
The JSTL Expression Language

From Core JSTL: Mastering the JSP Standard Tag Library

���David Geary������	
����������
������	
�����Prentice Hall PTR�

"Use coupon code JAVAONE when buying these books and save even more."

"For more great Java books and special downloads from Addison-Wesley and Prentice Hall vist our
special JavaOne Promotion."

http://www.informit.com/isapi/authorid~{F0D5033C-1909-449D-81D0-F981EEE4E65D}/authors/author.asp
http://www.phptr.com/
http://www.informit.com/
http://www.informit.com/content/index.asp?product_id={765E6AE2-478C-46C8-B66F-96DF011C6879}
http://www.informit.com/content/index.asp?product_id={765E6AE2-478C-46C8-B66F-96DF011C6879}
http://www.informit.com/promotions/promotions.asp?st=%7b4DE1AAD3-5254-49DA-9A62-25578636F347

Chapter

T

HE

 JSTL E

XPRESSION

L

ANGUAGE

Topics in This Chapter

• Expression Language Overview

• Expressions

• Identifiers

• Operators

• Type Coercion

• Literal Values

• Implicit Objects

• Method Invocation

• EL Expressions in Custom Actions

• Common Mistakes

chapter2-expressionLanguage.fm Page 38 Tuesday, October 8, 2002 11:43 AM

39

Chapter

2

Although JSTL, as its name implies, provides a set of standard tags, its single most
important feature may well be the expression language it defines. That expression
language greatly reduces the need for specifying tag attribute values with Java code
and significantly simplifies accessing all sorts of application data, including beans,
arrays, lists, maps, cookies, request parameters and headers, context initialization
parameters, and so on. In fact, the JSTL expression language adds so much value to
JSP that it will be incorporated into JSP 2.0.

1

This chapter examines the JSTL expression language in detail, starting with
expressions and identifiers and ending with sections on using the expression language
for custom action attributes and common mistakes that developers make when using
the expression language.

Note:

To illustrate the JSTL expression language, this chapter uses a number of
JSTL actions, such as <c:out>, <c:if>, and <c:forEach>, that have not yet been for-
mally discussed in this book. However, the use of those actions is intuitive and this
chapter does not use any of those action’s advanced features. See Chapter 3, “Gen-
eral-Purpose and Conditional Actions,” and “Iteration Actions” on page 150 for for-
mal discussions of the actions used throughout this chapter.

1. The JSP expert group will do everything possible to ensure that the JSP 2.0 expression lan-
guage is backward-compatible with the JSTL 1.0 expression language.

chapter2-expressionLanguage.fm Page 39 Tuesday, October 8, 2002 11:43 AM

Chapter 2

■

The JSTL Expression Language

40

2.1 Expression Language Overview

The JSTL expression language is a simple language inspired by ECMAScript (also
known as JavaScript) and XPath. The expression language provides:

• Expressions and identifiers

• Arithmetic, logical, and relational operators

• Automatic type coercion

• Access to beans, arrays, lists, and maps

• Access to a set of implicit objects and servlet properties

All of the features listed above are described in this chapter.

Throughout this book, for convenience the expression language is referred to with
the acronym EL and JSTL expressions are referred to as EL expressions.

How the Expression Language Works

Nearly all of the JSTL actions have one or more dynamic attributes that you can
specify with an EL expression;

2

 for example, you can specify a request parameter
with the <c:out> action’s

value

 attribute like this:

<c:out value='${param.emailAddress}'/>

The preceding expression displays the value of a request parameter named

emailAddress

. You can also use EL expressions to perform conditional tests, for
example:

<c:if test='${not empty param.emailAddress}'>...</c:if>

The body of the preceding <c:if> action is evaluated if the

emailAddress

request parameter is not empty, meaning neither

null

 nor an empty string.

If you’re using JSTL with JSP 1.2, you can only use JSTL expressions to specify
values for JSTL action attributes, as illustrated above.

3

 All JSTL actions that have
dynamic attributes interpret EL expressions before they are passed to the action’s tag
handler, so the expression language is applied—and values are typically coerced—
before the tag handler gets them.

2. Dynamic values for JSTL actions from the runtime (RT) library can be specified as JSP
expressions.

3. Starting with JSP 2.0, you will be able to use EL expressions in JSP template text. See
“Expressions” on page 41 for more information.

chapter2-expressionLanguage.fm Page 40 Tuesday, October 8, 2002 11:43 AM

2.2 Expressions

41

How to Use the Expression Language

Attributes of JSTL actions can be specified with EL expressions in one of three ways.
First, an attribute can be specified with a single expression like this:

4

<jstl:action value='${expr}'/>

In the preceding code fragment, the expression

${expr}

 is evaluated and its
value is coerced to the type expected by the

value

 attribute.

Attribute values can also be specified as strings, like this:

<jstl:action value='text'/>

The string specified for the

value

 attribute in the preceding code fragment is
coerced to the type expected by that attribute.

Finally, attribute values can consist of one or more expressions intermixed with
strings, like this:

<jstl:action value='${expr}text${expr}${expr}more text${expr}'/>

In the previous code fragment, each of the four expressions is evaluated in order
from left to right, coerced to a string, and concatenated with the intermixed text. The
resulting string is subsequently coerced to the value expected by the

value

attribute.

2.2 Expressions

EL expressions are invoked with this syntax:

${expr}

, where

expr

 represents an
expression. Expressions can consist of:

• Identifiers—see “Identifiers” on page 43

• Binary and unary operators—see “Operators” on page 44

• String, boolean, integer, and floating-point literals and

null

—see
“Literal Values” on page 63

• Implicit objects, such as

param

,

cookie

, or

header

—see “Implicit
Objects” on page 64

4. The action <jstl:action> represents any JSTL action.

chapter2-expressionLanguage.fm Page 41 Tuesday, October 8, 2002 11:43 AM

Chapter 2

■

The JSTL Expression Language

42

Until JSP 2.0, when the JSTL expression language is scheduled to be incorporated
into the JSP specification, you can only use EL expressions to specify attributes of
JSTL actions; for example, the following code fragment from the Database Actions
chapter specifies an SQL data source as a comma-separated string constructed with
four EL expressions and three commas:

5

<sql:setDataSource dataSource='${url},${driver},${user},${pwd}'

 scope='session'/>

If you upgrade to JSP 2.0, you can have EL expressions in template text; for
example, you will be able to execute an SQL query like this:

6

<%-- This only works with containers that support JSP 2.0 --%>

<sql:query>

 ${customerQuery}

</sql:query>

The

customerQuery

 scoped variable referenced by the EL expression in the
preceding code fragment is a string that specifies a particular query.

Until JSP 2.0, you are restricted to using EL expressions to specify attributes for
JSTL actions; for example, you can still execute the query listed in the preceding
code fragment like this:

<%-- This works with containers that support JSP 1.2 --%>

<sql:query sql='${customerQuery}'/>

Alternatively, you could use the <c:out> action if you had to specify the query in
the body of the action like this:

<%-- This also works with containers that support JSP 1.2 --%>

<sql:query>

 <c:out value='${customerQuery}'/>

</sql:query>

The <c:out> action in the preceding code fragment sends the string stored in the

customerQuery

 scoped variable to the current

JspWriter

, which points to the
<sql:query> action’s body, so the preceding code fragment is functionally equivalent
to the two preceding code fragments.

5. See “Specify Your Data Source with <sql:setDataSource>” on page 369.
6. The JSP 2.0 specification is scheduled to be completed in late 2002.

chapter2-expressionLanguage.fm Page 42 Tuesday, October 8, 2002 11:43 AM

2.3 Identifiers

43

2.3 Identifiers

Identifiers in the expression language represent the names of objects stored in one of
the JSP scopes: page, request, session, or application. Those types of objects are
referred to throughout this book as

scoped variables

.

When the expression language encounters an identifier, it searches for a scoped
variable with that name in the page, request, session, and application scopes, in that
order; for example, the following code fragment stores a string in page scope and
accesses that string with an EL expression:

<% // Create a string

 String s = "Richard Wilson";

 // Store the string in page scope

 pageContext.setAttribute("name", s); %>

<%-- Access the string with an EL expression --%>

<c:out value='${name}'/>

In the preceding code fragment, the expression

${name}

 resolves to a reference
to the string named

name

 that was placed in page scope by the scriptlet. That
reference is specified for the <c:out> action’s

value

 attribute. When the <c:out>
action is confronted with an object reference for its

value

 attribute, it coerces that
object to a string by invoking its

toString

 method, which in this case produces the
value of the string, so the output of the preceding code fragment is

Richard
Wilson

. If the

name

 string had been placed in a different scope, the expression

${name}

 would still resolve to that string, as long as there was not another object
with the same name in another scope that was searched first. For example, if two
objects named

name

 are stored in request and application scopes, the expression

${name}

 would resolve to the object stored in request scope.

7

Identifiers must adhere to the syntax for Java programming language identifiers;
for example, you cannot use characters such as

-

 or

/

 in an identifier.

The two sections that follow—“Accessing JavaBeans Components” and “Accessing
Objects Stored in Arrays, Lists, and Maps” on page 52—illustrate how to use
identifiers to access beans and collections, respectively, that are stored in JSP scopes.

7. Storing beans that have the same name in different scopes is not recommended because the
JSP specification allows one of those beans to override the other.

chapter2-expressionLanguage.fm Page 43 Tuesday, October 8, 2002 11:43 AM

Chapter 2

■

The JSTL Expression Language

44

2.4 Operators

JSTL offers a small set of operators, listed in Table 2.1.

You need to know three things about the operators in Table 2.1. First, you need to
know the operators’ syntax; for example, the + operator is used like this: A + B. That
material is not covered here because you use EL expressions just like you use their
Java equivalents. The second thing you need to know is operator precedence, so you
can deduce that 1 + 3 * 5 is 16 but (1 + 3) * 5 is 20. Operator precedence is
discussed in “Operator Precedence” on page 45. The third thing you need to know
about the operators listed in Table 2.1 is what data types they prefer and how the EL
performs type coercion. The former is briefly discussed here and the latter is
discussed in “Type Coercion” on page 62.

