
PART 3 HOW SOFTWARE WORKS96

How Windows
Works

C H A P T E R

7

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 96

THE Windows operating system is more than just a pretty face. Sure, it’s cute, with all the tiny pictures called
icons, sound effects, your personal color scheme, and the capability to drag things around like pull-toys.

But behind that face is a stern taskmaster. Windows XP, Microsoft’s advanced version of Windows, is
not your father’s operating system. Earlier versions of the consumer level of Windows were built on top of
DOS, an elementary operating system for small computers and modest programs that came with the first PCs.
DOS was inept at graphics, color, and sound, features that are commonplace in Windows.

More importantly, DOS was intended to run only one program at a time. There was no competition by
different programs for the attention of the processor, memory, and drive storage. Computers back then might
not have had much memory, but any program loaded into that memory had the run of the place. Now, these
programs were expected to play nice and share such toys as RAM and the CPU. They didn’t, of course. And
when programs trampled on another program’s RAM, Windows didn’t know what to do and collapsed into the
dreaded Blue Screen of Death.

With XP, Windows finally got smart—and sneaky. As you’ll discover in this chapter, Windows became
enormously more stable when it used pretend computers so that each program thought it was the only program
running on the PC. You’ll also see how Windows is more than one program. It’s a complex, intertwined organi-
zation of scores of programs, more like a hive than a single worker.

CHAPTER 7 HOW WINDOWS WORKS 97

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 97

How Older Windows Uses
a PC’s Memory

PART 3 HOW SOFTWARE WORKS98

Windows loads different parts of its system into dif-
ferent parts of memory. The code responsible for manag-
ing the windows and graphics for applications, the USER and
GDI (graphics device interface), load into the lower part of
memory. The core Windows operating system code, the Virtual
Machine Manager (VMM), loads into the top part of upper memory.

2

Older DOS applications run in the lower portions
of RAM in a supposedly separate memory space. They
are not well policed and two programs can claim the same
part of RAM, leading to a complete system crash.

3

When you boot your PC with Windows 98 or 95, your computer is using
memory in a way developed when PCs had at most a gigabyte of memory,
and could only use 640KB of that to run programs. Over the years new fea-
tures have been cobbled into the system without making changes so radical
that older programs DOS and Windows wouldn’t work. It took a lot of jug-
gling with memory and memory addresses to reach out of low memory—
the original 640K—into upper memory, up to 1MB, and beyond to
extended memory, everything from 1MB to 4GB (gigabytes).

1

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 98

CHAPTER 7 HOW WINDOWS WORKS 99

Microprocessors have been able to work with data 32 bits at a time since the
introduction of the Intel 80386. But so many programs were written specifically
to work with 16-bit operations that Windows, for years, has had to retain some
of that 16-bit code for compatibility with older, “legacy” applications.
Windows 2000, used primarily for networking applications, is pure 32-bit
code, which gives it many advantages in speed, reliability, and versatility. But it
falters at running older 16-bit Windows programs. The newest version of
Windows—XP—is also 32-bit but features a compatibility mode to accomodate
older software that needs 16-bit functions.

What’s Windows 2000 and Windows XP?

All 16-bit (Windows 3.x) applications run together in a single memory space above the
32-bit applications. Although each application occupies its own piece of memory at one
time, it might have to give up the use of a portion of RAM for use by another 16-bit appli-
cation in a procedure called cooperative multitasking. When applications don’t cooper-
ate properly, a system crash can occur.

5

Virtual
memory
swap
file

If there isn’t
enough unallocated

memory to match the appli-
cation’s request, Windows uses

virtual memory—hard disk
space—to store RAM code that has

not been recently used. Windows 95 can
automatically vary the amount of disk space

required for virtual memory. If the program
whose memory was swapped to disk needs that

data or code back, Windows allocates real RAM for it
and swaps another application’s memory to disk. If any

application (16- or 32-bit) needs additional memory space, it
sends a request to Windows, which checks to see how much

memory is available. Windows then assigns an additional free
stretch of memory to that application.

7

If an application needs to access a piece of hardware, such as a printer or
a display adapter, Windows loads a 32-bit virtual device driver (VxD)
into the upper part of memory. VxDs also can manage certain DOS func-
tions. When the application is finished with the hardware, the VxD is erased
from memory.

6

Each 32-bit Windows application runs in its
own protected memory space above the sys-
tem and DOS code. Each application is guar-
anteed the use of what is supposed to be its
own block of memory.

