in the “File” menu. You can use syntax highlighting and other helping tools with
cbrowser using menus.

Table 7-3 Options used with cscope

Option Description

-b Build only the cross-reference file

-C Ignore case when searching

-f reffile Use reffile as reference file instead of default cscope.out reference file. This is
useful when you create a global reference file for the entire source code tree.

-R Recursively search source code tree for input files

CH07.fm Page 221 Monday, October 7, 2002 9:12 PM

222 Chapter 7 • Miscellaneous Tools

7.5 Generating C Function Prototypes from C Source Code Using cproto

The cproto utility is used to create function prototypes from C source code files. It can also con-
vert function definition style. The latest version can be downloaded from http://sourceforge.net/
projects/cproto/.

At the time of writing this book, version 4.6 is available in source code form. You can
download the file, untar it and compile it using the following sequence of commands.

tar zxvf cproto-4.6.tar.gz
cd cproto-4.6
./configure
make
make install

Figure 7-3 The cbrowser window.

CH07.fm Page 222 Monday, October 7, 2002 9:12 PM

Using ltrace and strace Utilities 223

It can read existing C files or take its input from standard input. This utility is not exten-
sively used in C software development but may be useful in some cases.

7.6 Using ltrace and strace Utilities

The ltrace program is a tracing utility for library function calls. It runs a program and logs all
library function calls by that program. You can also use this utility to log system calls made by a
program. The utility can also monitor child processes created by fork() or clone() system calls.
This utility is very useful to quickly trace the failure point of an executable program. The utility
may also print the time at which a particular function call or system call is executed with a reso-
lution of microseconds.

Consider the simple single-line program that prints the string “Hello world” and then
exits. Using ltrace with the executable of this program produces the following result.

[root@boota ltrace]# ltrace -S -tt ./a.out
22:21:48.325970 SYS_uname(0xbffff3b4) = 0
22:21:48.327037 SYS_brk(NULL) = 0x080495f8
22:21:48.327511 SYS_mmap(0xbffff104, 0xcccccccd, 0x400165f8,
4096, 640) = 0x40017000
22:21:48.328212 SYS_open("/etc/ld.so.preload", 0, 010) = -2
22:21:48.329000 SYS_open("/etc/ld.so.cache", 0, 00) = 3
22:21:48.329657 SYS_197(3, 0xbfffea64, 0, 0xbfffea64, 0) = 0
22:21:48.331719 SYS_mmap(0xbfffea34, 0, 0x400165f8, 1, 3) =
0x40018000
22:21:48.332460 SYS_close(3) = 0
22:21:48.332908 SYS_open("/lib/i686/libc.so.6", 0,
027777765514) = 3
22:21:48.333620 SYS_read(3, "\177ELF\001\001\001", 1024) =
1024
22:21:48.334256 SYS_197(3, 0xbfffeaa4, 3, 0xbfffeaa4, 0) = 0
22:21:48.334917 SYS_mmap(0xbfffe994, 0x0012f728, 0x400165f8,
0xbfffe9c0, 5) = 0x4002c000
22:21:48.335584 SYS_mprotect(0x40152000, 38696, 0, 0x4002c000,
0x00126000) = 0
22:21:48.336209 SYS_mmap(0xbfffe994, 24576, 0x400165f8,
0xbfffe9cc, 3) = 0x40152000
22:21:48.336953 SYS_mmap(0xbfffe994, 0xbfffe9cc, 0x400165f8,
0x40158000, 14120) = 0x40158000
22:21:48.337642 SYS_close(3) = 0
22:21:48.340431 SYS_munmap(0x40018000, 77871) = 0
22:21:48.341060 SYS_getpid() = 32540
22:21:48.341562 __libc_start_main(0x08048460, 1, 0xbffff88c,
0x080482e4, 0x080484c0 <unfinished ...>
22:21:48.342232 __register_frame_info(0x08049508, 0x080495e0,
0xbffff828, 0x0804838e, 0x080482e4) = 0x401575e0
22:21:48.343064 printf("Hello world\n" <unfinished ...>