All of the binary arithmetic operations prefer Double values and all of them will
resolve to 0 if either of their operands is null. The operators + - * % will try to
coerce their operands to Long values if they cannot be coerced to Double.

The grouping operators, which are parentheses, can be used to force operator
precedence, as discussed above. The identifier access operators are discussed in “The
. and [] Operators” on page 45, so that discussion is not repeated here.

The relational operators all have textual equivalents; for example, either == or eq
will suffice for the equality operator. Those equivalents are provided for XML
generation. Like binary arithmetic operations, all of the relational operators prefer
Double values but will make do with Long values if the operands cannot be
converted to Double.

Table 2.1 Expression Language Operators

Type Operators

Arithmetic + - * / (div) % (mod)

Grouping ()

Identifier Access . []

Logical && (and) || (or) ! (not) empty

Relational == (eq) != (ne) < (lt) > (gt) <= (le) >= (ge)

Unary -

chapter2-expressionLanguage.fm Page 44 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 45

The logical operators prefer to work with Boolean operands. You can use the
empty operator to see if a value is either null or an empty string (""). That
operator comes in handy when you are interpreting request parameters.

Operator Precedence

The precedence for EL operators is listed below:

• [] .

• ()

• - (unary) not ! empty

• * / div % mod

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or =

The operators are listed above from left to right and top to bottom according to
precedence; for example, the [] operator has precedence over the . operator, and
the modulus (% or mod) operator, which represents a division remainder, has
precedence over the logical operators.

The . and [] Operators

The JSTL expression language provides two operators—. and []—that let you
access scoped variables and their properties. The . operator is similar to the Java .
operator, but instead of invoking methods, you access bean properties; for example, if
you have a Name bean stored in a scoped variable named name and that bean
contains firstName and lastName properties, you can access those properties
like this:

First Name: <c:out value='${name.firstName}'/>

Last Name: <c:out value='${name.lastName}'/>

Assuming that there is a bean named name that has readable properties
firstName and lastName in one of the four JSP scopes—meaning methods
named getFirstName and getLastName—the preceding code fragment will
display those properties.

chapter2-expressionLanguage.fm Page 45 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language46

You can also use the [] operator to access bean properties; for example, the
preceding code fragment could be rewritten like this:

First Name: <c:out value='${name["firstName"]}'/>

Last Name: <c:out value='${name["lastName"]}'/>

The [] operator is a generalization of the . operator, which is why the two
previous code fragments are equivalent, but the [] operator lets you specify a
computed value. “A Closer Look at the [] Operator” on page 56 takes a closer look at
how the [] operator works.

You can also use the[] operator to access objects stored in maps, lists, and arrays;
for example, the following code fragment accesses the first object in an array:

<% String[] array = { "1", "2", "3" };

 pageContext.setAttribute("array", array); %>

<c:out value='${array[0]}'/>

The preceding code fragment creates an array of strings and stores it in page
scope with a scriptlet. Subsequently, the <c:out> action accesses the first item in the
array with ${array[0]}.

The following sections—“Accessing JavaBeans Components” and “Accessing
Objects Stored in Arrays, Lists, and Maps” on page 52—explore in greater detail the
use of the . and [] operators to access bean properties and objects stored in
collections.

Accessing JavaBeans Components

This section shows you how to use the . and [] operators to access bean properties,
including nested beans. Listing 2.1, Listing 2.2, and Listing 2.3 list the implementa-
tion of three beans: Name, Address, and UserProfile.

The preceding beans are simple JavaBean components. The Name bean has two
properties: firstName and lastName. The Address bean has four properties:
streetAddress, city, state, and zip. The UserProfile bean has two
properties: name and address. UserProfile beans contain references to Name
and Address beans.

Figure 2–1 shows a JSP page that creates a user profile and accesses its properties
with EL expressions.

chapter2-expressionLanguage.fm Page 46 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 47

Listing 2.1 WEB-INF/classes/beans/Name.java

package beans;

public class Name {
 private String firstName, lastName;

 // JavaBean accessors for first name
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getFirstName() {
 return firstName;
 }

 // JavaBean accessors for last name
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getLastName() {
 return lastName;
 }
}

Listing 2.2 WEB-INF/classes/beans/Address.java

package beans;

public class Address {
 private String streetAddress, city, state;
 private int zip;

 // JavaBean accessors for street address
 public void setStreetAddress(String streetAddress) {
 this.streetAddress = streetAddress;
 }
 public String getStreetAddress() {
 return streetAddress;
 }

 // JavaBean accessors for city
 public void setCity(String city) {
 this.city = city;
 }

chapter2-expressionLanguage.fm Page 47 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language48

 public String getCity() {
 return city;
 }
// JavaBean accessors for state
 public void setState(String state) {
 this.state = state;
 }
 public String getState() {
 return state;
 }

 // JavaBean accessors for zip
 public void setZip(int zip) {
 this.zip = zip;
 }
 public int getZip() {
 return zip;
 }
}

Listing 2.3 WEB-INF/classes/beans/UserProfile.java

package beans;

public class UserProfile {
 private Name name;
 private Address address;

 // JavaBean accessors for name
 public void setName(Name name) {
 this.name = name;
 }
 public Name getName() {
 return name;
 }

 // JavaBean accessors for address
 public void setAddress(Address address) {
 this.address = address;
 }
 public Address getAddress() {
 return address;
 }
}

Listing 2.2 WEB-INF/classes/beans/Address.java (cont.)

chapter2-expressionLanguage.fm Page 48 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 49

Figure 2–1 Accessing Beans with the Expression Language

The JSP page shown in Figure 2–1 is listed in Listing 2.4.

Listing 2.4 Accessing JavaBean Properties

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Accessing Beans with the EL</title>
 </head>
 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Create a Name bean and store it in page scope --%>
 <jsp:useBean id='name' class='beans.Name'>
 <%-- Set properties with strings --%>
 <jsp:setProperty name='name'
 property='firstName' value='Claude'/>
 <jsp:setProperty name='name'
 property='lastName' value='Loubier'/>
 </jsp:useBean>

<%-- Create an Address bean and store it in page scope --%>
 <jsp:useBean id='address' class='beans.Address'>
 <%-- Set properties with strings --%>
 <jsp:setProperty name='address'
 property='streetAddress'
 value='119342 North Maison'/>
 <jsp:setProperty name='address'
 property='city' value='Buffalo'/>
<jsp:setProperty name='address'
 property='state' value='New York'/>

chapter2-expressionLanguage.fm Page 49 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language50

<jsp:setProperty name='address'
 property='zip' value='14214'/>
 </jsp:useBean>

 <%-- Create a UserProfile bean and store it in
 page scope --%>
 <jsp:useBean id='profile'
 class='beans.UserProfile'>
 <%-- Set properties with the name bean and address
 bean stored in page scope --%>
 <jsp:setProperty name='profile'
 property='name'
 value='<%= (beans.Name)
 pageContext.getAttribute("name") %>'/>

 <jsp:setProperty name='profile'
 property='address'
 value='<%= (beans.Address)
 pageContext.getAttribute("address") %>'/>
 </jsp:useBean>

 <%-- Show profile information --%>

 Profile for
 <%-- Access the name bean's firstName property directly,
 without specifying scope --%>
 <c:out value='${name["firstName"]}'/>

 <%-- Access the name bean's lastName property through the
 profile bean by explicitly specifying scope --%>
 <c:out value='${pageScope.profile.name.lastName}'/>:
 <p>
 <table>
 <tr>
 <%-- Access the UserProfile bean's properties without
 explicitly specifying scope --%>
 <td>First Name:</td>
 <td><c:out value='${profile["name"].firstName}'/></td>
 </tr><tr>
 <td>Last Name:
 <td><c:out value='${profile.name["lastName"]}'/></td>
 </tr><tr>
 <td>Street Address:
 <td><c:out value='${profile.address.streetAddress}'/>
 </td>

Listing 2.4 Accessing JavaBean Properties (cont.)

chapter2-expressionLanguage.fm Page 50 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 51

The preceding JSP page creates three beans: a name bean, an address bean, and a
user profile bean; the name and address beans are used to create the user profile. All
three beans are stored in page scope.

The JSP page listed in Listing 2.4 uses EL expressions to access properties of the
user profile. First, the JSP page accesses the name bean’s firstName property with
the expression ${name["firstName"]}, which is equivalent to this expression:
${name.firstName}.

Next, the JSP page accesses the name bean’s lastName property with this
expression: ${pageScope.profile.name.lastName}. The expression starts
with the pageScope identifier, which is an implicit object that provides access to all
page-scoped attributes.8 The user profile bean—named profile—that exists in
page scope is accessed by name with an identifier, and its enclosed name bean is also
accessed with an identifier. Finally, the lastName property of that name bean is
accessed with another identifier.

The rest of the JSP page accesses the profile bean’s properties by using the .
and [] operators. Remember that the . and [] operators are interchangeable when
accessing bean properties, so the expression ${profile["name"].
firstName} is equivalent to ${profile.name.firstName} and
${profile.name["lastName"]} i s e q u i v a l e n t t o
${profile.name.lastName}.

Now that we’ve seen how to access bean properties, let’s see how to access objects
stored in arrays, lists, and maps.

 </tr><tr>
 <td>City:
 <td><c:out value='${profile.address.city}'/></td>
 </tr><tr>
 <td>State:
 <td><c:out value='${profile.address.state}'/></td>
 </tr><tr>
 <td>Zip Code:
 <td><c:out value='${profile.address.zip}'/></td>
 </tr>
 </table>
 </body>
</html>

8. See “Implicit Objects” on page 64 for more information about the JSTL implicit objects.

Listing 2.4 Accessing JavaBean Properties (cont.)

chapter2-expressionLanguage.fm Page 51 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language52

Accessing Objects Stored in Arrays, Lists,
and Maps

In “Accessing JavaBeans Components” on page 46 we discussed a Web application
that created user profiles and accessed their properties, all in a single JSP page. For a
change of pace, this section discusses a Web application that creates user profiles in a
servlet and accesses their properties in a JSP page.9 Figure 2–2 shows the Web appli-
cation’s JSP page.