4

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 99

SYSYSTEM VIRTUAL MACHINES

AAPI LAYER

TEM

1616

DODO

ATIONS

USER MO

NEL MODE

USER
32.DLL

TH
UNK LA

YER
USER

.EX
E

GDI.E
XE

How Windows Controls
Programs Gone Wild

PART 3 HOW SOFTWARE WORKS100

Windows XP’s first line of defense against crashes is the system virtual machine (VM). A
virtual machine is a computer rendered entirely in software. The virtual machine emulates hard-
ware features, such as ports and external connections, to make each program believe that it’s
running on the real, physical PC, when it’s actually running on the virtual computer. The soft-
ware has no knowledge of other virtual machines that might be running. The VM also runs the
operating system’s shell—usually 32-bit Microsoft Explorer—in a separate process.

1

The VM gives each of the 32-bit programs a separate program with
4GB of memory. (Of course, most of this memory is usually virtual
RAM—drive disk storage that fools the processor into thinking
the disk space is memory chip storage.) And 32-bit pro-
grams under XP practice preemptive multitasking
rather than cooperative multitasking.

2

The VM gives each 16-bit program its
own virtual machine. Each 16-bit pro-
gram thinks it’s the only software run-
ning on a system. If one of the
applications crashes, it’s far less likely
than in Windows 9x to bring down the
rest of the system with it. Although each
of the programs thinks it has exclusive
rights to memory, drives, and other hard-
ware, it’s only digital sleight-of-hand on
the part of Windows XP, which con-
stantly juggles conflicting demands for
resources.

3

The system virtual machines are in the processor’s user mode,
where a rash action by a human can’t plunge the computer into
disaster. Dangerous commands are stored in the kernel mode
in a rich set of instructions called the kernel, or base system.
The kernel mode is off-limits to applications. To call on any 16-bit
or 32-bit operations, apps must send requests through the API.

4

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 100

K SUBSYSTEM
K SUBSYSTEM

OPERATING SYSTEM SERVICES

PERATING SYSTEM SER
VIRTUAL MACHINE MANAGER

RTUAL MACHINE MAN
DEVICE DRIVERS
EVICE DRIVERSOBJECT MANAGER

BJECT MANAGERSECURITY REFERENCE MONITOR

ECURITY REFERENCE M
PROCESS MANAGER

ROCESS MANAGER

ODE

KRNL3
86.EX

E

GDI32.DLL

CHAPTER 7 HOW WINDOWS WORKS 101

The applications in their virtual machines are a rowdy bunch, digitally speaking. When
any of the applications wants to call on any of Windows XP’s core services, such as
writing a file, the app must first go through the API—the Application Programming
Interface. The API acts as a middle agent between the users, who could carelessly ask
their applications to do something that could damage the kernel and its core services.

5

Earlier PC processors could use memory at the higher numbered addresses only by using a method called segmented
addresses. The address look like this: 1234:E789, two sets of hexadecimal (base 16) numbers with four digits each.
The first number is the segment, and the other is the offset from that segment. An analogy is a postal carrier who
knows how to deliver mail to only houses numbered 1 to 100. But by using house numbers (offsets) combined with
blocks (segments), the carrier can deliver mail to 100 houses on 1st Street, move on to the second segment, 2nd Street,
delivering to 100 houses with the same numbers as 1st Street, and on to 3rd Street and beyond. Reading and writing
memory was slower because the processor had to take an extra step to work with the segment and the offset.

Memory Tricks

In the kernel is a set of services, or
subsystems, code that powers the
most common and most necessary
functions in all Windows programs.
Applications can use these services
with little risk of treading on forbid-
den memory addresses.

7

The API contains three paired programs, half—
USER.EXE, GDI.EXE, and KRNL386.EXE—
for helping 16-bit Windows programs, and the
other half—USER32.DLL, GDI32.DLL, and
KERNEL32.DLL—for the full-blown 32-bit pro-
grams that XP prefers. The USER files contain
the routines applications need to control and
track windows. GDI files are collections of
graphic elements applications use to build their
dialog boxes and send information to the
screen. The kernel files work with low-level
operations, managing memory, input/output
operations and interrupts.

6

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 101

APPII

How Windows Shares Program Code

PART 3 HOW SOFTWARE WORKS102

Windows 9x and Windows XP both provide several files called DLLs (dynamic link libraries).
These are collections of software code that perform common software functions. One of the most
frequently used DLLs is Windows’ COMMDLG.DLL. As the name suggests, the DLL specializes in
commonly used dialog boxes. Its functions include displaying File Open, File Save, Search, and
Print dialog boxes. Microsoft is not the only creator of DLLs for Windows. Other companies have
created DLLs to provide functions such as file compression or added printing abilities.

