
23
GUI with Windows

Presentation Foundation

O b j e c t i v e s
In this chapter you’ll:
■ Define a WPF GUI with Extensible Application Markup

Language (XAML).
■ Handle WPF user-interface events.
■ Use WPF’s commands feature to handle common tasks

such as cut, copy and paste.
■ Customize the look-and-feel of WPF GUIs using styles and

control templates.
■ Use data binding to display data in WPF controls.

csfp6_23_WPF.fm Page 1 Thursday, July 7, 2016 10:16 AM

23_2 Chapter 23 GUI with Windows Presentation Foundation

O
u

tl
in

e

23.1 Introduction
Microsoft has three active GUI technologies—Windows Forms, Windows Presentation
Foundation (WPF) and the Universal Windows Platform (UWP). In Chapters 14–15,
you built GUIs using Windows Forms. In this chapter, you’ll build GUIs using Windows
Presentation Foundation (WPF), which—unlike Windows Forms—is completely cus-
tomizable. In Chapter 24, WPF Graphics and Multimedia, you’ll learn how to incorpo-
rate 2D graphics, 3D graphics, animation, audio and video in WPF apps. Microsoft’s
current and future direction is the Universal Windows Platform (UWP), which is de-
signed to provide a common platform and user experience across all Windows devices, in-
cluding personal computers, smartphones, tablets, Xbox and even Microsoft’s new
HoloLens virtual reality and augmented reality holographic headset—all using nearly
identical code. We’re moving to UWP as well and will provide two online UWP chapters.
For that reason, we’ve included our WPF chapters as is from this book’s previous edition
and we will no longer be updating our WPF treatment.

We begin with an introduction to WPF. Next, we discuss an important tool for cre-
ating WPF apps called XAML (pronounced “zammel”)—Extensible Application Markup
Language. XAML is an XML vocabulary for defining and arranging GUI controls without
any C# code. Because XAML is an XML vocabulary, you should understand the basics of
XML before learning XAML and WPF. We introduce XML in Sections 22.2–22.4.

Section 23.3 demonstrates how to define a WPF GUI with XAML. Sections 23.4–
23.7 demonstrate the basics of creating a WPF GUI—layout, controls and events. You’ll
also learn capabilities of WPF controls and event handling that are different from those in
Windows Forms. WPF allows you to easily customize the look-and-feel of a GUI beyond
what is possible in Windows Forms. Sections 23.8–23.11 demonstrate several techniques
for manipulating the appearance of your GUIs. WPF also allows you to create data-driven
GUIs that interact with many types of data. We demonstrate this in Section 23.12.

23.2 Windows Presentation Foundation (WPF)
Before WPF, you often had to use multiple technologies to build client apps. If a Windows
Forms app required video and audio capabilities, you needed to incorporate an additional
technology such as Windows Media Player. Likewise, if your app required 3D graphics ca-

23.1 Introduction
23.2 Windows Presentation Foundation

(WPF)
23.3 Declarative GUI Programming Using

XAML
23.4 Creating a WPF App
23.5 Laying Out Controls

23.5.1 General Layout Principles
23.5.2 Layout in Action

23.6 Event Handling

23.7 Commands and Common
Application Tasks

23.8 WPF GUI Customization
23.9 Using Styles to Change the

Appearance of Controls
23.10 Customizing Windows
23.11 Defining a Control’s Appearance

with Control Templates
23.12 Data-Driven GUIs with Data Binding
23.13 Wrap-Up

csfp6_23_WPF.fm Page 2 Thursday, July 7, 2016 10:16 AM

23.2 Windows Presentation Foundation (WPF) 23_3

pabilities, you had to incorporate a separate technology such as Direct3D. WPF provides
a single platform capable of handling both of these requirements, and more. It enables you
to use one technology to build apps containing GUI, images, animation, 2D or 3D graph-
ics, audio and video capabilities. In this chapter and Chapter 24, we demonstrate each of
these capabilities.

WPF can interoperate with existing technologies. For example, you can include WPF
controls in Windows Forms apps to incorporate multimedia content (such as audio or
video) without converting the entire app to WPF, which could be a costly and time-con-
suming process. You also can use Windows Forms controls in WPF apps.

WPF can use your computer’s graphics hardware acceleration capabilities to increase
your apps’ performance. In addition, WPF generates vector-based graphics and is resolu-
tion independent. Vector-based graphics are defined not by a grid of pixels as raster-based
graphics are, but rather by mathematical models. An advantage of vector-based graphics
is that when you change the resolution, there’s no loss of quality. Hence, the graphics
become portable to a great variety of devices. Moreover, your apps won’t appear smaller
on higher-resolution screens. Instead, they’ll remain the same size and display sharper.
Chapter 24 presents more information about vector-based graphics and resolution inde-
pendence.

Building a GUI with WPF is similar to building a GUI with Windows Forms—you
drag-and-drop predefined controls from the Toolbox onto the design area. Many WPF
controls correspond directly to those in Windows Forms. Just as in a Windows Forms app,
the functionality is event driven. Many of the Windows Forms events you’re familiar with
are also in WPF. A WPF Button, for example, is similar to a Windows Forms Button, and
both raise Click events.

There are several important differences between the two technologies, though. The
WPF layout scheme is different. WPF properties and events have more capabilities. Most
notably, WPF allows designers to define the appearance and content of a GUI without any
C# code by defining it in XAML, a descriptive markup language (that is, a text-based nota-
tion for describing something).

Introduction to XAML
In Windows Forms, when you use the designer to create a GUI, the IDE generates code
statements that create and configure the controls. In WPF, it generates XAML markup.
Because XML is designed to be readable by both humans and computers, you also can
manually write XAML markup to define GUI controls. When you compile your WPF
app, a XAML compiler generates code to create and configure controls based on your
XAML markup. This technique of defining what the GUI should contain without speci-
fying how to generate it is an example of declarative programming.

XAML allows designers and programmers to work together more efficiently. Without
writing any code, a graphic designer can edit the look-and-feel of an app using a design
tool, such as Microsoft’s Blend for Visual Studio—a XAML graphic design program that’s
installed with Visual Studio Community edition. A programmer can import the XAML
markup into Visual Studio and focus on coding the logic that gives an app its function-
ality. Even if you’re working alone, however, this separation of front-end appearance from
back-end logic improves your program’s organization and makes it easier to maintain.
XAML is an essential component of WPF programming.

csfp6_23_WPF.fm Page 3 Thursday, July 7, 2016 10:16 AM

23_4 Chapter 23 GUI with Windows Presentation Foundation

23.3 Declarative GUI Programming Using XAML
A XAML document defines the appearance of a WPF app. Figure 23.1 is a simple XAML
document that defines a window that displays Welcome to WPF! A XAML document con-
sists of many nested elements, delimited by start tags and end tags. As with any other XML
document, each XAML document must contain a single root element. Just as in XML,
data is placed as nested content or in attributes.

Presentation XAML Namespace and Standard XAML Namespace
Two standard namespaces must be defined in every XAML document so that the XAML
compiler can interpret your markup—the presentation XAML namespace, which defines
WPF-specific elements and attributes, and the standard XAML namespace, which defines
elements and attributes that are standard to all types of XAML documents. Usually, the
presentation XAML namespace (http://schemas.microsoft.com/winfx/2006/xaml/
presentation) is defined as the default namespace (line 6), and the standard XAML
namespace (http://schemas.microsoft.com/winfx/2006/xaml) is mapped to the name-
space prefix x (line 7). These are both automatically included in the Window element’s start
tag when you create a WPF app.