Figure 2–2 Accessing Arrays, Lists, and Maps with the JSTL
Expression Language

The JSP page shown in Figure 2–2 is accessed indirectly with the URL
/dataCreator. That URL invokes a servlet that creates user profiles and forwards
to the JSP page. Listing 2.5 lists the application’s deployment descriptor, which maps
the /dataCreator URL to the dataCreator servlet.

The dataCreator servlet is listed in Listing 2.6.

The preceding servlet creates two user profiles and stores those profiles in an
array, a map, and a list. Subsequently, the servlet stores the array, map, and list in
request scope and forwards to a JSP page named showData.jsp. That JSP page is
shown in Figure 2–2 and listed in Listing 2.7.

As the preceding JSP page illustrates, you access objects in an array with the []
operator, just as you would in Java by specifying a 0-based index into the array; for
example, the expression ${profileArray[0].name.firstName} accesses
the first name of the first profile stored in the profileArray.

9. Creating application data in a servlet separates the model from its presentation, which
results in more flexible and extensible software.

chapter2-expressionLanguage.fm Page 52 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 53

Listing 2.5 WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
 <servlet>
 <servlet-name>dataCreator</servlet-name>
 <servlet-class>DataCreatorServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>dataCreator</servlet-name>
 <url-pattern>/dataCreator</url-pattern>
 </servlet-mapping>
</web-app>

Listing 2.6 WEB-INF/classes/DataCreatorServlet.java

import java.io.IOException;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import beans.*;

public class DataCreatorServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 // Create an array, map, and list
 UserProfile[] profileArray = createProfiles();
 HashMap profileMap = new HashMap();
 LinkedList profileList = new LinkedList();

 // Populate the list and map
 for(int i=0; i < profileArray.length; ++i) {
 UserProfile profile = profileArray[i];

profileList.add(profile);

 String firstName = profile.getName().getFirstName(),
 lastName = profile.getName().getLastName(),
 key = firstName + " " + lastName;

chapter2-expressionLanguage.fm Page 53 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language54

You access objects stored in a list with the same syntax used for accessing objects
in arrays; for example, in the preceding JSP page, the expression
${profileList[1].name.firstName} accesses the first name of the second
profile stored in the profileList.

The Java class libraries offer quite a few different types of maps, including hash
tables, hash maps, attributes, and tree maps. All of those data structures store
key/value pairs of objects. To access those objects using the EL, you specify a key,
enclosed in double quotes, with the [] operator; for example, the JSP page listed in
Listing 2.7 accesses Cindy Smith’s last name with this expression:
${profileMap["Cindy Smith"].name.lastName}.

As you can tell from the JSP pages listed in Listing 2.4 on page 49 and Listing 2.7,
accessing nested bean properties can be rather verbose, although it’s much more
succinct than accessing properties with a JSP expression. You can reduce that
verbosity by creating page-scoped variables that directly reference beans stored in

 profileMap.put(key, profile);
 }

 // Store the array, map, and list in request scope
 request.setAttribute("profileArray", profileArray);
 request.setAttribute("profileMap", profileMap);
 request.setAttribute("profileList", profileList);

 // Forward the request and response to /showData.jsp
 RequestDispatcher rd =
 getServletContext().getRequestDispatcher("/showData.jsp");

 rd.forward(request, response);
 }
 private UserProfile[] createProfiles() {
 // Create an array of user profiles
 UserProfile[] userProfiles = {
 new UserProfile(new Name("James", "Wilson"),
 new Address("102 Oak St.", "Buffalo",
 "New York", 14214)),
 new UserProfile(new Name("Cindy", "Smith"),
 new Address("29419 Genessee St.",
 "Buffalo", "New York", 14214))
 };
 return userProfiles;
 }
}

Listing 2.6 WEB-INF/classes/DataCreatorServlet.java (cont.)

chapter2-expressionLanguage.fm Page 54 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 55

Listing 2.7 showData.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Accessing Arrays, Lists, and Maps with the EL</title>
 </head>
 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Access the first and last names stored in the two
 user profiles through the array, list, and map --%>
 Profiles are in request scope for
 <c:out value='${profileArray[0].name.firstName}'/>
 <c:out value='${profileArray[0].name.lastName}'/>
 and
 <c:out value='${profileList[1].name.firstName}'/>
 <c:out value='${profileMap["Cindy Smith"].name.lastName}'/>
 <p>

 <%-- Store the two profiles in page-scoped variables --%>
 <c:set var='jamesProfile'
 value='${profileMap["James Wilson"]}'/>

 <c:set var='cindyProfile'
 value='${profileList[1]}'/>

 <%-- Show address information, through the page-scoped
 variables --%>
 <c:out value='${jamesProfile.name.firstName}'/> lives at:
 <c:out value='${jamesProfile.address.streetAddress}'/>
 <c:out value='${jamesProfile.address.city}'/>,
 <c:out value='${jamesProfile.address.state}'/>
 <c:out value='${jamesProfile.address.zip}'/>

 <p>

 <c:out value='${cindyProfile.name.firstName}'/> lives at:
 <c:out value='${cindyProfile.address.streetAddress}'/>
 <c:out value='${cindyProfile.address.city}'/>,
 <c:out value='${cindyProfile.address.state}'/>
 <c:out value='${cindyProfile.address.zip}'/>

 </body>
</html>

chapter2-expressionLanguage.fm Page 55 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language56

data structures. For example, the JSP page listed in Listing 2.7 stores James Wilson’s
user profile in a page-scoped variable named jamesProfile. That JSP page also
creates a page-scoped variable named cindyProfile that directly references the
user profile for Cindy Smith. Those page-scoped variables make it easier to access
the user profiles; for example, instead of accessing Cindy’s first name through the
profile map like this: ${profileMap["Cindy Smith"].name.firstName},
you can access it like this: ${cindyProfile.name.firstName}.

In this and the preceding section, we discussed how to use the [] operator to
access bean properties and beans stored in arrays, lists, and maps. In the next section,
we take a closer look at how the [] operator works and why you might prefer that
operator to the . operator when accessing beans.

A Closer Look at the [] Operator

As discussed in “Accessing JavaBeans Components” on page 46 and “Accessing
Objects Stored in Arrays, Lists, and Maps” on page 52, you use the [] operator with
this syntax: ${identifier[subexpression]}. Here’s how expressions with
that syntax are evaluated:

1. Evaluate the identifier and the subexpression; if either
resolves to null, the expression is null.

2. If the identifier is a bean: The subexpression is coerced to a
String value and that string is regarded as a name of one of the
bean’s properties. The expression resolves to the value of that prop-
erty; for example, the expression ${name.["lastName"]} trans-
lates into the value returned by name.getLastName().

3. If the identifier is an array: The subexpression is coerced to an
int value—which we’ll call subexpression-int—and the
expression resolves to identifier[subexpression-int]. For
example, for an array named colors, colors[3] represents the
fourth object in the array. Because the subexpression is coerced to an
int, you can also access that color like this: colors["3"]; in that
case, JSTL coerces "3" into 3. That feature may seem like a very
small contribution to JSTL, but because request parameters are passed
as strings, it can be quite handy.

4. If the identifier is a list: The subexpression is also coerced to an
int—which we will also call subexpression-int—and the
expression resolves to the value returned from
identifier.get(subexpression-int), for example:
colorList[3] and colorList["3"] both resolve to the fourth
element in the list.

chapter2-expressionLanguage.fm Page 56 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 57

5. If the identifier is a map: The subexpression is regarded as one of
the map’s keys. That expression is not coerced to a value because map
keys can be any type of object. The expression evaluates to
identifier.get(subexpression), for example,
colorMap[Red] and colorMap["Red"]. The former expression
is valid only if a scoped variable named Red exists in one of the four
JSP scopes and was specified as a key for the map named colorMap.

Table 2.2 lists the methods that the EL invokes on your behalf.

JSTL developers rely heavily on maps because the EL provides 11 indispensable
implicit objects, of which 10 are maps. Everything, from request parameters to
cookies, is accessed through a map. Because of this reliance on maps, you need to
understand the meaning of the last row in Table 2.2. You access a map’s values
through its keys, which you can specify with the [] operator, for example, in Table
2.2, ${colorMap[red]} and ${colorMap["red"]}. The former specifies an
identifier for the key, whereas the latter specifies a string. For the identifier, the
PageContext.findAttribute method searches all four JSP scopes for a
scoped variable with the name that you specify, in this case, red. On the other hand,
if you specify a string, it’s passed directly to the map’s get method.

The [] Operator’s Special Ability

Although it may not be obvious from our discussion so far, the [] operator has a
special ability that its counterpart, the . operator, does not have—it can operate on
an expression, whereas the . operator can only operate on an identifier. For example,
you can do this: ${colorMap[param.selectedColor]}, which uses the

Table 2.2 Methods That the EL Invokes for You

Identifier Type Example Use Method Invoked

JavaBean
component

${colorBean.red}
${colorBean["red"]}

colorBean.getRed()

Array ${colorArray[2]}
${colorArray["2"]}

Array.get(colorArray, 2)

List colorList[2]
colorList["2"]

colorList.get(2)

Map colorMap[red]

colorMap["red"]

colorMap.get(pageContext.
findAttribute("red"))

colorMap.get("red")

chapter2-expressionLanguage.fm Page 57 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language58

string value of the selectedColor request parameter as a key for a map named
colorMap.10 That’s something that you can’t do with the . operator.

Figure 2–3 shows a Web application that uses the [] operator’s special ability to
show request header values.

Figure 2–3 Illustrating an Advantage of the [] Operator

The top picture in Figure 2–3 shows a JSP page that lets you select a request
header. After you activate the Show First Header Value button, the JSP page
shown in the bottom picture shows the first value for the request header that was
selected.

