
Pearson Webcast Series

Understanding Oracle
Explain Plans

Presented by Dan Hotka, Oracle
ACE Director

Brought to you by InformIT – informit.com/webcasts

InformIT is the online presence of the family of information technology
publishers and brands of Pearson

http://www.informit.com/promotions/informit-webcasts-140947
http://www.pearsoned.com/

About Us
Pearson
We are the world's largest education company, with 40,000 employees in more than 70 countries helping people
of all ages to make measurable progress in their lives. We have a simple mission: to help people make more of
their lives through learning.

InformIT
We are an online community created by the authors and team members behind trusted Pearson learning
brands...and you! Our passion is delivering quality content and resources from the creators, innovators, and
leaders of technology.

Welcome. Our Agenda Today.

•Explain Plan Tools
•Xplan.display

•JS Tuner

•Understanding Explain Plans
•Reading the Explain Plan

•What does it mean

• Q&A

• Wrap-up & Resources

Explain Plan Tools

Explain Plan Tools

•DBMS_XPLAN.DISPLAY
•Available with Oracle 8.1.7+

•Comes with Database

•Used via SQL*Plus

•JS Tuner
•Available for Oracle8+

•Download from www.DanHotka.com

•Executable Jar File

Explain Plan Tools

•PLAN_TABLE
•Oracle10g+ - use PLAN_TABLE$

•Owned by SYS

•Have DBA make public synonym to: PLAN_TABLE

•Make sure to drop your PLAN_TABLE

•Use the ‘explain plan for’ syntax to populate this table

•Use tools to populate this table (TOAD, SQL Developer)

•Use SHOW_PLAN.sql to display contents
•Available on my website

Using the Tools

•All tools use the PLAN_TABLE
•Oracle10g+

•Automatically Created

•Migration:
•Use PLAN_TABLE$

•Autotrace will give warning if not
using correct PLAN_TABLE

Explain Plan Tools

Explain Plan Tools

DBMS_XPLAN

Explain Plan Tools

•JSTuner
•Incorporates SQL Scripts with enhanced Trace

•Index Info

•Includes index statistics

•Enhanced Explain Plan
•Works with V8+

•Works with rule-based optimizer!

•Available from www.DanHotka.com

Hints

Understanding Explain
Plans

Reading Explain Plans

•Oracle:
•Hard Parses the SQL

•Checks SQL syntax

•Checks for available indexes/stats

•Reads from bottom to the top

•Arrives at an Execution Plan

•Decides how it will access the tables and indexes

•Executes the SQL

•Oracle9/10 – peeks once at bind variables

•Oracle11 – tracks explain plans with various bind vars

•Called ‘Adaptive Cursor Sharing’

•Runs the Execution plan

Reading Explain Plans

•Explain Plan
•Visualizes the execution plan

•Uses the Plan_Table
•Which varies slightly from release to release

•Utlxplan.sql

•<Oracle Home>/RDBMS/ADMIN

•Used heavily to tune SQL

Reading Explain Plans

•How does it work?
•Reads from bottom up

•Syntax checks/tracks available indexes

•ALL queries begin with a table access

•Regular queries

•generally does the table joins first

•Utilizes WHERE clause predicates

•Partitioned queries

•generally accesses the partitions first utilizing WHERE clause
predicates

•Then performs the table joins

•Sometimes the tables are again

•Including remaining WHERE clause predicates

Reading Explain Plans

•How does it work?
•RBO - follows rules for index selection

•Arrives at an execution plan in single pass

•CBO - tries a variety of combinations of table order/where clause
predicates

•Combinations called ‘permutations’

•Generally # perms = # tables * # where predicates

•Regular queries:

•Uses lowest cost method

•*** Queries in this course are regular queries unless otherwise noted

•Partitioned queries (covered in separate section)

•SQL that accesses 1 or more partitioned objects

•Uses fastest access method (elapse time)

Reading Explain Plans

•RBO – produces explain plans in a single pass
•Hard parsing was not the issue

•Size of the library cache was the issue

•CBO – produces multiple iterations looking for the
lowest cost

•These iterations are called permutations and query
transformation

Reading Explain Plans

•CBO – Brute Force
•CBO is a code set

•Gets a SQL

•Returns Cost #’s and Execution Plans

•Oracle passes next permutation to CBO

•Oracle passes query rewrite to CBO

•IS overall cost (cost # at line 0) < prior
permutation?

•True – tosses prior and this one becomes
the one to beat

•Permutations
•CBO tries various table
combinations

•CBO costs out the 3 join types

•Nested Loops

•Merge Join

•Hash Join

•CBO costs out the various where
clause predicates associated with
each table

Reading Explain Plans

•Query Transformations
•Introduced in Oracle9

•Complex View Merging

•Converts views to joins

•Subquery Unnesting

•Converts subqueries to inline views

•Join Predicate Push Down

•Moves where clause predicates into subquery

-Hints for each item above

- No_Query_Transformation prevents this behavior

-Discussed later in this chapter

Reading Explain Plans

•Inner steps produce result sets
•These ‘intermediate’ result sets are not visible

•They are like temporary tables

•They are passed to the next step in the execution plan

•IF passed to a join step
•They become the Outer Table

•The result set at Step 0 is the final result set
•This result set is then passed to the cursor area

Multiple Table SQL

Multiple Table SQL Answers

Reading Explain Plans

Reading Explain Plans

•Access RuleDescription

•AND-EQUAL Index values will be used to join rows.