CH07.fm Page 223 Monday, October 7, 2002 9:12 PM

224 Chapter 7 • Miscellaneous Tools

22:21:48.343813 SYS_197(1, 0xbfffeff0, 0x401569e4, 0x40154a60,
0x40154a60) = 0
22:21:48.344450 SYS_192(0, 4096, 3, 34, -1) = 0x40018000
22:21:48.345154 SYS_ioctl(1, 21505, 0xbfffef20, 0xbfffef80,
1024) = 0
22:21:48.345890 SYS_write(1, "Hello world\n", 12Hello world
) = 12
22:21:48.346542 <... printf resumed>) = 12
22:21:48.346878 __deregister_frame_info(0x08049508,
0x4000d816, 0x400171ec, 0x40017310, 7) = 0x080495e0
22:21:48.347746 SYS_munmap(0x40018000, 4096) = 0
22:21:48.348235 SYS_exit(12) = <void>
22:21:48.348706 +++ exited (status 12) +++
[root@boota ltrace]#

The first column in each row shows the current time followed by a number that shows
microseconds. The remaining part of the line shows the system call of the library call used. By
comparing the time in two consecutive lines, you can find out the time taken by a particular sys-
tem call. By looking at the output, you can also find out if a program fails during a particular
system call. This may be especially helpful when testing device drivers and reading or writing to
these drivers fails for some reason.

The most common options used with this utility are shown in Table 7-4.

The command can also read options either from its configuration file /etc/
ltrace.conf or from .ltrace.conf in the home directory of the user.

The strace utility is a more comprehensive tool and it can be used to separate different
system calls. For example, it can be used to display information about network related system

Table 7-4 Common options used with the ltrace utility

Option Description

-d Debug. Displays extra information about trace.

-f Trace child processes.

-S Display system calls and library calls.

-r Display time difference between successive lines.

-tt Display time stamp with each line with a resolution to microseconds.

-o filename Record output to a file.

-V Display version.

-h Display help.

CH07.fm Page 224 Monday, October 7, 2002 9:12 PM

Using ltrace and strace Utilities 225

calls or for IPC related systems calls only. It displays arguments for all functions calls and their
return values. A typical output from the execution of the same single line function follows:

[root@boota ltrace]# strace ./a.out

execve("./a.out", ["./a.out"], [/* 44 vars */]) = 0
uname({sys="Linux", node="boota.boota.net", ...}) = 0

brk(0) = 0x80495f8

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40017000

open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such
file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=77871, ...}) = 0
old_mmap(NULL, 77871, PROT_READ, MAP_PRIVATE, 3, 0) =
0x40018000
close(3) = 0

open("/lib/i686/libc.so.6", O_RDONLY) = 3

read(3,
"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200\302"...,
1024) = 1024

fstat64(3, {st_mode=S_IFREG|0755, st_size=5634864, ...}) = 0

old_mmap(NULL, 1242920, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3,
0) = 0x4002c000

mprotect(0x40152000, 38696, PROT_NONE) = 0

old_mmap(0x40152000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x125000) = 0x40152000

old_mmap(0x40158000, 14120, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40158000

close(3) = 0
munmap(0x40018000, 77871) = 0

getpid() = 32610

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 3),
...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000

ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0

write(1, "Hello world\n", 12Hello world
) = 12

munmap(0x40018000, 4096) = 0

_exit(12) = ?
[root@boota ltrace]#

As you can see, it gives you a complete picture of what happens from the execution of a
program to its end. See the manual pages of strace for a complete list of command line
options. The strace utility can also be used for performance-gathering activities, and can log
times spent in each function in a program. Refer to the man page for more information.

CH07.fm Page 225 Monday, October 7, 2002 9:12 PM

226 Chapter 7 • Miscellaneous Tools

7.7 Using GNU Binary Utilities

GNU binutils is a package of many utilities that are related to manipulating library files or get-
ting information about different types of binary files. These utilities range from finding strings in
a binary file, creating library files, displaying information about binary files, assembling and dis-
assembling files, and so on. This section contains an introduction to most commonly used binary
utilities.

7.7.1 Using the ar Utility

Files can be stored into a single file using the ar utility. The file into which multiple files
are stored is called an archive. The ar program retains file permissions, ownerships and other
properties of the original files. These files can be extracted from the archive later on, if required.
The program also creates an index within the archive file that is used to speed up locating a com-
ponent (or members) of the archive.

From the development point of view, the ar program is used to create libraries of func-
tions. These libraries are then used with other object files to link an executable file. The conven-
tional name of these library files is lib{name}.a where name is any string used as a library
name. For example, a library named common will be stored in a file called libcommon.a.