The JSP page shown in the top picture in Figure 2–3 is listed in Listing 2.8.

The preceding JSP page uses the header JSTL implicit object to iterate over
request headers. The names of those request headers are used to create an HTML
select element named headerName. The select element resides in a form
whose action is show_first_header_value.jsp, so that the JSP page is
loaded when you activate the Show First Header Value button. That JSP
page is listed in Listing 2.9.

The preceding JSP page uses two JSTL implicit objects: param, which is a map of
request parameters, and header, which is a map of request headers. The
subexpression param.headerName accesses the headerName request
parameter’s value, and the expression ${header[param.headerName]}
resolves to the first value for that request header.

10. The param implicit object lets you access request parameters; see “Implicit Objects” on
page 64 for more information.

chapter2-expressionLanguage.fm Page 58 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 59

Listing 2.8 Selecting a Request Header

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the EL Generalized Access Operator</title>
 </head>
 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <form action='show_first_header_value.jsp'>
 Show the first value for this request header:

 <select name='headerName'>
 <c:forEach var='hdr' items='${header}'>
 <option value='<c:out value="${hdr.key}"/>'>
 <c:out value='${hdr.key}'/>
 </option>
 </c:forEach>
 </select>

 <p><input type='submit' value='Show First Header Value'/>
 </form>
 </body>
</html>

Listing 2.9 Using the [] Operator with a Request Parameter

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the EL Generalized Access Operator</title>
 </head>
 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 The first value for the header named
 <c:out value='${param.headerName}'/> is <i>
 <c:out value='${header[param.headerName]}'/></i>
 </body>
</html>

chapter2-expressionLanguage.fm Page 59 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language60

The empty Operator
Testing for the existence of request parameters can be tricky because they evaluate to
null if they don’t exist but they evaluate to an empty string ("") if their value was
not specified. Most of the time, when you check for the existence of request parame-
ters, you don’t have to distinguish the former from the latter; you just want to know
whether a value was specified. For that special task, you can use the empty operator,
which tests whether an identifier is null or doesn’t exist, as illustrated by the Web
application shown in Figure 2–4.

Figure 2–4 Using the empty Operator to Test for the Existence of Request Parameters

The Web application shown in Figure 2–4 consists of two JSP pages, one that lets
you enter a name and another that checks for a corresponding request parameter. As
illustrated by the top two pictures in Figure 2–4, if you don’t enter anything in the
name field, the latter JSP page prints an error message and includes the referring
JSP page. The bottom two pictures illustrate successful access to the name request
parameter. The JSP page with the name input field is listed in Listing 2.10.

The preceding JSP page includes form.jsp, which is listed in Listing 2.11.
The action for the form in the preceding JSP page is check_header.jsp,

which is listed in Listing 2.12.

chapter2-expressionLanguage.fm Page 60 Tuesday, October 8, 2002 11:43 AM

2.4 Operators 61

Listing 2.10 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the Empty Operator</title>
 </head>
 <body>
 <jsp:include page='form.jsp'/>
 </body>
</html>

Listing 2.11 form.jsp

<form action='check_header.jsp'>
 Name: <input type='text' name='name'/>
 <p><input type='submit' value='Register'/>
</form>

Listing 2.12 check_header.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the Empty Operator</title>
 </head>
 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <c:choose>
 <c:when test='${not empty param.name}'>
 Hello <c:out value='${param.name}'/>.
 </c:when>

 <c:otherwise>

 Please enter your name:<p>

 <jsp:include page='form.jsp'/>
 </c:otherwise>
 </c:choose>
 </body>
</html>

chapter2-expressionLanguage.fm Page 61 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language62

The preceding JSP page combines the not and empty operators to see whether
the name request parameter was specified; if so it displays a personalized greeting;
otherwise, it prints an error message and includes the referring JSP page.

2.5 Type Coercion

The EL defines a comprehensive set of coercion rules for various data types. Those
rules are summarized in Table 2.3.

In the preceding table, types in the left column are converted into the types
specified in the table’s header. For example, if you specify an action attribute’s value
as a string and that attribute’s type is Character, the EL will convert that string to
the first character in the string by invoking the method x.charAt(0), where x
represents the string. Likewise, strings are coerced to Boolean values with the
static Boolean.valueOf(x), where x represents the string.

Table 2.3 also shows how null values and empty strings are converted into
booleans, characters, numbers, and strings. JSTL actions typically avoid throwing
exceptions because the coercions shown in Table 2.3 are applied to their attribute
values before they receive them.

Table 2.3 JSTL Type Coerciona

a. x represents the object being converted, N represents a Number subclass, and "" represents an
empty string

convert to —> Boolean Character Number String

Boolean ——— ERROR ERROR x.toString()

Character ERROR ——— (short)x x.toString()

Number ERROR (char)x ——— x.toString()

String
(not empty)

Boolean.
valueOf(x)

x.charAt(0) N.valueOf(x) ———

Other ERROR ERROR ERROR x.toString()

null Boolean.false (char)0 0 ""

"" Boolean.false (char)0 0 ""

chapter2-expressionLanguage.fm Page 62 Tuesday, October 8, 2002 11:43 AM

2.6 Literal Values 63

If you specify a null value or an empty string in an expression, the EL’s coercion
rules ensure that sensible default values are used instead; for example:

<c:out value='${count + param.increment}’/>

In the preceding code fragment, the expression specified for the value attribute
coerces a string (a request parameter value named increment) to an integer which
is added to the count scoped variable and sent to the current JspWriter by the
<c:out> action.

If the increment request parameter does not exist, param.increment
resolves to null. If it exists, but no value was specified for it—perhaps it represents
an HTML input element in a form that was left blank—it resolves to an empty
string. Either way, as you can see from Table 2.3, the EL coerces the string value of
param.increment to 0, and the expression ${count + param.increment}
evaluates to the value of the count scoped variable.

In general, JSTL actions avoid throwing exceptions, instead favoring sensible
default values like 0 for null and empty strings.

Another thing you don’t have to worry about is throwing a null pointer exception
if you try to access an identifier that is null; for example, the expression
${userProfile.address.city} resolves to null if userProfile,
address or city is null because the EL coerces that value into one of the
appropriate values in Table 2.3.

2.6 Literal Values

The JSTL expression language defines boolean, integer, floating-point, string, and
null literals, as shown in Table 2.4.

Table 2.4 JSTL Literal Values

Type Examples

Boolean Boolean.true Boolean.false

Integer 143 +3 -4 2435

Double 1.43 -2.35 2.34E9

String "string in double quotes"
'a string in single quotes'

Null null

chapter2-expressionLanguage.fm Page 63 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language64

2.7 Implicit Objects

Arguably, the most useful feature of the JSTL expression language is the implicit
objects it defines for accessing all kinds of application data. Those implicit objects are
listed in Table 2.5.

Table 2.5 JSTL Implicit Objects

Implicit Object Type Keya

a. All keys are strings.

Value

cookie Map Cookie name Cookie

header Map Request header
name

Request header value

headerValues Map Request header
name

String[] of request
header values

initParam Map Initialization
parameter name

Initialization
parameter value

param Map Request parameter
name

Request parameter
value

paramValues Map Request parameter
name

String[] of request
parameter values

pageContext PageContext N/A N/A

pageScope Map Page-scoped
attribute name

Page-scoped attribute
value

requestScope Map Request-scoped
attribute name

Request-scoped
attribute value

sessionScope Map Session-scoped
attribute name

Session-scoped
attribute value

applicationScope Map Application-scoped
attribute name

Application-scoped
attribute value

chapter2-expressionLanguage.fm Page 64 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 65

There are three types of JSTL implicit objects:

• Maps for a single set of values, such as request headers and cookies:

 param, paramValues, header, headerValues, initParam,
cookie

• Maps for scoped variables in a particular scope:

 pageScope, requestScope, sessionScope,
applicationScope

• The page context: pageContext

The rest of this section examines each of the JSTL implicit objects in the order
listed above; the first category begins at “Accessing Request Parameters” below, the
second category begins at “Accessing Scoped Attributes” on page 78, and use of the
pageContext implicit object begins at “Accessing JSP Page and Servlet
Properties” on page 80.

Accessing Request Parameters

Request parameters are the lifeblood of most Web applications, passing information
from one Web component to another. That crucial role makes the param and
paramValues implicit objects, both of which access request parameters, the most
heavily used JSTL implicit objects.

The param and paramValues implicit objects are both maps of request
parameters. For both the param and paramValues maps, keys are request
parameter names, but the values corresponding to those keys are different for
param and paramValues; param stores the first value specified for a request
parameter, whereas paramValues stores a String array that contains all the
values specified for a request parameter.11

Most often, the overriding factor that determines whether you use param or
paramValue is the type of HTML element a request parameter represents; for
example, Figure 2–5 shows a Web application that uses both param and
paramValues to display request parameters defined by a form.

11. Two of the implicit objects listed in Table 2.5 have plural names: paramValues and
headerValues; both are maps that associate keys with String arrays. The other
implicit objects associate keys with scalar values.

chapter2-expressionLanguage.fm Page 65 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language66

Figure 2–5 Accessing Request Parameters with the param and paramValues
Implicit Objects

The Web application shown in Figure 2–5 consists of two JSP pages, one that
contains a form (top picture) and another that interprets the form’s data (bottom
picture). Listing 2.13 lists the JSP page that contains the form.

Listing 2.13 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>EL Implicit Objects: Request Parameters</title>
 </head>

 <body>
 <form action='param.jsp'>

chapter2-expressionLanguage.fm Page 66 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 67

The preceding JSP page is unremarkable; it creates an HTML form with two
textfields and a select element that allows multiple selection. That form’s action,
param.jsp, is the focus of our discussion. It is listed in Listing 2.14.

