
DynaForms�����������	
�����

Content provided in partnership with Sams Publishing, from the book Struts Kick Start by James Turner and Kevin Bedell

About Us | Advertise On InformIT | Contact US |Site Map | Book Registration © 2003 Pearson Education, Inc. InformIT Division. All rights reserved. Legal Notice���Privacy Policy

��������	�
�������
��
�����
�����
�������������
����������
�������

����������		
���	
����	�
��

It might sound like a comic book superhero, but a
DynaForm can’t leap a tall building in a single method invo-
cation. On the other hand, it can reduce a lot of the
drudgework of developing Struts applications.

Similarly, the Struts Validator framework can eliminate
many common form validation tasks, leaving you to
concentrate on the business logic. However, the validator
must be used with care, because it doesn’t handle all the
more complex validations you could encounter during
development.

By the end of this chapter, you’ll have seen a few examples
of how to create and use DynaForms, and how to integrate
them with the Validator to create practically Java-less vali-
dating forms.

DynaForms: Forms Without Java
DynaForms are an extension of the Apache Commons
Beanutils project. As part of the
org.apache.commons.beanutils package, an interface
called DynaBean was created. Unlike normal JavaBeans,
which require explicit getXXX() and setXXX() methods to
be written for each property, a DynaBean uses a generic
get() and set() method with the property name as the
first argument.

A fuller description of the DynaBean package can be found
on the Jakarta Web site at
http://jakarta.apache.org/commons/beanutils.html.

For example, in a traditional JavaBean, you would say

myBean.setType(“kidneybean”);

IN THIS CHAPTER

• DynaForms: Forms Without
Java

• DynaBeans and Struts

• The Validator: Automating
Field Checking

• Conclusions

http://www.informit.com/isapi/authorid~{0053246F-62C5-44E5-BD72-4DC80E225A0D}/authors/author.asp
http://www.informit.com/isapi/authorid~{2BADC472-DB7F-4F9D-AB65-C6045F45E962}/authors/author.asp
http://www.samspublishing.com/
http://www.samspublishing.com/
http://www.informit.com
http://www.informit.com/promotions/promotions/promotions.asp?st={7238CA99-BD79-4A48-BEF8-6540DFBC7FCD}
http://www.informit.com/promotions/promotions/promotions.asp?st={7238CA99-BD79-4A48-BEF8-6540DFBC7FCD}
http://www.informit.com/promotions/promotions/promotions.asp?st={7238CA99-BD79-4A48-BEF8-6540DFBC7FCD}
http://www.informit.com/about/
http://www.informit.com/about/mediakit/index.asp
http://www.informit.com/about/contact_us/index.asp
http://www.informit.com/sitemap/index.asp
http://www.informit.com/member/titles.asp
http://www.informit.com/about/legal.asp
http://www.informit.com/about/privacy.asp

Using DynaBeans, you would say

myBean.set(“type”, “kidneybean”);

This approach has both advantages and disadvantages. The major advantage is that
you don’t have to declare all your properties explicitly at compile-time; they can be
loaded dynamically during execution. This can be very handy to quickly create new
beans or new properties of beans.

The disadvantage is that you lose a lot of compile-time error checking. Let’s say you
are thick-fingered, and enter

myBean.set(“tpye”, “kidneybean”);

The compiler won’t catch this. As far as it’s concerned, this is perfectly legal Java. It’s
not until run-time that you’ll suddenly find yourself with a null pointer exception.
Similarly, all get() and set() methods take and return the Object type, so you lose
the strong type-checking of traditional beans.

DynaBeans and Struts
One place that DynaBeans make a lot of sense is in Struts. If you use DynaBeans
correctly, you can reduce the size of your ActionForms by 80–90%. This is because
you can use DynaBeans to eliminate all of your form getters and setters.

To see how this works, you’ll rewrite the two ActionForms for the new account pages
of the StockTrack application. To begin, take a look at one of the existing
ActionForms and the same form rewritten with DynaForms (Listing 17.1 and 17.2).

LISTING 17.1 NewUserAddressForm.java

package stocktrack.struts.form;

import javax.servlet.http.*;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionForm;

import stocktrack.struts.form.BaseForm;

/**

* stocktrack.struts.form.NewUserAddressForm class.

* this class used by Struts Framework to store data from newUserAddressForm

*

CHAPTER 17 DynaForms and the Validator320

18 4725 CH17 11/8/02 11:39 AM Page 320

* struts-config declaration:

* <form-bean name=”newUserAddressForm”

* type=”stocktrack.struts.form.NewUserAddressForm” />

*

* @see org.apache.struts.action.ActionForm org.apache.struts.action.ActionForm

* Generated by StrutsWizard.