The ar program performs one of the following tasks depending upon options used on the
command line.

• Delete a file from the archive (option d)
• Move files in the archive (option m)
• Print a list of files in the archive (option p)
• Append files to the archive (option q)
• Insert new files in the archive by replacing if a file already exists in the archive (option r)
• Displaying contents of an archive (option t)
• Extracting files from an archive (option x)

More options can be used in combination with these options to perform additional tasks.
In this section we shall use some very common options to show you how the ar program is used
in a software development environment.

We have used ar version 2.10.91 in this book. You can display a current version of the
program on your system using –V option as shown below. The ar utility is usually used because
of its compatibility with ld, the dynamic loader.

[root@boota ar]# ar -V
GNU ar 2.10.91
Copyright 1997, 98, 99, 2000, 2001 Free Software Foundation,
Inc.
This program is free software; you may redistribute it under
the terms of the GNU General Public License. This program has
absolutely no warranty.
[root@boota ar]#

CH07.fm Page 226 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 227

Let us create an archive of simple text files. The following command creates an archive
test.a from files /etc/hosts and /etc/resolv.conf.

ar -r test.a /etc/resolv.conf /etc/hosts

This command creates a file test.a that contains the contents of the other two files. To
display the contents of the file, you can use the –t option on the command line.

[root@boota ar]# ar -t test.a
resolv.conf
hosts
[root@boota ar]#

Using –x option, you can extract one or more files from the archive. The following com-
mand extracts the file hosts from the archive.

ar -x test.a hosts

Now let us create a real library file from two object files common.o and ftp.o. The fol-
lowing command creates a file libcommon.a from these two object files.

ar -r libcommon.a common.o ftp.o

Functions or variables in these two files can be linked to any other object file using the –l
command line option with gcc compiler. The following command line creates an executable file
project from this library and project.o file.

gcc project.o –lcommon –o project

Note that libcommon.a is not used with the –l option when linking functions in this
library to an executable file. Instead we used common as the library name by stripping the lead-
ing lib part and .a trailing part.

Files can be inserted into the archive in a particular order. Similarly you can also use a pol-
icy when replacing existing files using different command line options. Other options that can be
used with the ar command can be listed by executing the command without an argument as
shown below.

[root@boota /root]# ar
Usage: ar [-X32_64] [-]{dmpqrstx}[abcfilNoPsSuvV] [member-
name] [count] archive-file file...
 ar -M [<mri-script]
 commands:
 d - delete file(s) from the archive
 m[ab] - move file(s) in the archive
 p - print file(s) found in the archive
 q[f] - quick append file(s) to the archive
 r[ab][f][u] - replace existing or insert new file(s) into
the archive
 t - display contents of archive
 x[o] - extract file(s) from the archive

CH07.fm Page 227 Monday, October 7, 2002 9:12 PM

228 Chapter 7 • Miscellaneous Tools

 command specific modifiers:
 [a] - put file(s) after [member-name]
 [b] - put file(s) before [member-name]
 (same as [i])
 [N] - use instance [count] of name
 [f] - truncate inserted file names
 [P] - use full path names when matching
 [o] - preserve original dates
 [u] - only replace files that are newer than
 current archive contents
 generic modifiers:
 [c] - do not warn if the library had to be
 created
 [s] - create an archive index (cf. ranlib)
 [S] - do not build a symbol table
 [v] - be verbose
 [V] - display the version number
 [-X32_64] - (ignored)
ar: supported targets: elf32-i386 a.out-i386-linux efi-app-
ia32 elf32-little elf32-big srec symbolsrec tekhex binary ihex
trad-core
[root@boota /root]#

7.7.2 Using the ranlib Utility

The ranlib command is used to create index entries inside an archive file. This can also
be done using –s command with the ar command while creating or updating an archive library
file. The following command creates index inside libcommon.a file. Note that these index
entries are stored inside the archive file and no other file is created.

ranlib libcommon.a

Most of the time you don’t need to run ranlib, as the latest version of the ar command
creates an index by itself. Index entries can be displayed using the nm command.