 <table>
 <tr>
 <td>First Name:</td>
 <td><input type='text' name='firstName'/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><input type='text' name='lastName'/></td>
 </tr>
 <tr>
 <td>
 Select languages that you have worked with:
 </td>
 <td>
 <select name='languages' size='7'
 multiple='true'>
 <option value='Ada'>Ada</option>
 <option value='C'>C</option>
 <option value='C++'>C++</option>
 <option value='Cobol'>Cobol</option>
 <option value='Eiffel'>Eiffel</option>
 <option value='Objective-C'>
 Objective-C
 </option>
 <option value='Java'>Java</option>
 </select>
 </td>
 </tr>
 </table>
 <p><input type='submit' value='Finish Survey'/>
 </form>
 </body>
</html>

Listing 2.14 param.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Accessing Request Parameters</title>

Listing 2.13 index.jsp (cont.)

chapter2-expressionLanguage.fm Page 67 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language68

 </head>
<body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 Skillset for:

 <%-- Access the lastName and firstName request parameters
 parameters by name --%>
 <c:out value='${param.lastName}'/>,
 <c:out value='${param.firstName}'/>

 <%-- Show all request parameters and their values --%>
 <p>
 All Request Parameters:
 <p>

 <%-- For every String[] item of paramValues... --%>
 <c:forEach var='parameter' items='${paramValues}'>

 <%-- Show the key, which is the request parameter
 name --%>
 <c:out value='${parameter.key}'/>:

 <%-- Iterate over the values -- a String[] --
 associated with this request parameter --%>
 <c:forEach var='value' items='${parameter.value}'>
 <%-- Show the String value --%>
 <c:out value='${value}'/>
 </c:forEach>

 </c:forEach>

 <%-- Show values for the languages request parameter --%>

 Languages:
 <p>

 <%-- paramValues.languages is a String [] of values for the
 languages request parameter --%>
 <c:forEach var='language' items='${paramValues.languages}'>
 <c:out value='${language}'/>
 </c:forEach>

 <p>

Listing 2.14 param.jsp (cont.)

chapter2-expressionLanguage.fm Page 68 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 69

The preceding JSP page does four things of interest. First, it displays the
lastName and firstName request parameters, using the param implicit object.
Since we know that those request parameters represent textfields, we know that they
are a single value, so the param implicit object fits the bill.

Second, the JSP page displays all of the request parameters and their values, using
the paramValues implicit object and the <c:forEach> action.12 We use the
paramValues implicit object for this task since we know that the HTML select
element supports multiple selection and so can produce multiple request parameter
values of the same name.

Because the paramValues implicit object is a map, you can access its values
directly if you know the keys, meaning the request parameter names. For example,
the third point of interest in the preceding JSP page iterates over the array of strings
representing selected languages—paramValues.languages. The selected
languages are accessed through the paramValues map by use of the key
languages.

To emphasize the difference between param and paramValues, the fourth
point of interest is the value of the param.languages request parameter, which
contains only the first language selected in the HTML select element. A <c:out>
action uses the EL expression ${'${'} to display the characters ${ and another
EL expression—${param.languages}—to display the first value for the
languages request parameter.

Accessing Request Headers

You can access request headers just as you can access request parameters, except that
you use the header and headerValues implicit objects instead of param and
paramValues.

Like the param and paramValues implicit objects, the header and
headerValues implicit objects are maps, but their keys are request header names.

 <%-- Show the value of the param.languages map entry,
 which is the first value for the languages
 request parameter --%>
 <c:out value="${'${'}param.languages} = ${param.languages}"/>
 </body>
</html>

12. See “The <c:forEach> Action” on page 154 for more information about <c:forEach>.

Listing 2.14 param.jsp (cont.)

chapter2-expressionLanguage.fm Page 69 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language70

The header map’s values are the first value specified for a particular request header,
whereas the headerValues map contains arrays of all the values specified for that
request header.

Figure 2–6 shows a JSP page that uses the header implicit object to display all of
the request headers and the first value defined for each of them.

Figure 2–6 Accessing Request Headers with the header Implicit Object

The JSP page shown in Figure 2–6 is listed in Listing 2.15.

The keys stored in the header map are request header names and the
corresponding values are strings representing request header values. You can also
use the headerValues implicit object to iterate over request headers, like this:

<%-- Loop over the JSTL headerValues implicit object,
 which is a map --%>
<c:forEach items='${headerValues}' var='hv'>

 <%-- Display the key of the current item; that item
 is a Map.Entry --%>
 Header name: <c:out value='${hv.key}'/>

 <%-- The value of the current item, which is
 accessed with the value method from
 Map.Entry, is an array of strings

chapter2-expressionLanguage.fm Page 70 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 71

 representing request header values, so

 we iterate over that array of strings --%>

 <c:forEach items='${hv.value}' var='value'>

 Header Value: <c:out value='${value}'/>

 </c:forEach>

</c:forEach>

Unlike request parameters, request headers are rarely duplicated; instead, if
multiple strings are specified for a single request header, browsers typically
concatenate those strings separated by semicolons. Because of the sparsity of
duplicated request headers, the header implicit object is usually preferred over
headerValues.

Listing 2.15 Accessing Requests Headers with the header Implicit
Object

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Request Headers</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 Request Headers:
 <p>

 <%-- Loop over the JSTL header implicit object, which is a
 map --%>
 <c:forEach items='${header}' var='h'>

 <%-- Display the key of the current item, which
 represents the request header name and the
 current item's value, which represents the
 header value --%>
 Header Name: <c:out value='${h.key}'/>
 Header Value: <c:out value='${h.value}'/>

 </c:forEach>
 </body>
</html>

chapter2-expressionLanguage.fm Page 71 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language72

Accessing Context Initialization Parameters
You can have only one value per context initialization parameter, so there’s only one
JSTL implicit object for accessing initialization parameters: initParam. Like the
implicit objects for request parameters and headers, the initParam implicit object
is a map. The map keys are context initialization parameter names and the corre-
sponding values are the context initialization parameter values.

Figure 2–7 shows a JSP page that iterates over all the context initialization
parameters and prints their values. That JSP page also accesses the parameters directly.

Figure 2–7 Accessing Initialization Parameters with the initParam Implicit Object

Before we discuss the listing for the JSP page shown in Figure 2–7, let’s look at the
deployment descriptor, listed in Listing 2.16, which defines two context initialization
parameters: com.acme.invaders.difficulty and com.acme.invaders.
gameLevels.

The context initialization parameters defined above are accessed by the JSP page
shown in Figure 2–7 and listed in Listing 2.17.

The preceding JSP page uses the <c:forEach> action to iterate over the key/value
pairs stored in the initParam map. The body of that action displays each key/value
pair.

In the example discussed in “Accessing Request Parameters” on page 65,
we accessed a request parameter by name like this: ${paramValues.
languages}. In the preceding JSP page, can we access an initialization
parameter in a similar fashion with the initParam implicit object? The answer is
yes, but in this case we have a problem because the initialization parameter name
has . characters, which have special meaning to the expression language. If we try
to access the com.acme.invaders.difficulty parameter like this:
${initParam.com.acme.invaders.difficulty}, the expression

chapter2-expressionLanguage.fm Page 72 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 73

Listing 2.16 WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
 <!-- Application-wide default values for the Acme Invaders
 online game -->
 <context-param>
 <param-name>com.acme.invaders.difficulty</param-name>
 <param-value>18</param-value>
 </context-param>

 <context-param>
 <param-name>com.acme.invaders.gameLevels</param-name>
 <param-value>33</param-value>
 </context-param>

 <welcome-file-list>
 <welcome-file>
 index.jsp
 </welcome-file>
 </welcome-file-list>
</web-app>

Listing 2.17 Accessing Context Initialization Parameters

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Context Initialization Parameters</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 Iterating Over Context Initialization Parameters:
 <p>

<%-- Loop over the JSTL initParam implicit object,
 which is a map --%>
<c:forEach items='${initParam}' var='parameter'>

chapter2-expressionLanguage.fm Page 73 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language74

language will interpret that expression as an object’s property named
difficulty, which is not the interpretation we want.

The solution to this difficulty is to use the [] operator, which evaluates an
expression and turns it into an identifier; for example, you can access the
com.acme.invaders.difficulty initialization parameter like this:
${initParam["com.acme.invaders.difficulty"]}. See “A Closer
Look at the [] Operator” on page 56 for more information about the [] operator.

Accessing Cookies

It’s not uncommon to read cookies in JSP pages, especially cookies that store
user-interface-related preferences. The JSTL expression language lets you access
cookies with the cookie implicit object. Like all JSTL implicit objects, the cookie
implicit object is a map.13 That map’s keys represent cookie names, and the values
are the cookies themselves.

Figure 2–8 shows a JSP page that reads cookie values, using the cookie implicit
object.

 <%-- Display the key of the current item, which
 corresponds to the name of the init param --%>
 Name: <c:out value='${parameter.key}'/>

 <%-- Display the value of the current item, which
 corresponds to the value of the init param --%>
 Value: <c:out value='${parameter.value}'/>

 </c:forEach>

 Accessing Context Initialization Parameters Directly:
 <p>

 Difficulty:
 <c:out value='${initParam["com.acme.invaders.difficulty"]}'/>

 Game Levels:
 <c:out value='${initParam["com.acme.invaders.gameLevels"]}'/>

 </body>
</html>

13. The sole exception is the pageContext implicit object, which is not a map.

Listing 2.17 Accessing Context Initialization Parameters (cont.)

chapter2-expressionLanguage.fm Page 74 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 75

Figure 2–8 Accessing Cookies with the cookie Implicit Object

The JSP page shown in Figure 2–8 uses the cookie implicit object to iterate over
all cookies and also accesses Cookie objects and their values directly. That JSP page
is invoked with the URL /cookieCreator, which is mapped to a servlet that
creates cookies. That servlet, after creating cookies, forwards to the JSP page shown
in Figure 2–8. Listing 2.18 lists the Web application’s deployment descriptor, which
maps the URL /cookieCreator to the CookieCreatorServlet class.