1

An application that wants to take advantage of a DLL func-
tion first checks with an API (application programming
interface) to find out how to call the function. All DLLs have
APIs to help an application make a successful call of a func-
tion from a DLL it’s never encountered before.

2

With the API’s help, the app calls the
function to life by sending it the proper
digital command. The application also
sends any information the DLL function
needs to complete the operation. For
example, a program calling the Open
File function in COMMDLG.DLL passes
along a file specification, such as *.*
or *.DOC, to be displayed in the dia-
log box’s Filename text box.

3

The application also passes along a
specification for the type of information
it expects the DLL to return to the appli-
cation when the DLL has done its job.
The application, for example, might
expect return information in the form of
integers, true/false values, or text.

4

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 102

RAM

RAM

CHAPTER 7 HOW WINDOWS WORKS 103

The DLL loads the specific rou-
tine into memory, and then
the processor executes it. At
this point the DLL, rather than
the application, is running
things. The DLL performs all
the operations necessary to
communicate with Windows
and, through Windows, with
the PC’s hardware.

5

After the DLL function is com-
plete, the DLL puts the return
information into memory, where
the application can find it, and
instructs Windows to remove
the DLL routine from memory.

6

The application inspects the return
information, which usually tells whether
the DLL function was able to execute
correctly. If the operation was a suc-
cess, the application continues from
where it left off before issuing the func-
tion call. If the operation failed, the
application displays an error message.

7

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 103

How Windows Shares
Data on the Clipboard

PART 3 HOW SOFTWARE WORKS104

The simplest way to share the same data among different doc-
uments and different applications is through the Windows
Clipboard. Any time you select some data—text, graphics,
spreadsheet cells—and copy it, Windows places a replica of
that data into a section of memory reserved for its Clipboard.
Actually, Windows creates three different versions of the data.

1

Applications save their documents in different formats—
the exact coding that defines how the data is structured.
When you copy or cut data, Windows transfers the selec-
tion to the Clipboard in multiple formats so that it then
can be pasted into applications that use different formats.
One format is that of the application that created the
data. The second is a translation of the application’s for-
matting codes for boldfacing, justification, fonts, and so
on into a generic form called rich text format (RTF),
which is recognized by all Windows applications. The
third format is called OEM (original equipment
manufacturer) text, which is used to paste text into
DOS applications or when you prefer no formatting.

2 For example, if the data is a graphic, Windows saves it in
three formats—the original format, such as .TIF or .PCX; a
bitmap format; and a metafile format. A bitmap is a
record of the specific pattern of display pixels that need to
be turned on to re-create the image in its original size. A
metafile is a collection of commands that can be used
by Windows’s graphic device interface (GDI) to re-
create the image. Metafiles are resolution-independent;
that is, they aren’t locked into a specific array of pixels,
as a bitmap is. This lets metafiles take advantage of all
the resolution your display or printer can provide, and it
lets you resize images without distorting them. (A metafile
often is called an object-oriented graphic because it is
stored as a series of distinct objects—lines, rectangles,
arcs—rather than as a map of pixels.)

3

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 104

CHAPTER 7 HOW WINDOWS WORKS 105

When you paste data from the Clipboard, the application receiv-
ing the data inspects the various formats in which the data has
been copied. If you are pasting data into the application from
which it was copied, the application will choose its native format.

4

If you are pasting from one application into another, the receiving appli-
cation inspects all the formats saved on the Clipboard. The application is
looking for formats it understands, and which one of them retains the

most formatting information. For example, a metafile graphic is prefer-
able to a bitmapped graphic, because a metafile contains more

detailed information that the receiving application can use to
change the graphic’s size or placement on a page.

5

To paste data that’s in a format other than its native one, the receiv-
ing application first translates any information about the format of
the data—such as boldfacing or fonts—into the formatting codes the
receiving application uses. If it is receiving a metafile graphic, the
application sends the commands contained in the Clipboard to
Windows’s GDI.exe and GDI32.dll, which control the graphic look
of Windows XP and its ancestors. They, in turn, send the display dri-
ver the information the driver needs to create the graphic onscreen.

6

11_0789734249_CH07.qxd 10/17/05 2:11 PM Page 105

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0052005200200044006f006e006e0065006c006c00650079>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

