
Living Documentation Pattern Language
The patterns of living documentation form a network, as language that can be

used to describe a chosen path of implementation or, conversely, that can guide
the user of the language in a generative way. To emphasize the key relationships
and help visualize the pattern language, I have rendered diagrams of some of

the patterns in the Living Documentation book, which are presented below.1

Note that the patterns themselves are not described in this section. For more
details about each of them, please refer to the chapters of the book.

Living Documentation Essentials
As in Figure 1, rethinking documentation takes three forms, depending on the
nature of the knowledge. For all the knowledge that is ephemeral, nothing beats

conversations and working collectively as a way to transfer the knowledge
between workmates.

At the other hand of the spectrum, the knowledge that is permanent—in other
words, stable and useful in the long run—can be recorded through traditional

forms of documentation, such as written documents and manually created
diagrams.

In between these two cases, all the knowledge that is long-lived but evolves
regularly is best considered in the system itself, where most of it already resides.

Even if the knowledge is there already, it probably is not totally complete and
needs to be augmented. This knowledge augmentation is preferably done

through an internal form of documentation; that is, in the artifacts of the system
itself. It preferably references ready-made documentation from the literature

rather than describing a solution as if it were original.

Developers can use all this knowledge, existing and augmented, directly within

their programming environments as integrated documentation. It also enables
them to use tools to exploit the knowledge to make it more convenient and more

accessible through all the techniques of living documentation, such as curation,
living diagrams, living glossaries, and many other examples of generated
documentation as published snapshots.

1 Initially rendered from plain-text descriptions using the Graphviz DOT renderer.

Figure 1: Essentials of living documentation

Knowledge Augmentation
System artifacts, such as code and configuration files, typically do not describe
the rationale behind design decisions, the influences behind the reasoning of the
team members. They tend to only describe the consequences of these decisions

and reasoning. Knowledge augmentation is about putting that missing knowledge
into the system, preferably in its artifacts directly, leading to an internal

documentation, as illustrated in the diagram in Figure 2.

Knowledge augmentation for source code, which we call augmented code, can be

achieved through documentation by annotations or through documentation by
convention, both enabling machine-accessible documentation. Knowledge

augmentation can also be done outside the system artifacts, as external
documentation using sidecar files or a metadata database, though this is not the

preferred option.

In any case, the knowledge augmentation is best done by putting the intrinsic

knowledge onto the thing itself, while the module-wide knowledge should be put
at the module level. And the augmented knowledge will reference ready-made

knowledge from the literature whenever possible for best results.

Figure 2: The pattern language of knowledge augmentation

Avoiding Traditional Documentation
Given our love-hate relationship with traditional forms of documentation, it’s

somehow satisfying to explore alternatives. Acknowledging that conversations

are indeed a form of knowledge transfer is a good start, along with working

collectively and having informal communications like the ones you have at the

coffee machine, as shown at the top of the diagram in Figure 3.

From that, some ideas deserve to be recorded for the longer run, through a

process of idea sedimentation. The ideas that deserve to last for a while can then
evolve into on-demand documentation, can be thrown away later, or can be

turned into some form of living document or other techniques described in the
book, like declarative automation (automation code or configuration that reads
well enough to be its own documentation) or enforced guidelines (knowledge

enforced as automated checks).

Figure 3: Patterns for avoiding traditional documentation

Beyond Documentation
Documentation has more to offer than just knowledge transfer and preservation.
The advice “Listen to the documentation” suggests that you consider the
frustrations of creating it as a signal to encourage more deliberate decision-

making, along with the approach of being documentation-driven (writing the
documentation before starting the construction), as represented in the diagram

in Figure 4.

Skilled developers making more deliberate decisions enable a process of

embedded learning for their workmates, who grow their skills as a result. This in
turn helps them make more deliberate decisions, and this loop improves the

quality of the living design. Using living documentation techniques and
approaches also enables hygienic transparency, whereby everyone can see how

clean the system is inside, which also gives developers feedback to improve the
living design.

Figure 4: A pattern language of how to improve the system beyond

documentation