Listing 2.18 WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.3.dtd">

<web-app>
 <servlet>
 <servlet-name>cookieCreator</servlet-name>
 <servlet-class>CookieCreatorServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>cookieCreator</servlet-name>
 <url-pattern>/cookieCreator</url-pattern>
 </servlet-mapping>
</web-app>

chapter2-expressionLanguage.fm Page 75 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language76

The CookieCreatorServlet class is listed in Listing 2.19.

The cookie creator servlet creates three cookies and adds them to the response
before forwarding to cookies.jsp. That JSP page is listed in Listing 2.20.

Listing 2.19 WEB-INF/classes/CookieCreatorServlet.java

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieCreatorServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 String[] cookieNames = {"acme.userName", "acme.password",
 "acme.lastAccessDate"};
 String[] cookieValues = {"ronw", "iuo82wer", "2002-03-08"};

 // Create cookies and add them to the HTTP response
 for(int i=0; i < cookieNames.length; ++i) {
 Cookie cookie = new Cookie(cookieNames[i],
 cookieValues[i]);
 response.addCookie(cookie);
 }

 // Forward the request and response to cookies.jsp
 RequestDispatcher rd =
 request.getRequestDispatcher("cookies.jsp");
 rd.forward(request, response);
 }
}

Listing 2.20 cookies.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Cookies</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <p>
 Iterating over Cookies:
 <p>

chapter2-expressionLanguage.fm Page 76 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 77

The preceding JSP page uses the <c:forEach> action to iterate over the entries
contained in the cookie map. For each entry, the body of the <c:forEach> action
displays the cookie’s name and value. Notice that cookie values are accessed with the

 <%-- Loop over the JSTL cookie implicit object, which is a
 map. If there are no cookies, the <c:forEach> action
 does nothing. --%>
 <c:forEach items='${cookie}' var='mapEntry'>

 <%-- The mapEntry's key references the cookie name --%>
 Cookie Name: <c:out value='${mapEntry.key}'/>

 <%-- The mapEntry's value references the Cookie
 object, so we show the cookie's value --%>
 Cookie Value:
 <c:out value='${mapEntry.value.value}'/>

 </c:forEach>

 <p>
 Accessing Cookies Directly:
 <p>

 Cookie Objects:

 User Name: <c:out value='${cookie["acme.userName"]}'/>

 Password: <c:out value='${cookie["acme.password"]}'/>

 Cookie Values:

 User Name:
 <c:out value='${cookie["acme.userName"].value}'/>

 Password:
 <c:out value='${cookie["acme.password"].value}'/>

 </body>
</html>

Listing 2.20 cookies.jsp (cont.)

chapter2-expressionLanguage.fm Page 77 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language78

expression ${mapEntry.value.value}. The map entry’s value is a cookie,
which also has a value property.

The rest of the JSP page accesses cookie objects and their values directly. Because
the cookie names contain . characters, they cannot be used as identifiers, so the
preceding JSP page uses the [] operator to directly access cookies and their values.

Accessing Scoped Attributes

Since we started discussing JSTL implicit objects at “Implicit Objects” on page 64,
we’ve seen how to access four types of objects:

• Request parameters

• Request headers

• Context initialization parameters

• Cookies

In addition to the specific types listed above, you can access any type of object
that’s stored in one of the four JSP scopes: page, request, session, or application. The
expression language provides one implicit object for each scope:

• pageScope

• requestScope

• sessionScope

• applicationScope

Remember from our discussion in “Identifiers” on page 43 that identifiers refer to
scoped variables; for example, the expression ${name} refers to a scoped variable
named name. That scoped variable can reside in page, request, session, or
application scope. The expression language searches those scopes, in that order, for
scoped variables.

The implicit objects listed above let you explicitly access variables stored in a
specific scope; for example, if you know that the name scoped variable resides in
session scope, the expression ${sessionScope.name} is equivalent to
${name}, but the latter unnecessarily searches the page and request scopes before
finding the name scoped variable in session scope. Because of that unnecessary
searching, ${sessionScope.name} should be faster than ${name}.

The scope implicit objects listed above—pageScope, requestScope,
sessionScope, and applicationScope—are also handy if you need to iterate
over attributes stored in a particular scope; for example, you might look for a

chapter2-expressionLanguage.fm Page 78 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 79

timestamp attribute in session scope. The scope implicit objects give you access to a
map of attributes for a particular scope.

Figure 2–9 shows a Web application that displays all of the attributes from the
scope of your choosing. The top picture in Figure 2–9 shows a JSP page that lets you
select a scope, and the bottom picture shows a JSP page that lists the attributes for
the selected scope.

Figure 2–9 Accessing Scoped Variables for a Specific Scope with the
pageScope Implicit Object

chapter2-expressionLanguage.fm Page 79 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language80

The JSP page shown in the top picture in Figure 2–9 is listed in Listing 2.21.

The preceding JSP page creates an HTML form that lets you select a scope. That
form’s action is show_scope_attributes.jsp, which is listed in Listing 2.22.

The preceding JSP page is passed a request parameter named scope whose value
is "page", "request", "session", or "application". The JSP page creates
a page-scoped variable, also named scope, and sets it to the appropriate JSTL
implicit object—pageScope, requestScope, sessionScope, or
applicationScope—based on the scope request parameter. Then the JSP page
loops over that implicit object and displays each scoped variable’s name and value.

Accessing JSP Page and Servlet Properties

Now that we’ve seen how to access request parameters and headers, initialization
parameters, cookies, and scoped variables, the JSTL implicit objects have one more
feature to explore: accessing servlet and JSP properties, such as a request’s protocol
or server port, or the major and minor versions of the servlet API your container sup-
ports. You can find out that information and much more with the pageContext
implicit object, which gives you access to the request, response, session, and applica-
tion (also known as the servlet context). Useful properties for the pageContext
implicit object are listed in Table 2.6.

Listing 2.21 Choosing a Scope

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Select a Scope</title>
 </head>

 <body>
 <form action='show_scope_attributes.jsp'>
 Select a scope:
 <select name='scope'>
 <option value='page'>page</option>
 <option value='request'>request</option>
 <option value='session'>session</option>
 <option value='application'>application</option>
 </select>

 <p><input type='submit' value='Show Scope Attributes'/>
 </form>
 </body>
</html>

chapter2-expressionLanguage.fm Page 80 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 81

Listing 2.22 Showing Scoped Variables for a Specific Scope

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Scoped Variables</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Set a page-scoped attribute named scope to
 pageScope, requestScope, sessionScope, or
 applicationScope, depending on the value of a
 request parameter named scope --%>
 <c:choose>
 <c:when test='${param.scope == "page"}'>
 <c:set var='scope' value='${pageScope}'/>
 </c:when>
 <c:when test='${param.scope == "request"}'>
 <c:set var='scope' value='${requestScope}'/>
 </c:when>
 <c:when test='${param.scope == "session"}'>
 <c:set var='scope' value='${sessionScope}'/>
 </c:when>
 <c:when test='${param.scope == "application"}'>
 <c:set var='scope' value='${applicationScope}'/>
 </c:when>
 </c:choose>

 <c:out value='${param.scope}'/>-scope attributes:
 <p>

 <%-- Loop over the JSTL implicit object, stored in the
 page-scoped attribute named scope that was set above.
 That implicit object is a map --%>
 <c:forEach items='${scope}' var='p'>

 <%-- Display the key of the current item, which
 represents the parameter name --%>
 Parameter Name: <c:out value='${p.key}'/>

 <%-- Display the value of the current item, which
 represents the parameter value --%>
 Parameter Value: <c:out value='${p.value}'/>

 </c:forEach>
 </body>
</html>

chapter2-expressionLanguage.fm Page 81 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language82

The pageContext properties listed in Table 2.6 give you access to a lot of
information; for example, you can access a client’s host name like this:
${pageContext.request.remoteHost}, or you can access the session ID
like this: ${pageContext.session.id}.

The following four tables list useful request, response, session, and application
properties, all of which are available through the pageContext implicit object.

Table 2.6 pageContext Properties

Property Type Description

request ServletRequest The current request

response ServletResponse The current response

servletConfig ServletConfig The servlet configuration

servletContext ServletContext The servlet context (the application)

session HttpSession The current session

Table 2.7 pageContext.request Properties

Property Type Description

characterEncoding String The character encoding for the request body

contentType String The MIME type of the request body

locale Locale The user’s preferred locale

locales Enumeration The user’s preferred locales

new boolean Evaluates to true if the server has created a
session, but the client has not yet joined

protocol String The name and version of the protocol for the
request; for example: HTTP/1.1

remoteAddr String The IP address of the client

remoteHost String The fully qualified host name of the client, or
the IP address if the host name is undefined

scheme String The name of the scheme used for the current
request; i.e.: HTTP, HTTPS, etc.

serverName String The host name of the server that received the
request

chapter2-expressionLanguage.fm Page 82 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 83

serverPort int The port number that the request was
received on

secure boolean Indicates whether this was made on a secure
channel such as HTTPS

Table 2.8 pageContext.response Properties

Property Type Description

bufferSize int The buffer size used for the response

characterEncoding String The character encoding used for the response
body

locale Locale The locale assigned to the response

committed boolean Indicates whether the response has been
committed

Table 2.9 pageContext.session Properties

Property Type Description

creationTime long The time the session was created (in millisec-
onds since January 1, 1970, GMT)

id String A unique session identifier

lastAccessedTime long The last time the session was accessed (in milli-
seconds since January 1, 1970, GMT)

maxInactiveInterval int The time duration for no activities, after which
the session times out

Table 2.10 pageContext.servletContext Properties

Property Type Description

majorVersion int The major version of the Servlet API that the container supports

minorVersion int The minor version of the Servlet API that the container supports

serverInfo Set The name and version of the servlet container

servletContextName String The name of the Web application specified by the
display-name attribute in the deployment descriptor

Table 2.7 pageContext.request Properties (cont.)

Property Type Description

chapter2-expressionLanguage.fm Page 83 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language84

The JSP page shown in Figure 2–10 accesses some of the information available in
the preceding tables: the request port, protocol, and locale; the response locale; the
session ID and maximum inactive interval; and the servlet API version supported by
the JSP container.