Window Control
WPF controls are represented by XAML elements. The root element of the XAML docu-
ment in Fig. 23.1 is a Window control (lines 5–16), which defines the app’s window—this

1 <!-- Fig. 23.1: MainWindow.xaml -->
2 <!-- A simple XAML document. -->
3
4 <!-- the Window control is the root element of the GUI -->
5 <Window x:Class="XAMLIntroduction.MainWindow"
6 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
7 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
8 Title="A Simple Window" Height="150" Width="250">
9

10 <!-- a layout container -->
11 <Grid Background="Gold">
12 <!-- a Label control -->
13 <Label Content="Welcome to WPF!" HorizontalAlignment="Center"
14 VerticalAlignment="Center"/>
15 </Grid>
16 </Window>

Fig. 23.1 | A simple XAML document.

Title

Gold background color

Label center aligned both
horizontally and vertically

150 pixels

250 pixels

csfp6_23_WPF.fm Page 4 Thursday, July 7, 2016 10:16 AM

23.4 Creating a WPF App 23_5

corresponds to a Form in Windows Forms. The Window start tag x:Class attribute (line 5)
specifies the name of the associated code-behind class that provides the GUI’s functionality.
The x: signifies that the Class attribute is located in the standard XAML namespace. A
XAML document must have an associated code-behind file to handle events.

Using attributes, you can define a control’s properties in XAML. For example, the
Window’s Title, Width and Height properties are set in line 8. A Window’s Title specifies
the text that’s displayed in the title bar. The Width and Height properties specify a con-
trol’s width and height, respectively, using machine-independent pixels.

Content Controls
Window is a content control (a control derived from class ContentControl), meaning it can
have exactly one child element or text content. You’ll almost always set a layout container
(a control derived from the Panel class) as the child element so that you can host multiple
controls in a Window. A layout container such as a Grid (lines 11–15) can have many child
elements, allowing it to contain many controls. In Section 23.5, you’ll use content con-
trols and layout containers to arrange a GUI.

Label Control
Like Window, a Label (lines 13–14) is also a ContentControl. Labels are generally used to
display text.

23.4 Creating a WPF App
To create a new WPF app, select File > New > Project… to display the New Project dialog
(Fig. 23.2) and select WPF Application from the list of template types under Visual C# >
Windows. Specify a name and location for your app, then click OK to create the project.
The IDE for a WPF app looks nearly identical to that of a Windows Forms app. You’ll rec-
ognize the familiar Toolbox, Design view, Solution Explorer and Properties window.

Fig. 23.2 | New Project dialog.

csfp6_23_WPF.fm Page 5 Thursday, July 7, 2016 10:16 AM

23_6 Chapter 23 GUI with Windows Presentation Foundation

XAML View1

There are differences in the IDE, however. One is the new XAML view (Fig. 23.3) that ap-
pears below the design area when you open a XAML document that represents a window.
The XAML view is linked to the Design view and the Properties window. When you edit
content in the Design view, the XAML view automatically updates, and vice versa. Likewise,
when you edit properties in the Properties window, the XAML view automatically updates,
and vice versa.

Generated Files
When you create a WPF app, several files are generated and can be viewed in the Solution
Explorer. App.xaml defines the Application object and its settings. The most noteworthy
setting is the Application element’s StartupUri attribute, which defines the XAML doc-
ument that executes first when the app loads (MainWindow.xaml by default). App.xaml.cs
contains App.xaml’s code-behind class and handles application-level events. MainWin-
dow.xaml defines the app’s window, and MainWindow.xaml.cs contains its code-behind
class, which handles the window’s events. The file name of the code-behind class is always
the file name of the associated XAML document followed by the .cs file-name extension.

Setting XAML Indent Size and Displaying Line Numbers
We use three-space indents in our code. To ensure that your code appears the same as the
book’s examples, change the tab spacing for XAML documents to three spaces (the default
is four). Select Tools > Options… to display the Options dialog, then in Text Editor >
XAML > Tabs change the Tab size and Indent size to 3. You should also configure the XAML
editor to display line numbers by checking the Line numbers checkbox in Text Editor >
XAML > General.

GUI Design
Creating a WPF app is similar to creating a Windows Forms app. You can drag-and-drop
controls onto the Design view of your WPF GUI. A control’s properties can be edited in
the Properties window. Because XAML is easy to understand and edit, some programmers
manually edit their GUIs’ XAML markup directly rather than doing everything through
the IDE’s drag-and-drop GUI designer and Properties window.

1. Visual-Studio-generated XAML can vary between editions—elements may appear in a different or-
der from what we show or with additional items that we do not discuss.

Fig. 23.3 | XAML view.

csfp6_23_WPF.fm Page 6 Thursday, July 7, 2016 10:16 AM

23.5 Laying Out Controls 23_7

23.5 Laying Out Controls
In Windows Forms, a control’s size and location are specified explicitly. In WPF, a con-
trol’s size should be specified as a range of possible values rather than fixed values, and its
location specified relative to those of other controls. This scheme, in which you specify
how controls share the available space, is called flow-based layout. Its advantage is that it
enables your GUIs, if designed properly, to be aesthetically pleasing, no matter how a user
might resize the app. Likewise, it enables your GUIs to be resolution independent.

23.5.1 General Layout Principles
Layout refers to the size and positioning of controls. The WPF layout scheme addresses
both of these in a flow-based fashion and can be summarized by two fundamental princi-
ples with regard to a control’s size and position.

Size of a Control
Unless necessary, a control’s size should not be defined explicitly. Doing so often creates
a design that looks pleasing when it first loads, but deteriorates when the app is resized
or the content updates. In addition to the Width and Height properties associated with
every control, all WPF controls have the MinWidth, MinHeight, MaxHeight and MaxWidth
properties. If the Width and Height properties are both Auto (which is the default when
they are not specified in the XAML code), you can use MinWidth, MinHeight, MaxWidth
and MaxHeight to specify a range of acceptable sizes for a control as it’s resized with its
container.

Position of a Control
A control’s position should not be defined in absolute terms. Instead, it should be specified
based on its position relative to the layout container in which it’s included and the other
controls in the same container. All controls have three properties for this purpose—Mar-

gin, HorizontalAlignment and VerticalAlignment. Margin specifies how much space to
put around a control’s edges. The value of Margin is a comma-separated list of four inte-
gers, representing the left, top, right and bottom margins. Additionally, you can specify
two integers—the first represents the value for the left and right margins and the second
for the top and bottom margins. If you specify just one integer, it uses the same margin on
all four sides.

HorizontalAlignment and VerticalAlignment specify how to align a control within
its layout container. Valid options of HorizontalAlignment are Left, Center, Right and
Stretch. Valid options of VerticalAlignment are Top, Center, Bottom and Stretch.
Stretch means that the object will occupy as much space as possible.

Other Layout Properties
A control can have other layout properties specific to the layout container in which it’s
contained. We’ll discuss these as we examine the specific layout containers. WPF provides
many controls for laying out a GUI. Figure 23.4 lists several of them.

csfp6_23_WPF.fm Page 7 Thursday, July 7, 2016 10:16 AM

23_8 Chapter 23 GUI with Windows Presentation Foundation

23.5.2 Layout in Action
Figure 23.5 shows the XAML document and the GUI display of a painter app. Note the
use of Margin, HorizontalAlignment and VerticalAlignment throughout the markup.
This example introduces several WPF controls that are commonly used for layout, as well
as a few other basic controls like Buttons and RadioButtons.

