
BIG NERD RANCH
eSampler

THE 2012

Free eSampler

BUY FROM INFORMIT AND SAVE UP TO 40%

ENTER THE DISCOUNT CODE

LEARNMAC2012 DURING CHECKOUT

SHARE + SHOP @ informit.com

AARON HILLEGASS SERIES EDITOR

http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.bignerdranch.com/
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.informit.com/promotions/promotion.aspx?promo=137039
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

UPPER SADDLE RIVER, NJ | BOSTON | INDIANAPOLIS | SAN FRANCISCO | NEW YORK | TORONTO | MONTREAL

LONDON | MUNICH | PARIS | MADRID | CAPETOWN | SYDNEY | TOKYO | SINGAPORE | MEXICO CITY

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,

and Pearson Education was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.

No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

Copyright © 2012 by Pearson Education, Inc.

BIG NERD RANCH eSampler
THE 2012

Table of Contents

Advanced Mac OS
X Programming

CHAPTER 10
Performance

Tuning

iOS
Programming

CHAPTER 25
Web Services

and UIWebView

Objective-C
Programming

CHAPTER 2:
Your First
Program

Cocoa
Programming for
Mac OS X, 4th Ed.

CHAPTER 27
Blocks

More Cocoa
Programming for

Mac OS X

CHAPTER 23
Status Items

BUY FROM INFORMIT AND SAVE UP TO 40%

ENTER THE DISCOUNT CODE

LEARNMAC2012 DURING CHECKOUT

SHARE + SHOP @ informit.com

BUY NOW

http://www.informit.com/promotions/promotion.aspx?promo=137039
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

ADVANCED MAC OS X PROGRAMMING:
THE BIG NERD RANCH GUIDE, by Mark Dalrymple

TABLE OF CONTENTS

CHAPTER 10
Performance
Tuning

BUY NOW

SHARE + SHOP @ informit.com

Introduction
1. C and Objective-C
2. The Compiler
3. Blocks
4. Command-Line Programs
5. Exceptions, Error Handling,

and Signals
6. Libraries
7. Memory
8. Debugging with GDB
9. DTrace
10. Performance Tuning
11. Files, Part I: I/O and

Permissions
12. Files, Part II: Directories, File

Systems, and Links
13. NSFileManager – Cocoa and

the File System
14. Network Programming with

Sockets
15. CFRunLoop

16. kqueues and FSEvents
17. Bonjour
18. Multiprocessing
19. Using NSTask
20. Multithreading
21. Operations
22. Grand Central Dispatch
23. Accessing the Keychain

AVAILABLE FORMATS

•	 9780321706256		Book		

•	 9780132931052	 eBook	

•	 9780321706560	Safari	Books	Online		

BUY FROM INFORMIT AND SAVE UP TO 40%
ENTER THE DISCOUNT CODE
LEARNMAC2012 DURING CHECKOUT

http://www.informit.com/store/product.aspx?isbn=9780321706256
http://www.safaribooksonline.com/search/site/9780321706560
http://www.informit.com/store/product.aspx?isbn=9780321706256
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

Advanced�Mac�OS�X�Programming
THE�BIG�NERD�RANCH�GUIDE

MARK DALRYMPLE

209

10
Performance Tuning

It has happened to all of us: you subject your program to real world data and discover that performance
is sub-optimal, ranging from “could be faster” to “locks up instantly and CPU fans reach Mach 3.”
Finding out what the performance problem is can be a difficult task. Many times we think we know
where the problem is, but we turn out to be wrong. Luckily, there are a number of tools available to
give definite metrics of where the program spends its time and what kind of pressure it puts on the OS
in general.

Approaches To Performance
The key to keeping on top of your performance is to use profiling tools. Profile early, and profile
often. Catch performance issues early in your development so you don’t build a lot of code around
an inefficient core. If you use Instruments, Shark, or other performance tools regularly, you can see
possible performance issues on the horizon before they come close and bite you.

Be sure to profile with each new revision of the OS and on new hardware as it comes out. As Apple
changes Mac OS X under the hood, things that were optimal may now be suboptimal and vice-versa.
Hardware changes can change the game performance-wise. Consider look-up tables, which are a
common way to avoid doing calculation. On PowerPC G4 and older processors, using a look-up
table was often a big win, but the G5 could do a lot of calculation in the time it took to load data from
memory. Having situations like this can be a real problem if you have to support older versions of the
OS or if you want to optimally target vastly different hardware.

Be careful to not totally contort your design early on in a noble quest for Optimal Performance. You
might be addressing performance issues that do not have a real impact on your final product. Reports
from profilers are not gospel. A report may highlight a performance problem, but the problem may
be something that doesn’t need fixing. If a problem highlighted by a profiler will not affect the user
experience of your program or if it is something that rarely happens, you can put your energies into
optimizing something else.

Finally, do not just profile your development builds. If you use different compiler flags for deployment
builds, especially with higher optimization levels, you will want to do some profiling on your final
build so that you do not waste time fixing code paths that will change with compiler optimizations.

Major Causes of Performance Problems
Performance problems typically come from one or more of 5 major areas: algorithms, memory, CPU,
disk, and graphics. Granted, that is pretty much everything your program interacts with in the machine.
You can use performance tools to look at each aspect of computer performance in isolation to get a

Chapter 10 Performance Tuning

210

better handle on your overall performance issues, even if one problem is causing problems in several
categories.

Memory

Even though modern machines have vast amounts of memory, RAM is still a scarce resource. Once
your app or other apps on the system fill up memory, Mac OS X starts sending memory pages to
disk, destroying performance. On iOS devices, your program may be killed outright in low-memory
situations.

Typically if you optimize to reduce your memory usage (optimizing for space), you will often get
reductions in execution time because the processor is not waiting for that extra data to arrive from
memory. Also, because Mac OS X is a shared system with daemons running, with each user running
lots of programs of their own, and potentially multiple users logged in, it is good to be conservative
with your memory usage. This can be a tough discipline when each process has its own wide-open
address space to play in, especially when using 64-bit addressing.

Locality of Reference

“Locality of reference” describes memory accesses that happen near each other. Reading a hundred
bytes off one 4k page is faster than reading one byte off a hundred different pages scattered across
the address space. When you ask for data from memory, the processor actually grabs a sequence of
bytes, known as a cache line, under the assumption that you will be accessing memory in a contiguous
manner. From the processor’s point of view, it is just as fast to grab a 64-byte cache line as it is to
grab a 4-byte integer. So, if you set up your loops to operate on memory sequentially, you can see a
performance boost.

Example 10.1 creates a large two dimensional global array and accesses it in two different ways.

Example 10.1 locality.m

// locality.m -- time locality of reference

#include <stdio.h> // for printf
#include <stdlib.h> // for EXIT_SUCCESS
#include <time.h> // for time_t, time()

// gcc -g -std=c99 -o locality locality.m

#define ARRAYSIZE 20000
int a[ARRAYSIZE][ARRAYSIZE]; // make a huge array

int main (int argc, char *argv[]) {
 // Walk the array in row-major order, so that once we're done
 // with a page we never bother with it again.

 time_t starttime = time(NULL);
 for (int i = 0; i < ARRAYSIZE; i++){
 for(int j = 0; j < ARRAYSIZE; j++){
 a[i][j] = 1;
 }
 }

 time_t endtime = time (NULL);

Memory

211

 printf("row-major: %d operations in %ld seconds.\n",
 ARRAYSIZE * ARRAYSIZE, endtime - starttime);

 // Walk the array in column-major order. It ends up touching a bunch of
 // pages multiple times.

 starttime = time(NULL);
 for (int j = 0; j < ARRAYSIZE; j++){
 for(int i = 0; i < ARRAYSIZE; i++){
 a[i][j] = 1;
 }
 }

 endtime = time (NULL);

 printf("column-major: %d operations in %ld seconds.\n",
 ARRAYSIZE * ARRAYSIZE, endtime - starttime);

 return EXIT_SUCCESS;

} // main

Here is a sample run:

$./locality
row-major: 400000000 operations in 3 seconds.
column-major: 400000000 operations in 27 seconds.

A simple reversal of the for loops can result in a 9x performance penalty! The first loop follows the
way that C has the array’s memory organized, as shown in Figure 10.1. This loop accesses adjacent
bytes, and as it works through the array, it has good locality of reference. Memory pages are accessed
only once, and after the loop has stopped manipulating memory on a page, that page is no longer used.

Figure 10.1 Good memory access pattern

Chapter 10 Performance Tuning

212

The second loop works “across the grain,” as shown in Figure 10.2. It ends up hitting every page used
by the array every time through the loop. This puts a lot of pressure on the virtual memory system
because every page stays “warm,” causing the kernel to keep shuffling its least-recently-used page
lists. The first loop, because it does not touch a page once the work is done, is nicer to the kernel. Once
the page ages out of the kernel’s data structures, it is never seen again.

Figure 10.2 Bad memory access pattern

Caches

One common way to boost performance is caching, where you keep around some loaded or calculated
data in memory. If you are not careful, this technique can have drawbacks in a system that employs
virtual memory and paging. Recall that memory that hasn’t been accessed recently can be paged out
to disk and the space in RAM can be used by other processes. iOS devices do not page data to disk, so
dirty pages are always resident.

If do you choose to cache information, it is best to split up your cache data and the metadata that
describes the cached data. You don’t want to use an architecture like Figure 10.3, which mixes the
cache data and the metadata.

Figure 10.3 Bad locality of reference

Instead, organize your data as shown in Figure 10.4. Keep your metadata together because you will
have good locality of reference when walking through your cache looking for expired objects. You can
even do your own form of virtual memory: if a cache entry has not been used in a while or if you get
an iOS memory warning, you can remove your data blob from memory and then load it again when
needed.

Memory

213

Figure 10.4 Good locality of reference

Memory is the New I/O

The motivation that drives programmers to cache data read from disk is that I/O from disk is hideously
expensive. Waiting for one disk I/O can cost hundreds of thousands (or more) CPU cycles that could
be put to better use.

With today’s processors, memory subsystems, and bus architectures, RAM has become like I/O.
Sometimes accessing memory can be extremely slow compared to CPU speed. For example, according
to an Apple tech note, a G5 could do 16 to 50 vector adds in the time it takes to load a cache line from
memory. And the situation can get even worse with modern processors.

The “precalculate and store in memory” technique can become a bottleneck compared to brute-force
calculations. The CPU can grind through some calculations faster than the fetch from memory, and
the look-up table can force more important data out of the CPU caches. The tech note goes on to say
“In one example, vector code that converts unsigned char data to float and then applies a 9th order
polynomial to it is still marginally faster than hand tuned scalar code that does a lookup into a 256
entry lookup table containing floats.”

Level-1 Cache, the cache memory nearest the CPU logic units, has an area for instructions, but it is
only 32 to 64 kilobytes large, per core. Optimizations that increase code length, like loop unrolling
and 64-bit code in general, can blow out this cache, requiring code to be continually brought in from
RAM. It becomes a balancing act between the size of code, what you calculate, and what you store
and retrieve. Sometimes trial-and-error is the way to go to see what technique results in the best
performance, especially if you have high-performance scientific modeling that will have long runtimes
or if you are dealing with large volumes of data quickly, such as when processing video.

Semantics of the C language can get in the way, optimization-wise, especially with regards to memory.
If the compiler knows how a particular chunk of memory is being accessed, it can cache the values
in registers or even avoid loading data that has already been loaded. Because C has pointers, there
can be aliasing problems. There may be a pointer elsewhere in the process that is pointing to (and
could conceivably modify) a piece of memory that the compiler could otherwise optimize access to.
This is why languages that do not have pointers, like FORTRAN, can perform much more aggressive
optimizations.

When using a data structure through a pointer or a global variable in a loop, the compiler will emit
code to reload that location in memory each time through the loop. It does this just in case the value
was changed by someone else, either in another thread or by a function called inside the loop. Making
a local variable to hold the global’s value lets the compiler figure out that this data is not going to
change and thus avoids the memory hit each time through the loop.

Chapter 10 Performance Tuning

214

CPU
CPU usage is the metric that most programmers think about first when confronted with an optimization
issue. “My app is pegging the CPU, and I need to speed it up.” Typically when CPU usage becomes
a dominant factor, the root cause is a slow algorithm. It might have a high level of complexity, or it
might just be a poor implementation. In almost all cases, changing your algorithm will give you more
speedups than most other kinds of code or system tweaking. The classic example is changing from a
bubble-sort, an order O(N2 algorithm), to a quicksort or merge sort, which is O(n log n).

Sometimes a bad implementation of an algorithm can wreak havoc. For instance, a programming error
turned strstr() in one version of SunOS 4.1.x from an O(N) operation to a worthless O(N2) one:

 while (c < strlen(string)) {
 // do stuff with string[c]
 }

Recall that C strings do not store their length. A string is just a sequence of bytes terminated by zero.
strlen() has to traverse the entire string counting characters. There are tricks you can use to do the
work in greater than one-byte chunks, but it’s still an O(N) operation. In this particular case, the length
of the string is not going to change, so there is no reason to take the length every time through the loop.

Luckily, high CPU usage can be easily discovered by noticing that the CPU meter is pegged in Activity
Monitor, that top is showing your app consuming 99% of the available CPU power, or that your laptop
case has started glowing. The sampling and profiling tools discussed later in this chapter are ideal for
tracking down the cause of these problems.

Disk
Disk access is very slow – many orders of magnitude slower than accessing memory. In general, if
you can avoid disk I/O, do so. If you are planning on caching data from disk, remember that the virtual
memory system also uses the disk. If you cache a large amount of data, you could end up causing the
VM system to do disk I/O. This is a very bad situation because you have now exchanged one disk read
(from disk into memory) into a read and a write to page it out and then another read to page it back in
from the disk into memory.

Locality of reference plays a part when optimizing disk access when VM paging involved. With bad
locality of reference, you end up touching lots of pages. These pages cause other pages to “age out” of
the VM cache and get sent to disk. Eventually you will touch them again which could cause disk I/O to
retrieve the data on those pages.

You can avoid some of the expense of disk I/O by not doing the work at all. Putting windows into
different .nib files and loading them on demand is a common technique. If you do not need to show
the window, there is no reason to load it in memory.

Similarly, if you have a large database of information, accessing it piecemeal can yield significant
speedups over loading the whole thing into memory. Using memory-mapped files can avoid disk
activity because only the parts of the file being touched will make their way into memory.

Graphics
The Quartz graphics engine in Mac OS X puts a lot of pressure on the memory system. Quartz
uses large graphic buffers, one for each window visible on the screen. There are also compositing

Graphics

215

operations to render the user’s desktop. Quartz also uses the CPU to do some of its drawing effects,
although many of these operations have been migrated to the graphics processing units on the graphics
card. There are some operations that do not work well on the GPU, so these must be done on the CPU.

The key to optimizing graphics is to avoid drawing when you can. Use the Quartz Debug utility, shown
in Figure 10.5, to see where you are doing unnecessary drawing. The most commonly used features
are in the Drawing Information panel. Autoflush drawing causes drawing operations to appear on the
screen as soon as they happen rather than being batched for the next update. Areas to the screen that
are drawn to can be made to flash so you can see where you are drawing. Identical screen updates are
highlighted in a different color so you can see where redundant work is happening.

Figure 10.5 Quartz Debug

NSView has some features that let you decide which parts of the view need to be redrawn and which
ones do not. You can hit-test the rectangle that is passed to NSView’s drawRect: method and only
perform drawing calls for items that live in that rectangle. This rectangle tends to be the union of all of
the area that needs redrawing, so you can consult getRectsBeingDrawn: and needsToDrawRect: to hit-
test against the areas that need to be redrawn.

One aspect of Quartz drawing that catches some programmers off guard is that overlapping lines in a
single path can be very expensive. A lot of work happens at line crossings, such as anti-aliasing the
intersections, as well as making sure that transparent colors do not get “painted” multiple times at the
crossings and appear darker. If you need to draw lots of overlapping lines, especially if you are using
opaque colors and do not care about antialiasing, you can get much better performance by drawing a
bunch of small paths instead.

Chapter 10 Performance Tuning

216

Before using any of the profiling tools

Forget any assumptions you may have about where the performance problems may be. Programmers
are notoriously bad about predicting where performance problems are; otherwise, the problems would
already be fixed. One programmer I worked with was convinced that file loading and disk I/O was
the slow part of his program when loading files, and he was spending a lot of effort to optimize disk
access. After a quick session with Shark, the problem actually turned out to be the marshaling of data
into a tree so that NSOutlineView could use it. The time spent in actual file I/O was minimal.