Figure 2–10 Using the pageContext Implicit Object

The JSP page shown in Figure 2–10 is listed in Listing 2.23.

Listing 2.23 Accessing Servlet and JSP Properties

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the pageContext Implicit Object</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

 <%-- Show Request Information --%>
 Request Information<p>

 <%-- Use the request object to show the server port and
 protocol --%>
The current request was made on port
 <c:out value='${pageContext.request.serverPort}'/>

chapter2-expressionLanguage.fm Page 84 Tuesday, October 8, 2002 11:43 AM

2.7 Implicit Objects 85

 with this protocol:
 <c:out value='${pageContext.request.protocol}'/>.

 <%-- Use the request object to show the user's preferred
 locale --%>
 The request locale is
 <c:out value='${pageContext.request.locale}'/>.

 <p>

 <%-- Show Response Information --%>
 Response Information<p>

 The response locale is
 <c:out value='${pageContext.response.locale}'/>.

 <%-- Use the response object to show whether the response
 has been committed --%>
 The response
 <c:choose>
 <c:when test='${pageContext.response.committed}'>
 has
 </c:when>

 <c:otherwise>
 has not
 </c:otherwise>
 </c:choose>
 been committed.

 <p>

 <%-- Show Session Information --%>
 Session Information<p>

 Session ID:
 <c:out value='${pageContext.session.id}'/>

 Max Session Inactive Interval:
 <c:out
 value='${pageContext.session.maxInactiveInterval}'/>
 seconds.

 <p>

 <%-- Show Application Information --%>
 Application Information<p>

Listing 2.23 Accessing Servlet and JSP Properties (cont.)

chapter2-expressionLanguage.fm Page 85 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language86

The preceding JSP page accesses request, response, session, and application
properties, using the pageContext implicit object. The end of that JSP page
creates a page-scoped variable named app that references the servlet context
(meaning the application). That page-scoped variable is subsequently used to access
the Servlet API version supported by the JSP container. Sometimes it’s convenient,
for the sake of readability, to store a reference to one of the objects listed in Table 2.6
on page 82 in a page-scoped variable, as does the preceding JSP page.

2.8 Method Invocation

One of the most hotly debated topics within the JSTL expert group was whether the
expression language should let you invoke arbitrary methods.

The major point of contention was whether that ability fit the philosophy of the
expression language and whether it would encourage Java code in JSP pages. As you
may have discerned so far and as you will learn more about as you explore JSTL
actions throughout the rest of this book, the expression language and JSTL actions
are implemented so that developers don’t need to be concerned with types; for
example, you iterate over a list, array, or comma-separated string in exactly the same
fashion, without regard to their types, with the <c:forEach> action and EL
expressions. If you could also invoke arbitrary methods on objects, that capability
could compromise that intent and would open the door to another kind of expression
language that contains EL expressions and Java statements.

The final decision for JSTL 1.0 was to disallow direct method invocation in the
expression language.14 You can only indirectly invoke a strict subset of methods for
certain kinds of objects by specifying JavaBeans property names or array, list, or map
indexes; see “A Closer Look at the [] Operator” on page 56 for more information.

 <%-- Store the servlet context in a page-scoped variable
 named app for better readability --%>
 <c:set var='app' value='${pageContext.servletContext}'/>

 <%-- Use the application object to show the major and
 minor versions of the servlet API that the container
 supports --%>
 Your servlet container supports version
 <c:out
 value='${app.majorVersion}.${app.minorVersion}'/>
 of the servlet API.
 </body>
</html>

Listing 2.23 Accessing Servlet and JSP Properties (cont.)

chapter2-expressionLanguage.fm Page 86 Tuesday, October 8, 2002 11:43 AM

2.8 Method Invocation 87

Although that decision was probably for the best, you can still run into the need
for method invocation pretty quickly; for example, consider the JSP page shown in
Figure 2–11, which accesses the first item in a list.

Figure 2–11 Accessing the First Item in a List

The JSP page shown in Figure 2–11 is listed in Listing 2.24.

14. An early draft of the JSP 2.0 specification includes direct method invocation for the expres-
sion language, but that feature may not make it into the final JSP 2.0 specification.

Listing 2.24 Accessing the First Item in a List

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Invoking Methods</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
 <%@ page import='java.util.LinkedList' %>

 <%
 LinkedList list = new LinkedList();
 list.add("item one");
 list.add("item two");
 list.add("item three");
 list.add("item four");
 list.add("item five");

 pageContext.setAttribute("list", list);
 %>

 The list starts with <c:out value='${list[0]}'/>
 </body>
</html>

chapter2-expressionLanguage.fm Page 87 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language88

The preceding JSP page is simple: In a scriptlet, it creates a linked list and stores
that list in page scope under the name list. Subsequently, the expression
${list[0]} is used to access the first item in the list, and the output is item one.

So far, so good. But what if you want to access the last item in the list? To do that,
you need to know how many items are in the list so that you can specify the proper
position in the list. If you look at the Java documentation for the LinkedList class,
you’ll see that it has a size method that returns the number of items in the list. You
might try to access the last item in the list like this:

<%-- Beware! this code will throw an exception --%>

The list starts with <c:out value='${list[0]}'/>
and ends with <c:out value='${list[list.size-1]}'/>

As you might guess, the preceding code fragment will throw an exception like the
one shown in Figure 2–12.

Figure 2–12 Trying to Access the Last Item in a List

The problem is that we are trying to invoke the list’s size method (which is a
valid LinkedList method), but it’s not a JavaBeans-compliant getter method, so
the expression list.size-1 cannot be evaluated.

There are two ways to address this dilemma. First, you can use the RT Core
library, like this:

<c_rt:out value='<%= list[list.size()-1] %>'/>

Second, if you want to avoid Java code in your JSP pages, you can implement a
simple wrapper class that contains a list and provides access to the list’s size property
with a JavaBeans-compliant getter method. That bean is listed in Listing 2.25.

The preceding wrapper class has two JavaBeans properties: list and size; the
former provides access to the list, and the latter provides access to the list’s size.
Listing 2.26 lists a JSP page that uses one of those wrappers.

chapter2-expressionLanguage.fm Page 88 Tuesday, October 8, 2002 11:43 AM

2.8 Method Invocation 89

Listing 2.25 WEB-INF/classes/beans/ListWrapper.java

package beans;

import java.util.List;

public class ListWrapper {
 private List list;

 // JavaBean accessors for first name
 public ListWrapper(List list) {
 this.list = list;
 }
 public List getList() {
 return list;
 }
 public int getSize() {
 return list.size();
 }
}

Listing 2.26 Using a Wrapper to Access an Object’s Properties

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Invoking Methods</title>
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
 <%@ page import='java.util.LinkedList' %>
 <%@ page import='beans.ListWrapper' %>

 <%
 LinkedList list = new LinkedList();
 list.add("item one");
 list.add("item two");
 list.add("item three");
 list.add("item four");
 list.add("item five");

 ListWrapper listWrapper = new ListWrapper(list);
 pageContext.setAttribute("listWrapper", listWrapper);
 %>

 The first item is
 <c:out value='${listWrapper.list[0]}'/>

chapter2-expressionLanguage.fm Page 89 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language90

Like the JSP page listed in Listing 2.24 on page 87, the preceding JSP page
creates a list and populates it. But this time, the list is stored in a wrapper and the
wrapper is stored in page scope. The JSP page accesses the list with the expression
listWrapper.list and accesses the list’s size with the expression
listWrapper.size.

The JSP page listed in Listing 2.26 is shown in Figure 2–13.

Figure 2–13 Using a JavaBeans Wrapper to Access a List’s Size

 and the last item is

 <c:out value='${listWrapper.list[listWrapper.size-1]}'/>

 <p>

 Here are all the items in the list:

 <p>

 <c:forEach var='item' items='${listWrapper.list}'>
 <c:out value='${item}'/>
 </c:forEach>

 </body>
</html>

Listing 2.26 Using a Wrapper to Access an Object’s Properties (cont.)

chapter2-expressionLanguage.fm Page 90 Tuesday, October 8, 2002 11:43 AM

2.9 EL Expressions in Custom Actions 91

The JSP page shown in Figure 2–13 and listed in Listing 2.26 displays the first and
last items in the list and iterates over all of the items in the list. See “Iteration
Actions” on page 150 for more information about iterating over collections.

2.9 EL Expressions in Custom Actions

The JSTL expression language is one of JSTL’s most exciting features. If you imple-
ment JSP custom actions, you may be wondering how you can use the expression lan-
guage for your own action attributes.

You can incorporate the expression language into your custom actions, but for
JSTL 1.0, you cannot do it portably. Here’s why: The JSP expert group is ultimately
responsible for the expression language, which will be incorporated into JSP 2.0.
When JSTL 1.0 was finalized—well before JSP 2.0—the JSP expert group had not
yet defined a portable API for accessing the expression language. Because of that
scheduling mismatch, until JSP 2.0 you will have to make do with writing code
specific to the JSTL Reference Implementation.15 JSP 2.0 will define a portable
mechanism for accessing the expression language.16

This section shows you how to implement a custom action that permits EL
expressions for an attribute using the JSTL 1.0 Reference Implementation.

Core Warning

For JSTL 1.0, it’s not possible to use the EL for custom action attributes in
a portable fashion.

Figure 2–14 shows a JSP page that uses a custom action to display values
contained in a map. The maps shown in Figure 2–14 are accessed through some of
the JSTL implicit objects discussed in “Implicit Objects” on page 64.

15. As this book went to press, negotiations were underway to put the expression language
implementation of the JSTL Reference Implementation in Jakarta Commons.

16. See http://java.sun.com/products/jsp/ to download the JSP 2.0 specification.

chapter2-expressionLanguage.fm Page 91 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language92

Figure 2–14 A Custom Action That Processes EL Expressions for Its Attribute

The JSP page shown in Figure 2–14 is listed in Listing 2.27.