Control Description

Layout containers (derived from Panel)
Grid Layout is defined by a grid of rows and columns, depending on the RowDefini-

tions and ColumnDefinitions properties. Elements are placed into cells.
Canvas Layout is coordinate based. Element positions are defined explicitly by their dis-

tance from the top and left edges of the Canvas.
StackPanel Elements are arranged in a single row or column, depending on the Orientation

property.
DockPanel Elements are positioned based on which edge they’re docked to. If the Last-

ChildFill property is True, the last element gets the remaining space in the
middle.

WrapPanel A wrapping StackPanel. Elements are arranged sequentially in rows or columns
(depending on the Orientation), each row or column wrapping to start a new
one when it reaches the WrapPanel’s right or bottom edge, respectively.

Content controls (derived from ContentControl)
Border Adds a background or a border to the child element.
GroupBox Surrounds the child element with a titled box.
Window The app’s window. Also the root element.
Expander Puts the child element in a titled area that collapses to display just the header

and expands to display the header and the content.

Fig. 23.4 | Common controls used for layout.

1 <!-- Fig. 23.5: MainWindow.xaml -->
2 <!-- XAML of a painter app. -->
3 <Window x:Class="Painter.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Painter" Height="340" Width="350" Background="Beige">
7
8 <!-- creates a Grid -->
9 <Grid>

10 <Grid.ColumnDefinitions>
11 <ColumnDefinition Width="Auto" /> <!-- defines a column -->
12 <ColumnDefinition Width="*" />
13 </Grid.ColumnDefinitions>

Fig. 23.5 | XAML of a painter app. (Part 1 of 3.)

csfp6_23_WPF.fm Page 8 Thursday, July 7, 2016 10:16 AM

23.5 Laying Out Controls 23_9

14
15 <!-- creates a Canvas -->
16 <Canvas x:Name="paintCanvas" Grid.Column="1" Background="White"
17 Margin="0" MouseMove="paintCanvas_MouseMove"
18 MouseLeftButtonDown="paintCanvas_MouseLeftButtonDown"
19 MouseLeftButtonUp="paintCanvas_MouseLeftButtonUp"
20 MouseRightButtonDown="paintCanvas_MouseRightButtonDown"
21 MouseRightButtonUp="paintCanvas_MouseRightButtonUp" />
22
23 <!-- creates a StackPanel-->
24 <StackPanel Margin="3">
25 <!-- creates a GroupBox for color options -->
26 <GroupBox Header="Color" Margin="3">
27 <StackPanel Margin="3" HorizontalAlignment="Left"
28 VerticalAlignment="Top">
29
30 <!-- creates RadioButtons for selecting color -->
31 <RadioButton x:Name="redRadioButton" Content="Red"
32 Margin="3" Checked="redRadioButton_Checked" />
33 <RadioButton x:Name="blueRadioButton" Content="Blue"
34 Margin="3" Checked="blueRadioButton_Checked" />
35 <RadioButton x:Name="greenRadioButton" Content="Green"
36 Margin="3" Checked="greenRadioButton_Checked" />
37 <RadioButton x:Name="blackRadioButton" Content="Black"
38 IsChecked="True" Margin="3"
39 Checked="blackRadioButton_Checked" />
40 </StackPanel>
41 </GroupBox>
42
43 <!-- creates GroupBox for size options -->
44 <GroupBox Header="Size" Margin="3">
45 <StackPanel Margin="3" HorizontalAlignment="Left"
46 VerticalAlignment="Top">
47 <RadioButton x:Name="smallRadioButton" Content="Small"
48 Margin="3" Checked="smallRadioButton_Checked" />
49 <RadioButton x:Name="mediumRadioButton" IsChecked="True"
50 Checked="mediumRadioButton_Checked" Content="Medium"
51 Margin="3" />
52 <RadioButton x:Name="largeRadioButton" Content="Large"
53 Margin="3" Checked="largeRadioButton_Checked" />
54 </StackPanel>
55 </GroupBox>
56
57 <!-- creates a Button-->
58 <Button x:Name="undoButton" Content="Undo" Width="75"
59 Margin="3,10,3,3" Click="undoButton_Click"/>
60
61 <!-- creates a Button-->
62 <Button x:Name="clearButton" Content="Clear" Width="75"
63 Margin="3,10,3,3" Click="clearButton_Click"/>
64 </StackPanel>
65 </Grid>
66 </Window>

Fig. 23.5 | XAML of a painter app. (Part 2 of 3.)

csfp6_23_WPF.fm Page 9 Thursday, July 7, 2016 10:16 AM

23_10 Chapter 23 GUI with Windows Presentation Foundation

This app’s controls look similar to Windows Forms controls. WPF RadioButtons
function as mutually exclusive options, just like their Windows Forms counterparts. How-
ever, a WPF RadioButton does not have a Text property. Instead, it’s a ContentControl,
meaning it can have exactly one child or text content. This makes the control more versatile,
enabling it to be labeled by an image or other item. In this example, each RadioButton is
labeled by plain text specified with the Content attribute (for example, lines 31, 33, 35 and
37). A WPF Button behaves like a Windows Forms Button but is a ContentControl. As
such, a WPF Button can display any single element as its content, not just text. Lines 58–
59 and 62–63 define the two buttons seen in the Painter app. You can drag and drop
controls onto the WPF designer and create their event handlers, just as you do in the Win-
dows Forms designer.

GroupBox Control
A WPF GroupBox arranges controls and displays just as a Windows Forms GroupBox would,
but using one is slightly different. The Header property replaces the Windows Forms ver-
sion’s Text property. Also, a GroupBox is a ContentControl, so to place multiple controls
in it, you must place them in a layout container such as a StackPanel (lines 27–40).

StackPanel Control
In the Painter app, we organized each GroupBox’s RadioButtons by placing them in
StackPanels (for example, lines 27–40). A StackPanel is the simplest of layout containers.
It arranges its content either vertically or horizontally, depending on its Orientation prop-
erty’s setting. The default Orientation is Vertical, which is used by every StackPanel
in the Painter example.

Grid Control
The Painter Window’s contents are contained within a Grid—a flexible, all-purpose layout
container. A Grid organizes controls into a user-defined number of rows and columns (one
row and one column by default). You can define a Grid’s rows and columns by setting its
RowDefinitions and ColumnDefinitions properties, whose values are a collection of Row-
Definition and ColumnDefinition objects, respectively. Because these properties do not

Fig. 23.5 | XAML of a painter app. (Part 3 of 3.)

csfp6_23_WPF.fm Page 10 Thursday, July 7, 2016 10:16 AM

23.5 Laying Out Controls 23_11

take string values, they cannot be specified as attributes in the Grid tag. Another syntax
is used instead. A class’s property can be defined in XAML as a nested element with the
name ClassName.PropertyName. For example, the Grid.ColumnDefinitions element in
lines 10–13 sets the Grid’s ColumnDefinitions property and defines two columns, which
separate the options from the painting area, as shown in Fig. 23.5.

You can specify the Width of a ColumnDefinition and the Height of a RowDefinition
with an explicit size, a relative size (using *) or Auto. Auto makes the row or column only
as big as it needs to be to fit its contents. The setting * specifies the size of a row or column
with respect to the Grid’s other rows and columns. For example, a column with a Height
of 2* would be twice the size of a column that’s 1* (or just *). A Grid first allocates its space
to the rows and columns whose sizes are defined explicitly or determined automatically.
The remaining space is divided among the other rows and columns. By default, all Widths
and Heights are set to *, so every cell in the grid is of equal size. In the Painter app, the
first column is just wide enough to fit the controls, and the rest of the space is allotted to
the painting area (lines 11–12). If you resize the Painter window, you’ll notice that only
the width of the paintable area increases or decreases.