*/

public class NewUserAddressForm extends BaseForm {

public void reset(ActionMapping mapping, HttpServletRequest request) {

streetAddress1 = “”;

streetAddress2 = “”;

city = “”;

state = “”;

postalCode = “”;

homePhone = “”;

workPhone = “”;

workExt = “”;

}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if (this.isBlankString(streetAddress1)) {

errors.add(“streetAddress1”,

new ActionError(“stocktrack.newuser.required”));

}

if (this.isBlankString(city)) {

errors.add(“city”, new ActionError(“stocktrack.newuser.required”));

}

if (this.isBlankString(state)) {

errors.add(“state”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!this.isValidState(state)) {

errors.add(“state”,

new ActionError(“stocktrack.newuser.invalid.state”));

}

}

if (this.isBlankString(postalCode)) {

errors.add(“postalCode”,

new ActionError(“stocktrack.newuser.required”));

DynaForms: Forms Without Java 321

LISTING 17.1 Continued

18 4725 CH17 11/8/02 11:39 AM Page 321

} else {

if (!this.isValidPostalCode(postalCode)) {

errors.add(“postalCode”,

new ActionError(“stocktrack.newuser.invalid.postalCode”));

}

}

if (this.isBlankString(homePhone)) {

errors.add(“homePhone”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!this.isValidPhone(homePhone)) {

errors.add(“homePhone”,

new ActionError(“stocktrack.newuser.invalid.phone”));

}

}

if (this.isBlankString(workPhone)) {

errors.add(“workPhone”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!this.isValidPhone(workPhone)) {

errors.add(“workPhone”,

new ActionError(“stocktrack.newuser.invalid.phone”));

}

}

return errors;

}

private String streetAddress1;

private String streetAddress2;

private String city;

private String state;

private String postalCode;

private String homePhone;

private String workPhone;

private String workExt;

public String getStreetAddress1() {

return streetAddress1;

}

public void setStreetAddress1(String streetAddress1) {

this.streetAddress1 = streetAddress1;

}

public String getStreetAddress2() {

return streetAddress2;

}

CHAPTER 17 DynaForms and the Validator322

LISTING 17.1 Continued

18 4725 CH17 11/8/02 11:39 AM Page 322

public void setStreetAddress2(String streetAddress2) {

this.streetAddress2 = streetAddress2;

}

public String getCity() {

return city;

}

public void setCity(String city) {

this.city = city;

}

public String getState() {

return state;

}

public void setState(String state) {

this.state = state;

}

public String getPostalCode() {

return postalCode;

}

public void setPostalCode(String postalCode) {

this.postalCode = postalCode;

}

public String getHomePhone() {

return homePhone;

}

public void setHomePhone(String homePhone) {

this.homePhone = homePhone;

}

public String getWorkPhone() {

return workPhone;

}

public void setWorkPhone(String workPhone) {

this.workPhone = workPhone;

}

public String getWorkExt() {

return workExt;

}

public void setWorkExt(String workExt) {

this.workExt = workExt;

}

}

DynaForms: Forms Without Java 323

LISTING 17.1 Continued

18 4725 CH17 11/8/02 11:39 AM Page 323

LISTING 17.2 NewUserAddressForm.java as a DynaForm

package stocktrack.struts.form;

import javax.servlet.http.*;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionForm;

import stocktrack.struts.form.BaseForm;

import stocktrack.struts.form.BaseDynaForm;

/**

* stocktrack.struts.form.NewUserAddressForm class.

* this class used by Struts Framework to store data from newUserAddressForm

*

* struts-config declaration:

* <form-bean name=”newUserAddressForm”

* type=”stocktrack.struts.form.NewUserAddressForm” />

*

* @see org.apache.struts.action.ActionForm org.apache.struts.action.ActionForm

* Generated by StrutsWizard.