The preceding JSP page uses a custom action—<core-jstl:showMap>—that
displays values stored in a map. That custom action is unspectacular except for one
feature: you can use the expression language to specify the action’s map attribute.

Listing 2.27 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Using the EL for Custom Action Attributes</title>
 </head>
 <body>
 <%@ taglib uri='WEB-INF/core-jstl.tld' prefix='core-jstl' %>

 Request Parameters:
 <p><core-jstl:showMap map='${param}'/>

 <p>Request Headers:
 <p><core-jstl:showMap map='${header}'/>

 <p>Cookies:
 <p><core-jstl:showMap map='${cookie}'/>
 </body>
</html>

chapter2-expressionLanguage.fm Page 92 Tuesday, October 8, 2002 11:43 AM

2.9 EL Expressions in Custom Actions 93

Let’s see how that custom action is implemented. First, we must specify a tag library
descriptor (TLD) that defines the library and its lone action. That TLD, specified in
WEB-INF/core-jstl.tld, is listed in Listing 2.28.

The preceding TLD specifies the name of the action—showMap—and the
action’s one required attribute, named map. The TLD also specifies the action’s tag
handler: tags.ShowMapAction, which is listed in Listing 2.29.

The preceding tag handler for the <core-jstl:showMap> action uses the Apache
expression evaluator manager to evaluate the value specified for the map attribute with
the setMap method. You pass the ExpressionEvaluatorManager.evaluate
method the attribute’s name, the expression specified for that attribute, the type that
you expect the attribute to be, a reference to the tag handler and its page context. That
method evaluates the expression and returns the appropriate object.

Listing 2.28 WEB-INF/core-jstl.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtds/web-jsptaglibrary_1_2.dtd">

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSTL Examples</short-name>
 <description>
 A custom action that shows how to incorporate the JSTL
 expression language for custom action attributes
 </description>

 <tag>
 <name>showMap</name>
 <tag-class>tags.ShowMapAction</tag-class>
 <body-content>JSP</body-content>
 <description>
 This action shows the values stored in a map
 </description>

 <attribute>
 <name>map</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

chapter2-expressionLanguage.fm Page 93 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language94

Listing 2.29 WEB-INF/classes/tags/ShowMapAction.java

package tags;

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// WARNING: non-standard class
import org.apache.taglibs.standard.lang.support.Expression
EvaluatorManager;

public class ShowMapAction extends TagSupport {
 private String mapName;
 private Map map;

 public void setMap(String mapName) {
 this.mapName = mapName;
 }
 public int doStartTag() throws JspException {
 // EL expressions must be evaluated in doStartTag()
 // and not in attribute setter methods, because servlet
 // containers can reuse tags, and if an attribute takes a
 // string literal, the setter method might not be called
 // every time the tag is encountered.
 map = (Map)ExpressionEvaluatorManager.evaluate(
 "map", // attribute name
 mapName, // expression
 java.util.Map.class, // expected type
 this, // this tag handler
 pageContext); // the page context

 if(map == null)
 return SKIP_BODY;

 Iterator it = map.keySet().iterator();
 JspWriter out = pageContext.getOut();

 while(it.hasNext()) {
 Object key = it.next(), value = map.get(key);

 try {
 if(value instanceof String[]) {
 String[] strings = (String[])value;

 for(int i=0; i < strings.length; ++i) {
 out.println(strings[i]);

chapter2-expressionLanguage.fm Page 94 Tuesday, October 8, 2002 11:43 AM

2.10 Common Mistakes 95

2.10 Common Mistakes

All languages have their idiosyncrasies and pitfalls to avoid, and the JSTL expression
language is no different. This section discusses some common mistakes that you are
apt to make repeatedly. Once you are aware of them, it’s easier to avoid them. Here
are five of the most common JSTL expression language mistakes:

1. Forgetting curly braces
2. Forgetting taglib declarations
3. Neglecting to store variables in a scope
4. Using illegal characters for attribute names
5. Inadvertently using implicit objects

Forgetting Curly Braces

When you first start using the expression language, it can take awhile to remember to
use the dollar sign and the curly braces for your expressions. Just as important, it can
take awhile for expressions to look odd when the curly braces have been omitted.
Here’s a classic example:

<c:if test='counter.count == 1'>

 <%-- Do something the first time... --%>

</c:if>

 }
 }
 else {
 out.println(key + "=" + value);
 }
 }
 catch(java.io.IOException ex) {
 throw new JspException(ex);
 }
 }
 return SKIP_BODY;
 }
}

Listing 2.29 WEB-INF/classes/tags/ShowMapAction.java (cont.)

chapter2-expressionLanguage.fm Page 95 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language96

The expression specified for the <c:if> test attribute will always evaluate to
false because the value is a string that does not equal "true".17 Instead, you
need to do this for the comparison to work:

<c:if test='${counter.count == 1}'>
 <%-- Do something the first time... --%>
</c:if>

Forgetting taglib Declarations
Even if you haven’t yet read the Iteration Actions chapter in this book, you probably
have a good idea what the following code fragment does:

<c:forEach var='item' begin='1' end='10'>
 <c:out value='${item}'/>
</c:forEach>

At first glance, it looks as though the preceding code fragment will print values
from 1 to 10, inclusive; however, that’s not necessarily the case. If you forget the
taglib directive for the JSTL core actions, the preceding code fragment will do
nothing.

To make sure that the preceding code works as you expect, you need to remember
the taglib directive, like this:

<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

<c:forEach var='item' begin='1' end='10'>
 <c:out value='${item}'/>
</c:forEach>

Neglecting to Store Variables in a Scope
Although it’s not recommended for production code, it is not uncommon for devel-
opers to create some temporary objects in a scriptlet that act as placeholders for data
that will eventually come from another source; for example, you can create a hash
map in a scriptlet that you can subsequently access with an EL expression, like this:

<%
 java.util.HashMap map = new java.util.HashMap();
 map.put("key One", "value One");

17. That criterion is from the Java documentation for Boolean.valueOf(String). See
Table 2.3 on page 62 for more information about expression language type coercions.

chapter2-expressionLanguage.fm Page 96 Tuesday, October 8, 2002 11:43 AM

2.10 Common Mistakes 97

 map.put("key Two", "value Two");

 map.put("key Three", "value Three");

 map.put("key Four", "value Four");

 map.put("key Five", "value Five");

%>

<c:out value='${map["key One"]}'/>

You may think that the preceding code fragment will display the value of the first
entry added to the map, but in actuality, it will display nothing at all because the map
created in the scriptlet was never stored in one of the JSP scopes.

Once the map is placed in one of the JSP scopes, it can be accessed with an EL
expression. Here is the corrected code fragment:

<%

 java.util.HashMap map = new java.util.HashMap();

 map.put("key One", "value One");

 map.put("key Two", "value Two");

 map.put("key Three", "value Three");

 map.put("key Four", "value Four");

 map.put("key Five", "value Five");

 pageContext.setAttribute("map", map);

%>

<c:out value='${map["key One"]}'/>

You can iterate over the items stored in the map created above like this:

<c:forEach var='item' items='${map}'>

 <c:out value='Key=${item.key}, Value=${item.value}'/>

</c:forEach>

Using Illegal Characters for Attribute Values

The preceding code fragment will print the key and value for each entry in a map.
The following code, however, will not do the same:

<%-- The name an-item is not legal, so this produces no output --%>

<c:forEach var='an-item' items='${map}'>

 <c:out value='Key=${an-item.key}, Value=${an-item.value}'/>

</c:forEach>

chapter2-expressionLanguage.fm Page 97 Tuesday, October 8, 2002 11:43 AM

Chapter 2 ■ The JSTL Expression Language98

The preceding code fragment will not produce any output because the name
chosen for the scoped variable created by <c:forEach> is not a valid Java identifier—
because it contains a dash—and therefore the preceding code will fail silently.

Inadvertently Using Implicit Objects
One final word of caution. Be careful that you don’t inadvertently use the names of
the JSTL implicit objects; for example, the following code fragment displays all of the
request parameters, similar to the example discussed in “Accessing Request Parame-
ters” on page 65:

<html>
 <head>
 ...
 </head>

 <body>
 <%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
 ...
 <%-- For every String[] item of paramValues... --%>
 <c:forEach var='parameter' items='${paramValues}'>

 <%-- Show the key, which is the request parameter
 name --%>
 <c:out value='${parameter.key}'/>:
 <%-- Iterate over the values -- a String[] --
 associated with this request parameter --%>
 <c:forEach var='value' items='${parameter.value}'>
 <%-- Show the String value --%>
 <c:out value='${value}'/>
 </c:forEach>

 </c:forEach>
 ...
 </body>
</html>

The preceding code fragment works as advertised, but if you make this seemingly
innocuous change—

...
<c:forEach var='param' items='${paramValues}'>

 ...
 <c:out value='${param.key}'/>:
 ...

chapter2-expressionLanguage.fm Page 98 Tuesday, October 8, 2002 11:43 AM

2.10 Common Mistakes 99

 <c:forEach var='value' items='${param.value}'>
 ...
 </c:forEach>

</c:forEach>
...

—the preceding code fragment will not work like the previous code fragment
because param is an implicit object, not the current object of the iteration.

chapter2-expressionLanguage.fm Page 99 Tuesday, October 8, 2002 11:43 AM

eaa.book Page 53 Monday, October 7, 2002 8:13 AM

About Us | Advertise On InformIT | Contact US | Site Map | Book Registration

© 2003 Pearson Education, Inc. InformIT Division. All rights reserved.

201 West 103rd Street, Indianapolis, IN 46290

Legal Notice | Privacy Policy

http://www.informit.com/about/mediakit/index.asp
http://www.informit.com/about/contact_us/index.asp
http://www.informit.com/sitemap/index.asp
http://www.informit.com/member/titles.asp
http://www.informit.com/about/legal.asp
http://www.informit.com/about/privacy.asp
http://www.informit.com/about/privacy.asp
http://www.informit.com/about/