Keep good notes on what you do and the measurements you make so that you can apply the
optimizations to other situations. By keeping a record of execution times (for instance), you can tell if
your optimization attempts are helping or are actually making the problem worse.

When tracking down performance problems, throw a large data set at your application. With the file-
loading issue mentioned earlier, some of the test data were 5K files that took a second or two to load.
That’s too small a window in which to figure anything out. If your application is designed to edit 50-
page research papers, then throw a 500- or 5000-page document at it. The larger data sets should make
O(N2) algorithms stand out like the proverbial sore thumb. If your program is responsive when editing
5000-page documents, it should give the user a really nice experience when they are using it to edit 50-
page documents. Do not bother with more than two or three orders of magnitude more data, since that
much more data will probably require a redesign of your data structures and may become suboptimal
for smaller data sets.

There is some debate over when you should optimize. One school of thought is “premature
optimization is the root of all evil,” and you should wait until the end of your development cycle to
identify and fix performance problems. Unfortunately, that can require re-engineering large chunks
of the product if there is a deeply-rooted bottleneck. Another school of thought is to act like you are
on a diet and adopt a constant discipline about performance. The downside to that is that premature
optimization can obscure the design and the code and make it harder to track down program errors
before shipping.

As with most everything in life, the middle ground is a good place to live. Keep an eye out for
algorithms that can be improved, but do not obfuscate code to trim every cycle you can too early in
the development process. Throw large data sets at your program often. Do not wait until right before a
trade show or a launch to subject your program to what the customer will throw at it. Keep an eye on
your memory usage so that it does not grow too large too quickly. Also be sure to run the program in
the user’s environment. If you are writing a desktop app, be sure to have Safari and iTunes running,
since the user will probably be using those apps, too. If your application is a memory pig and makes
iTunes skip, you will definitely get some user complaints.

Command-Line Tools
Mac OS X comes with a number of command-line tools for tracking down particular types of
performance problems. The nice thing about the command line is that you can remotely log into a
machine and watch things as they happen. They also don’t interfere with your application’s user
interface.

(Mac OS X also comes with a number of powerful GUI performance tools, which are easier to use than
the command-line tools. We’ll look more closely at those in the next chapter.)

time

217

time

The simplest tool is time. It times command execution and shows you clock time, CPU time in
userspace, and CPU time spent in the kernel. Here is a run of /usr/bin/time on TextEdit. The time
measured was the time starting TextEdit up, loading /usr/share/dict/words, and then scrolling from
the top to the bottom.

$ time /Applications/TextEdit.app/Contents/MacOS/TextEdit
real 0m14.619s
user 0m1.257s
sys 0m0.180s

This is 14 seconds of clock time, one second in user space, and less than a second in the kernel.

The C shell has its own version of time that gives more information:

% time /Applications/TextEdit.app/Contents/MacOS/TextEdit
2.515u 0.226s 0:15.01 18.1% 0+0k 22+43io 0pf+0w

This is 2.5 seconds in user space, 0.2 seconds in kernel space, and fifteen seconds clock time. The
18.1% is a utilization percentage: the ratio of user + system times to real time. Following the time
information is memory information: shared + unshared memory usage, input + output operations,
number of pagefaults and swaps. OS X seems not to report the shared + unshared memory usage.

time is very handy when comparing optimizations. Run a baseline or two with time, make the
optimization, then try time again. If you are optimizing CPU usage and discover CPU time figures
going up, you should reconsider that particular optimization.

dtruss

Many Unix systems have a utility that will show all of the system calls a program makes. On Solaris,
it is called truss; on Linux, it’s strace. Mac OS X 10.4 has ktrace (kernel tracing), and Mac OS X 10.5
and later have a similar utility, dtruss, based on DTrace.

dtruss requires root privileges to run because DTrace requires them. Run it like this:

$ sudo dtruss ls

This will generate a couple of hundred lines of output, like

SYSCALL(args) = return
getpid(0x7FFF5FBFF600, 0x7FFFFFE00050, 0x0) = 9234 0
open_nocancel("/dev/urandom\0", 0x0, 0x0) = 3 0
read_nocancel(0x3, "...", 0x6C) = 108 0
close_nocancel(0x3) = 0 0
issetugid(0x100000000, 0x7FFF5FBFF8C8, 0x7FFF5FC40530) = 0 0
geteuid(0x100000000, 0x7FFF5FBFF8C8, 0x0) = 0 0
...

The output is not terribly easy to read, but there is a lot of information there. As ls started up, it called
getpid(), which returned the value 9234, the process ID for ls. After the function exited, errno was
zero. If there was an error, dtruss would print a result like this:

stat64("grausenstein\0", 0x7FFF5FBFEFB0, 0x1) = -1 Err#2

with a return value of -1, and errno set to 2.

Chapter 10 Performance Tuning

218

Being able to see the system call traffic can be a great debugging aid, especially if you have a program
that will not start. You can see if the program is trying to load a missing shared library or if it needs
some configuration file that is not supplied.

System call tracking can be a performance-tuning aid, too. You might discover a lot of one-byte writes
that can be coalesced into a single operation, you may have given a bad timeout to kevent() so that it
returns a lot sooner than you expect, or you can see why your program is blocking unexpectedly.

fs_usage and sc_usage
fs_usage and sc_usage are programs run as the root user that also show system call activity. fs_usage
shows file system information, and sc_usage shows system call information.

Here is BigShow, the Big Nerd Ranch slide show application, about to start paging through slides:

$ sudo fs_usage
password:
18:38:06 open /Preferences/com.apple.dock.plist 0.00005 BigShow
18:38:06 fstat 0.00000 BigShow
18:38:06 read 0.00029 BigShow
18:38:06 close 0.00002 BigShow
18:38:06 open com.apple.dock.0003931024a6.plist 0.00015 BigShow
18:38:06 PAGE_IN 0.00070 W BigShow
18:38:06 open /Library/Preferences/Network 0.00008 BigShow
18:38:06 open com.apple.systempreferences.plist 0.00005 BigShow

Part of Cocoa is looking at the plist for the dock, presumably for getting size and location information
so that it can properly place a window. You can see the open, a stat to get the size of the file, the
file being read, and its close. Unlike dtruss, there is not an easy way to correlate specific calls like a
read() with the file descriptor it is using, but fs_usage does show you how much time it took. fs_usage
can be run on a system-wide basis, which can be handy if you have a problem that is slowing the
entire machine down. fs_usage is also useful when you have a program that accesses the hard drive
unexpectedly and you want to track down who is responsible.

One really snazzy feature of fs_usage can be seen when used on applications that make Carbon file-
system calls. If you set the environment variable DYLD_IMAGE_SUFFIX to _debug, fd_usage will show
the Carbon calls being made. Here is a peek at an old copy of Mozilla running:

18:34:38 GetCatInfo 0.000174 LaunchCFMApp
18:34:38 PBMakeFSSpec (0, 0x0, 0x0, 0x0) LaunchCFMApp
18:34:38 getattrlist .vol/280763/Mozilla.app 0.000032 LaunchCFMApp
18:34:38 PBMakeFSSpec 0.000064 LaunchCFMApp
18:34:38 GetCatInfo (-100, 0x0, 0x0, 0x0) LaunchCFMApp
18:34:38 getattrlist .vol/280763/Mozilla.app 0.000046 LaunchCFMApp

sc_usage shows system calls for a program in a manner like top, with a continually updating display.
Here is a snapshot from Safari:

Safari 12 preemptions 189 context switches 8 threads 16:05:42
 0 faults 706 system calls 0:00:07

TYPE NUMBER CPU_TIME WAIT_TIME
--
System Idle 00:06.608(00:00.922)
System Busy 00:00.368(00:00.065)
Safari Usermode 00:00.109

top

219

mach_msg_trap 2004(382) 00:00.013 00:17.878(00:02.978) 3
kevent 20(3) 00:00.000 00:05.531(00:01.005) W
semwait_signal 2(1) 00:00.000 00:05.496(00:01.003) W
select 13 00:00.000 00:05.076(00:01.004) W

CURRENT_TYPE LAST_PATHNAME_WAITED_FOR CUR_WAIT_TIME THRD# PRI
--
mach_msg_trap 00:00.016 0 46
mach_msg_trap 00:00.150 1 46
semwait_signal 00:00.496 2 47
kevent 00:00.481 3 49
workq_ops 00:00.478 4 47
select 00:01.391 5 46
mach_msg_trap 00:01.391 6 62
bsdthread_terminate 00:05.019 7 47

The CPU_TIME column is the amount of CPU time consumed, and WAIT_TIME is the absolute time the
process waits.

If you think you have I/O performance problems, these two programs can help you track down the
specific calls that could be causing problems.

top

Unix systems are complex beasts composed of multiple programs interacting. Sometimes performance
problems manifest as overall system slowness while each program looks just fine in isolation. The
dtruss and sc_usage utilities are useful for monitoring system calls in a particular program. top, on the
other hand, can be used to monitor all the programs on the system. Running top without arguments
will show the familiar OS information (memory distributions, load average). By default, it orders
programs by launch order (most recent program listed first). This is useful if you are monitoring a
recently launched program. The -u flag will sort the list by CPU usage.

top can also count and show system-wide events. top -e shows VM (virtual memory), network
activity, disk activity, and messaging stats:

$ top -e

Processes: 70 total, 4 running, 66 sleeping, 260 threads 16:09:30
Load Avg: 0.19, 0.28, 0.24 CPU usage: 6.27% user, 5.51% sys, 88.20% idle
SharedLibs: 7424K resident, 7276K data, 0B linkedit.
MemRegions: 9361 total, 451M resident, 17M private, 290M shared.
PhysMem: 798M wired, 1062M active, 427M inactive, 2287M used, 1809M free.
VM: 168G vsize, 1041M framework vsize, 339589(0) pageins, 278055(0) pageouts.
Networks: packets: 2550949/3311M in, 1667316/160M out.
Disks: 561048/8214M read, 976911/21G written.

PID COMMAND %CPU TIME #TH #WQ #POR #MRE RPRVT RSHRD RSIZE VPRVT
9317 top 3.8 00:00.63 1/1 0 24 33 920K 244K 1496K 17M
9316- WebKitPlug 0.3 00:03.47 6 2 110 245 9584K 30M 15M 49M
9306 Safari 0.2 00:12.02 11 2 167 533 97M 53M 153M 265M
9299 csh 0.0 00:00.04 1 0 15 26 612K 592K 1160K 17M
9268 mdworker 0.0 00:00.36 3 1 50 77 4388K 19M 12M 29M
9202 bash 0.0 00:00.03 1 0 17 25 320K 244K 976K 9576K
9198 csh 0.0 00:00.02 1 0 17 26 580K 592K 1164K 9648K
9197 login 0.0 00:00.02 1 0 22 54 472K 312K 1608K 10M
9180 ssh 0.0 00:00.04 1 0 22 25 508K 244K 1812K 9588K
8900 Preview 0.0 00:16.27 2 1 125 268 20M 73M 45M 28M

Chapter 10 Performance Tuning

220

8886 WebKitPlug 0.0 00:00.01 2 2 28 51 544K 244K 988K 40M
8850 Activity M 0.0 00:35.63 2 1 106 243 5360K 75M 15M 25M
8700 VDCAssista 0.0 00:00.15 4 1 90 73 384K 19M 3104K 23M
8697- Snak 1.5 07:03.51 5/1 1 192 232 3788K 43M 11M 40M

There is a lot of information here. 70 processes, 260 threads system-wide. Shared libraries take about
7 megabytes of memory, 1.8 gigs of physical memory free, 168 gigs of virtual memory allocated,
network and disk I/Os. Each process has information such as the number of threads, work queues,
mach ports, and memory regions. Resize your terminal window to see more columns, such as virtual
size, process state, page faults, bsd system calls made, etc.

top -e shows cumulative output, while top -d will show things in a delta mode. The update interval
is one second. That can be changed by using the -s flag to control the number of seconds between
intervals.

Stochastic profiling
One useful low-tech tool is “stochastic profiling,” where you run the program in the debugger and
interrupt it occasionally to see what is on the call stack. If you see the same function(s) on the stack
over and over again, you know where to start looking. This technique is handy if you are on a platform
or in a situation where traditional performance tools are not available or do not work. Plus, it’s fast and
easy, especially if you are already running your program in a debugger.

sample
You can do some profiling from the command-line to answer quick-and-dirty “what is happening
here?” kinds of questions. The sample program will sample a process at 10-millisecond intervals and
then build a snapshot of what the program was doing. You can give sample a pid or give it the partial
name of a program:

$ sample iTunes 5
Sampling process 216 each 10 msecs 500 times
Sample analysis of process 216 written file /tmp/iTunes_216.sample.txt

The resulting trace file shows a bunch of call stacks, one for each thread, along with the number of
times it found those particular functions on a call stack. Here’s an example of one thread that is waiting
in a run loop.

434 Thread_1103
 434 _pthread_body
 434 dyld_stub_binding_helper
 434 CFRunLoopRun
 434 CFRunLoopRunSpecific
 434 __CFRunLoopRun
 434 mach_msg
 434 mach_msg_trap
 434 mach_msg_trap

This is the same output you get when sampling processes in Activity Monitor.

Precise Timing with mach_absolute_time()
Command-line tools are a great place to benchmark snippets of code, which is useful for those cases
where you can isolate an algorithm or a programming technique out of your full application. A dozen-

Precise Timing with mach_absolute_time()

221

line or a couple-hundred-line command-line tool is a much more tractable problem than a million-line
application. Not every problem can be put into a little benchmark, but enough of them can to make it a
useful technique.

The nice thing about command-line programs is you can use the time command to get absolute figures
of the running time of the program making it easy to compare and contrast changes you make to your
target program.

But sometimes the time command does not have enough granularity. You might want more precise
timing, or you may just be interested in timing a specific part of your program. You might not be
interested in the time it takes to load the data to feed your algorithm. If loading the data takes 3 times
as long as it takes the algorithm to run, you will want to do timing inside of the program yourself.

Mach, Mac OS X’s kernel, provides some functions you can use for precise timing.
mach_absolute_time() reads the CPU time base register and reports the value back to you. This time
base register serves as the basis for other time measurements in the OS:

uint64_t mach_absolute_time (void);

mach_absolute_time() returns values based on the CPU time, so it is not directly usable for getting
time values because you do not know what time span each increment of the counter represents.

To translate mach_absolute_time()’s results to nanoseconds, use mach_timebase_info() to get the
scaling of mach_absolute_time()’s values:

kern_return_t mach_timebase_info (mach_timebase_info_t info);

Where mach_timebase_info_t is a pointer to this struct:

struct mach_timebase_info {
 uint32_t numer;
 uint32_t denom;
};

mach_timebase_info() fills in the struct with the fraction to multiply the result of
mach_absolute_time() by to calculate nanoseconds. Multiply the result of mach_absolute_time() by
numer and divide by denom.

Example 10.2 shows how to use these two functions. The code times how long it takes to call
mach_timebase_info() and printf(). For real-life code, you would want to put something more
interesting in there to time.

Example 10.2 machtime.m

// machtime.m -- exercise mach_absolute_time()

#import <mach/mach_time.h> // for mach_absolute_time() and friends
#import <stdio.h> // for printf()
#import <stdlib.h> // for abort()

// gcc -g -Wall -o machtime machtime.m

int main (void) {
 uint64_t start = mach_absolute_time ();

 mach_timebase_info_data_t info;

Chapter 10 Performance Tuning

222

 if (mach_timebase_info (&info) == KERN_SUCCESS) {
 printf ("scale factor : %u / %u\n", info.numer, info.denom);
 } else {
 printf ("mach_timebase_info failed\n");
 abort ();
 }

 uint64_t end = mach_absolute_time ();
 uint64_t elapsed = end - start;
 uint64_t nanos = elapsed * info.numer / info.denom;

 printf ("elapsed time was %lld nanoseconds\n", nanos);

 return 0;

} // main

And here it is in action:

$./machtime
scale factor : 1 / 1
elapsed time was 55055 nanoseconds
$./machtime
scale factor : 1 / 1
elapsed time was 95363 nanoseconds
$./machtime
scale factor : 1 / 1
elapsed time was 46839 nanoseconds

On this system, a 2010 Macbook Pro, the numerator and denominator of the conversion are both
one. Some older machines, such as the original TiBook, had the numerator of the conversion at
1,000,000,000 and the denominator at 24,965,716, resulting in a scale value of 40.05. So there were
about 40 nanoseconds for each increment of mach_absolute_time().