*/

public class NewUserAddressForm extends BaseDynaForm {

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if (BaseForm.isBlankString(this.getString(“streetAddress1”))) {

errors.add(“streetAddress1”,

new ActionError(“stocktrack.newuser.required”));

}

if (BaseForm.isBlankString(this.getString(“city”))) {

errors.add(“city”,

new ActionError(“stocktrack.newuser.required”));

}

if (BaseForm.isBlankString(this.getString(“state”))) {

errors.add(“state”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!BaseForm.isValidState(this.getString(“state”))) {

errors.add(“state”,

new ActionError(“stocktrack.newuser.invalid.state”));

CHAPTER 17 DynaForms and the Validator324

18 4725 CH17 11/8/02 11:39 AM Page 324

}

}

if (BaseForm.isBlankString(this.getString(“postalCode”))) {

errors.add(“postalCode”,

new ActionError(“stocktrack.newuser.required”));

} else {

if (!BaseForm.isValidPostalCode(this.getString(“postalCode”))) {

errors.add(“postalCode”,

new ActionError(“stocktrack.newuser.invalid.postalCode”));

}

}

if (BaseForm.isBlankString(this.getString(“homePhone”))) {

errors.add(“homePhone”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!BaseForm.isValidPhone(this.getString(“homePhone”))) {

errors.add(“homePhone”,

new ActionError(“stocktrack.newuser.invalid.phone”));

}

}

if (BaseForm.isBlankString(this.getString(“workPhone”))) {

errors.add(“workPhone”, new ActionError(“stocktrack.newuser.required”));

} else {

if (!BaseForm.isValidPhone(this.getString(“workPhone”))) {

errors.add(“workPhone”,

new ActionError(“stocktrack.newuser.invalid.phone”));

}

}

return errors;

}

}

The first thing to notice here is that the class has been changed from BaseForm
(which, as you might recall, is simply ActionForm with a few helper functions added
for validation) to BaseDynaForm, which is a different helper class that extends
DynaActionForm instead. All the getters and setters have been removed, and the
validate function now uses this.getString to get the values of the properties
rather than accessing the local variables of the class.

DynaForms: Forms Without Java 325

LISTING 17.2 Continued

18 4725 CH17 11/8/02 11:39 AM Page 325

getString() is in fact not a part of DynaActionForm, which only defines generic
get() and set() methods that take and return Objects. However, rather than cast to
String all the time, I’ve created BaseDynaForm, which adds the getString() versions.
Listing 17.3 shows this simple class.

LISTING 17.3 BaseDynaForm.java

package stocktrack.struts.form;

import org.apache.struts.action.DynaActionForm;

public class BaseDynaForm extends DynaActionForm {

public String getString(String name) {

return (String) this.get(name);

}

public String getString(String name, int ind) {

return (String) this.get(name, ind);

}

}

In addition, now that the class no longer derives from BaseForm, you need to call out
explicitly to BaseForm to get helper functions such as nullOrVoid. Because they were
originally defined nonstatic, you must go into BaseForm and declare them static. I
suppose that we could have copied the code from BaseForm to BaseDynaForm, but
that would have meant maintaining the same code in two places.

The <form-property> Tag
So, if all the getters and setters have been removed from the class, how does the class
know what its legal properties are? The answer lies in the form-bean tag in struts-
config.xml.

Until now, the forms you’ve defined in the file looked like this:

<form-bean name=”newUserAddressForm”

type=”stocktrack.struts.form.NewUserAddressForm” />

But now, you’re going to add some new tags, form-property tags, to the form-bean
(see Listing 17.4).

CHAPTER 17 DynaForms and the Validator326

18 4725 CH17 11/8/02 11:39 AM Page 326

LISTING 17.4 The Rewritten newUserAddress Form

<form-bean name=”newUserAddressForm” type=”stocktrack.struts.form.NewUserAddress-

Form”>

<form-property name=”streetAddress1” type=”java.lang.String”/>

<form-property name=”streetAddress2” type=”java.lang.String”/>

<form-property name=”city” type=”java.lang.String”/>

<form-property name=”state” type=”java.lang.String”/>

<form-property name=”postalCode” type=”java.lang.String”/>

<form-property name=”homePhone” type=”java.lang.String”/>

<form-property name=”workPhone” type=”java.lang.String”/>

<form-property name=”workExt” type=”java.lang.String”/>

</form-bean>

Inside the form-bean, all the properties have been listed along with their type. This
allows the DynaForm to populate the fields. You can use pretty much any class you
want in the type value, as well as primitives such as int, Boolean, and so on.