•Access Predicate works with ROWID’s, tyically from indexes.

•Filter Predicate FILTERs apply ‘other criteria’ in the query to further qualify the
matching rows. The ‘other criteria’ include correlated sub queries, and HAVING
clause.

•TABLE ACCESS When not associated with a join condition, they act like
Filter…processing additional Where Clause predicates.

•VIEW OF Processed SQL from a view. **IF on a join condition, Oracle
converted it to a view/subquery during query transformation

•INTERNAL_FUNCTION This typically means that you have a data type
mismatch.

Reading Explain Plans
•Access RuleDescription

•CONCATENATOIN statement has a union clause

•INDEX (UNIQUE) SQL statement utilized a unique index to search for a specific
value.

•INDEX (RANGE SCAN) SQL statement contains a non-equality or BETWEEN
condition.

•INLIST ITERATOR SQL statement has an IN clause, or, values being
treated as an IN clause

•TABLE ACCESS (FULL) All rows are retrieved from the table without using an
index.

•TABLE ACCESS (BY ROWID) A row was retrieved from a table based on the
ROWID of the row.

Reading Explain Plans
•Access RuleDescription

•HASH JOIN SQL statement initiated a hash-join operation.

•MERGE JOIN SQL statement references two or more tables, sorting the two
result sets being joined over the join columns and then merging the results via the
join columns.

•MERGE JOIN (CARTESIAN) SQL statement references two or more tables
but without a joining column (generally not a good thing)

•NESTED LOOPS This operation is one form of joining tables, as opposed to a
merge join. One row is retrieved from the row source identified by the first child
operation, and then joined to all matching rows in the other table, identified in the
second child operation.

•NONUNIQUE INDEX (RANGE SCAN) The RANGE SCAN option indicates
that ORACLE expects to return multiple matches (ROWIDs) from the index
search

Reading Explain Plans

•Access RuleDescription

•BITMAP CONVERSION Bitmap Index being merged

•BITMAP MERGE Generally used with Bitmap Range Scan

•BITMAP MINUS Bitmap Index handling a not = condition.

•BITMAP INDEX SINGLE VALUE Bitmap index being used for single value
lookup.

•BITMAP INDEX (RANGE SCAN) Bitmap index being used for multiple value
lookup.

Reading Explain Plans

•Access RuleDescription

•PARTITIONING covered in another ppt…ask for it next time!

•SORT (ORDER BY) SQL statement contains an ORDER BY SORT
(AGGREGATE) SQL statement initiated a sort to resolve a MIN or MAX type
function.

•SORT (GROUP BY) SQL statement contains a GROUP BY

Reading Explain Plans

•Index Scans
•Unique Scan

•via root -> branch -> leaf for a single row access

•Range Scan

•via root -> branch -> leaf for first row, then leaf
to leaf for remaining rows

•Full Scan (Index-Full)

•Scans leaf blocks using single-block access

•Fast Full Scan (Index-FFS)

•scans all index leaf blocks using multi-block read

•Index Skip Scan (Index-SS)

•Useful for multi-column indexes, accessing only
2nd column and first column has low cardinality

Reading Explain Plans

•Oracle only joins 2 tables at a time

•The smaller the initial result sets, the faster the
whole query runs

•Drive off the item that will eliminate the most rows first

Reading Explain Plans

•Nested Loops
•Inner table looped for each row
returned in outer table

•Lg table should be outer

•Sm table (or unique indexed
lookup) should be inner

•Rows returned to the result set
that qualify the driving WHERE
clause

•Cost = outer access + (inner
table access * outer cardinality)

•Merge Scan Join

•Both tables are sorted

•Rows are inserted into result set
based on key value

•THEN WHERE clause applied

•Cost = outer access + inner access
+ sort costs

•Hash Join

•Hashes join keys and caches object
into a hash table

•Driving table should be smaller of
the 2

•Cost = inner cost + (outer cost *
inner cardinality/hash partitions)

Reading Explain Plans

•Nested Loop Join

•driving table

•Default order(rule)

•Merge Scan Join

•sort & match

•Hash Join

•Full scans with no sorts

•Join column to row
address

Reading Explain Plans

•Nested Loop Join

•If join condition is ‘ANDed’, make a compound index on the
inner table

•Inner and Outer join column should have same data type

•Outer Table: Larger of Result set

•Inner Table: Smaller of Result set

•Foreign key indexes helps CBO choose between nested loops
and hash joins

Reading Explain Plans
•Merge Scan Join

•large portion of rows are being joined

•Both Tables have larger result sets

•Helpful if using indexes on merged columns (rows returned in proper
order)

•Hash Join

•Smaller tables being joined on ‘=‘ condition

•Outer Table: Smaller of Result Set

•Inner Table: Larger of Result Set

•Use Trace Event 10104 (Hash Area Trace) or 10053 (CBO Trace) to size
correctly

•HASH_AREA_SIZE

Additional Resources

Dan Hotka

• Dan@DanHotka.com

• Website: www.DanHotka.com

• Twitter: @DanHotka

Thank you!

Sign-up for more webcasts at informit.com/webcasts

Connect with InformIT at informit.com/community

http://www.informit.com/promotions/informit-webcasts-140947
http://www.informit.com/promotions/informits-community-resource-center-139745