Outside of the second run, it takes about 50,000 nanoseconds, or 50 microseconds to do the work
between the two timings. So what’s up with that middle run being twice as long as the others? When
you are dealing with time values this short, anything can perturb them. Maybe some dynamic library
lookup was necessary for that second run. Maybe iTunes was running and was loading a new track.
Maybe Time Machine kicked in. For a real benchmark, you would run it for a longer period of time to
hide those small one-time-only blips. And of course, you would run the benchmark a couple of times to
get a good average and iron out the noise.

In the next chapter, we'll examine the GUI performance tools that Mac OS X provides, including the
Activity Monitor and Instruments, Apple’s suite of profiling tools.

BUY NOW

BUY FROM INFORMIT AND SAVE UP TO 40%
ENTER THE DISCOUNT CODE
LEARNMAC2012 DURING CHECKOUT

IOS PROGRAMMING: THE BIG NERD RANCH GUIDE,
THIRD EDITION, by Joe Conway and Aaron Hillegass

TABLE OF CONTENTS

CHAPTER 25
Web Services
and UIWebView

SHARE + SHOP @ informit.com

Introduction
1. A Simple iOS Application
2. Objective-C
3. Managing Memory with ARC
4. Delegation and Core Location
5. MapKit and Text Input
6. Subclassing UIView and

UIScrollView
7. View Controllers
8. Notification and Rotation
9. UITableView and

UITableViewController
10. Editing UITableView
11. UINavigationController
12. Camera
13. UIPopoverController and

Modal View Controllers
14. Saving, Loading, and

Multitasking
15. Subclassing UITableViewCell
16. Core Data

17. Localization
18. Settings
19. Touch Events and

UIResponder
20. UIGestureRecognizer

and UIMenuController
21. Instruments
22. Core Animation Layer
23. Controlling Animation

with CAAnimation
24. UIStoryboard
25. Web Services and UIWebView
26. UISplitViewController and

NSRegularExpression
27. Blocks
28. Model-View-Controller-Store
29. Advanced MVCS
30. iCloud
31. Afterword

AVAILABLE FORMATS

•	 9780321821522		Book		

•	 9780132978750	 eBook	

•	 9780132978767	 Safari	Books	Online

http://www.safaribooksonline.com/search/site/9780132978767
http://www.informit.com/store/product.aspx?isbn=9780321821522
http://www.informit.com/store/product.aspx?isbn=9780321821522
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

iOS Programming
THE BIG NERD RANCH GUIDE

JOE CONWAY & AARON HILLEGASS

437

25
Web Services and

UIWebView

In this chapter, you will lay the foundation of an application that reads the RSS feed from the Big Nerd
Ranch Forums (Figure 25.1). Forum posts will be listed in a table view, and selecting a post from the
table will display it from the site. Figure 25.1 shows the Nerdfeed application at the end of this chapter.

Figure 25.1 Nerdfeed

We will divide the work into two parts. The first is connecting to and collecting data from a web
service and using that data to create model objects. The second part is using the UIWebView class to
display web content. Figure 25.2 shows an object diagram for Nerdfeed.

Chapter 25 Web Services and UIWebView

438

Figure 25.2 Nerdfeed object diagram

Web Services
Your handy web browser uses the HTTP protocol to communicate with a web server. In the simplest
interaction, the browser sends a request to the server specifying a URL. The server responds by
sending back the requested page (typically HTML and images), which the browser formats and
displays.

In more complex interactions, browser requests include other parameters, like form data. The server
processes these parameters and returns a customized, or dynamic, web page.

Web browsers are widely used and have been around for a long time. So the technologies surrounding
HTTP are stable and well-developed: HTTP traffic passes neatly through most firewalls, web servers
are very secure and have great performance, and web application development tools have become easy
to use.

You can write a client application for iOS that leverages the HTTP infrastructure to talk to a web-
enabled server. The server side of this application is a web service. Your client application and the web
service can exchange requests and responses via HTTP.

Because the HTTP protocol doesn’t care what data it transports, these exchanges can contain complex
data. This data is typically in XML or JSON (JavaScript Object Notation) format. If you control
the web server as well as the client, you can use any format you like; if not, you have to build your
application to use whatever the server supports.

Starting the Nerdfeed application

439

In this chapter, you will create a client application that will make a request to the smartfeed web
service hosted at http://forums.bignerdranch.com. You will pass a number of arguments to this
service that determine the format of the data that is returned. This data will be XML that describes the
most recent posts at our developer forums.

Starting the Nerdfeed application

Create a new Empty�Application for the iPad Device Family. Name this application Nerdfeed, as shown
in Figure 25.3. (If you don’t have an iPad to deploy to, use the iPad simulator.)

Figure 25.3 Creating an iPad Empty Application

Let’s knock out the basic UI before focusing on web services. Create a new NSObject subclass
and name it ListViewController. In ListViewController.h, change the superclass to
UITableViewController.

@interface ListViewController : NSObject
@interface ListViewController : UITableViewController

In ListViewController.m, write stubs for the required data source methods so that we can build and
run as we go through this exercise.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return 0;
}

Chapter 25 Web Services and UIWebView

440

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return nil;
}

In NerdfeedAppDelegate.m, create an instance of ListViewController and set it as the root view
controller of a navigation controller. Make that navigation controller the root view controller of the
window.

#import "NerdfeedAppDelegate.h"
#import "ListViewController.h"

@implementation NerdfeedAppDelegate
@synthesize window;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.

 ListViewController *lvc =
 [[ListViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *masterNav =
 [[UINavigationController alloc] initWithRootViewController:lvc];

 [[self window] setRootViewController:masterNav];

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 return YES;
}

Build and run the application. You should see an empty UITableView and a navigation bar.

NSURL, NSURLRequest, and NSURLConnection
The Nerdfeed application will fetch data from a web server using three handy classes: NSURL,
NSURLRequest, and NSURLConnection (Figure 25.4).

Figure 25.4 Relationship of web service classes

Each of these classes has an important role in communicating with a web server:

• An NSURL instance contains the location of a web application in URL format. For many web
services, the URL will be composed of the base address, the web application you are communicating
with, and any arguments that are being passed.

Formatting URLs and requests

441

• An NSURLRequest instance holds all the data necessary to communicate with a web server. This
includes an NSURL object, as well as a caching policy, a limit on how long you will give the web
server to respond, and additional data passed through the HTTP protocol. (NSMutableURLRequest is
the mutable subclass of NSURLRequest.)

• An NSURLConnection instance is responsible for actually making the connection to a web server,
sending the information in its NSURLRequest, and gathering the response from the server.

Formatting URLs and requests
The form of a web service request varies depending on who implements the web service; there are no
set-in-stone rules when it comes to web services. You will need to find the documentation for the web
service to know how to format a request. As long as a client application sends the server what it wants,
you have a working exchange.

The Big Nerd Ranch Forum’s RSS feed wants a URL that looks like this:

http://forums.bignerdranch.com/smartfeed.php?limit=1_DAY&sort_by=standard
&feed_type=RSS2.0&feed_style=COMPACT

You can see that the base URL is forums.bignerdranch.com, the web application is smartfeed, and
there are five arguments. These arguments are required by the smartfeed web application.

This is a pretty common form for a web service request. Generally, a request URL looks like this:

http://baseURL.com/serviceName?argumentX=valueX&argumentY=valueY

At times, you will need to make a string “URL-safe.” For example, space characters and quotes are not
allowed in URLs; They must be replaced with escape-sequences. Here is how that is done.

NSString *search = @"Play some \"Abba\"";
NSString *escaped =
 [search stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

// escaped is now "Play%20some%20%22Abba%22"

When the request to the Big Nerd Ranch forums is processed, the server will return XML data that
contains the last 20 posts. The ListViewController, who made the request, will populate its table
view with the titles of the posts.

In ListViewController.h, add an instance variable for the connection and one for the data that is
returned from that connection. Also add a new method declaration.

@interface ListViewController : UITableViewController
{
 NSURLConnection *connection;
 NSMutableData *xmlData;
}
- (void)fetchEntries;
@end

Working with NSURLConnection
An NSURLConnection instance can communicate with a web server either synchronously or
asynchronously. Because passing data to and from a remote server can take some time, synchronous
connections are generally frowned upon because they stall your application until the connection

Chapter 25 Web Services and UIWebView

442

completes. This chapter will teach you how to perform an asynchronous connection with
NSURLConnection.

When an instance of NSURLConnection is created, it needs to know the location of the web application
and the data to pass to that web server. It also needs a delegate. When told to start communicating with
the web server, NSURLConnection will initiate a connection to the location, begin passing it data, and
possibly receive data back. It will update its delegate each step of the way with useful information.

In ListViewController.m, implement the fetchEntries method to create an NSURLRequest that
connects to http://forums.bignerdranch.com and asks for the last 20 posts in RSS 2.0 format. Then,
create an NSURLConnection that transfers this request to the server.

- (void)fetchEntries
{
 // Create a new data container for the stuff that comes back from the service
 xmlData = [[NSMutableData alloc] init];

 // Construct a URL that will ask the service for what you want -
 // note we can concatenate literal strings together on multiple
 // lines in this way - this results in a single NSString instance
 NSURL *url = [NSURL URLWithString:
 @"http://forums.bignerdranch.com/smartfeed.php?"
 @"limit=1_DAY&sort_by=standard&feed_type=RSS2.0&feed_style=COMPACT"];

 // For Apple's Hot News feed, replace the line above with
 // NSURL *url = [NSURL URLWithString:@"http://www.apple.com/pr/feeds/pr.rss"];

 // Put that URL into an NSURLRequest
 NSURLRequest *req = [NSURLRequest requestWithURL:url];

 // Create a connection that will exchange this request for data from the URL
 connection = [[NSURLConnection alloc] initWithRequest:req
 delegate:self
 startImmediately:YES];
}

Kick off the exchange whenever the ListViewController is created. In ListViewController.m,
override initWithStyle:.

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self fetchEntries];
 }

 return self;
}

Build the application to make sure there are no syntax errors.

Collecting XML data
This code, as it stands, will make the connection to the web service and retrieve the last 20 posts.
However, there is one problem: you don’t see those posts anywhere. You need to implement delegate
methods for NSURLConnection to collect the XML data returned from this request.

Collecting XML data

443

Figure 25.5 NSURLConnection flow chart

The delegate of an NSURLConnection is responsible for overseeing the connection and for collecting
the data returned from the request. (This data is typically an XML or JSON document; for this web
service, it is XML.) However, the data returned usually comes back in pieces, and it is the delegate’s
job to collect the pieces and put them together.

In ListViewController.m, implement connection:didReceiveData: to put all of the data received by
the connection into the instance variable xmlData.

// This method will be called several times as the data arrives
- (void)connection:(NSURLConnection *)conn didReceiveData:(NSData *)data
{
 // Add the incoming chunk of data to the container we are keeping
 // The data always comes in the correct order
 [xmlData appendData:data];
}

When a connection has finished retrieving all of the data from a web service, it sends the message
connectionDidFinishLoading: to its delegate. In this method, you are guaranteed to have the
complete response from the web service request and can start working with that data. For now,
implement connectionDidFinishLoading: in ListViewController.m to print out the string
representation of that data to the console to make sure good stuff is coming back.

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
 // We are just checking to make sure we are getting the XML
 NSString *xmlCheck = [[NSString alloc] initWithData:xmlData
 encoding:NSUTF8StringEncoding];
 NSLog(@"xmlCheck = %@", xmlCheck);
}

There is a possibility that a connection will fail. If an instance of NSURLConnection cannot make a
connection to a web service, it sends its delegate the message connection:didFailWithError:. Note
that this message gets sent for a connection failure, like having no Internet connectivity or if the server
doesn’t exist. For other types of errors, such as data sent to a web service in the wrong format, the error
information is returned in connection:didReceiveData:.

Chapter 25 Web Services and UIWebView

444

In ListViewController.m, implement connection:didFailWithError: to inform your application of
a connection failure.

- (void)connection:(NSURLConnection *)conn
 didFailWithError:(NSError *)error
{
 // Release the connection object, we're done with it
 connection = nil;

 // Release the xmlData object, we're done with it
 xmlData = nil;

 // Grab the description of the error object passed to us
 NSString *errorString = [NSString stringWithFormat:@"Fetch failed: %@",
 [error localizedDescription]];

 // Create and show an alert view with this error displayed
 UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Error"
 message:errorString
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [av show];
}

Try building and running your application. You should see the XML results in the console shortly
after you launch the application. If you put your device in Airplane Mode (or if it is not connected to a
network), you should see a friendly error message when you try to fetch again. (For now, you will have
to restart the application from Xcode in order to refetch the data after you’ve received the error.)

The XML that comes back from the server looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
 <channel>
 <title>forums.bignerdranch.com</title>
 <description>Books written by Big Nerd Ranch</description>
 ...
 <item>
 <title>Big Nerd Ranch General Discussions :: Big Nerd Ranch!</title>
 <link>http://forums.bignerdranch.com/viewtopic.php?f=4&t=532</link>
 <author>no_email@example.com (bignerd)</author>
 <category>Big Nerd Ranch General Discussions</category>
 <comments>http://forums.bignerdranch.com/posting.php?mode=reply</comments>
 <pubDate>Mon, 27 Dec 2010 11:27:01 GMT</pubDate>
 </item>
 ...
 </channel>
</rss>

(If you aren’t seeing anything like this in your console, verify that you typed the URL correctly.)

Let’s break down the XML the server returned. The top-level element in this document is an rss
element. It contains a channel element. That channel element has some metadata that describes it (a
title and a description). Then, there is a series of item elements. Each item has a title, link, author, etc.
and represents a single post on the forum.

In a moment, you will create two new classes, RSSChannel and RSSItem, to represent the channel
and item elements. The ListViewController will have an instance variable for the RSSChannel. The

Parsing XML with NSXMLParser

445

RSSChannel will hold an array of RSSItems. Each RSSItem will be displayed as a row in the table view.
Both RSSChannel and RSSItem will retain some of their metadata as instance variables, as shown in
Figure 25.6.

Figure 25.6 Model object graph

Parsing XML with NSXMLParser

To parse the XML, you will use the class NSXMLParser. An NSXMLParser instance takes a chunk
of XML data and reads it line by line. As it finds interesting information, it sends messages to its
delegate, like, “I found a new element tag,” or “I found a string inside of an element.” The delegate
object is responsible for interpreting what these messages mean in the context of the application.

In ListViewController.m, delete the code you wrote in connectionDidFinishLoading: to log the
XML. Replace it with code to kick off the parsing and set the parser’s delegate to point at the instance
of ListViewController.

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
 NSString *xmlCheck = [[NSString alloc] initWithData:xmlData
 encoding:NSUTF8StringEncoding];
 NSLog(@"xmlCheck = %@", xmlCheck);

 // Create the parser object with the data received from the web service
 NSXMLParser *parser = [[NSXMLParser alloc] initWithData:xmlData];

 // Give it a delegate - ignore the warning here for now
 [parser setDelegate:self];

 // Tell it to start parsing - the document will be parsed and
 // the delegate of NSXMLParser will get all of its delegate messages
 // sent to it before this line finishes execution - it is blocking
 [parser parse];

Chapter 25 Web Services and UIWebView

446

 // Get rid of the XML data as we no longer need it
 xmlData = nil;

 // Get rid of the connection, no longer need it
 connection = nil;

 // Reload the table.. for now, the table will be empty.
 [[self tableView] reloadData];
}

The delegate of the parser, ListViewController, will receive a message when the parser finds a new
element, another message when it finds a string within an element, and another when an element is
closed.

For example, if a parser saw this XML:

<title>Big Nerd Ranch</title>.

it would send its delegate three consecutive messages: “I found a new element: ‘title’,” then, “I found
a string: ‘Big Nerd Ranch’,” and finally, “I found the end of an element: ‘title’.” These messages are
found in the NSXMLParserDelegate protocol:

// The "I found a new element" message
 - (void)parser:(NSXMLParser *)parser // Parser that is sending message
 didStartElement:(NSString *)elementName // Name of the element found
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict;

// The "I found a string" message
 - (void)parser:(NSXMLParser *)parser // Parser that is sending message
 foundCharacters:(NSString *)string; // Contents of element (string)

// The "I found the end of an element" message
- (void)parser:(NSXMLParser *)parser // Parser that is sending message
 didEndElement:(NSString *)elementName // Name of the element found
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName;

The namespaceURI, qualifiedName, and attributes arguments are for more complex XML, and we’ll
return to them at the end of the chapter.