You can also specify initializations for properties via the initial keyword. For
example, the following form-property sets up a property called opt-in, which
defaults to true:

<form-property name=”homePhone” type=”boolean” initial=”true”/>

The initial keyword is also the only way to create an array or list of a given size.
Imagine that you have a form with 10 lines to fill in the names, ages, and genders of
the user’s dependents. You’d define it like so:

<form-property name=”depName” type=”java.lang.String[]”

initial=”{‘’,’’,’’,’’,’’,’’,’’,’’,’’,’’}”/>

<form-property name=”depAge” type=”java.lang.String[]”

initial=”{‘’,’’,’’,’’,’’,’’,’’,’’,’’,’’}”/>

<form-property name=”depGender” type=”java.lang.String[]”

initial=”{‘’,’’,’’,’’,’’,’’,’’,’’,’’,’’}”/>

Whatever the type requested, if you want to specify an initial value, there must be a
converter defined from String to that class in the Commons Beanutils package. You
can add your own converters, so just about any class can be initialized via a form-
property tag.

String (and other) arrays are accessed using get() and set(), the same as any other
DynaBean. However, you use a second argument, which specifies the index into the
array.

DynaForms: Forms Without Java 327

18 4725 CH17 11/8/02 11:39 AM Page 327

The Validator: Automating Field Checking
Using DynaBeans has enabled you to drastically reduce the size of the form bean, but
wouldn’t it be nice to get rid of it all together?

After moving all the properties out of the bean and into the DynaForm definition in
struts-config.xml, the only thing left in the bean is the validate function. By
using the Struts Validation framework, which ties into the Commons Validator
package, you can remove this last piece of code and get rid of the form bean.

WHAT IS COMMONS?

Commons (or more formally, the Jakarta Commons project) is an effort to gather a lot of
reusable Java code in one place.

The idea is that there are any number of commonly coded tasks that can be generalized and
placed in one place, so that no one ever needs to reinvent the wheel again.

Commons is divided into two pieces: the Commons proper and the sandbox. The Commons
proper is where well-tested robust packages live; they have release cycles and beta testing.
The sandbox is where the “not ready for prime time” packages live while they undergo their
initial development, and is a much less formal environment.

You’ll find that many of the Jakarta projects, from Torque to Struts and beyond, depend on
various Commons packages to work. You can learn more about the Commons project by visit-
ing the Jakarta Web site at

http://Jakarta.apache.org/commons/

Adding validation to Struts forms is done in a few steps. To begin, you need to add
the Validator plug-in to the struts-config.xml file. This is just a piece of boilerplate
XML, shown in Listing 17.5.

LISTING 17.5 Adding the Validator Plug-In to Struts

<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>

<set-property

property=”pathnames”

value=”/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml”/>

</plug-in>

This plug-in should be the very last thing in the file before the </struts-config>
tag.

The plug-in entry does two things. First, it notifies Struts that the validator should
be made available. Secondly, it defines the locations of the validator rules files,
which are used to define the validations that will be run over the forms. The
validator-rules.xml file comes standard with the validator. It defines the most

CHAPTER 17 DynaForms and the Validator328

18 4725 CH17 11/8/02 11:39 AM Page 328

commonly used rules (such as credit cards, dates, strings, numbers, and so on). The
validation.xml file is one that you will define, and contains specialized validations
used by your application, as well as the actual validation-to-form field mappings.

First, take a look at a typical rule from validator-rules.xml as delivered by the
Validator package (see Listing 17.6).

LISTING 17.6 A Rule from validator-rules.xml

<validator name=”creditCard”

classname=”org.apache.struts.util.StrutsValidator”

method=”validateCreditCard”

methodParams=”java.lang.Object,

org.apache.commons.validator.ValidatorAction,

org.apache.commons.validator.Field,

org.apache.struts.action.ActionErrors,

javax.servlet.http.HttpServletRequest”

depends=””

msg=”errors.creditcard”>

<javascript><![CDATA[

function validateCreditCard(form) {

var bValid = true;

var focusField = null;

var i = 0;

var fields = new Array();

oCreditCard = new creditCard();

for (x in oCreditCard) {

if ((form[oCreditCard[x][0]].type == ‘text’ ||

form[oCreditCard[x][0]].type == ‘textarea’) &&

form[oCreditCard[x][0]].value.length > 0) {

if (!luhnCheck(form[oCreditCard[x][0]].value)) {

if (i == 0)

focusField = form[oCreditCard[x][0]];

fields[i++] = oCreditCard[x][1];

bValid = false;

}

}

}

if (fields.length > 0) {

focusField.focus();

The Validator: Automating Field Checking 329

18 4725 CH17 11/8/02 11:39 AM Page 329

alert(fields.join(‘\n’));

}

return bValid;