7.7.3 Using the nm Utility

The nm utility is used to list symbols used in an object file. If no object file is provided on
the command line, the utility assumes the a.out file in the current directory as the default
object file and lists its symbols. A common use of the utility is listing functions defined in a
library. The following command displays object file names and functions defined in the library
file created with ar command in the previous section.

[root@boota]# nm -s libcommon.a

Archive index:
msg in common.o
main in ftp.o

CH07.fm Page 228 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 229

common.o:
00000000 T msg
 U printf

ftp.o:
00000000 T main
 U msg
 U printf
[root@boota make]#

For each symbol, nm displays three properties of the symbol.

1. Value
2. Type
3. Name

The value of the symbol is displayed in hexadecimal by default. Type is a character, either
uppercase or lowercase. The uppercase character shows that the symbol is global and the lower-
case character shows that the symbol is local. The following line shows that the symbol value is
00000000, its type is T which shows that the symbol is in code section and its name is msg.

00000000 T msg

Type U in the above output of nm command shows that the symbol is undefined and no
value is displayed. Note that function msg is defined in common.o but undefined in the ftp.o
member of the archive. This is because of the fact that the function was defined in common.c
file and it is used in ftp.c file.

Usually, the list of symbols is very long in executable files. Consider the following simple
file that displays the string “Hello world”.

#include <stdio.h>
main()
{
 printf ("Hello world\n");
}

Let us compile this file to create an executable a.out file. A list of symbols in the
a.out executable file is shown below:

[root@boota]# nm -s a.out
08049540 ? _DYNAMIC
0804951c ? _GLOBAL_OFFSET_TABLE_
080484e4 R _IO_stdin_used
08049510 ? __CTOR_END__
0804950c ? __CTOR_LIST__
08049518 ? __DTOR_END__
08049514 ? __DTOR_LIST__

CH07.fm Page 229 Monday, October 7, 2002 9:12 PM

230 Chapter 7 • Miscellaneous Tools

08049508 ? __EH_FRAME_BEGIN__
08049508 ? __FRAME_END__
080495e0 A __bss_start
 w __cxa_finalize@@GLIBC_2.1.3
080494f8 D __data_start
 w __deregister_frame_info@@GLIBC_2.0
08048480 t __do_global_ctors_aux
080483b0 t __do_global_dtors_aux
 w __gmon_start__
 U __libc_start_main@@GLIBC_2.0
 w __register_frame_info@@GLIBC_2.0
080495e0 A _edata
080495f8 A _end
080484c0 ? _fini
080484e0 R _fp_hw
080482e4 ? _init
08048360 T _start
08048384 t call_gmon_start
08049504 d completed.1
080494f8 W data_start
08048410 t fini_dummy
08049508 d force_to_data
08049508 d force_to_data
08048420 t frame_dummy
08048384 t gcc2_compiled.
080483b0 t gcc2_compiled.
08048480 t gcc2_compiled.
080484c0 t gcc2_compiled.
08048460 t gcc2_compiled.
08048450 t init_dummy
080484b0 t init_dummy
08048460 T main
080495e0 b object.2
08049500 d p.0
 U printf@@GLIBC_2.0
[root@boota make]#

7.7.3.1 Listing Line Numbers in Source Files
Use of –l option is very useful with this command. This option also displays filenames

and line numbers where these symbols are used. The following command lists symbols in lib-
common.a file in more detail. Note that it displays the path to the source code file and the line
number. This information is used in the debugging process.

[root@boota]# nm -s libcommon.a -l

Archive index:
msg in common.o
main in ftp.o

CH07.fm Page 230 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 231

common.o:
00000000 T msg /root/make/common.c:6
 U printf /root/make/common.c:7

ftp.o:
00000000 T main /root/make/ftp.c:7
 U msg /root/make/ftp.c:12
 U printf /root/make/ftp.c:11
[root@boota make]#

7.7.3.2 Listing Debug Symbols
When you compile a program with a debug option, many symbols are inserted in the files

that are used for debugging purposes. Using the –a option with the nm command also shows the
debug symbols.

Please see the manual pages of the nm command for a detail description of all options.

7.7.4 Using the strip Utility

The strip command is used to remove symbols from an object or library file. This is use-
ful to reduce the size of the shipped product as these symbols are not required in enduser execut-
able code. Using the command, you can also remove symbols partially. For example, you can
remove only debug symbols, local symbols or all symbols with the help of command line options.