Constructing the tree of model objects
It is up to the ListViewController to make sense of that series of messages, and it does this by
constructing an object tree that represents the XML feed. In this case, after the XML is parsed, there
will be an instance of RSSChannel that contains a number of RSSItem instances. Here are the steps to
constructing the tree:

• When the parser reports it found the start of the channel element, create an instance of RSSChannel.

• When the parser finds a title or description element and it is currently inside a channel element,
set the appropriate property of the RSSChannel instance.

• When the parser finds an item element, create an instance of RSSItem and add it to the items array
of the RSSChannel.

Constructing the tree of model objects

447

• When the parser finds a title or link element and it is currently inside a item element, set the
appropriate property of the RSSItem instance.

This list doesn’t seem too daunting. However, there is one issue that makes it difficult: the parser
doesn’t remember anything about what it has parsed. A parser may report, “I found a title element.”
Its next report is “Now I’ve found the string inside an element.” At this point, if you asked the parser
which element that string was inside, it couldn’t tell you. It only knows about the string it just found.
This leaves the burden of tracking state on the parser’s delegate, and maintaining the state for an entire
tree of objects in a single object is cumbersome.

Instead, you will spread out the logic for handling messages from the parser among the classes
involved. If the last found element is a channel, then that instance of RSSChannel will be responsible
for handling what the parser spits out next. The same goes for RSSItem; it will be responsible for
grabbing its own title and link strings.

“But the parser can only have one delegate,” you say. And you’re right; it can only have one delegate
at a time. We can change the delegate of an NSXMLParser whenever we please, and the parser will keep
chugging through the XML and sending messages to its current delegate. The flow of the parser and
the related objects is shown in Figure 25.7.

Chapter 25 Web Services and UIWebView

448

Figure 25.7 Flow diagram of XML being parsed into a tree, creating the
tree

Constructing the tree of model objects

449

When the parser finds the end of an element, it tells its delegate. If the delegate is the object that
represents that element, that object returns control to the previous delegate (Figure 25.8).

Figure 25.8 Flow diagram of XML being parsed into a tree, back up the
tree

Chapter 25 Web Services and UIWebView

450

Now that we have a plan, let’s get to work. Create a new NSObject subclass named RSSChannel. A
channel object needs to hold some metadata, an array of RSSItem instances, and a pointer back to the
previous parser delegate. In RSSChannel.h, add these properties:

@interface RSSChannel : NSObject

@property (nonatomic, weak) id parentParserDelegate;

@property (nonatomic, strong) NSString *title;
@property (nonatomic, strong) NSString *infoString;
@property (nonatomic, readonly, strong) NSMutableArray *items;

@end

In RSSChannel.m, synthesize the properties and override init.

@implementation RSSChannel
@synthesize items, title, infoString, parentParserDelegate;

- (id)init
{
 self = [super init];

 if (self) {
 // Create the container for the RSSItems this channel has;
 // we'll create the RSSItem class shortly.
 items = [[NSMutableArray alloc] init];
 }

 return self;
}

@end

Back in ListViewController.h, add an instance variable to hold an RSSChannel object and have the
class conform to the NSXMLParserDelegate protocol.

// a forward declaration; we'll import the header in the .m
@class RSSChannel;

@interface ListViewController : UITableViewController <NSXMLParserDelegate>
{
 NSURLConnection *connection;
 NSMutableData *xmlData;

 RSSChannel *channel;

In ListViewController.m, implement an NSXMLParserDelegate method to catch the start of a
channel element. Also, at the top of the file, import the header for RSSChannel.

#import "RSSChannel.h"

@implementation ListViewController

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict

Constructing the tree of model objects

451

{
 NSLog(@"%@ found a %@ element", self, elementName);
 if ([elementName isEqual:@"channel"]) {

 // If the parser saw a channel, create new instance, store in our ivar
 channel = [[RSSChannel alloc] init];

 // Give the channel object a pointer back to ourselves for later
 [channel setParentParserDelegate:self];

 // Set the parser's delegate to the channel object
 // There will be a warning here, ignore it warning for now
 [parser setDelegate:channel];
 }
}

Build and run the application. You should see a log message that the channel was found. If you don’t
see this message, double-check that the URL you typed in fetchEntries is correct.

Now that the channel is sometimes the parser’s delegate, it needs to implement NSXMLParserDelegate
methods to handle the XML. The RSSChannel instance will catch the metadata it cares about along
with any item elements.

The channel is interested in the title and description metadata elements, and you will store those
strings that the parser finds in the appropriate instance variables. When the start of one of these
elements is found, an NSMutableString instance will be created. When the parser finds a string, that
string will be concatenated to the mutable string.

In RSSChannel.h, declare that the class conforms to NSXMLParserDelegate and add an instance
variable for the mutable string.

@interface RSSChannel : NSObject <NSXMLParserDelegate>
{
 NSMutableString *currentString;
}

In RSSChannel.m, implement one of the NSXMLParserDelegate methods to catch the metadata.

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 NSLog(@"\t%@ found a %@ element", self, elementName);

 if ([elementName isEqual:@"title"]) {
 currentString = [[NSMutableString alloc] init];
 [self setTitle:currentString];
 }
 else if ([elementName isEqual:@"description"]) {
 currentString = [[NSMutableString alloc] init];
 [self setInfoString:currentString];
 }
}

Note that currentString points at the same object as the appropriate instance variable – either title
or infoString (Figure 25.9).

Chapter 25 Web Services and UIWebView

452

Figure 25.9 Two variables pointing at the same object

This means that when you append characters to the currentString, you are also appending them to
the title or to the infoString.

In RSSChannel.m, implement the parser:foundCharacters: method.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)str
{
 [currentString appendString:str];
}

When the parser finds the end of the channel element, the channel object will return control of the
parser to the ListViewController. Implement this method in RSSChannel.m.

- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
{
 // If we were in an element that we were collecting the string for,
 // this appropriately releases our hold on it and the permanent ivar keeps
 // ownership of it. If we weren't parsing such an element, currentString
 // is nil already.
 currentString = nil;

 // If the element that ended was the channel, give up control to
 // who gave us control in the first place
 if ([elementName isEqual:@"channel"])
 [parser setDelegate:parentParserDelegate];
}

Let’s double-check our work so far. In ListViewController.m, add the following log statement to
connectionDidFinishLoading:.

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
 NSXMLParser *parser = [[NSXMLParser alloc] initWithData:xmlData];
 [parser setDelegate:self];
 [parser parse];

 xmlData = nil;

 connection = nil;

 [[self tableView] reloadData];
 NSLog(@"%@\n %@\n %@\n", channel, [channel title], [channel infoString]);
}

Build and run the application. At the end of the console, you should see the log statement with valid
values for the three strings. The data isn’t correct yet, but there should still be three blocks of text
separated by a new line.

Constructing the tree of model objects

453

Now we will need to write the code for the leaves of the object tree represented by the XML – the
RSSItem instances. Create a new NSObject subclass. Name it RSSItem. In RSSItem.h, give the item
instance variables for its metadata and for parsing.

@interface RSSItem : NSObject <NSXMLParserDelegate>
{
 NSMutableString *currentString;
}
@property (nonatomic, weak) id parentParserDelegate;

@property (nonatomic, strong) NSString *title;
@property (nonatomic, strong) NSString *link;

@end

In RSSItem.m, synthesize these properties and set up the parsing code similar to what you did for
RSSChannel.

@implementation RSSItem

@synthesize title, link, parentParserDelegate;

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 NSLog(@"\t\t%@ found a %@ element", self, elementName);

 if ([elementName isEqual:@"title"]) {
 currentString = [[NSMutableString alloc] init];
 [self setTitle:currentString];
 }
 else if ([elementName isEqual:@"link"]) {
 currentString = [[NSMutableString alloc] init];
 [self setLink:currentString];
 }
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)str
{
 [currentString appendString:str];
}

- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
{
 currentString = nil;

 if ([elementName isEqual:@"item"])
 [parser setDelegate:parentParserDelegate];
}

@end

Chapter 25 Web Services and UIWebView

454

Build the application to check for syntax errors.

In RSSChannel.m, put RSSItem into the object tree. At the top of this file, make sure to import the
header for RSSItem.

#import "RSSItem.h"

@implementation RSSChannel

- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqual:@"title"]) {
 currentString = [[NSMutableString alloc] init];
 [self setTitle:currentString];
 }
 else if ([elementName isEqual:@"description"]) {
 currentString = [[NSMutableString alloc] init];
 [self setInfoString:currentString];
 }
 else if ([elementName isEqual:@"item"]) {
 // When we find an item, create an instance of RSSItem
 RSSItem *entry = [[RSSItem alloc] init];

 // Set up its parent as ourselves so we can regain control of the parser
 [entry setParentParserDelegate:self];

 // Turn the parser to the RSSItem
 [parser setDelegate:entry];

 // Add the item to our array and release our hold on it
 [items addObject:entry];
 }
}

Build and run the application. You should see log statements in the console that indicate the tree is
being built. The last log statement in the console should have the correct data for the channel object,
which looks something like this:

<RSSChannel: 0x4e18f80>
forums.bignerdranch.com
Books written by Big Nerd Ranch

Finally, we need to connect the channel and its items to the table view. In ListViewController.m,
import the header file for RSSItem and fill out the two data source methods you temporarily
implemented earlier.

#import "RSSItem.h"

@implementation ListViewController

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return 0;

A quick tip on logging

455

 return [[channel items] count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return nil;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"UITableViewCell"];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"UITableViewCell"];
 }
 RSSItem *item = [[channel items] objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:[item title]];

 return cell;
}

Build and run the application. You should now see the titles of the last 20 posts in a table view. Also,
take a good look at the console to see the flow of the parser and how the delegate role is passed around.

A quick tip on logging
In this application, you log a lot of data to the console. It would be easy to miss an important log
statement. One way to catch important statements is to prefix the most important ones with an easily
searchable token (like xxx), but that’s a quick-and-dirty fix.

A more elegant and useful option is to define a preprocessor macro that you can use to categorize
your log statements. For example, in Nerdfeed, you can generate a ton of log statements for checking
the input and output of your web service requests. You can also generate a ton of log statements for
checking the logic in the rest of the application. When you are debugging Nerdfeed, it would be helpful
to separate the web service-related statements from the others so that you can turn them on or off as
needed.

While there are many ways to do this, here is the simplest one:

#define WSLog(...) NSLog(__VA_ARGS__)

This statement tells the compiler, “When you come across WSLog, see NSLog.” Save this statement in
its own .h file and import it into your precompiled header (Nerdfeed_Prefix.pch). Then, when you
want to log a web service-related statement in your code, use WSLog instead of NSLog, passing the
exact same arguments. For example, in ListViewController.m, you could change the log statement in
connectionDidFinishLoading: to the following:

WSLog(@"%@\n %@\n %@\n", channel, [channel title], [channel infoString]);

As long as WSLog is defined to NSLog, nothing will change. You will still see all of your log statements
in the console. When you want to turn off the web service-related statements to concentrate on other
areas, simply re-define WSLog to the following in its header file:

#define WSLog(...) do {} while(0)

Now any WSLog calls will be invisible to the compiler, so they will not appear in the console to distract
you from your non-web service debugging. (Defining WSLog in this way means it will be optimized out
by the compiler.)

Chapter 25 Web Services and UIWebView

456

UIWebView
In addition to its title, an RSSItem also keeps a link that points to the web page where the post lives. It
would be neat if Nerdfeed could open up Safari and navigate to that page. It would be even neater if
Nerdfeed could render that web page without having to leave Nerdfeed to open Safari. Good news � it
can using the class UIWebView.

Instances of UIWebView render web content. In fact, the Safari application on your device uses a
UIWebView to render its web content. In this part of the chapter, you will create a view controller whose
view is an instance of UIWebView. When one of the items is selected from the table view of RSSItems,
you will push the web view’s controller onto the navigation stack and have it load the link stored in the
RSSItem.

Create a new NSObject subclass and name it WebViewController. In WebViewController.h, add a
property (but not an instance variable) and change the superclass to UIViewController:

@interface WebViewController : NSObject
@interface WebViewController : UIViewController

@property (nonatomic, readonly) UIWebView *webView;

@end

In WebViewController.m, override loadView to create an instance of UIWebView as the view of this
view controller. Also, implement the method webView to return that view.

@implementation WebViewController

- (void)loadView
{
 // Create an instance of UIWebView as large as the screen
 CGRect screenFrame = [[UIScreen mainScreen] applicationFrame];
 UIWebView *wv = [[UIWebView alloc] initWithFrame:screenFrame];
 // Tell web view to scale web content to fit within bounds of webview
 [wv setScalesPageToFit:YES];

 [self setView:wv];
}

- (UIWebView *)webView
{
 return (UIWebView *)[self view];
}

In ListViewController.h, add a new property to ListViewController.

@class WebViewController;

@interface ListViewController : UITableViewController <NSXMLParserDelegate>
{
 NSURLConnection *connection;
 NSMutableData *xmlData;

 RSSChannel *channel;
}
@property (nonatomic, strong) WebViewController *webViewController;

UIWebView

457

- (void)fetchEntries;
@end

In ListViewController.m, import the header file and synthesize the property.

#import "WebViewController.h"

@implementation ListViewController
@synthesize webViewController;

In NerdfeedAppDelegate.m, import the header for WebViewController, create an instance of
WebViewController, and set it as the webViewController of the ListViewController.

#import "WebViewController.h"

@implementation NerdfeedAppDelegate

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 ListViewController *lvc =
 [[ListViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *masterNav =
 [[UINavigationController alloc] initWithRootViewController:lvc];

 WebViewController *wvc = [[WebViewController alloc] init];
 [lvc setWebViewController:wvc];

 [[self window] setRootViewController:masterNav];

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

(Note that we are instantiating the WebViewController in the application delegate in preparation for
the next chapter where we will use a UISplitViewController to present view controllers on the iPad.)

When the user taps on a row in the table view, we want the WebViewController to be pushed onto the
navigation stack and the link for the selected RSSItem to be loaded in its web view. To have a web view
load a web page, you send it the message loadRequest:. The argument is an instance of NSURLRequest
that contains the URL you wish to navigate to. In ListViewController.m, implement the following
table view delegate method:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Push the web view controller onto the navigation stack - this implicitly
 // creates the web view controller's view the first time through
 [[self navigationController] pushViewController:webViewController animated:YES];

 // Grab the selected item
 RSSItem *entry = [[channel items] objectAtIndex:[indexPath row]];

Chapter 25 Web Services and UIWebView

458

 // Construct a URL with the link string of the item
 NSURL *url = [NSURL URLWithString:[entry link]];

 // Construct a requst object with that URL
 NSURLRequest *req = [NSURLRequest requestWithURL:url];

 // Load the request into the web view
 [[webViewController webView] loadRequest:req];

 // Set the title of the web view controller's navigation item
 [[webViewController navigationItem] setTitle:[entry title]];
}

Build and run the application. You should be able to select one of the posts, and it should take you to a
new view controller that displays the web page for that post.

For the More Curious: NSXMLParser
NSXMLParser is the built-in XML parser in the iOS SDK. While there are plenty of parsers you can
pick up on the Internet, adding a third party dependency is sometimes difficult. Many developers,
seeing that NSXMLParser is not a tree-based parser (it doesn’t create an object graph out of the box), go
searching for an alternative parser. However, in this chapter, you’ve learned how to make NSXMLParser
into a tree-based parser.

To parse simple XML, all you need are the three delegate methods used in this chapter. More
complex XML has element attributes, namespaces, CDATA, and a slew of other items that need
to be handled. NSXMLParser can handle these, too. The NSXMLParserDelegate protocol includes
many more methods that handle nearly anything XML can throw at you. There are also arguments
to the methods you have already used that can handle more complex XML. For example, in
parser:didStartElement:namespaceURI:qualifiedName:attributes:, we only used the first two
arguments. For the other arguments, consider the following XML:

<?xml version="1.0" encoding="utf-8"?>
<container version="2.0" xmlns:foo="BNR">
 <foo:item attribute1="one" attribute2="two"></item>
</container>

When the foo:item element is encountered by the parser, the values for the parameters to the delegate
method are as follows:

• The element is “item.” The namespace is ignored, and the name of the element is kept.