}

/**

* Reference: http://www.ling.nwu.edu/~sburke/pub/luhn_lib.pl

*/

function luhnCheck(cardNumber) {

if (isLuhnNum(cardNumber)) {

var no_digit = cardNumber.length;

var oddoeven = no_digit & 1;

var sum = 0;

for (var count = 0; count < no_digit; count++) {

var digit = parseInt(cardNumber.charAt(count));

if (!((count & 1) ^ oddoeven)) {

digit *= 2;

if (digit > 9) digit -= 9;

};

sum += digit;

};

if (sum == 0) return false;

if (sum % 10 == 0) return true;

};

return false;

}

function isLuhnNum(argvalue) {

argvalue = argvalue.toString();

if (argvalue.length == 0)

return false;

for (var n = 0; n < argvalue.length; n++)

if (argvalue.substring(n, n+1) < “0” || argvalue.substring(n,n+1) >

➥“9”)

return false;

return true;

}]]>

</javascript>

</validator>

CHAPTER 17 DynaForms and the Validator330

LISTING 17.6 Continued

18 4725 CH17 11/8/02 11:39 AM Page 330

Unless you’re a JavaScript wonk, only the first 10 lines of the definition are of any
real importance to how the validator works with Struts. The first line of XML
declares the official name of this validator—that’s the name that other rules or field
definitions will use to refer to it.

The next line of XML tells the validator which class defines the validation method
for this rule. Unlike many Java-related (and especially JSP-related) tools, the validator
doesn’t call a standard method on each class. Instead, you can declare any number
of methods in a single class and use different ones for different validations.

The method value tells the validator which method of the class that was just specified
handles the validation for this rule. In this case, validation is handled by the aptly
named validateCreditCard() method.

Adding to the ways in which the validator is different from everything else in Java,
the validation method isn’t defined as an interface or even a standard API. It can
take a number of different arguments in a number of different orders. The validator
code figures out which arguments go where by looking at the types of the arguments
as specified in the methodParams arguments. They are

• java.lang.Object—The ActionForm that the value comes from, unless the
property is a String array or Collection, (in which case it is the string itself).

• org.apache.commons.validator.ValidatorAction—The object created when
the validation rules are parsed, one per rule.

• org.apache.commons.validator.Field—An object that holds information
about the field being validated, such as its name.

• org.apache.struts.action.ActionErrors—The same old ActionErrors that
you know and love; you add to it if there’s a validation error.

• javax.servlet.http.HttpServletRequest—The request being processed.

• org.apache.commons.validator.Validator—Gives you a handle to the
Validator itself, useful for accessing other fields values.

Given all that information, the method should be able to figure out whether there
was a validation error or not, eh?

Next, the depends tag specifies any other rules that should be run before this rule
runs. In this case, the file used to say that the required rule should be run first. But,
in my opinion, that was wrong. It would mean that you couldn’t have a form with
both a credit card and bank account field and let the user fill out one or the other,
because credit card would be a required field. Luckily, I was able to convince the
Struts folks to remove these dependencies, so now you need to explicitly use the
“required” tag if you need a field to be required.

Finally, the message tag enables you to define the error message, which will be drawn
from the default Resource, to use for this validation error.

The Validator: Automating Field Checking 331

18 4725 CH17 11/8/02 11:39 AM Page 331

The remainder of the file defines the JavaScript that’s used to provide client-side vali-
dation of the field, if requested. It’s optional, and those who are interested are
welcome to refer to the documentation for the validator to learn more.

Adding the Validator to NewUserAddress
By using the validator, you can completely eliminate the need to create an
ActionForm. This can be demonstrated with the same NewUserAddress action you
converted to DynaBeans in the first half of this chapter.

To start, you need to create a validation.xml file, which goes into the same direc-
tory (WEB-INF) as the validator-rules.xml file. Listing 17.7 shows the file with only
the rules for this form placed in it.

LISTING 17.7 validation.xml

<form-validation>

<global>

<constant>

<constant-name>phone</constant-name>

<constant-value>^\(?(\d{3})\)?[-|]?(\d{3})[-|]?(\d{4})$</constant-value>

</constant>

<constant>

<constant-name>states</constant-name>

<constant-value>^(AL|AK|AS|AZ|AR|CA|CO|CT|DE|DC|FM|FL|GA|

➥GU|HI|ID|IL|IN|IA|KS|KY|LA|ME|MH|MD|MA|MI|MN|MS|MO|MT|NE|NV|NH|

➥NJ|NM|NY|NC|ND|MP|OH|OK|OR|PW|PA|PR|RI|SC|SD|TN|TX|UT|VT|VI|VA

➥|WA|WV|WI|WY)$</constant-value>

</constant>

<constant>

<constant-name>zip</constant-name>

<constant-value>^\d{5}(-\d{4})?$</constant-value>

</constant>

</global>

<formset>

<form name=”newUserAddressForm”>

<field

property=”streetAddress1”