At least one object file must be provided at the command line. Note that the strip utility
modifies the object files; it does not create new files. To get an idea of the difference in size of
object file before and after using the strip command, let us take the example of a C file that
prints the “Hello world” string only. The size of the executable a.out file with symbols on my
computer is 13640 bytes. After using the following command, the size is reduced to 3208 bytes.

strip a.out

This is a considerable reduction in size. However, in some time-sensitive and embedded sys-
tems, stripping files may cause timing problems and code may behave differently in some cases.

7.7.5 Using the objcopy Utility

The basic function of the objcopy utility is to copy one object file to another. This func-
tionality can be used to change the format of an object file. A common use is to create S-record
or binary files from ordinary object files. S-record or binary files can be used to burn ROM in
embedded systems. The following command converts the ftp file (which is a statically linked
file) to an S-record file ftp.S, which may be downloaded to a ROM/PROM using the EPROM
programmer.

objcopy -O srec ftp ftp.S

You can see types of both input and output files by using the file command as follows.
The output file is of type S-record.

CH07.fm Page 231 Monday, October 7, 2002 9:12 PM

232 Chapter 7 • Miscellaneous Tools

[root@boota]# file ftp
ftp: ELF 32-bit LSB executable, Intel 80386, version 1,
statically linked, not stripped
[root@boota]#
[root@boota make]# file ftp.S
ftp.S: Motorola S-Record; binary data in text format
[root@boota]#

The S-record file is in ASCII hex format and first few lines can be displayed using head
command as shown below:

[root@boota]# head ftp.S
S00800006674702E532C
S31508048094040000001000000001000000474E5500CB
S315080480A400000000020000000200000005000000B1
S315080480B45589E583EC08E84500000090E8DB0000F0
S30D080480C400E836610400C9C393
S315080480E031ED5E89E183E4F05054526880E2080871
S315080480F068B4800408515668E0810408E80B010056
S3150804810000F489F65589E55350E8000000005B81C0
S31508048110C3826C05008B830C00000085C07402FFC3
S31508048120D08B5DFCC9C389F69090909090909090FE
[root@boota]#

The following command creates a binary image of the ftp file. The binary output is a
memory image of the executable and all symbols are removed.

objcopy -O binary ftp ftp.bin

Here is how you display a type of the new binary file.

[root@boota]# file ftp.bin
ftp.bin: X11 SNF font data, LSB first
[root@boota]#

It is a good idea to strip object files before converting them to S-record or binary files.
Start addresses can be set using the command line options --set-start and --adjust-
start.

7.7.6 Using the objdump Utility

The objdump command displays information about an object file. It can also be used to
disassemble an object file. You can use different command line options to display particular
information about an object file.

7.7.6.1 Displaying Header Information
The following command displays the header information of the binary file a.out.

[root@boota]# objdump -f a.out

CH07.fm Page 232 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 233

a.out: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048360

[root@boota]#

7.7.6.2 Displaying Section Headers
The following command displays information about all section headers in the a.out file.

[root@boota]# objdump -h a.out|more

a.out: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .interp 00000013 080480f4 080480f4 000000f4 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 1 .note.ABI-tag 00000020 08048108 08048108 00000108 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .hash 00000034 08048128 08048128 00000128 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 .dynsym 00000080 0804815c 0804815c 0000015c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .dynstr 00000095 080481dc 080481dc 000001dc 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .gnu.version 00000010 08048272 08048272 00000272 2**1
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .gnu.version_r 00000030 08048284 08048284 00000284
2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 7 .rel.got 00000008 080482b4 080482b4 000002b4 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 8 .rel.plt 00000028 080482bc 080482bc 000002bc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 9 .init 00000018 080482e4 080482e4 000002e4 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 10 .plt 00000060 080482fc 080482fc 000002fc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 11 .text 00000160 08048360 08048360 00000360 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 12 .fini 0000001e 080484c0 080484c0 000004c0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 13 .rodata 00000015 080484e0 080484e0 000004e0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 14 .data 00000010 080494f8 080494f8 000004f8 2**2
 CONTENTS, ALLOC, LOAD, DATA
 15 .eh_frame 00000004 08049508 08049508 00000508 2**2