If you click the ellipsis button next to the RowDefinitions or ColumnDefinitions
property in the Properties window, the Collection Editor window will appear. (If you
cannot find a property, type its name in the Search Properties text box at the top of the
Properties window or view the properties by Name rather than Category.) This tool can be
used to add, remove, reorder, and edit the properties of rows and columns in a Grid. In
fact, any property that takes a collection as a value can be edited in a version of the Collec-
tion Editor specific to that collection. For example, you could edit the Items property of a
ComboBox (that is, drop-down list) in such a way. The ColumnDefinitions Collection
Editor is shown in Fig. 23.6.

The control properties we’ve introduced so far look and function just like their Win-
dows Forms counterparts. To indicate which cell of a Grid a control belongs in, however, you

Fig. 23.6 | Using the Collection Editor.

csfp6_23_WPF.fm Page 11 Thursday, July 7, 2016 10:16 AM

23_12 Chapter 23 GUI with Windows Presentation Foundation

use the Grid.Row and Grid.Column properties. These are known as attached properties—
they’re defined by a different control than that to which they’re applied. In this case, Row and
Column are defined by the Grid itself but applied to the controls contained in the Grid (for
example, line 16 in Fig. 23.5). To specify the number of rows or columns that a control
spans, you can use the Grid.RowSpan or Grid.ColumnSpan attached properties, respectively.
By default, a control spans the entire Grid, unless the Grid.Row or Grid.Column property is
set, in which case the control spans only the specified row or column by default.

Canvas Control
The painting area of the Painter app is a Canvas (lines 16–21), another layout container.
A Canvas allows users to position controls by defining explicit coordinates. Controls in a
Canvas have the attached properties, Canvas.Left and Canvas.Top, which specify the
control’s coordinate position based on its distance from the Canvas’s left and top borders,
respectively. If two controls overlap, the one with the greater Canvas.ZIndex displays in the
foreground. If this property is not defined for the controls, then the last control added to
the canvas displays in the foreground. When you provide a name for a control via the
Properties window, the IDE adds an x:Name attribute to the controls XAML. This name
is used in the C# code as the control’s variable name.

Layout in Design Mode
As you’re creating your GUI in Design mode, you’ll notice many helpful layout features.
For example, as you resize a control, its width and height are displayed. In addition, snap-
lines appear as necessary to help you align the edges of elements. These lines will also ap-
pear when you move controls around the design area.

When you select a control, margin lines that extend from the control to the edges of
its container appear, as shown in Fig. 23.7. If a solid line containing a number extends to
the edge of the container, then the distance between the control and that edge is fixed. If
a dashed line appears between the edge of the control and the edge of the container, then
the distance between the control and that edge of the container is dynamic—the distance
changes as the container size changes. You can toggle between the two by clicking the icons
at the ends of the lines.

Fig. 23.7 | Margin lines and gridlines in Design view.

Rulers

Gridlines

Margin lines

Click these icons to
toggle between fixed
and dynamic distances

csfp6_23_WPF.fm Page 12 Thursday, July 7, 2016 10:16 AM

23.6 Event Handling 23_13

Furthermore, the Design view also helps you use a Grid. As shown in Fig. 23.7, when
you select a control in a Grid, the Grid’s rulers appear to the left and on top of it. The
widths and heights of each column and row, respectively, appear on the rulers. Gridlines
that outline the Grid’s rows and columns also appear, helping you align and position the
Grid’s elements. You also can create more rows and columns by clicking where you want
to separate them on the ruler.

23.6 Event Handling
Basic event handling in WPF is almost identical to Windows Forms event handling, but
there is a fundamental difference, which we’ll explain later in this section. We’ll use the
Painter example to introduce WPF event handling. Figure 23.8 provides the code-be-
hind class for the Painter Window. As in Windows Forms GUIs, when you double click a
control, the IDE automatically generates an event handler for that control’s primary event.
The IDE also adds an attribute to the control’s XAML element specifying the event name
and the name of the event handler that responds to the event. For example, in line 32 of
Fig. 23.5, the attribute

specifies that the redRadioButton’s Checked event handler is redRadioButton_Checked.

Checked="redRadioButton_Checked"

1 // Fig. 23.8: MainWindow.xaml.cs
2 // Code-behind for MainWindow.xaml.
3 using System.Windows;
4 using System.Windows.Controls;
5 using System.Windows.Input;
6 using System.Windows.Media;
7 using System.Windows.Shapes;
8
9 namespace Painter

10 {
11 public partial class MainWindow : Window
12 {
13 private int diameter = (int) Sizes.MEDIUM; // diameter of circle
14 private Brush brushColor = Brushes.Black; // drawing color
15 private bool shouldErase = false; // specify whether to erase
16 private bool shouldPaint = false; // specify whether to paint
17
18 private enum Sizes // size constants for diameter of the circle
19 {
20 SMALL = 4,
21 MEDIUM = 8,
22 LARGE = 10
23 } // end enum Sizes
24
25 // constructor
26 public MainWindow()
27 {

Fig. 23.8 | Code-behind for MainWindow.xaml. (Part 1 of 4.)

csfp6_23_WPF.fm Page 13 Thursday, July 7, 2016 10:16 AM

23_14 Chapter 23 GUI with Windows Presentation Foundation

28 InitializeComponent();
29 } // end constructor
30
31 // paints a circle on the Canvas
32 private void PaintCircle(Brush circleColor, Point position)
33 {
34 Ellipse newEllipse = new Ellipse(); // create an Ellipse
35
36 newEllipse.Fill = circleColor; // set Ellipse's color
37 newEllipse.Width = diameter; // set its horizontal diameter
38 newEllipse.Height = diameter; // set its vertical diameter
39
40 // set the Ellipse's position
41 Canvas.SetTop(newEllipse, position.Y);
42 Canvas.SetLeft(newEllipse, position.X);
43
44 paintCanvas.Children.Add(newEllipse);
45 } // end method PaintCircle
46
47 // handles paintCanvas's MouseLeftButtonDown event
48 private void paintCanvas_MouseLeftButtonDown(object sender,
49 MouseButtonEventArgs e)
50 {
51 shouldPaint = true; // OK to draw on the Canvas
52 } // end method paintCanvas_MouseLeftButtonDown
53
54 // handles paintCanvas's MouseLeftButtonUp event
55 private void paintCanvas_MouseLeftButtonUp(object sender,
56 MouseButtonEventArgs e)
57 {
58 shouldPaint = false; // do not draw on the Canvas
59 } // end method paintCanvas_MouseLeftButtonUp
60
61 // handles paintCanvas's MouseRightButtonDown event
62 private void paintCanvas_MouseRightButtonDown(object sender,
63 MouseButtonEventArgs e)
64 {
65 shouldErase = true; // OK to erase the Canvas
66 } // end method paintCanvas_MouseRightButtonDown
67
68 // handles paintCanvas's MouseRightButtonUp event
69 private void paintCanvas_MouseRightButtonUp(object sender,
70 MouseButtonEventArgs e)
71 {
72 shouldErase = false; // do not erase the Canvas
73 } // end method paintCanvas_MouseRightButtonUp
74
75 // handles paintCanvas's MouseMove event
76 private void paintCanvas_MouseMove(object sender,
77 MouseEventArgs e)
78 {
79 if (shouldPaint)
80 {