depends=”required”>

<arg0 key=”newUserAddressForm.streetAddress1.label”/>

</field>

<field

property=”city”

depends=”required”>

CHAPTER 17 DynaForms and the Validator332

18 4725 CH17 11/8/02 11:39 AM Page 332

<arg0 key=”newUserAddressForm.city.label”/>

</field>

<field

property=”state”

depends=”required,mask”>

<arg0 key=”newUserAddressForm.state.label”/>

<var>

<var-name>mask</var-name>

<var-value>${states}</var-value>

</var>

</field>

<field

property=”postalCode”

depends=”required,mask”>

<arg0 key=”newUserAddressForm.postalCode.label”/>

<var>

<var-name>mask</var-name>

<var-value>${zip}</var-value>

</var>

</field>

<field

property=”workPhone”

depends=”required,mask”>

<arg0 key=”newUserAddressForm.workPhone.label”/>

<var>

<var-name>mask</var-name>

<var-value>${phone}</var-value>

</var>

</field>

<field

property=”homePhone”

depends=”required,mask”>

<arg0 key=”newUserAddressForm.homePhone.label”/>

<var>

<var-name>mask</var-name>

<var-value>${phone}</var-value>

</var>

</field>

</form>

</formset>

</form-validation>

The Validator: Automating Field Checking 333

LISTING 17.7 Continued

18 4725 CH17 11/8/02 11:39 AM Page 333

This file is broken into two main sections. The top section (inside the globals tag) is
a place to define any global values that will be used throughout the file. Normally,
these are strings that will be used for the mask validation, but they could also be used
in other places, such as for key values.

In this case, you’re defining three constants, which are Perl-style regular expressions
that will be used to validate phone numbers, ZIP codes, and states.

After the globals section comes the formset section. Each form begins with a form
tag containing a single attribute, which is the name of the form (and must match
the name as defined in struts-config.xml).

Inside the form tag are a number of field tags. This tag has several attributes. The
first is the property of the form that this entry validates, which must match a form-
property. Next is the depends attribute, which specifies one or more validations that
must be confirmed for this field to pass. For example, because the postalCode field
has required,mask for a depends, both the required and mask validation must pass
for this field to validate.

Inside the form tag, two types of values are commonly defined. The argx (that is,
arg0, arg1, and so on) tags are used to provide values to the error message if one is
generated. Usually, all that’s done here is to provide the key that corresponds to the
name of the field in the Resource file.

The second tag, var, is used to pass arguments to the validators themselves. In this
example, the mask validation is handed several different masks, depending on which
field is being validated. By using the ${var} syntax, values defined in the globals
section can be used here.

For the error messages to work, a number of strings must be put in the
ApplicationResources.properties file (see Listing 17.8).

LISTING 17.8 Additions to ApplicationResources.properties

Validator errors

errors.required={0} is required.

errors.minlength={0} can not be less than {1} characters.

errors.maxlength={0} can not be greater than {1} characters.

errors.invalid={0} is invalid.

errors.byte={0} must be an byte.

errors.short={0} must be an short.

errors.integer={0} must be an integer.

errors.long={0} must be an long.

errors.float={0} must be an float.

errors.double={0} must be an double.

errors.date={0} is not a date.

CHAPTER 17 DynaForms and the Validator334

18 4725 CH17 11/8/02 11:39 AM Page 334

errors.range={0} is not in the range {1} through {2}.

errors.creditcard={0} is not a valid credit card number.

errors.email={0} is an invalid e-mail address

#New user address form

newUserAddressForm.streetAddress1.label=Street Address

newUserAddressForm.city.label=City

newUserAddressForm.state.label=State

newUserAddressForm.postalCode.label=Postal Code

newUserAddressForm.homePhone.label=Home Telephone

newUserAddressForm.workPhone.label=Work Telephone

The top section of strings is the generic validator error messages. You’re free to alter
them as you want; these are just the ones suggested in the code. The {0} will be
replaced with the arg0 value defined in the field tag, as will the others by other
arguments (for example, the {1} will be replaced by the minimum required length in
the minlength validation).

The lower section simply defines the labels (names) that were used as keys to the
field names in the validation.xml file. You can also used them with the
bean:message tag in your JSP to internationalize your forms.