• The namespaceURI is “BNR.” The element’s name is item, and it is in the foo namespace, which has
a value of “BNR.”

• The qualifiedName is “foo:item.”

• attributes is a dictionary that contains two keys, “attribute1” and “attribute2.” Their values are
“one” and “two,” respectively.

One thing NSXMLParser can’t do is resolve XPaths. You have to use another library to handle this. (For
more information, check out the Tree-Based XML Programming Guide in the Apple documentation.)

For the More Curious: The Request Body

459

For the More Curious: The Request Body
When NSURLConnection talks to a web server, it uses the HTTP protocol. This protocol says that any
data you send or receive must follow the HTTP specification. The actual data transferred to the server
in this chapter is shown in Figure 25.10.

Figure 25.10 HTTP Request Format

NSURLRequest has a number of methods that allow you to specify a piece of the request and then
properly format it for you.

Any service request has three parts: a request-line, the HTTP headers, and the HTTP body, which
is optional. The request-line (which Apple calls a status line) is the first line of the request and tells
the server what the client is trying to do. In this request, the client is trying to GET the resource at
smartfeed.php?limit=1_DAY&etc. (It also specifies the HTTP specification version that the data is in.)

The command GET is an HTTP method. While there are a number of supported HTTP methods,
you typically only see GET and POST. The default of NSURLRequest, GET, indicates that the client
wants something from the server. The thing that it wants is called the Request-URI (smartfeed.php?
limit=1_DAY&etc).

In the early days of the web, the Request-URI would be the path of a file on the server. For example,
the request http://www.website.com/index.html would return the file index.html, and your
browser would render that file in a window. Today, we also use the Request-URI to specify a service
that the server implements. For example, in this chapter, you accessed the smartfeed.php service,
supplied parameters to it, and were returned an XML document. You are still GETting something, but
the server is more clever in interpreting what you are asking for.

In addition to getting things from a server, you can send it information. For example, many web servers
allow you to upload photos. A client application would pass the image data to the server through a
service request. In this situation, you use the HTTP method POST, which indicates to the server that you
are including the optional HTTP body. The body of a request is data you can include with the request –
typically XML, JSON, or Base-64 encoded data.

Chapter 25 Web Services and UIWebView

460

When the request has a body, it must also have the Content-Length header. Handily enough,
NSURLRequest will compute the size of the body and add this header for you.

NSURL *someURL = [NSURL URLWithString:@"http://www.photos.com/upload"];
UIImage *image = [self profilePicture];
NSData *data = UIImagePNGRepresentation(image);

NSMutableURLRequest *req =
 [NSMutableURLRequest requestWithURL:someURL
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:90];

// This adds the HTTP body data and automatically sets the Content-Length header
[req setHTTPBody:data];

// This changes the HTTP Method in the request-line
[req setHTTPMethod:@"POST"];

// If you wanted to set the Content-Length programmatically...
[req setValue:[NSString stringWithFormat:@"%d", [data length]]
 forHTTPHeaderField:@"Content-Length"];

For the More Curious: Credentials
When you try to access a web service, it will sometimes respond with an authentication challenge,
which means “Who the heck are you?” You then need to send a username and password (a credential)
before the server will send its genuine response.

There are objects that represent these ideas. When the challenge is received, your connection delegate
is sent a message that includes an instance of NSURLAuthenticationChallenge. The sender of that
challenge conforms to the NSURLAuthenticationChallengeSender protocol. If you want to continue
to get the data, you send back an instance of NSURLCredential, which typically looks something like
this:

- (void)connection:(NSURLConnection *)conn
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
 // Have I already failed at least once?
 if ([challenge previousFailureCount] > 0) {

 // Why did I fail?
 NSError *failure = [challenge error];
 NSLog(@"Can't authenticate: %@", [error localizedDescription]);

 // Give up
 [[challenge sender] cancelAuthenticationChallenge:challenge];
 return;
 }

 // Create a credential
 NSURLCredential *newCred =
 [NSURLCredential credentialWithUser:@"sid"
 password:@"MomIsCool"
 persistence:NSURLCredentialPersistenceNone];

Bronze Challenge: More Data

461

 // Supply the credential to the sender of the challenge
 [[challenge sender] useCredential:newCred
 forAuthenticationChallenge:challenge];
}

If you are dealing with a more secure and sophisticated web service, it may want a certificate (or
certificates) to confirm your identity. Most, however, will just want a username and a password.

Credentials can have persistence. There are three possibilities:

• NSURLCredentialPersistenceNone says to the URL loading system, “Forget this credential as soon
as you use it.”

• NSURLCredentialPersistenceForSession says to the URL loading system, “Forget this credential
when this application terminates.”

• NSURLCredentialPersistencePermanent says to the URL loading system, “Put this credential in
my keychain so that other applications can use it.”

Bronze Challenge: More Data
Create a UITableViewCell subclass that has three labels. Parse the author and category elements into
the RSSItem and display the title, author, and category for each row.

Silver Challenge: More UIWebView
A UIWebView keeps its own history. You can send the messages goBack and goForward to a web
view, and it will traverse through that history. Create a UIToolbar instance and add it to the
WebViewController’s view hierarchy. This toolbar should have back and forward buttons that will let
the web view move through its history. Bonus: use two other properties of UIWebView to enable and
disable the toolbar items.

BUY NOW

BUY FROM INFORMIT AND SAVE UP TO 40%
ENTER THE DISCOUNT CODE
LEARNMAC2012 DURING CHECKOUT

OBJECTIVE-C PROGRAMMING:
THE BIG NERD RANCH GUIDE, by Aaron Hillegass

TABLE OF CONTENTS

CHAPTER 2
Your First
Program

SHARE + SHOP @ informit.com

PART I: Getting Started
1. You and This Book
2. Your First Program
PART II: How Programming Works
3. Variables and Types
4. if/else
5. Functions
6. Numbers
7. Loops
8. Addresses and Pointers
9. Pass By Reference
10. Structs
11. The Heap
PART III: Objective-C and
Foundation
12. Objects
13. More Messages
14. NSString
15. NSArray
16. Developer Documentation
17. Your First Class
18. Inheritance
19. Object Instance Variables

20. Preventing Memory Leaks
21. Collection Classes
22. Constants
23. Writing Files with NSString

and NSData
24. Callbacks
25. Protocols
26. Property Lists
PART IV: Event-Driven Applications
27. Your First iOS Application
28. Your First Cocoa Application
PART V: Advanced Objective-C
29. init
30. Properties
31. Categories
32. Blocks
PART VI: Advanced C
33. Bitwise Operations
34. C Strings
35. C Arrays
36. Command-Line Arguments
37. Switch Statements

AVAILABLE FORMATS

•	 9780321706287		Book		
•	 9780132983150	 eBook	
•	 9780321706522	Safari	Books	Online		

http://www.informit.com/store/product.aspx?isbn=9780321706287
http://www.safaribooksonline.com/search/site/9780321706522
http://www.informit.com/store/product.aspx?isbn=9780321706287
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

Objective-C�Programming
THE�BIG�NERD�RANCH�GUIDE

AARON HILLEGASS

7

2
Your First Program

Now that we know how this book is organized, it’s time to see how programming for the Mac and for
iPhone and iPad works. To do that, you will

• install Apple’s Developer Tools

• create a simple project using those tools

• explore how these tools are used to make sure our project works

At the end of this chapter, you will have successfully written your first program for the Mac.

Installing Apple’s developer tools
To write applications for Mac OS X (the Macintosh) or iOS (the iPhone and iPad), you will be using
Apple’s developer tools. You can download these tools from http://developer.apple.com/ or
purchase them from the Mac App Store.

After you’ve installed the tools, find the /Developer folder at the root level of your hard drive. This
folder contains what you need to develop applications for Mac OS X desktops and iOS mobile devices.

Our work in this book is going to be conducted almost entirely with one application – Xcode, which
is found in the /Developer/Applications folder. (It is a good idea to drag the Xcode icon over to the
dock; you’ll be using it an awful lot.)

Getting started with Xcode
Xcode is Apple’s Integrated Development Environment. That means that everything you need to write,
build, and run new applications is in Xcode.

A note on terminology: anything that is executable on a computer we call a program. Some programs
have graphical user interfaces; we will call these applications.

Some programs have no graphical user interface and run for days in the background; we call these
daemons. Daemons sound scary, but they aren’t. You probably have about 60 daemons running on
your Mac right now. They are waiting around, hoping to be useful. For example, one of the daemons
running on your system is called pboard. When you do a copy and paste, the pboard daemon holds
onto the data that you are copying.

http://developer.apple.com/

Chapter 2 Your First Program

8

Some programs have no graphical user interface and run for a short time in the terminal; we call
these command-line tools. In this book, you will be writing mostly command-line tools to focus on
programming essentials without the distraction of creating and managing a user interface.

Now we’re going to create a simple command-line tool using Xcode so you can see how it all works.

When you write a program, you create and edit a set of files. Xcode keeps track of those files in a
project. Launch Xcode. From the File menu, choose New and then New�Project….

To help you get started, Xcode suggests a number of possible project templates. You choose a template
depending on what sort of program you want to write. In the lefthand column, select Application from
the Mac�OS�X section. Then choose Command�Line�Tool from the choices that appear to the right.

Figure 2.1 Choosing a template

Press the Next button.

Name your new project AGoodStart. The company identifier won’t matter for our exercises in this
book, but you have to enter one here to continue. You can use BigNerdRanch or another name. From
the Type pop-up menu, choose C because you will write this program in C. Finally, make sure the
checkbox labeled Use�Automatic�Reference�Counting is checked.

Where do I start writing code?

9

Figure 2.2 Choose options

Press the Next button.

Now choose the folder in which your project directory will be created. You won’t need a repository for
version control, so you can uncheck that box. Finally, click the Create button.

You’ll be creating this same type of project for the next several chapters. In the future, I’ll just say,
“Create a new C Command Line Tool named program-name-here” to get you to follow this same
sequence.

(Why C? Remember, Objective-C is built on top of the C programming language. You’ll need to have
an understanding of parts of C before we can get to the particulars of Objective-C.)

Where do I start writing code?
After creating your project, you’ll be greeted by a window that shows how AGoodStart will be
produced.

Chapter 2 Your First Program

10

Figure 2.3 First view of the AGoodStart project

This window includes details like which versions of Mac OS X can run your application, the
configurations to use when compiling the code that you write, and any localizations that have been
applied to your project. But let’s ignore those details for now and find a simple starting point to get to
work.

Near the top of the lefthand panel, find a file called main.c and click on it. (If you don’t see main.c,
click the triangle next to the folder labeled AGoodStart to reveal its contents.)

Where do I start writing code?

11

Figure 2.4 Finding main.c in the AGoodStart group

Notice that our original view with the production details changes to show the contents of main.c. The
main.c file contains a function called main.

A function is a list of instructions for the computer to execute, and every function has a name. In a C or
Objective-C program, main is the function that is called when a program first starts.

#include <stdio.h>

int main (int argc, const char * argv[]) {

 // insert code here...
 printf("Hello, World!\n");
 return 0;
}

In this function, you’ll find the two kinds of information you write in a program: code and comments.

• Code is the set of instructions that tell the computer to do something.

• Comments are ignored by the computer, but we programmers use them to document code we’ve
written. The more difficult the programming problem you are trying to solve, the more comments
will help document how you solved the problem. That becomes especially important when you
return to your work months later, look at code you forgot to comment, and think, “I’m sure this
solution is brilliant, but I have absolutely no memory of how it works.”

In C and Objective-C, there are two ways to distinguish comments from code:

Chapter 2 Your First Program

12

• If you put // at the beginning of a line of code, everything from those forward slashes to the end of
that line is considered a comment. You can see this used in Apple’s “insert code here...” comment.

• If you have more extensive remarks in mind, you can use /* and */ to mark the beginning and end
of comments that span more than one line.

These rules for marking comments are part of the syntax of C. Syntax is the set of rules that governs
how code must be written in a given programming language. These rules are extremely specific, and if
you fail to follow them, your program won’t work.

While the syntax regarding comments is fairly simple, the syntax of code can vary widely depending
on what the code does and how it does it. But there’s one feature that remains consistent: every
statement ends in a semicolon. (We’ll see examples of code statements in just a moment.) If you forget
a semicolon, you will have made a syntax error, and your program won’t work.

Fortunately, Xcode has ways to warn you of these kinds of errors. In fact, one of the first challenges
you will face as a programmer is interpreting what Xcode tells you when something goes wrong and
then fixing your errors. You’ll get to see some of Xcode’s responses to common syntax errors as we go
through the book.

Let’s make some changes to main.c. First, we need to make some space. Find the curly braces ({ and
}) that mark the beginning and the end of the main function. Then delete everything in between them.

Now update main.c to look like the code below. You’ll add a comment, two lines of code, and another
comment to the main function. For now, don’t worry if you don’t understand what you are typing. The
idea is to get started. You have an entire book ahead to learn what it all means.

#include <stdio.h>

int main (int argc, const char * argv[])
{
 // Print the beginning of the novel
 printf("It was the best of times.\n");
 printf("It was the worst of times.\n");
 /* Is that actually any good?
 Maybe it needs a rewrite. */

 return 0;
}

(Notice that the new code you need to type in is shown in a bold font. The code that isn’t bold is code
that is already in place. That’s a convention we’ll use for the rest of the book.)

As you type, you may notice that Xcode tries to make helpful suggestions. This feature is called code
completion, and it is very handy. You may want to ignore it right now and focus on typing things in all
yourself. But as you continue through the book, start playing with code completion and how it can help
you write code more conveniently and more accurately. You can see and set the different options for
code completion in Xcode’s preferences, which are accessible from the Xcode menu.

In addition, keep an eye on the font color. Xcode uses different font colors to make it easy to identify
comments and different parts of your code. (For example, comments are green.) This comes in handy,
too: after a while of working with Xcode, you begin to instinctively notice when the colors don’t look
right. Often, this is a clue that there is a syntax error in what you’ve written (like a forgotten semi-
colon). And the sooner you know that you’ve made a syntax error, the easier it is to find and fix it.

How do I run my program?

13

These color differences are just one way in which Xcode lets you know when you (may) have done
something wrong.

How do I run my program?
When the contents of your main.c file match what you see above, it’s time to run your program and see
what it does. This is a two-step process. Xcode builds your program and then runs it. When building
your program, Xcode prepares your code to run. This includes checking for syntax and other kinds of
errors.

Look again at the lefthand area of the Xcode window. This area is called the navigator area. At the
top of the navigator area is a series of buttons. You are currently viewing the project navigator, which
shows you the files in your project. The project navigator’s icon is .

Now find and click the button to reveal the log navigator. The log is Xcode’s way of communicating
with you when it is building and running your program.

You can also use the log for your own purposes. For instance, the line in your code that reads

 printf("It was the best of times.\n");

is an instruction to display the words “It was the best of times.” in the log.

Since you haven’t built and run your program yet, there isn’t anything in the log navigator. Let’s fix
that. In the upper lefthand corner of the project window, find the button that looks suspiciously like the
Play button in iTunes or on a DVD player. If you leave your cursor over that button, you’ll see a tool tip
that says Build�and�then�run�the�current�scheme. That is Xcode-speak for “Press this button, and I will
build and run your program.”

If all goes well, you’ll be rewarded with the following:

If not, you’ll get this:

What do you do then? Carefully compare your code with the code in the book. Look for typos and
missing semicolons. Xcode will highlight the lines it thinks are problematic. After you find the
problem, click the Run button again. Repeat until you have a successful build.

(Don’t get disheartened when you have failed builds with this code or with any code you write in the
future. Making and fixing mistakes helps you understand what you’re doing. In fact, it’s actually better
than lucking out and getting it right the first time.)

Chapter 2 Your First Program

14

Once your build has succeeded, find the item at the top of the log navigator labeled Debug�AGoodStart.
Click this item to display the log from the most recent run of your program.

The log can be quite verbose. The important part is the Dickens quote at the end. That’s your code
being executed!

GNU gdb 6.3.50-20050815 (Apple version gdb-1705) (Tue Jul 5 07:36:45 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin".tty /dev/ttys001
[Switching to process 2723 thread 0x0]
It was the best of times.
It was the worst of times.