Fig. 23.8 | Code-behind for MainWindow.xaml. (Part 2 of 4.)

csfp6_23_WPF.fm Page 14 Thursday, July 7, 2016 10:16 AM

23.6 Event Handling 23_15

81 // draw a circle of selected color at current mouse position
82 Point mousePosition = e.GetPosition(paintCanvas);
83 PaintCircle(brushColor, mousePosition);
84 } // end if
85 else if (shouldErase)
86 {
87 // erase by drawing circles of the Canvas's background color
88 Point mousePosition = e.GetPosition(paintCanvas);
89 PaintCircle(paintCanvas.Background, mousePosition);
90 } // end else if
91 } // end method paintCanvas_MouseMove
92
93 // handles Red RadioButton's Checked event
94 private void redRadioButton_Checked(object sender,
95 RoutedEventArgs e)
96 {
97 brushColor = Brushes.Red;
98 } // end method redRadioButton_Checked
99
100 // handles Blue RadioButton's Checked event
101 private void blueRadioButton_Checked(object sender,
102 RoutedEventArgs e)
103 {
104 brushColor = Brushes.Blue;
105 } // end method blueRadioButton_Checked
106
107 // handles Green RadioButton's Checked event
108 private void greenRadioButton_Checked(object sender,
109 RoutedEventArgs e)
110 {
111 brushColor = Brushes.Green;
112 } // end method greenRadioButton_Checked
113
114 // handles Black RadioButton's Checked event
115 private void blackRadioButton_Checked(object sender,
116 RoutedEventArgs e)
117 {
118 brushColor = Brushes.Black;
119 } // end method blackRadioButton_Checked
120
121 // handles Small RadioButton's Checked event
122 private void smallRadioButton_Checked(object sender,
123 RoutedEventArgs e)
124 {
125 diameter = (int) Sizes.SMALL;
126 } // end method smallRadioButton_Checked
127
128 // handles Medium RadioButton's Checked event
129 private void mediumRadioButton_Checked(object sender,
130 RoutedEventArgs e)
131 {
132 diameter = (int) Sizes.MEDIUM;
133 } // end method mediumRadioButton_Checked

Fig. 23.8 | Code-behind for MainWindow.xaml. (Part 3 of 4.)

csfp6_23_WPF.fm Page 15 Thursday, July 7, 2016 10:16 AM

23_16 Chapter 23 GUI with Windows Presentation Foundation

The Painter app “draws” by placing colored circles on the Canvas at the mouse
pointer’s position as you drag the mouse. The PaintCircle method (lines 32–45 in
Fig. 23.8) creates the circle by defining an Ellipse object (lines 34–38), and positions it
using the Canvas.SetTop and Canvas.SetLeft methods (lines 41–42), which change the
circle’s Canvas.Left and Canvas.Top attached properties, respectively.

The Children property stores a list (of type UIElementCollection) of a layout con-
tainer’s child elements. This allows you to edit the layout container’s child elements with
C# code as you would any other implementation of the IEnumerable interface. You can

134
135 // handles Large RadioButton's Checked event
136 private void largeRadioButton_Checked(object sender,
137 RoutedEventArgs e)
138 {
139 diameter = (int) Sizes.LARGE;
140 } // end method largeRadioButton_Checked
141
142 // handles Undo Button's Click event
143 private void undoButton_Click(object sender, RoutedEventArgs e)
144 {
145 int count = paintCanvas.Children.Count;
146
147 // if there are any shapes on Canvas remove the last one added
148 if (count > 0)
149 paintCanvas.Children.RemoveAt(count - 1);
150 } // end method undoButton_Click
151
152 // handles Clear Button's Click event
153 private void clearButton_Click(object sender, RoutedEventArgs e)
154 {
155 paintCanvas.Children.Clear(); // clear the canvas
156 } // end method clearButton_Click
157 } // end class MainWindow
158 } // end namespace Painter

Fig. 23.8 | Code-behind for MainWindow.xaml. (Part 4 of 4.)

csfp6_23_WPF.fm Page 16 Thursday, July 7, 2016 10:16 AM

23.6 Event Handling 23_17

add an element to the container by calling the Add method of the Children list (for
example, line 44). The Undo and Clear buttons work by invoking the RemoveAt and Clear
methods of the Children list (lines 149 and 155), respectively.

Just as with a Windows Forms RadioButton, a WPF RadioButton has a Checked
event. Lines 94–140 handle the Checked event for each of the RadioButtons in this
example, which change the color and the size of the circles painted on the Canvas. The
Button control’s Click event also functions the same in WPF as it did in Windows Forms.
Lines 143–156 handle the Undo and Clear Buttons. The event-handler declarations look
almost identical to how they would look in a Windows Forms app, except that the event-
arguments object (e) is a RoutedEventArgs object instead of an EventArgs object. We’ll
explain why later in this section.

Mouse and Keyboard Events
WPF has built-in support for keyboard and mouse events that’s nearly identical to the sup-
port in Windows Forms. Painter uses the MouseMove event of the paintable Canvas to
paint and erase (lines 76–91). A control’s MouseMove event is triggered whenever the
mouse moves within the boundaries of the control. Information for the event is passed to
the event handler using a MouseEventArgs object, which contains mouse-specific informa-
tion. The GetPosition method of MouseEventArgs, for example, returns the current po-
sition of the mouse relative to the control that triggered the event (for example, lines 82
and 88). MouseMove works the same as it does in Windows Forms. [Note: Much of the func-
tionality in our sample Painter app is already provided by the WPF InkCanvas control.
We chose not to use this control so we could demonstrate various other WPF features.]

WPF has additional mouse events. Painter also uses the MouseLeftButtonDown and
MouseLeftButtonUp events to toggle painting on and off (lines 48–59), and the Mouse-
RightButtonDown and MouseRightButtonUp events to toggle erasing on and off (lines 62–
73). All of these events pass information to the event handler using the MouseButtonEvent-
Args object, which has properties specific to a mouse button (for example, ButtonState or
ClickCount) in addition to mouse-specific ones. These events are new to WPF and are
more specific versions of MouseUp and MouseDown (which are still available in WPF). A sum-
mary of commonly used mouse and keyboard events is provided in Fig. 23.9.

Common mouse and keyboard events

Mouse Event with an Event Argument of Type MouseEventArgs
MouseMove Raised when you move the mouse within a control’s boundaries.

Mouse Events with an Event Argument of Type MouseButtonEventArgs
MouseLeftButtonDown Raised when the left mouse button is pressed.
MouseLeftButtonUp Raised when the left mouse button is released.
MouseRightButtonDown Raised when the right mouse button is pressed.
MouseRightButtonUp Raised when the right mouse button is released.

Mouse Event with an Event Argument of Type MouseWheelEventArgs
MouseWheel Raised when the mouse wheel is rotated.

Fig. 23.9 | Common mouse and keyboard events. (Part 1 of 2.)

csfp6_23_WPF.fm Page 17 Thursday, July 7, 2016 10:16 AM

23_18 Chapter 23 GUI with Windows Presentation Foundation

Routed Events
WPF events have a significant distinction from their Windows Forms counterparts—they
can travel either up (from child to parent) or down (from parent to child) the containment
hierarchy—the hierarchy of nested elements defined within a control. This is called event
routing, and all WPF events are routed events.