A few more steps are needed to complete the transition. The type attribute of
newUserAddressForm in struts-config.xml must be changed to
org.apache.struts.validator.DynaValidatorForm. Similarly, the line in
NewUserAddressAction where the Form is cast to from a generic form must be
changed to read:

DynaValidatorForm uf = (DynaValidatorForm) form;

With those changes, you can start the application and test it. You can also delete
NewUserAddressForm.java because you’ve totally eliminated it.

Last Minute Validator News
One of the frustrations I (James speaking here) had with Struts was that the validator
was languishing for lack of development. Specifically, there was no way to say "vali-
date the checking account number only if the Use Checking Account button is
pushed," short of doing those validations in the action.

The Validator: Automating Field Checking 335

LISTING 17.8 Continued

18 4725 CH17 11/8/02 11:39 AM Page 335

Also, the Commons Validator package, which is what the Struts Validator Framework
depends on, had stalled short of a 1.0 release. I (and a lot of other Struts developers)
felt nervous about depending on a package that hadn't even gotten out of the
Commons Sandbox.

As this book was being completed, I was accepted as a committer for the Commons
Validator package, and volunteered to spearhead a 1.0 release, which is currently
scheduled for November of 2002. In addition, I refactored some of the underlying
Validator code and added the needed hooks so that cross-form dependencies can be
implemented. With that in mind, I submitted a patch against the Struts Validator
that added a "requiredif" dependency rule, and which is now part of the core Struts
Validator Framework.

Defining a New Validation
Before we leave the topic, it’s a useful exercise to see how a new validation type
could be written. A good example is the validation done on bank account routing
numbers, known in the industry as the ACH (automated clearing house) routing
number.

The basic algorithm for this validation is similar to the one done on credit card
numbers, in that it’s a simple checksum. The number itself is nine digits long. The
digits are handled in groups of three starting from the left. For each group of three,
the first digit is multiplied by thee, the second by seven, and the third left as is.
All the results are added together, and if the resulting number is evenly divisible
by 10, the number passes.

To implement this check, you must first define a new class, which in turn defines a
method that does the check. Listing 17.9 shows this file.

LISTING 17.9 ACHCheck.java

package stocktrack.validator;

import java.io.Serializable;

import javax.servlet.http.HttpServletRequest;

import org.apache.commons.validator.Field;

import org.apache.commons.validator.ValidatorAction;

import org.apache.struts.action.ActionErrors;

CHAPTER 17 DynaForms and the Validator336

18 4725 CH17 11/8/02 11:39 AM Page 336

import org.apache.commons.validator.GenericValidator;

import org.apache.commons.validator.ValidatorUtil;

import org.apache.struts.util.StrutsValidatorUtil;

public class ACHCheck implements Serializable {

public static boolean validateACHRouting(Object bean,

ValidatorAction va, Field field,

ActionErrors errors,

HttpServletRequest request) {

String value = null;

boolean results = false;

if (isString(bean)) {

value = (String) bean;

} else {

value = ValidatorUtil.getValueAsString(bean, field.getProperty());

}

if (GenericValidator.isBlankOrNull(value)) {

return true;

}

if (value.length() != 9) {

errors.add(field.getKey(),

StrutsValidatorUtil.getActionError(request, va, field));

return false;

}

int n = 0;

for (int i = 0; i < value.length(); i += 3) {

n += CharToInt(value.charAt(i)) * 3

+ CharToInt(value.charAt(i + 1)) * 7

+ CharToInt(value.charAt(i + 2));

}

The Validator: Automating Field Checking 337

LISTING 17.9 Continued

18 4725 CH17 11/8/02 11:39 AM Page 337

// If the resulting sum is an even multiple of ten (but not zero),

// the aba routing number is good.

if (n != 0 && n % 10 == 0)

return true;

else {

errors.add(field.getKey(),

StrutsValidatorUtil.getActionError(request, va, field));

return false;

}

}

public static int CharToInt(char chr)

{

return Integer.parseInt(CharToString(chr));

}

public static String CharToString(char chr)

{

return String.valueOf(chr);

}

private static Class stringClass = new String().getClass();

private static boolean isString(Object o) {

if (o == null) return true;

return (stringClass.isInstance(o));

}

}

The first thing to notice is that the arguments to the validation function should look
very familiar because they’re the same types as the values of the methodParams
attribute in the validator-rules.xml file. That’s because you’re now defining the
method that will be called by the validator and will follow the template described in
the validator tag.