(As I’m writing this, Apple is working on a new debugger called LLDB. Eventually it will replace GDB,
the current debugger. If you aren’t seeing all the GDB information, it means that LLDB is now Xcode’s
standard debugger. The future must be a terrific place; I envy you.)

So what is a program?
Now that you’ve built and run your program, let’s take a look inside. A program is a collection of
functions. A function is a list of operations for the processor to execute. Every function has a name,
and the function that you just wrote is named main. There was also another function – printf. You
didn’t write this function, but you did use it. (We’ll find out where printf comes from in Chapter 5.)

To a programmer, writing a function is a lot like writing a recipe: “Stir a quart of water slowly until it
boils. Then mix in a cup of flour. Serve while hot.”

In the mid-1970’s, Betty Crocker started selling a box containing a set of recipe cards. A recipe card is
a pretty good metaphor for a function. Like a function, each card has a name and a set of instructions.
The difference is that you execute a recipe, and the computer executes a function.

Figure 2.5 A recipe card named Baked Chicken

Don’t stop

15

Betty Crocker’s cooking instructions are in English. In the first part of this book, your functions will
be written in the C programming language. However, a computer processor expects its instructions in
machine code. How do we get there?

When you write a program in C (which is relatively pleasant for you), the compiler converts your
program’s functions into machine code (which is pleasant and efficient for the processor). The
compiler is itself a program that is run by Xcode when you press the Run button. Compiling a program
is the same as building a program, and we’ll use these terms interchangeably.

When you run a program, the compiled functions are copied from the hard drive into memory, and the
function called main is executed by the processor. The main function usually calls other functions. For
example, your main function called the printf function. (We’ll see more about how functions interact
in Chapter 5.)

Don’t stop
At this point, you’ve probably dealt with several frustrations: installation problems, typos, and lots of
new vocabulary. And maybe nothing you’ve done so far makes any sense. That is completely normal.

As I write this, my son Otto is six. Otto is baffled several times a day. He is constantly trying to absorb
knowledge that doesn’t fit into his existing mental scaffolding. Bafflement happens so frequently, that
it doesn’t really bother him. He never stops to wonder, “Why is this so confusing? Should I throw this
book away?”

As we get older, we are baffled much less often – not because we know everything, but because we
tend to steer away from things that leave us bewildered. For example, reading a book on history is quite
pleasant because we get nuggets of knowledge that we can hang from our existing mental scaffolding.
This is easy learning.

Learning a new language is an example of difficult learning. You know that there are millions of people
who work in that language effortlessly, but it seems incredibly strange and awkward in your mouth.
And when people speak it to you, you are often flummoxed.

Learning to program a computer is also difficult learning. You will be baffled from time to time –
especially here at the beginning. This is fine. In fact, it’s kind of cool. It is a little like being six again.

Stick with this book; I promise that the bewilderment will cease before you get to the final page.

BUY NOW

BUY FROM INFORMIT AND SAVE UP TO 40%
ENTER THE DISCOUNT CODE
LEARNMAC2012 DURING CHECKOUT

COCOA PROGRAMMING FOR MAC OS X,
FOURTH EDITION, by Aaron Hillegass and Adam Preble

TABLE OF CONTENTS

CHAPTER 29
Blocks

SHARE + SHOP @ informit.com

1. Cocoa: What Is It?
2. Let’s Get Started
3. Objective-C
4. Memory Management
5. Target/Action
6. Helper Objects
7. Key-Value Coding and Key-

Value Observing
8. NSArrayController
9. NSUndoManager
10. Archiving
11. Basic Core Data
12. NIB Files and

NSWindowController
13. User Defaults
14. Using Notifications
15. Using Alert Panels
16. Localization
17. Custom Views
18. Images and Mouse Events
19. Keyboard Events

20. Drawing Text with Attributes
21. Pasteboards and

Nil-Targeted Actions
22. Categories
23. Drag-and-Drop
24. NSTimer
25. Sheets
26. Creating NSFormatters
27. Printing
28. Web Services
29. Blocks
30. Developing for iOS
31. View Swapping
32. Core Data Relationships
33. Core Animation
34. Concurrency
35. Cocoa and OpenGL
36. NSTask
37. Distributing Your App
38. The End
Index

AVAILABLE FORMATS

•	 9780321774088		Book		

•	 9780132902212	 eBook	

•	 9780132902199	 Safari	Books	Online		

http://www.informit.com/store/product.aspx?isbn=9780321774088
http://www.safaribooksonline.com/search/site/9780132902199
http://www.informit.com/store/product.aspx?isbn=9780321774088
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

Cocoa Programming
for Mac OS X

4th Edition

AARON HILLEGASS & ADAM PREBLE

521

29
Blocks

Let’s pretend that we’re writing a zombie game. Specifically, we’re working on the zombie AI code.
We want a method on our Zombie object to find nearby brains. So we start with this:

@implementation Zombie

- (NSArray *)brainsForFlags:(NSInteger)flags
{
 return [[self game] allBrains];
}

@end

It’s a good start, but it would be a lot more useful it if returned the brains in order of proximity to
the zombie, that is, sorted by the distance between the zombie and the brain. The zombie is hungry,
after all. NSArray’s sortedArrayUsingSelector: is usually a great first choice for sorting. It calls the
given selector on the objects in the array in order to compare them with their neighbors. For example,
NSString provides a compare: method. Thus, we can use it to sort an array of strings:

NSArray *sortedStrings =
 [theStrings sortedArrayUsingSelector:@selector(compare:)];

We might entertain adding a compareByDistanceToZombie: method to the Brain class. But how would
it know which zombie it’s comparing the distance to? The method sortedArrayUsingSelector:
doesn’t provide any way to pass contextual information to the sorting process.

NSArray’s sortedArrayUsingFunction:context: seems like a better choice. We can write a C
function and tell sortedArrayUsingFunction:context: what function to use to compare the brains.
Using it would look something like this:

NSInteger CmpBrainsByZombieDist(id a, id b, void *context)
{
 Brain *brainA = a;
 Brain *brainB = b;
 Zombie *zombie = (__bridge Zombie *)context;
 float distA = [zombie distanceToBrain:brainA];
 float distB = [zombie distanceToBrain:brainB];
 if (distA == distB) return NSOrderedSame;
 else if (distA < distB) return NSOrderedAscending;
 else return NSOrderedDescending;
}

- (NSArray *)brainsForFlags:(NSInteger)flags
{

Chapter 29 Blocks

522

 NSArray *allBrains = [[self game] allBrains];
 return [brains sortedArrayUsingFunction:CmpBrainsByZombieDist
 context:(__bridge void *)self];
}

The void pointer context argument is used to provide additional data to the comparison function; we
use this to pass the pointer to the Zombie instance (self). Note that the __bridge casting is necessary
to convert an object reference into a type out of ARC’s control.

We’ve got a workable solution now. After some playtesting, however, we decide that we want
our zombies to have a more varied palette. If frenzy mode is on, the zombies should seek out the
brain with the highest IQ, no matter where it is in the game world. Now we need to supply multiple
parameters to CmpBrainsByZombieDist, but it all needs to be passed in through a single void pointer
argument.

Perhaps you are starting to see that this approach has a number of downsides. Maintaining C functions
for custom sorting forces our input parameters to be awkwardly funneled through a void pointer. An
NSDictionary or custom C struct will get the job done, but they add complexity. Additionally, the C
function must be separate from the code that calls it, making it more challenging to efficiently maintain
the code.

There is, however, an elegant solution to this problem: blocks. You can think of blocks as functions
that can be passed around just like an object. Consider the following solution. The caret (^) in the
following code is the start of the block:

- (NSArray *)brainsForFlags:(NSInteger)flags
{
 NSArray *allBrains = [[self game] allBrains];
 return [brains sortedArrayUsingComparator:^(id a, id b) {
 Brain *brainA = a;
 Brain *brainB = b;
 float criteriaA, criteriaB;
 if (flags & FrenzyMode)
 {
 criteriaA = [brainA iq];
 criteriaB = [brainB iq];
 }
 else
 {
 criteriaA = [self distanceToBrain:brainA];
 criteriaB = [self distanceToBrain:brainB];
 }
 if (criteriaA == criteriaB) return NSOrderedSame;
 else if (criteriaA < criteriaB) return NSOrderedAscending;
 else return NSOrderedDescending;
 }];
}

We’ll get into the particulars of blocks syntax in the next section. Until then, let’s look at some of the
more interesting parts of this method. The sortedArrayUsingComparator: method takes a block as its
only parameter. You’ll notice that blocks look quite a bit like C functions. They have arguments and a
body. Where they differ from C functions is that they do not have to be named (they are anonymous)
and can be treated just like an expression. In fact, they are objects.

This particular block takes two arguments (a and b) and refers to variables that are defined outside the
block (self and flags). This is one of the more useful aspects of blocks: They capture the value of

Block Syntax

523

variables from the scope outside the block. There’s generally no need to package up your variables to
squeeze into the argument list: You can simply use the variables that are in scope.

Blocks provide an elegant way to address such problems as nontrivial sort criteria, as well as much
more sophisticated problems. Next, we’ll talk about the particulars of using blocks.

Block Syntax
Blocks enable the developer to create objects that encapsulate instructions, inline with the rest of their
code, which capture the values of variables that are within scope. The resulting object can then be
passed about and even copied, just like any other object.

The block syntax can be a little off-putting at first (it is not dissimilar from C function pointer syntax),
but the benefits far outweigh the time you will spend getting used to it. Let’s define a simple block:

int captured = 1; // Local variable ‘captured’

int (^offsetter)(int) = ^(int x) { return x + captured; };

On the first line, we create a local variable: captured. Next, we declare a variable named offsetter,
which is a block. Whenever we are creating or defining a block, we use the ^ operator. This block
returns an integer and takes an integer as its only argument.

On the right side of the equal sign, we define the block (note the ^, again). This part looks a lot like a
C function definition. We specify that the integer parameter will be called x, and then we provide the
body of the block in braces. An annotated version is shown in Figure 29.1

Figure 29.1 Anatomy of a Block

Aside from the magic of creating a block of code on the stack like this, two interesting things are
happening here: First, our block definition does not specify the return type of the block. The compiler
is smart enough to figure it out from the return statement. Second, we refer to the variable captured
inside the block. A blocks programmer would say that we are capturing the value of captured in the
block. This is a very powerful feature of blocks.

How do we call a block? As it turns out, it looks quite a bit like a C function call:

int answer = offsetter(2);

Note that answer is now 3 (2 + 1 = 3). What if we change the value of captured and call the block
again?

captured = 64;
answer = offsetter(2);

The result is the same; answer is still 3 because the value of captured was captured when we defined
the block. We cannot change captured from outside the block, and as it happens, we can’t change it
from inside the block either. To do that, we need the __block type specifier.

Chapter 29 Blocks

524

By default, captured values are considered const within the block. If you need to modify a captured
value from inside a block, you can add the __block type specifier:

__block BOOL modifiable = YES;

However, when a variable is marked with __block, the compiler treats it as what is essentially a global
variable. Any block that was created with it in scope can change its value. Because it does come with
some performance overhead, __block is not the default. Typically, it is more useful to capture only the
value of a variable.

Memory and Objects within Blocks
When a block is defined, it is created on the stack. When the method or function it was defined in exits,
the block is removed from memory along with all the other local stack variables. Sometimes, this is
fine; we may wish to use the block only for the lifetime of that particular method call, as in our earlier
brain-sorting example. The block is not used after the method returns.

Other times, however, we want the block to live on well after the method returns. Because the block
is created on the stack, we must copy it in order to make sure that it is not deallocated with the current
stack frame. For this reason, we recommend that you copy blocks when assigning them to instance
variables:

@property (nonatomic, copy) int (^arithmeticOperationBlock)(int);

Just like we can capture scalar values within blocks, we can also capture pointers to objects. When a
pointer to an Objective-C object is captured by a block, it is retained (a strong reference is formed).
Any objects retained by the block are released when the block goes out of scope or is deallocated:

NSMutableArray *array;
array = [NSMutableArray array]; // retain count of 1, autoreleased

void (^simpleBlock)() = ^{
 [array addObject:@"Q"]; // array pointer captured, retained
};

simpleBlock();

return; // simpleBlock is popped from stack, releases array

Note that variables with the __block specifier will not be retained by the block. This can be useful
in preventing strong reference cycles. Note that this is still the case under ARC; however, ARC still
considers a __block pointer a strong reference and thus retains it, unless you mark the variable
__weak.

Consider the following code:

controller = [[MyController alloc] init];
controller.block = ^{
 [controller doSomething];
};

This code creates a strong reference cycle. Do you see it?

MyController holds a strong reference to block. The block, however, holds a strong reference to the
instance of MyController! The simplest approach is to use a temporary weak reference variable, since
child objects (the block) should have only weak references to their parents (the controller).

Availability of Blocks

525

controller = [[MyController alloc] init];
__weak MyController *weakController = controller;
controller.block = ^{
 [weakController doSomething];
};

This resolves the strong reference cycle.

Availability of Blocks
Blocks are available beginning with Mac OS X 10.6 and iOS 4.0 and are an extension to the C
language. Thus, you don’t need to be using Objective-C to take advantage of blocks, but you do need
a compiler that understands blocks, as well as runtime support. If you are targeting Mac OS X 10.5 or
iOS 2.2, PLBlocks from Plausible Labs provides a solution well worth looking into.

The first high-profile API to make use of blocks was Grand Central Dispatch, a Mac OS X
concurrency library. As such, many people think of blocks as being useful only in multithreaded
programming. We believe that blocks are extremely handy in a very broad range of programming
settings. As you solve problems in your own projects, you may find blocks to be a great fit in some
unexpected places.

RanchForecast: Going Asynchronous
Note: Readers create the RanchForecast application in the previous chapter. This app fetches XML
data representing the BNR class schedule from a web service and then displays that data. However,
RanchForecast fetches data synchronously, which can make the UI unresponsive while network
requests are taking place. In this section, readers use blocks to address this problem.

Our RanchForecast application works great in ideal circumstances. That is, with a speedy Internet
connection. However, what if our Internet connection is poor? Or what if we were loading a much
larger XML document that might take several seconds (or worse) to download?

Our customers will complain, and rightly so, that the application looks as if it has frozen until the
request completes and the table updates. The reason is that we are running a synchronous request
in the main thread, the very same thread that handles UI events. If we use NSURLConnection in the
asynchronous style, however, we can avoid blocking the main thread, and the UI will be nice and
responsive. Let’s update our ScheduleFetcher class to do things the Right Way.

Recall that using NSURLConnection asynchronously means that we will create the connection and
specify a delegate, using initWithRequest:delegate:. This call will return immediately, and the
delegate will be called to handle various events during the connection’s lifetime. NSURLConnection
works with the run loop to make this possible.

In our application, ScheduleFetcher will act as the connection’s delegate and implement the three
delegate methods needed to handle receiving data and the successful and unsuccessful completion of
the request:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data;

- (void)connectionDidFinishLoading:(NSURLConnection *)connection;

Chapter 29 Blocks

526

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error;

Receiving the Asynchronous Response

If the response loading is taking place asynchronously and ScheduleFetcher will not block, how will
RanchForecastAppDelegate know when the class schedule has been loaded or when an error has
occurred?

We can accomplish this in several ways. The most obvious approach would be to add a pointer to
RanchForecastAppDelegate in the ScheduleFetcher. Once the schedule has been fetched, the
fetcher would call a method on the app delegate (updateWithClasses:, perhaps). The downside
of this approach, however, is that we would have just made ScheduleFetcher dependent on
RanchForecastAppDelegate. If we wanted to use ScheduleFetcher in another project later on (and we
will), we would need to edit its code, which then leaves us with multiple versions of ScheduleFetcher.

Another approach is to use the delegate pattern. It works great for NSURLConnection;
ScheduleFetcher could use it as well. We would define a ScheduleFetcherDelegate protocol,
and RanchForecastAppDelegate would conform to the protocol and set itself as the delegate. This
approach is very reasonable; it decouples the classes, keeping ScheduleFetcher reusable, but it feels
somewhat heavy-handed for such a simple Web service response.

Yet another approach is to use our knowledge of blocks to apply the completion block design pattern.
In this pattern, our fetch method on ScheduleFetcher would take a block as its only parameter.
ScheduleFetcher then calls the block later when it is ready to deliver the results or report an error.
Completion blocks are very compact; no additional methods are needed and they have the advantage
of allowing us to keep the response-handling code close to the place where the Web service call is
initiated.