The event-arguments object that’s passed to the event handler of a WPF Button’s
Click event or a RadioButton’s Check event is of the type RoutedEventArgs. All event-
argument objects in WPF are of type RoutedEventArgs or one of its subclasses. As an event
travels up or down the hierarchy, it may be useful to stop it before it reaches the end. When
the Handled property of the RoutedEventArgs parameter is set to true, event handlers
ignore the event. It may also be useful to know the source where the event was first trig-
gered. The Source property stores this information. You can learn more about the benefits
of routed events at bit.ly/RoutedEvents.

Demonstrating Routed Events
Figures 23.10 and 23.11 show the XAML and code-behind for a program that demon-
strates event routing. The program contains two GroupBoxes, each with a Label inside
(lines 15–27 in Fig. 23.10). One group handles a left-mouse-button press with Mouse-
LeftButtonUp, and the other with PreviewMouseLeftButtonUp. As the event travels up or
down the containment hierarchy, a log of where the event has traveled is displayed in a
TextBox (line 29). The WPF TextBox functions just like its Windows Forms counterpart.

Keyboard Events with an Event Argument of Type KeyEventArgs
KeyDown Raised when a key is pressed.
KeyUp Raised when a key is released.

1 <!-- Fig. 23.10: MainWindow.xaml -->
2 <!-- Routed-events example (XAML). -->
3 <Window x:Class="RoutedEvents.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Routed Events" Height="300" Width="300"
7 x:Name="routedEventsWindow">
8 <Grid>
9 <Grid.RowDefinitions>

10 <RowDefinition Height="Auto" />
11 <RowDefinition Height="Auto" />
12 <RowDefinition Height="*" />
13 </Grid.RowDefinitions>
14
15 <GroupBox x:Name="tunnelingGroupBox" Grid.Row="0" Header="Tunneling"
16 Margin="5" PreviewMouseLeftButtonUp="Tunneling">

Fig. 23.10 | Routed-events example (XAML). (Part 1 of 2.)

Common mouse and keyboard events

Fig. 23.9 | Common mouse and keyboard events. (Part 2 of 2.)

csfp6_23_WPF.fm Page 18 Thursday, July 7, 2016 10:16 AM

23.6 Event Handling 23_19

17 <Label x:Name="tunnelingLabel" Margin="5"
18 HorizontalAlignment="Center"
19 PreviewMouseLeftButtonUp="Tunneling" Content="Click Here"/>
20 </GroupBox>
21
22 <GroupBox x:Name="bubblingGroupBox" Grid.Row="1" Header="Bubbling"
23 Margin="5" MouseLeftButtonUp="Bubbling">
24 <Label x:Name="bubblingLabel" Margin="5"
25 MouseLeftButtonUp="Bubbling" HorizontalAlignment="Center"
26 Content="Click Here"/>
27 </GroupBox>
28
29 <TextBox x:Name="logTextBox" Grid.Row="2" Margin="5" />
30 </Grid>
31 </Window>

1 // Fig. 23.11: MainWindow.xaml.cs
2 // Routed-events example (code-behind).
3 using System.Windows;
4 using System.Windows.Controls;
5 using System.Windows.Input;
6
7 namespace RoutedEvents
8 {
9 public partial class MainWindow : Window

10 {
11 int bubblingEventStep = 1; // step counter for Bubbling
12 int tunnelingEventStep = 1; // step counter for Tunneling
13 string tunnelingLogText = string.Empty; // temporary Tunneling log
14
15 public RoutedEventsWindow()
16 {
17 InitializeComponent();
18 } // end constructor
19
20 // PreviewMouseUp is a tunneling event
21 private void Tunneling(object sender, MouseButtonEventArgs e)
22 {
23 // append step number and sender
24 tunnelingLogText = string.Format("{0}({1}): {2}\n",
25 tunnelingLogText, tunnelingEventStep,
26 ((Control) sender).Name);
27 ++tunnelingEventStep; // increment counter
28
29 // execution goes from parent to child, ending with the source
30 if (e.Source.Equals(sender))
31 {
32 tunnelingLogText = string.Format(
33 "This is a tunneling event:\n{0}", tunnelingLogText);

Fig. 23.11 | Routed-events example (code-behind). (Part 1 of 2.)

Fig. 23.10 | Routed-events example (XAML). (Part 2 of 2.)

csfp6_23_WPF.fm Page 19 Thursday, July 7, 2016 10:16 AM

23_20 Chapter 23 GUI with Windows Presentation Foundation

There are three types of routed events—direct events, bubbling events and tunneling
events. Direct events are like ordinary Windows Forms events—they do not travel up or
down the containment hierarchy. Bubbling events start at the Source and travel up the
hierarchy ending at the root (Window) or until you set Handled to true. Tunneling events
start at the top and travel down the hierarchy until they reach the Source or Handled is
true. To help you distinguish tunneling events from bubbling events, WPF prefixes the
names of tunneling events with Preview. For example, PreviewMouseLeftButtonDown is
the tunneling version of MouseLeftButtonDown, which is a bubbling event.

If you click the Click Here Label in the Tunneling GroupBox, the click is handled first
by the GroupBox, then by the contained Label. The event handler that responds to the
click handles the PreviewMouseLeftButtonUp event—a tunneling event. The Tunneling
method (lines 21–38 in Fig. 23.11) handles the events of both the GroupBox and the

34 logTextBox.Text = tunnelingLogText; // set logTextBox text
35 tunnelingLogText = string.Empty; // clear temporary log
36 tunnelingEventStep = 1; // reset counter
37 } // end if
38 } // end method Tunneling
39
40 // MouseUp is a bubbling event
41 private void Bubbling(object sender, MouseButtonEventArgs e)
42 {
43 // execution goes from child to parent, starting at the source
44 if (e.Source.Equals(sender))
45 {
46 logTextBox.Clear(); // clear the logTextBox
47 bubblingEventStep = 1; // reset counter
48 logTextBox.Text = "This is a bubbling event:\n";
49 } // end if
50
51 // append step number and sender
52 logTextBox.Text = string.Format("{0}({1}): {2}\n",
53 logTextBox.Text, bubblingEventStep,
54 ((Control) sender).Name);
55 ++bubblingEventStep;
56 } // end method Bubbling
57 } // end class MainWindow
58 } // end namespace RoutedEvents

Fig. 23.11 | Routed-events example (code-behind). (Part 2 of 2.)

a) b)

csfp6_23_WPF.fm Page 20 Thursday, July 7, 2016 10:16 AM

23.7 Commands and Common Application Tasks 23_21

Label. An event handler can handle events for many controls. Simply select each control
then use the events tab in the Properties window to select the appropriate event handler
for the corresponding event of each control. If you click the other Label, the click is han-
dled first by the Label, then by the containing GroupBox. The Bubbling method (lines 41–
56) handles the MouseLeftButtonUp events of both controls.

23.7 Commands and Common Application Tasks
In Windows Forms, event handling is the only way to respond to user actions. WPF provides
an alternate technique called a command—an action or a task that may be triggered by many
different user interactions. In Visual Studio, for example, you can cut, copy and paste code.
You can execute these tasks through the Edit menu, a toolbar or keyboard shortcuts. To pro-
gram this functionality in WPF, you can define a single command for each task, thus cen-
tralizing the handling of common tasks—this is not easily done in Windows Forms.

Commands also enable you to synchronize a task’s availability to the state of its cor-
responding controls. For example, users should be able to copy something only if they
have content selected. When you define the copy command, you can specify this as a
requirement. As a result, if the user has no content selected, then the menu item, toolbar
item and keyboard shortcut for copying are all automatically disabled.