The first thing to do is see whether the bean value passed in is a string. If it is not a
string, the function must have been called during validation of a string array.

CHAPTER 17 DynaForms and the Validator338

LISTING 17.9 Continued

18 4725 CH17 11/8/02 11:39 AM Page 338

If it’s not a string (or null), the function must look up the property name in the
bean. ValidatorUtil has a nice helper function to do this.

After the function has the value, it checks whether it’s of the right length, and if so,
whether it passes the checksum. If it fails, a helper function from
StrutsValidatorUtil is used to generate the appropriate ActionError for the prop-
erty.

In addition to adding to the ActionErrors variable, the method must also return
true or false because the validator depends on this to determine whether further vali-
dations should be run on this field.

Next, you must add the validation rule. Technically, it could go in either valida-
tion.xml or validator-rules.xml because both files are the same format (and, in
fact, you can load an arbitrary number of these files by changing the list in struts-
config.xml). However, it’s a good idea to put local extensions into validation.xml
because the other file comes with Struts, and might be overwritten. Here are the
additional lines of XML, placed right after the global tag:

<validator name=”achRouting”

classname=”stocktrack.validator.ACHCheck”

method=”validateACHRouting”

methodParams=”java.lang.Object,

org.apache.commons.validator.ValidatorAction,

org.apache.commons.validator.Field,

org.apache.struts.action.ActionErrors,

javax.servlet.http.HttpServletRequest”

depends=””

msg=”errors.achRouting”/>

Now you can add a new property to the new address form for testing:

<form-property name=”bankRouting” type=”java.lang.String”/>

Of course, there are new resource strings, too:

errors.achRouting={0} is not a valid routing number.

newUserAddressForm.bankRouting.label=Bank Routing Number

And, finally, the form itself needs to handle the field:

<tr>

<td>Bank Routing</td><td>

<html:text property=”bankRouting” maxlength=”9” size=”9”/></td>

<td><html:errors property=”bankRouting”/></td>

</tr>

The Validator: Automating Field Checking 339

18 4725 CH17 11/8/02 11:39 AM Page 339

With all that work in place, you can now validate bank routing numbers. If you
want a good one, 123123123 will pass.

IS THE VALIDATOR WORTH IT?

I have to say that I’m honestly of two minds in regards to the validator. On one hand, I like
the way it enables you to eliminate many FormAction classes altogether.

On the other hand, you end up writing a lot of boilerplate XML for every form, and for every
field of every form. In fact, a rough estimate showed that a 20-line Java class file that imple-
mented the validations in a FormAction might be replaced by 40 or more lines of XML and
properties to do the same thing.

On the other other hand, the validator does reduce the amount of validation logic you have
to write. So, I can’t say that there’s a good answer one way or the other.

Conclusions
Using DynaBeans and the Validator framework, you can reduce or even eliminate the
need to write an ActionForm. DynaForms enable you to define the properties of a form
in the struts-config.xml file, rather than in the form bean itself. You then use
generic get and set operations on the form, rather than explicitly defined accessors.

The Validator framework integrates Struts with the Commons Validator project. The
validator enables you to define validation rules in XML files, and automatically run
them against the form during submission. This eliminates the need for the validate
method on the Form, and in combination with a DynaForm, it eliminates the need for
a distinct class.

Because the framework doesn’t handle all types of validations, it might be necessary
to handle some of them in the Action, although this can confuse the user by
presenting errors in two stages.

The Framework can also be extended by writing new validation rules, which are
defined in one of the XML configuration files and implemented in a new class and
method.

CHAPTER 17 DynaForms and the Validator340

About Us | Advertise On InformIT | Contact US |Site Map | Book Registration © 2003 Pearson Education, Inc. InformIT Division. All rights reserved. Legal Notice���Privacy Policy

��������	�
�������
��
�����
�����
�������������
����������
�������

����������		
���	
����	�
��

http://www.informit.com/promotions/promotions/promotions.asp?st={7238CA99-BD79-4A48-BEF8-6540DFBC7FCD}
http://www.informit.com/promotions/promotions/promotions.asp?st={7238CA99-BD79-4A48-BEF8-6540DFBC7FCD}
http://www.informit.com/about/
http://www.informit.com/about/mediakit/index.asp
http://www.informit.com/about/contact_us/index.asp
http://www.informit.com/sitemap/index.asp
http://www.informit.com/member/titles.asp
http://www.informit.com/about/legal.asp
http://www.informit.com/about/privacy.asp