Let’s modify ScheduleFetcher to perform the request asynchronously and report the results using a
completion block.

In ScheduleFetcher.h, define the ScheduleFetchResultBlock type. Because the block syntax
involves a good bit of punctuation, it is often helpful to typedef block types so that they can be used
more gracefully in the future.

#import <Foundation/Foundation.h>

typedef void (^ScheduleFetcherResultBlock)(NSArray *classes,
 NSError *error);
Now add three new instance variables and the replacement for fetchClassesWithError: to ScheduleFetcher:
@interface ScheduleFetcher : NSObject <NSXMLParserDelegate> {
@private
 NSMutableArray *classes;
 NSMutableString *currentString;
 NSMutableDictionary *currentFields;
 NSDateFormatter *dateFormatter;

 ScheduleFetcherResultBlock resultBlock;
 NSMutableData *responseData;
 NSURLConnection *connection;
}
- (void)fetchClassesWithBlock:(ScheduleFetcherResultBlock)theBlock;

Receiving the Asynchronous Response

527

@end

Now, in ScheduleFetcher.m, remove fetchClassesWithError: and implement
fetchClassesWithBlock::

- (void)fetchClassesWithBlock:(ScheduleFetcherResultBlock)theBlock
{
 // Copy the block to ensure that it is not kept on the stack:
 resultBlock = [theBlock copy];

 NSURL *xmlURL = [NSURL URLWithString:
 @"http://bignerdranch.com/xml/schedule"];

 NSURLRequest *req = [NSURLRequest requestWithURL:xmlURL
 cachePolicy:NSURLRequestReturnCacheDataElseLoad
 timeoutInterval:30];

 connection = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (connection)
 {
 responseData = [[NSMutableData alloc] init];
 }
}

Note that theBlock is copied and the resulting pointer stored in resultBlock. We copy the block
because it may still be on the stack of the calling method. If so, the block will be deallocated when that
method exits. Because we are starting an asynchronous request and the calling method is guaranteed
to return before the request completes, we need to be sure that the block’s memory will be valid until
we call it with the results. If theBlock were going to be used only within this method and not after we
return, copying it would not be necessary.

The resultBlock, connection, and responseData objects are created when the fetch is initiated. It’s a
good idea to clean them up when the request completes. To reduce repetition, add a new method called
cleanup:

- (void)cleanup
{
 responseData = nil;
 connection = nil;
 resultBlock = nil;
}

Still in ScheduleFetcher.m, implement the NSURLConnection delegate methods:

#pragma mark -
#pragma mark NSURLConnection Delegate

- (void)connection:(NSURLConnection *)theConnection
 didReceiveData:(NSData *)data
{
 [responseData appendData:data];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)theConnection
{
 [classes removeAllObjects];

Chapter 29 Blocks

528

 NSXMLParser *parser = [[NSXMLParser alloc]
 initWithData:responseData];
 [parser setDelegate:self];

 BOOL success = [parser parse];
 if (!success)
 {
 resultBlock(nil, [parser parserError]);
 }
 else
 {
 NSArray *output = [classes copy];
 resultBlock(output, nil);
 }

 [self cleanup];
}

- (void)connection:(NSURLConnection *)theConnection
 didFailWithError:(NSError *)error
{
 resultBlock(nil, error);

 [self cleanup];
}

Response data is collected in connection:didReceiveData: and then parsed in
connectionDidFinishLoading:. We then call resultBlock with the results or error condition.

Now it’s time to update RanchForecastAppDelegate to work with the new interface to
ScheduleFetcher. In RanchForecastAppDelegate.m, update applicationDidFinishLaunching::

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 [tableView setTarget:self];
 [tableView setDoubleAction:@selector(openClass:)];

 ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];

 [fetcher fetchClassesWithBlock:^(NSArray *theClasses,
 NSError *error) {
 if (theClasses)
 {
 classes = theClasses;
 [tableView reloadData];
 }
 else
 {
 NSAlert *alert = [[NSAlert alloc] init];
 [alert setAlertStyle:NSCriticalAlertStyle];
 [alert setMessageText:@"Error loading schedule."];
 [alert setInformativeText:[error localizedDescription]];
 [alert addButtonWithTitle:@"OK"];
 [alert beginSheetModalForWindow:self.window
 modalDelegate:nil
 didEndSelector:nil
 contextInfo:nil];
 }
 }];
}

Challenge: Design a Delegate

529

Build and run the application. Notice that the application appears more quickly now because the
request is performed asynchronously.

Challenge: Design a Delegate
Earlier in this chapter, we discussed how we might use the delegate design pattern as a means for
passing Web service data back to the interested parties. Create a copy of this project and refactor it
to use this pattern instead of blocks. Remember that delegate properties should be weak references to
prevent a strong reference cycle.

BUY NOW

BUY FROM INFORMIT AND SAVE UP TO 40%
ENTER THE DISCOUNT CODE
LEARNMAC2012 DURING CHECKOUT

MORE COCOA PROGRAMMING FOR MAC OS X:
THE BIG NERD RANCH GUIDE,
by Juan Pablo Claude and Aaron Hillegass

TABLE OF CONTENTS

CHAPTER 23:
Status Items
DRAFT MANUSCRIPT
PUBLISHING OCT 2012

SHARE + SHOP @ informit.com

1. Text Editing
2. NSFileHandle
3. Spotlight Importers
4. Quick Look Plug-ins
5. AppleScript Support
6. More AppleScript Support
7. Apple Help
8. Delivering Software With

PackageMaker
9. Application Updates with

Sparkle
10. Using C++ From Cocoa
11. Unit Testing
12. Image Drawing
13. Cocoa/OpenGL Tricks
14. Custom Controls
CHALLENGE: Value Transformers
15. Animation Support
16. Keyboard Events
17. Accessibility

18. Interface Builder Plug-ins
19. Clang and the Static Analyzer
21. Advanced Objective-C
22. Distributed Objects
23. Status Items
24. Concurrency and

NSOperation
25. Preference Panes
26. Core Animation
27. Services

AVAILABLE FORMATS

•	 9780321706263		Book		
•	 9780321706577	eBook	
•	 9780321706607	Safari	Books	Online			

http://www.informit.com/store/product.aspx?isbn=9780321706263
http://www.informit.com/store/product.aspx?isbn=9780321706263
http://www.facebook.com/sharer.php?u=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.stumbleupon.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://www.reddit.com/submit?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://twitter.com/home?status=+Big+Nerd+Ranch+eSampler+ +http://www.informit.com/promotions/promotion.aspx?promo=137039
http://digg.com/submit?phase=2&url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
http://del.icio.us/post?v=4;url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler
https://plus.google.com
http://www.linkedin.com/shareArticle?url=http://www.informit.com/promotions/promotion.aspx?promo=137039&title=+Big+Nerd+Ranch+eSampler

More Cocoa
Programming

THE BIG NERD RANCH GUIDE

JUAN PABLO CLAUDE & AARON HILLEGASS

441

25
Status Items

Status items are the little icons on the right side of the OS X menu bar as seen in Figure 25.1. A status
item has a menu associated with it, This menu gives the user information and settings options for a
process that would otherwise be faceless, i.e. have no user graphical user interface.

Figure 25.1 Status Items on the menu bar

Status items are instances of the NSStatusItem class. Status items must be placed inside a status bar,
which is an instance of NSStatusBar. Currently, OS X provides only one system-wide status bar that is
displayed on the right side of the menu bar.

Because menu bar space is limited, Apple recommends that status items be used sparingly and only
when there is no other reasonable way to give the user a means to interact with a program.

In Figure 25.1, however, the only NSStatusItem is the leftmost icon. The others are instances of
NSMenuExtra instead. These items use a private API that Apple reserves for its own status items.
Menu extras have additional functionality and can be rearranged and removed from the menu bar by
Command-dragging them.

In this chapter, you will create an application called WeatherStatus that has a status item. This status
item will display the five-day weather forecast for a given zip code and update itself periodically, as
seen in Figure 25.2.

Figure 25.2 WeatherStatus application status item menu

Chapter 25 Status Items

442

Starting the Status Item Project
Launch Xcode, start a new Cocoa Application project and name it WeatherStatus. Make sure the
bundle identifier is com.bignerdranch.WeatherStatus, as seen in Figure 25.3.

Figure 25.3 Start the WeatherStatus Project

After creating the project, open the WeatherStatus-info.plist file and add the following key-value
pair:

<key>LSUIElement</key>
<string>1</string>

The LSUIElement entry marks the application as a faceless agent, and if you build and run the project,
you will see that an empty window appears on the screen, but no dock icon or application menu
is displayed. Stop the application from Xcode. Then open MainMenu.xib and delete the unneeded
window. If you want, you can also delete the Font Manager and Main Menu objects from the NIB file.

The next step is to flesh out the automatically created AppDelegate object. If you are using an older
version of Xcode, you may need to create this object by dragging an NSObject from the IB library
and changing its class to AppDelegate. Make it the application delegate by Control-dragging from the
Application icon onto it and selecting the delegate outlet from the HUD panel. Finally, create the
class files and add them to the WeatherStatus project.

Back in Xcode, open AppDelegate.h and add the code listed below.

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>
{
 __weak IBOutlet NSMenu *statusMenu;

Starting the Status Item Project

443

 NSStatusItem *theItem;
 NSUInteger zipCode;
 double latitude, longitude;
 NSTimer *timer;
 NSUInteger updateInterval; // In minutes
}

// Properties:
@property (assign) IBOutlet NSWindow *window;
@property (weak) NSMenu *statusMenu;
@property (assign) double latitude;
@property (assign) double longitude;

// Accessors:
- (NSUInteger)zipCode;
- (BOOL)setZipCode:(NSUInteger)code;
- (NSUInteger)updateInterval;
- (void)setUpdateInterval:(NSUInteger)interval;

// Actions:
- (IBAction)fetchWeather:(id)sender;
- (IBAction)changeZipCode:(id)sender;

// Other:
- (NSMutableDictionary *)fetchCoordinatesForZipCode:(NSInteger)code
 error:(NSError **)error;
- (NSData *)sendRequestWithURLString:(NSString *)urlString
 error:(NSError **)error;
- (NSArray *)parseXMLNodesWithPath:(NSString *)path
 fromXMLData:(NSData *)xmlData
 error:(NSError **)error;
- (NSArray *)dayStringsFromDate:(NSDate *)date;
- (void)launchTimer;
- (void)stopTimer;
- (void)setTitle:(NSString *)title forMenuItemWithTag:(NSUInteger)tag;

@end

The only outlet declared in AppDelegate.h is statusMenu, and it needs to point to the status item menu
shown in Figure 25.2. Make sure the header file is saved and go back to Interface Builder to create the
menu and connect it to AppDelegate. Begin by deleting the auto-generated menu, window, and font
manager objects. Then drag an NSMenu object from the object library into the MainMenu.xib object bar
and name it StatusMenu. Connect the new menu to the AppDelegate object by Control-dragging and
selecting the statusMenu outlet from the HUD panel.

Double-click the StatusMenu icon in the object bar on the left to display the menu. Add menu items
and separators and label the items as shown in Figure 25.4. In the attributes panel, give tags to the
menu items from 0 to 8, top to bottom.

Chapter 25 Status Items

444

Figure 25.4 Create a menu for WeatherStatus

Make the following connections between menu items and action methods:

• Zip code: (tag 5) menu item to the -changeZipCode: action of AppDelegate

• Update (tag 7) to -fetchWeather: of AppDelegate

• Quit (tag 8) to -terminate: of Application

The rest of the menu items are informational and do not need to be connected to any actions. Save your
changes and return to Xcode and the WeatherStatus project.

Data Persistence
Because the WeatherStatus application is an agent designed to only display information, it will
not provide a direct means for the user to input the zip code and update interval. Instead, you will
make these parameters settable in the next chapter, where you will create a preference pane for this
application.

Considering this design, a simple means to provide persistence for the application's data is to store the
two parameters (zipCode and updateInterval) in the application's preferences file.

To make the management of the preferences easier, create and add the files PreferenceStrings.h and
PreferenceStrings.m to the project. Open these files and edit them to look like the listings below.

PreferenceStrings.h:

#import <Cocoa/Cocoa.h>

Data Persistence

445

extern NSString * const BNRZipCode;
extern NSString * const BNRUpdateInterval;

PreferenceStrings.m:

#import "PreferenceStrings.h"

NSString * const BNRZipCode = @"ZipCode";
NSString * const BNRUpdateInterval = @"UpdateInterval";

With this preliminary work behind you, you can start editing AppDelegate.m and working on the
bulk of the application. Open the file and start by synthesizing properties and registering the default
preferences in the +initialize class method.

#import "AppDelegate.h"
#import "PreferenceStrings.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize statusMenu;
@synthesize latitude;
@synthesize longitude;

+ (void)initialize
{
 // Register the default preferences for the application:
 NSMutableDictionary *defaultPreferences = [NSMutableDictionary dictionary];

 NSNumber *zipNumber = [NSNumber numberWithUnsignedInteger:35216];
 NSNumber *updateNumber = [NSNumber numberWithUnsignedInteger:15];

 [defaultPreferences setObject:zipNumber forKey:BNRZipCode];
 [defaultPreferences setObject:updateNumber forKey:BNRUpdateInterval];

 [[NSUserDefaults standardUserDefaults] registerDefaults:defaultPreferences];
 // Synchronize the preferences to make sure they are immediately written to disk
 // and are accessible to the preference pane plug-in:
 [[NSUserDefaults standardUserDefaults] synchronize];
}

@end

At the end of the +initialize method, you synchronize the user defaults to save them to disk
immediately. Typically, this is not an operation you want to do very frequently because it can harm
the application's performance. However, in this case, the user defaults need to be accessible from a
different process (a preference pane) as soon as possible, and you are only saving a small amount of
data.

At this point, you can also implement the -init method, which just reads the user defaults.

- (id)init
{
 self = [super init];
 if (self) {

Chapter 25 Status Items

446

 // Read defaults:
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 updateInterval = [defaults integerForKey:BNRUpdateInterval];
 zipCode = [defaults integerForKey:BNRZipCode];
 }

 return self;
}

Using NOAA Web Services
To obtain the weather forecast for a given zip code, you will use two web services provided by the
National Oceanic and Atmospheric Administration (NOAA).

The first web service is located at www.weather.gov/forecasts/xml/sample_products/
browser_interface/ndfdXMLclient.php and accepts a list of zip codes as a GET argument called
listZipCodeList. The service returns a list of coordinates (latitude, longitude) for all the zip codes in
the list. A sample of the XML returned by the service for listZipCodeList=35216 is shown below.

<?xml version='1.0' ?>
<dwml version='1.0' xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.nws.noaa.gov/mdl/survey/pgb_survey/dev/DWMLgen/schema/DWML.xsd">
 <latLonList>33.5277,-86.7992</latLonList>
</dwml>

The second web service is located at www.weather.gov/forecasts/xml/sample_products/
browser_interface/ndfdBrowserClientByDay.php. This service takes several
GET parameters, including latitude, longitude, format, start date, and number of days
for the forecast. A partial sample of the XML results obtained with the parameters
lat=33.5277&lon=-86.7992&format=24+hourly&startDate=2009-7-1&numDays=5 is listed below.
The interesting information for WeatherStatus is contained in the XPath dwml/data/parameters/
weather/weather-conditions/@weather-summary.

<?xml version="1.0"?>
<dwml version="1.0" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.nws.noaa.gov/forecasts/xml/DWMLgen/schema/DWML.xsd">
 <head>

 <!-- Omitted header information -->

 </head>
 <data>
 <location>
 <location-key>point1</location-key>
 <point latitude="33.53" longitude="-86.80"/>
 </location>

 <!-- Omitted data -->

Using NOAA Web Services

447

 <parameters applicable-location="point1">

 <!-- Omitted data -->

 <weather time-layout="k-p24h-n5-1">
 <name>Weather Type, Coverage, and Intensity</name>
 <weather-conditions weather-summary="Sunny"/>
 <weather-conditions weather-summary="Slight Chance Thunderstorms">
 <value coverage="slight chance" intensity="none"
 weather-type="thunderstorms" qualifier="none"/>
 <value coverage="slight chance" intensity="moderate"
 additive="and" weather-type="rain showers" qualifier="none"/>
 </weather-conditions>
 <weather-conditions weather-summary="Chance Thunderstorms">
 <value coverage="chance" intensity="none"
 weather-type="thunderstorms" qualifier="none"/>
 <value coverage="chance" intensity="moderate"
 additive="and" weather-type="rain showers" qualifier="none"/>
 </weather-conditions>
 <weather-conditions weather-summary="Chance Thunderstorms">
 <value coverage="chance" intensity="none"
 weather-type="thunderstorms" qualifier="none"/>
 <value coverage="chance" intensity="moderate" additive="and"
 weather-type="rain showers" qualifier="none"/>
 </weather-conditions>
 <weather-conditions weather-summary="Chance Thunderstorms">
 <value coverage="chance" intensity="none"
 weather-type="thunderstorms" qualifier="none"/>
 <value coverage="chance" intensity="moderate" additive="and"
 weather-type="rain showers" qualifier="none"/>
 </weather-conditions>
 </weather>

 <!-- Omitted data -->

 </parameters>
 </data>
</dwml>

Your next task is to implement the AppDelegate methods that invoke the web services just described
and parse the returned data.