Commands are implementations of the ICommand interface. When a command is exe-
cuted, the Execute method is called. However, the command’s execution logic is not
defined in its Execute method. You must specify this logic when implementing the com-
mand. An ICommand’s CanExecute method works the same way. The logic that specifies
when a command is enabled and disabled is not determined by the CanExecute method
and must instead be specified by responding to an appropriate event. Class RoutedCommand
is the standard implementation of ICommand. Every RoutedCommand has a Name and a col-
lection of InputGestures (that is, keyboard shortcuts) associated with it. RoutedUICom-
mand is an extension of RoutedCommand with a Text property, which specifies the default
text to display on a GUI element that triggers the command.

WPF provides a command library of built-in commands. These commands have their
standard keyboard shortcuts already associated with them. For example, Copy is a built-in
command and has Ctrl-C associated with it. Figure 23.12 provides a list of some common
built-in commands, separated by the classes in which they’re defined.

Common built-in commands from the WPF command library

ApplicationCommands properties
New Open Save Close

Cut Copy Paste

EditingCommands properties
ToggleBold ToggleItalic ToggleUnderline

MediaCommands properties
Play Stop Rewind FastForward

IncreaseVolume DecreaseVolume NextTrack PreviousTrack

Fig. 23.12 | Common built-in commands from the WPF command library.

csfp6_23_WPF.fm Page 21 Thursday, July 7, 2016 10:16 AM

23_22 Chapter 23 GUI with Windows Presentation Foundation

Figures 23.13 and 23.14 are the XAML markup and C# code for a simple text-editor
app that allows users to format text into bold and italics, and also to cut, copy and paste
text. The example uses the RichTextBox control (line 49), which allows users to enter, edit
and format text. We use this app to demonstrate several built-in commands from the com-
mand library.

1 <!-- Fig. 23.13: MainWindow.xaml -->
2 <!-- Creating menus and toolbars, and using commands (XAML). -->
3 <Window x:Class="TextEditor.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Text Editor" Height="300" Width="300">
7
8
9

10
11
12
13 <Grid> <!-- define the GUI -->
14 <Grid.RowDefinitions>
15 <RowDefinition Height="Auto" />
16 <RowDefinition Height="Auto" />
17 <RowDefinition Height="*" />
18 </Grid.RowDefinitions>
19
20 <!-- create the menu -->
21 <!-- map each menu item to corresponding command -->
22
23 <MenuItem Header="Exit" />
24 </MenuItem>
25 <MenuItem Header="Edit">
26 <MenuItem Header="Cut" />
27 <MenuItem Header="Copy" />
28 <MenuItem Header="Paste" />
29 <!-- separates groups of menu items -->
30 <MenuItem Header="Bold"
31 FontWeight="Bold" />
32 <MenuItem Header="Italic"
33 FontStyle="Italic" />
34 </MenuItem>
35 </Menu>
36
37 <!-- create the toolbar -->
38 <!-- map each toolbar item to corresponding command -->
39 <Button >Cut</Button>
40 <Button >Copy</Button>
41 <Button >Paste</Button>
42 <!-- separates groups of toolbar items -->
43 <Button FontWeight="Bold" >Bold</Button>
44 <Button FontStyle="Italic" >
45 Italic</Button>
46 </ToolBar>

Fig. 23.13 | Creating menus and toolbars, and using commands (XAML). (Part 1 of 2.)

<Window.CommandBindings> <!-- define command bindings -->
 <!-- bind the Close command to handler -->
 <CommandBinding Command="Close" Executed="closeCommand_Executed" />
</Window.CommandBindings>

<Menu Grid.Row="0">

<MenuItem Header="File">
Command="Close"

Command="Cut"
Command="Copy"
Command="Paste"

<Separator />
Command="ToggleBold"

Command="ToggleItalic"

<ToolBar Grid.Row="1">

Command="Cut"
Command="Copy"
Command="Paste"

<Separator />
Command="ToggleBold"
Command="ToggleItalic"

csfp6_23_WPF.fm Page 22 Thursday, July 7, 2016 10:16 AM

23.7 Commands and Common Application Tasks 23_23

47
48 <!-- display editable, formattable text -->
49
50 </Grid>
51 </Window>

1 // Fig. 23.14: MainWindow.xaml.cs
2 // Code-behind class for a simple text editor.
3 using System.Windows;
4 using System.Windows.Input;
5
6 namespace TextEditor
7 {
8 public partial class MainWindow : Window
9 {

10 public MainWindow()
11 {
12 InitializeComponent();
13 } // end constructor
14
15 // exit the app
16 private void closeCommand_Executed(object sender,
17 ExecutedRoutedEventArgs e)
18 {
19 Application.Current.Shutdown();
20 } // end method closeCommand_Executed
21 } // end class MainWindow
22 } // end namespace TextEditor

Fig. 23.14 | Code-behind class for a simple text editor. (Part 1 of 2.)

Fig. 23.13 | Creating menus and toolbars, and using commands (XAML). (Part 2 of 2.)

<RichTextBox Grid.Row="2" Margin="5" />

a) When the app loads b) After selecting some text

Separator

csfp6_23_WPF.fm Page 23 Thursday, July 7, 2016 10:16 AM

23_24 Chapter 23 GUI with Windows Presentation Foundation

A command is executed when it’s triggered by a command source. For example, the
Close command is triggered by a MenuItem (line 23 in Fig. 23.13). The Cut command has
two sources, a MenuItem and a ToolBar Button (lines 26 and 39, respectively). A command
can have many sources.

To make use of a command, you must create a command binding—a link between a
command and the methods containing its logic. You can declare a command binding by
creating a CommandBinding object in XAML and setting its Command property to the name
of the associated command (line 10). A command binding raises the Executed and Pre-
viewExecuted events (bubbling and tunneling versions of the same event) when its associ-
ated command is executed. You program the command’s functionality into an event
handler for one of these events. In line 10, we set the Executed attribute to a method
name, telling the program that the specified method (closeCommand_Executed) handles
the command binding’s Executed event.

In this example, we demonstrate the use of a command binding by implementing the
Close command. When it executes, it shuts down the app. The method that executes this
task is Application.Current.Shutdown, as shown in line 19 of Fig. 23.14.

You also can use a command binding to specify the logic for determining when a com-
mand should be enabled or disabled. You can do so by handling either the CanExecute or
PreviewCanExecute (bubbling and tunneling versions of the same events) events in the
same way that you handle the Executed or PreviewExecuted events. Because we do not
define such a handler for the Close command in its command binding, it’s always enabled.
Command bindings should be defined within the Window.CommandBindings element (for
example, lines 8–11 in Fig. 23.13).

The only time a command binding is not necessary is when a control has built-in func-
tionality for dealing with a command. A Button or MenuItem linked to the Cut, Copy, or
Paste commands is an example (for example, lines 26–28 and lines 39–41). As
Fig. 23.14(a) shows, all three commands are disabled when the app loads. If you select
some text, the Cut and Copy commands are enabled, as shown in Fig. 23.14(b). Once you
have copied some text, the Paste command is enabled, as evidenced by Fig. 23.14(c). We
did not have to define any associated command bindings or event handlers to implement

Fig. 23.14 | Code-behind class for a simple text editor. (Part 2 of 2.)

c) After copying some text

csfp6_23_WPF.fm Page 24 Thursday, July 7, 2016 10:16 AM

23.8 WPF GUI Customization 23_25

these commands. The ToggleBold and ToggleItalic commands are also implemented
without any command bindings.