CH07.fm Page 233 Monday, October 7, 2002 9:12 PM

234 Chapter 7 • Miscellaneous Tools

 CONTENTS, ALLOC, LOAD, DATA
 16 .ctors 00000008 0804950c 0804950c 0000050c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 17 .dtors 00000008 08049514 08049514 00000514 2**2
 CONTENTS, ALLOC, LOAD, DATA
 18 .got 00000024 0804951c 0804951c 0000051c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 19 .dynamic 000000a0 08049540 08049540 00000540 2**2
 CONTENTS, ALLOC, LOAD, DATA
 20 .sbss 00000000 080495e0 080495e0 000005e0 2**0
 CONTENTS
 21 .bss 00000018 080495e0 080495e0 000005e0 2**2
 ALLOC
 22 .stab 00000f9c 00000000 00000000 000005e0 2**2
 CONTENTS, READONLY, DEBUGGING
 23 .stabstr 00002ec6 00000000 00000000 0000157c 2**0
 CONTENTS, READONLY, DEBUGGING
 24 .comment 00000144 00000000 00000000 00004442 2**0
 CONTENTS, READONLY
 25 .note 00000078 00000000 00000000 00004586 2**0
 CONTENTS, READONLY
[root@boota]#

7.7.6.3 Disassembling a File
Perhaps the major advantage of this utility is its ability to disassemble object files. Usually

the disassembly code is quite long but still you can make sense of it. The following is a segment
of disassembly code from the a.out file.

[root@boota]# objdump -d a.out|more

a.out: file format elf32-i386

Disassembly of section .init:

080482e4 <_init>:
 80482e4:55 push %ebp
 80482e5:89 e5 mov %esp,%ebp
 80482e7:83 ec 08 sub $0x8,%esp
 80482ea:e8 95 00 00 00 call 8048384 <call_gmon_start>
 80482ef:90 nop
 80482f0:e8 2b 01 00 00 call 8048420 <frame_dummy>
 80482f5:e8 86 01 00 00 call 8048480
<__do_global_ctors_aux>
 80482fa:c9 leave
 80482fb:c3 ret
Disassembly of section .plt:

080482fc <.plt>:

CH07.fm Page 234 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 235

 80482fc:ff 35 20 95 04 08 pushl 0x8049520
 8048302:ff 25 24 95 04 08 jmp *0x8049524
 8048308:00 00 add %al,(%eax)
 804830a:00 00 add %al,(%eax)
 804830c:ff 25 28 95 04 08 jmp *0x8049528
 8048312:68 00 00 00 00 push $0x0
 8048317:e9 e0 ff ff ff jmp 80482fc <_init+0x18>
 804831c:ff 25 2c 95 04 08 jmp *0x804952c
 8048322:68 08 00 00 00 push $0x8
 8048327:e9 d0 ff ff ff jmp 80482fc <_init+0x18>
 804832c:ff 25 30 95 04 08 jmp *0x8049530
 8048332:68 10 00 00 00 push $0x10
 8048337:e9 c0 ff ff ff jmp 80482fc <_init+0x18>
 804833c:ff 25 34 95 04 08 jmp *0x8049534
 8048342:68 18 00 00 00 push $0x18
 8048347:e9 b0 ff ff ff jmp 80482fc <_init+0x18>
 804834c:ff 25 38 95 04 08 jmp *0x8049538
 8048352:68 20 00 00 00 push $0x20
 8048357:e9 a0 ff ff ff jmp 80482fc <_init+0x18>
Disassembly of section .text:

08048360 <_start>:
 8048360:31 ed xor %ebp,%ebp
 8048362:5e pop %esi
 8048363:89 e1 mov %esp,%ecx
 8048365:83 e4 f0 and $0xfffffff0,%esp
 8048368:50 push %eax
 8048369:54 push %esp
 804836a:52 push %edx
 804836b:68 c0 84 04 08 push $0x80484c0
 8048370:68 e4 82 04 08 push $0x80482e4
 8048375:51 push %ecx

7.7.6.4 Disassembling with Source Code
The command can also be used to disassemble an object file so that the source code is also

displayed along with assembly output. This is done using the –S option. Following is output of
disassembly for code that is used to display string the “Hello world”. You can see the assembly
language instructions used for this purpose.