The -sendRequestWithURLString:error: method uses the standard Cocoa facilities to send an
HTTP request with a timeout of 30 seconds and override locally cached data If the request fails, nil is
returned.

- (NSData *)sendRequestWithURLString:(NSString *)urlString
 error:(NSError **)error
{
 NSURL *url = [NSURL URLWithString:urlString];
 NSURLRequest *urlRequest = [NSURLRequest
 requestWithURL:url
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:30];

 // Fetch the XML response:

Chapter 25 Status Items

448

 NSData *xmlData = [NSURLConnection sendSynchronousRequest:urlRequest
 returningResponse:NULL
 error:error];
 if (!xmlData) {
 NSLog(@"Web service error - no data");
 return nil;
 }
 return xmlData;
}

The next method parses XML data returned by a web service and returns an array of nodes for a given
Xpath. Just as in the method above, nil is returned if there is a failure.

- (NSArray *)parseXMLNodesWithPath:(NSString *)path
 fromXMLData:(NSData *)xmlData
 error:(NSError **)error
{
 NSXMLDocument *doc = [[NSXMLDocument alloc] initWithData:xmlData
 options:0
 error:error];
 NSArray *itemNodes = [doc nodesForXPath:path error:error];
 if (!itemNodes) {
 NSLog(@"XML parsing error - no nodes");
 }
 return itemNodes;
}

Now you can implement a method for retrieving the coordinates for a given zip code.

- (NSMutableDictionary *)fetchCoordinatesForZipCode:(NSInteger)code
 error:(NSError **)error
{
 // Prepare the web service URL:
 NSString *urlString = [NSString stringWithFormat:
 @"http://www.weather.gov/forecasts/xml/sample_products/browser_interface/"
 @"ndfdXMLclient.php?listZipCodeList=%d", code];

 // Send the web service request and process:
 NSData *xmlData = [self sendRequestWithURLString:urlString error:error];
 if (xmlData) {
 // Parse the XML response:
 NSArray *itemNodes = [self parseXMLNodesWithPath:@"dwml/latLonList"
 fromXMLData:xmlData
 error:error];
 if (itemNodes) {
 // Expect only one node:
 if ([itemNodes count] == 1) {
 NSString *latLonStr = [[itemNodes objectAtIndex:0] stringValue];
 NSArray *latLonValues = [latLonStr componentsSeparatedByString:@","];
 NSMutableDictionary *result = [NSMutableDictionary dictionary];
 [result setObject:[latLonValues objectAtIndex:0] forKey:@"latitude"];
 [result setObject:[latLonValues objectAtIndex:1] forKey:@"longitude"];
 // Return with success:
 return result;
 } else {
 // Web service returned XML, but no coordinates.
 // Is the caller interested in the error?
 if (error) {

Using NOAA Web Services

449

 NSDictionary *errorData =
 [NSDictionary
 dictionaryWithObject:@"Could not get coordinates for ZIP code"
 forKey:NSLocalizedDescriptionKey];
 *error = [NSError errorWithDomain:@"ApplicationDomain"
 code:1
 userInfo:errorData];
 }
 }
 }
 }
 // If we are here, the operation failed. Return with failure:
 return nil;
}

The -fetchCoordinatesForZipCode:error: method converts a given zip code using the appropriate
NOAA web service. It expects only one data node in the response data, and any other condition is
considered an error. The data is returned in a dictionary with the @"latitude" and @"longitude" keys.

Finally, implement the action for fetching the weather forecast. The -fetchWeather: action method
retrieves the five-day forecast for a given date and set of coordinates. Note that the web service may
return fewer than five forecasts if not all are available. That condition is not considered an error and the
missing forecasts are simply marked for the user. Also notice that the weather information is displayed
as menu items using the method dayStringsFromDate:, which we will implement next.

- (IBAction)fetchWeather:(id)sender
{
 // We need the current year, month, and date:
 NSDate *now = [NSDate date];
 NSCalendar *cal = [NSCalendar currentCalendar];
 NSDateComponents *components = [cal components:
 (NSYearCalendarUnit | NSMonthCalendarUnit | NSDayCalendarUnit)
 fromDate:now];

 // Prepare the web service URL:
 NSString *urlString = [NSString stringWithFormat:
 @"http://www.weather.gov/forecasts/xml/sample_products/browser_interface/"
 @"ndfdBrowserClientByDay.php?"
 @"lat=%f&lon=%f&format=24+hourly&startDate=%d-%d-%d&numDays=5",
 [self latitude], [self longitude],
 [components year], [components month], [components day]];

 // Send the web service request and process:
 NSError *error = nil;
 NSData *xmlData = [self sendRequestWithURLString:urlString error:&error];
 if (xmlData) {
 NSArray *itemNodes = [self parseXMLNodesWithPath:
 @"dwml/data/parameters/weather/weather-conditions/@weather-summary"
 fromXMLData:xmlData
 error:&error];
 if (itemNodes) {
 NSArray *dayStrings = [self dayStringsFromDate:now];
 NSInteger i;
 NSInteger itemCount = [itemNodes count];
 for (i=0; i<itemCount; i++) {
 NSString *day = [dayStrings objectAtIndex:i];
 NSXMLNode *node = [itemNodes objectAtIndex:i];
 [self setTitle:[NSString stringWithFormat:

Chapter 25 Status Items

450

 @"%@: %@", day, [node stringValue]] forMenuItemWithTag:i];
 }
 if (itemCount < 5) {
 for (i=itemCount; i<5; i++) {
 NSString *day = [dayStrings objectAtIndex:i];
 [self setTitle:[NSString stringWithFormat:
 @"%@: No forecast available", day] forMenuItemWithTag:i];
 }
 }
 // Set the update time:
 [self setTitle:[NSString stringWithFormat:@"Last update: %@",
 [now dateWithCalendarFormat:@"%m/%d/%y - %I:%M %p" timeZone:nil]]
 forMenuItemWithTag:6];
 return;
 }
 }
 // If we got here, the update failed:
 [self setTitle:@"Last update: Failed!" forMenuItemWithTag:6];
}

Implementing Other Utility Methods
In this section, you will implement four utility methods that are used elsewhere in the program.

The first method returns an array of strings with the names for the next five days for a given date. This
method is needed to update the status item menu.

- (NSArray *)dayStringsFromDate:(NSDate *)date
{
 NSMutableArray *days = [NSMutableArray arrayWithCapacity:5];
 [days addObject:@"Today"];
 [days addObject:@"Tomorrow"];

 NSInteger i;
 for (i=2; i<5; i++) {
 // There are 86400 seconds in a day:
 NSDate *nextDate = [date dateByAddingTimeInterval:86400.0 * i];
 [days addObject:[nextDate dateWithCalendarFormat:@"%A" timeZone:nil]];
 }
 return days;
}

Next is a method for changing the title of a menu item given its tag number.

- (void)setTitle:(NSString *)title forMenuItemWithTag:(NSUInteger)tag
{
 NSMenuItem *menuItem = [statusMenu itemWithTag:tag];
 [menuItem setTitle:title];
}

Finally, we have two methods for managing the NSTimer that periodically updates the weather forecast.
The -launchTimer method uses an invocation to the -fetchWeather: action and calls it every
updateInterval * 60 seconds.

- (void)launchTimer

Implementing Accessors

451

{
 SEL selector = @selector(fetchWeather:);
 NSMethodSignature *signature =
 [AppDelegate instanceMethodSignatureForSelector:selector];
 NSInvocation *invocation = [NSInvocation invocationWithMethodSignature:signature];
 [invocation setSelector:selector];
 [invocation setTarget:self];
 [invocation setArgument:(__bridge void *)self atIndex:2];
 timer = [NSTimer scheduledTimerWithTimeInterval:[self updateInterval] * 60
 invocation:invocation
 repeats:YES];
}

- (void)stopTimer
{
 [timer invalidate];
 timer = nil;
}

Implementing Accessors
At this point, you have everything you need to implement the missing accessor methods. Note that the
setter methods do not save preference data; that will be done by the preference pane. Also notice that
-setZipCode: returns a BOOL rather than void because if a given zip code is invalid, the operation
will fail.

- (void)setUpdateInterval:(NSUInteger)interval
{
 updateInterval = interval;
 [self stopTimer];
 [self launchTimer];
}

- (NSUInteger)updateInterval
{
 return updateInterval;
}

- (BOOL)setZipCode:(NSUInteger)code
{
 NSError *error = nil;
 NSMutableDictionary *coordinates = [self fetchCoordinatesForZipCode:code error:&error];
 if (!error) {
 // Save data:
 zipCode = code;
 [self setLatitude:[[coordinates objectForKey:@"latitude"] doubleValue]];
 [self setLongitude:[[coordinates objectForKey:@"longitude"] doubleValue]];

 // Update menu item:
 [self setTitle:[NSString stringWithFormat:@"Zip code: %d", code]
 forMenuItemWithTag:5];

 // Return with success:
 return YES;
 } else {
 // Change nothing and return with failure:
 return NO;

Chapter 25 Status Items

452

 }
}

- (NSUInteger)zipCode
{
 return zipCode;
}

Even though it is an action rather than an accessor, you will also implement -changeZipCode: here.
However, leave the method empty for now because the zip code change will be done via the preference
pane.

- (IBAction)changeZipCode:(id)sender
{
 // Pass for now
}

Finishing the Program
Only two methods remain to complete the WeatherStatus program. The first one is -awakeFromNib,
where the NSStatusItem is actually created. In this method, the initial weather update is also
performed, and the possibility of an invalid zip code is handled. Notice how the NSStatusItem is
actually created by a method of the system status bar: -statusItemWithLength:. This method is called
with the NSVariableStatusItemLength argument to guarantee the smallest possible status item size to
conserve space.

- (void)awakeFromNib
{
 // Create the NSStatusItem:
 NSStatusBar *bar = [NSStatusBar systemStatusBar];
 theItem = [bar statusItemWithLength:NSVariableStatusItemLength];

 // Get image resources:
 NSString *pathToIcon = [[NSBundle mainBundle] pathForResource:@"tinyhat"
 ofType:@"png"];
 NSImage *iconImage = [[NSImage alloc] initWithContentsOfFile:pathToIcon];
 NSString *pathToNegativeIcon = [[NSBundle mainBundle] pathForResource:@"tinyhatneg"
 ofType:@"png"];
 NSImage *negativeIconImage =
 [[NSImage alloc] initWithContentsOfFile:pathToNegativeIcon];

 // Set the images for the NSStatusItem:
 [theItem setImage:iconImage];
 [theItem setAlternateImage:negativeIconImage];
 [theItem setHighlightMode:YES];
 [theItem setMenu:statusMenu];

 // Set the zip code and fetch the weather:
 BOOL success = [self setZipCode:zipCode];
 if (success) {
 [self fetchWeather:self];
 } else {
 NSArray *dayStrings = [self dayStringsFromDate:[NSDate date]];
 int i;
 for (i=0; i<5; i++) {

Challenge

453

 NSString *day = [dayStrings objectAtIndex:i];
 [self setTitle:[NSString stringWithFormat:@"%@: No forecast available", day]
 forMenuItemWithTag:i];
 }
 [self setTitle:@"Zip code: Invalid!" forMenuItemWithTag:5];
 [self setTitle:@"Last update: Failed!" forMenuItemWithTag:6];
 }

 // Set a timer to periodically update:
 [self launchTimer];
}

At this point, you need to add the image files tinyhat.png and tinyhatneg.png to the project's
resources. Download the files from http://www.bignerdranch.com/solutions/MoreCocoa.zip and
add them to your project. Make sure the image files are copied to the target bundle.

After all this work, you can finally build and enjoy your WeatherStatus status item. Go for it!

Challenge
The WeatherStatus program currently displays a failure to connect to the weather service when the zip
code is invalid. Fix this situation to give the user more accurate feedback.

Try Safari Books Online FREE
Get Online Access to 20,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top technology
publishers, including Addison-Wesley Professional, Cisco Press, O’Reilly, Prentice Hall, Que,
and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!
Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!
informit.com/freetrial

http://www.safaribooksonline.com/
http://my.safaribooksonline.com/home?subpage=hometab4&portal=informit&cid=2010-informit-link-freetrial

P A R T O F A U S E R G R O U P ?
Are you a member of a group that meets to
discuss IT-related topics? Your group may be
eligible for the Pearson User Group Program!

B E N E F I T S I N C L U D E :
•	 	Member	Discount	–	SAVE	35%	on	print	

titles,	SAVE	45%	on	eBooks	

•	 FREE	review	copies	

•	 	Advanced	ACCESS	to	content,	product	
review	opportunities	and	more!	

L E A R N M O R E !
To	learn	if	your	group	qualif ies	please	visit
informit.com/usergroups.

http://www.informit.com/user_groups/index.aspx

	Nerd_Ranch_Samper_Cover_FM_2012.pdf
	1_9780321706256_divider.pdf
	AMOSXP_Chapter.pdf
	adv_title
	Book_almost_final.pdf
	Advanced Mac OS X Programming

	Adv_cut.pdf
	Book_none.pdf
	Chapter 10 Performance Tuning
	Approaches To Performance
	Major Causes of Performance Problems
	Memory
	Locality of Reference
	Caches
	Memory is the New I/O

	CPU
	Disk
	Graphics
	Before using any of the profiling tools

	Command-Line Tools
	time
	dtruss
	fs_usage and sc_usage
	top
	Stochastic profiling
	sample

	Precise Timing with mach_absolute_time()

	2_9780321821522_divider.pdf
	3_9780321706287_divider.pdf
	4_9780321774088_divider.pdf
	5_9780321706263_divider.pdf
	MoreCocoa_Chapter.pdf
	MoreCocoa_title
	Book_none.pdf
	More Cocoa Programming

	MoreCocoa_cut.pdf
	Book_none.pdf
	Chapter 25 Status Items
	Starting the Status Item Project
	Data Persistence
	Using NOAA Web Services
	Implementing Other Utility Methods
	Implementing Accessors
	Finishing the Program
	Challenge

	Safari_Free_Trial_7x9_color.pdf
	User Group BOB ad_7x9.pdf
	iOS_Chapter.pdf
	Book_embed_1.pdf
	iOS Programming
	Book_embed_1.pdf
	Chapter 25 Web Services and UIWebView
	Web Services
	Starting the Nerdfeed application
	NSURL, NSURLRequest, and NSURLConnection
	Formatting URLs and requests
	Working with NSURLConnection
	Collecting XML data
	Parsing XML with NSXMLParser
	Constructing the tree of model objects
	A quick tip on logging

	UIWebView
	For the More Curious: NSXMLParser
	For the More Curious: The Request Body
	For the More Curious: Credentials
	Bronze Challenge: More Data
	Silver Challenge: More UIWebView

	ObjC_Chapter.pdf
	ObjCProgramming_reprint_12_2.pdf
	Book_embed.pdf
	Objective-C Programming

	ObjCProgramming_reprint_12_2.pdf
	Book_embed.pdf
	Part I. Getting Started
	Chapter 2 Your First Program
	Installing Apple’s developer tools
	Getting started with Xcode
	Where do I start writing code?
	How do I run my program?
	So what is a program?
	Don’t stop

	Cocoa_Chapter.pdf
	Book_none.pdf
	Cocoa Programming for Mac OS X

	Cocoa_cut
	Cocoa_cut
	Book_none.pdf
	Chapter 29 Blocks
	Block Syntax
	Memory and Objects within Blocks

	Availability of Blocks
	RanchForecast: Going Asynchronous
	Receiving the Asynchronous Response

	Challenge: Design a Delegate

