
iPCU.scpt
is is a basic-sh script that takes a tab-delimited "le and turns it into con"guration pro"les for iOS
devices. is has been tested up through the iPhone Con"guration Utility 3.4 and OS X Server
10.7.2.

e reason it uses the iPCU is convenience. By scripting the iPhone Con"guration Utility to create
the "le, the syntax and format will be correct, and the con"guration pro"les will be available within
the copy of the iPCU on the machine the script is run on. Obviously, you will need a copy of the
iPhone Con"guration Utility to run, or even compile this script. Since this is AppleScript, you’ll
need the Mac OS version of the iPhone Con"guration Utility, and a Mac running at least Mac OS X
10.6. e iPCU is available at http://support.apple.com/kb/DL1465

e script is highly commented, and should be fairly simple to follow provided you know something
about AppleScript. If you don’t, well, it’s going to be difficult, and as this is a readme and not a book
on AppleScript, I’m not going to explain all the details on that level. ere are a ton of ways to learn
AppleScript, just google the word, and you’ll be well on your way.

e one thing I will explain are TIDs, or Text Item Delimiters, because they’re important to the
script and somewhat misunderstood. TIDS are how AppleScript keeps track of text items. Normally,
the TID is “” or the null character. So, let’s take a sentence like:

John is snarky.

Were you to use that in a two-line script like:

set theText to "John is snarky"

set theTextItems to every text item of theText

You’d get two values:

theText would be a string: “John is snarky”

theTextItems would be a list: {"J", "o", "h", "n", " ", "i", "s", " ", "s", "n", "a", "r", "k", "y"}

Because AppleScript uses “” as the TID by default, we get every item in that sentence. We don’t get
the return, or end of line (EOL) character, that’s not considered a text item.

So, let’s take a tab-delimited line like “jwelch\tJohn Welch” (\t is the tab character. When you
compile that, you’d see “jwelch John Welch”

If we leave the default TIDs, getting those two elements out, while not hard, is tedious. If you go
with every word, you get: {"jwelch", "John", "Welch"}

If we use every paragraph we get: {"jwelch John Welch"}

If we use every text item, we get: {"j", "w", "e", "l", "c", "h", " ", "J", "o", "h", "n", " ", "W", "e", "l",
"c", "h"} So you can use every word I suppose, but what if someone includes a middle initial? en
you have more parsing work to do. It’s kind of a pain.

But what if we change the TID to be the tab character? It’s fairly easy, adds three lines to the script:

set saveTID to AppleScript's text item delimiters

set AppleScript's text item delimiters to " "

And

set AppleScript's text item delimiters to saveTID

Pretty simple. We save the current TID to a variable, saveTID. We set the TID to the tab character,
\t which compiles out to a blank space. e uncompiled line would be: set AppleScript's text item
delimiters to "\t". en when we’re done, we set the TID back to the default.

What’s this do for us? Well, let’s look at our original source and see what every text item gets us now:
{"jwelch", "John Welch"}

Well, look at that. A list with all the contents of each "eld as a separate item in the list. What
happens if we add an initial with a period? Say: "jwelch John C. Welch"?

We get: {"jwelch", "John C. Welch"} Again, both "elds as their own list items. Now it’s just item 1
and item 2. As long as the source "le is consistent, you have no additional work to do. at’s why I
use TIDs in this script, because it really does make things MUCH easier.