08048460 <main>:
#include <stdio.h>
main()
{
 8048460:55 push %ebp
 8048461:89 e5 mov %esp,%ebp
 8048463:83 ec 08 sub $0x8,%esp
 printf ("Hello world\n");
 8048466:83 ec 0c sub $0xc,%esp

CH07.fm Page 235 Monday, October 7, 2002 9:12 PM

236 Chapter 7 • Miscellaneous Tools

 8048469: 68 e8 84 04 08 push $0x80484e8
 804846e: e8 c9 fe ff ff call 804833c <_init+0x58>
 8048473: 83 c4 10 add $0x10,%esp
}

7.7.6.5 Displaying Information about Library Files
The command can also be used to display information about library files. The following

command displays information about the library file libcommon.a and shows the object file
names from which this library is built.

[root@boota]# objdump -a libcommon.a
In archive ../../chap-04/make/libcommon.a:

common.o: file format elf32-i386
rw-r--r-- 0/0 11668 Nov 13 19:48 2001 common.o

ftp.o: file format elf32-i386
rw-r--r-- 0/0 11824 Nov 13 19:53 2001 ftp.o

[root@boota ltrace]#

Common options that are used with this command are listed in Table 7-5.

7.7.7 Using the size Utility

The size utility displays sizes of each section in an object file. The following command dis-
plays sizes for the object file a.out.

[root@boota]# size a.out
 text data bss dec hex filename
 1015 232 24 1271 4f7 a.out
[root@boota]#

Table 7-5 Common options used with objdump command

Option Description

-a Display information about library files

--debugging Show debugging information

-d Disassemble an object file

-f Show file headers summary

-S Display source code with disassembly information

-t Display symbol table entries

CH07.fm Page 236 Monday, October 7, 2002 9:12 PM

Using GNU Binary Utilities 237

7.7.8 Using the strings Utility

The strings utility displays printable strings in an object file. By default it displays
strings only in initialized and loaded sections of the object file. The object file may be a library
file as well. The following command displays strings in the a.out file.

[root@boota]# strings a.out
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
printf
__cxa_finalize
__deregister_frame_info
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.1.3
GLIBC_2.0
PTRh
QVh`
Hello world
[root@boota]#

A complete list of all strings in a file can be displayed with the –a option on the command
line. Multiple filenames or wild cards can be used on the command line. Using the –f option in
this case will display each filename associated with a symbol.

7.7.9 Using the addr2line Utility

The addr2line utility maps an address in the object file to a line in the source code file.
Consider the following output section of the “objdump –S a.out” command that shows
addresses and source codes.

08048460 <main>:
#include <stdio.h>
main()
{
 8048460:55 push %ebp
 8048461:89 e5 mov %esp,%ebp
 8048463:83 ec 08 sub $0x8,%esp
 printf ("Hello world\n");
 8048466:83 ec 0c sub $0xc,%esp
 8048469:68 e8 84 04 08 push $0x80484e8
 804846e:e8 c9 fe ff ff call 804833c <_init+0x58>
 8048473:83 c4 10 add $0x10,%esp
}

The a.out file is generated from the following a.c file.

 1 #include <stdio.h>

CH07.fm Page 237 Monday, October 7, 2002 9:12 PM

238 Chapter 7 • Miscellaneous Tools

 2 main()
 3 {
 4 printf ("Hello world\n");
 5 }

Now you can display the line number of the source code file corresponding to address
8048466 in the object file with the following command:

[root@boota]# addr2line -e a.out 8048466
/root/chap-07/ltrace/a.c:4
[root@boota]#

This is the line where the printf function is called in a.c file. The add2line com-
mand is useful in debuggers where you need to map addresses to a line in source code file.

7.8 Using the ldd Utility
The ldd utility is very useful in finding out the dependencies of an executable on shared librar-
ies. This is necessary when you are copying executable files from one computer to another to
make sure that required libraries are present on the destination computer also. The following
command shows that libc.so.6 must be present to execute a.out file on a computer.

[root@boota]# ldd a.out
 libc.so.6 => /lib/i686/libc.so.6 (0x4002c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
[root@boota]#

So if you copy a.out to another computer, make sure that this library is also present on
the destination computer.

7.9 References and Resources

1. GNU web site at http://www.gnu.org/
2. The cbrowser home page at http://cbrowser.sourceforge.net
3. The cscope home page at http://cscope.sourceforge.net

CH07.fm Page 238 Monday, October 7, 2002 9:12 PM