Menus and Toolbars
The text editor uses menus and toolbars. The Menu control creates a menu containing Me-
nuItems. MenuItems can be top-level menus such as File or Edit (lines 22 and 25 in
Fig. 23.13), submenus, or items in a menu, which function like Buttons (for example,
lines 26–28). If a MenuItem has nested MenuItems, then it’s a top-level menu or a submenu.
Otherwise, it’s an item that executes an action via either an event or a command. Menu-
Items are content controls and thus can display any single GUI element as content.

A ToolBar is a single row or column (depending on the Orientation property) of
options. A ToolBar’s Orientation is a read-only property that gets its value from the parent
ToolBarTray, which can host multiple ToolBars. If a ToolBar has no parent ToolBarTray,
as is the case in this example, its Orientation is Horizontal by default. Unlike elements in
a Menu, a ToolBar’s child elements are not of a specific type. A ToolBar usually contains But-
tons, CheckBoxes, ComboBoxes, RadioButtons and Separators, but any WPF control can be
used. ToolBars overwrite the look-and-feel of their child elements with their own specifica-
tions, so that the controls look seamless together. You can override the default specifications
to create your own look-and-feel. Lines 37–46 define the text editor’s ToolBar.

Menus and ToolBars can incorporate Separators (for example, lines 29 and 42) that
differentiate groups of MenuItems or controls. In a Menu, a Separator displays as a hori-
zontal bar—as shown between the Paste and Bold menu options in Fig. 23.14(a). In a hor-
izontal ToolBar, it displays as a short vertical bar—as shown in Fig. 23.14(b). You can use
Separators in any type of control that can contain multiple child elements, such as a
StackPanel.

23.8 WPF GUI Customization
One advantage of WPF over Windows Forms is the ability to customize controls. WPF pro-
vides several techniques to customize the look and behavior of controls. The simplest takes
full advantage of a control’s properties. The value of a control’s Background property, for ex-
ample, is a brush (i.e, Brush object). This allows you to create a gradient or an image and use
it as the background rather than a solid color. For more information about brushes, see
Section 24.5. In addition, many controls that allowed only text content in Windows Forms
are ContentControls in WPF, which can host any type of content—including other con-
trols. The caption of a WPF Button, for example, could be an image or even a video.

In Section 23.9, we demonstrate how to use styles in WPF to achieve a uniform look-
and-feel. In Windows Forms, if you want to make all your Buttons look the same, you have
to manually set properties for every Button, or copy and paste. To achieve the same result
in WPF, you can define the properties once as a style and apply the style to each Button.
This is similar to the CSS/HTML implementation of styles. HTML specifies the content
and structure of a website, and CSS defines styles that specify the presentation of elements
in a website. For more information on CSS and HTML, see our Resource Centers at
www.deitel.com/ResourceCenters.html.

Styles are limited to modifying a control’s look-and-feel through its properties. In
Section 23.11, we introduce control templates, which offer you the freedom to define a
control’s appearance by modifying its visual structure. With a custom control template,

csfp6_23_WPF.fm Page 25 Thursday, July 7, 2016 10:16 AM

23_26 Chapter 23 GUI with Windows Presentation Foundation

you can completely strip a control of all its visual settings and rebuild it to look exactly the
way you like, while maintaining its existing functionality. A Button with a custom control
template might look structurally different from a default Button, but it still functions the
same as any other Button.

If you want to change only the appearance of an element, a style or control template
should suffice. However, you also can create entirely new custom controls that have their
own functionality, properties, methods and events.

23.9 Using Styles to Change the Appearance of Controls
Once defined, a WPF style is a collection of property-value and event-handler definitions
that can be reused. Styles enable you to eliminate repetitive code or markup. For example,
if you want to change the look-and-feel of the standard Button throughout a section of
your app, you can define a style and apply it to all the Buttons in that section. Without
styles, you have to set the properties for each individual Button. Furthermore, if you later
decided that you wanted to tweak the appearance of these Buttons, you would have to
modify your markup or code several times. By using a style, you can make the change only
once in the style and it’s automatically be applied to any control which uses that style.

Styles are WPF resources. A resource is an object that’s defined for an entire section
of your app and can be reused multiple times. A resource can be as simple as a property or
as complex as a control template. Every WPF control can hold a collection of resources
that can be accessed by any element down the containment hierarchy. In a way, this is sim-
ilar in approach to the concept of variable scope that you learned about in Chapter 7. For
example, if you define a style as a resource of a Window, then any element in the Window
can use that style. If you define a style as a resource of a layout container, then only the
elements of the layout container can use that style. You also can define application-wide
resources for an Application object in the App.xaml file. These resources can be accessed
in any file in the app.

Color Chooser App
Figure 23.15 provides the XAML markup and Fig. 23.16 provides the C# code for a color-
chooser app. This example demonstrates styles and introduces the Slider user input control.

1 <!-- Fig. 23.15: MainWindow.xaml -->
2 <!-- Color chooser app showing the use of styles (XAML). -->
3 <Window x:Class="ColorChooser.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Color Chooser" Height="150" Width="500">
7
8
9

10
11
12
13
14

Fig. 23.15 | Color-chooser app showing the use of styles (XAML). (Part 1 of 3.)

<Window.Resources> <!-- define Window's resources -->
 <Style x:Key="SliderStyle"> <!-- define style for Sliders -->

 <!-- set properties for Sliders -->
 <Setter Property="Slider.Width" Value="256" />
 <Setter Property="Slider.Minimum" Value="0" />
 <Setter Property="Slider.Maximum" Value="255" />

csfp6_23_WPF.fm Page 26 Thursday, July 7, 2016 10:16 AM

23.9 Using Styles to Change the Appearance of Controls 23_27

15
16
17
18
19
20
21
22
23
24
25
26
27

28 <Grid Margin="5"> <!-- define GUI -->
29 <Grid.RowDefinitions>
30 <RowDefinition />
31 <RowDefinition />
32 <RowDefinition />
33 <RowDefinition />
34 </Grid.RowDefinitions>
35 <Grid.ColumnDefinitions>
36 <ColumnDefinition Width="Auto" />
37 <ColumnDefinition Width="Auto" />
38 <ColumnDefinition Width="50" />
39 <ColumnDefinition />
40 </Grid.ColumnDefinitions>
41
42 <!-- define Labels for Sliders -->
43 <Label Grid.Row="0" Grid.Column="0" HorizontalAlignment="Right"
44 VerticalAlignment="Center" Content="Red:"/>
45 <Label Grid.Row="1" Grid.Column="0" HorizontalAlignment="Right"
46 VerticalAlignment="Center" Content="Green:"/>
47 <Label Grid.Row="2" Grid.Column="0" HorizontalAlignment="Right"
48 VerticalAlignment="Center" Content="Blue:"/>
49 <Label Grid.Row="3" Grid.Column="0" HorizontalAlignment="Right"
50 VerticalAlignment="Center" Content="Alpha:"/>
51
52 <!-- define Label that displays the color -->
53 <Label x:Name="colorLabel" Grid.RowSpan="4" Grid.Column="3"
54 Margin="10" />
55
56 <!-- define Sliders and apply style to them -->
57 <Slider x:Name="redSlider" Grid.Row="0" Grid.Column="1"
58
59 ‘
60 <Slider x:Name="greenSlider" Grid.Row="1" Grid.Column="1"
61
62
63 <Slider x:Name="blueSlider" Grid.Row="2" Grid.Column="1"
64
65

Fig. 23.15 | Color-chooser app showing the use of styles (XAML). (Part 2 of 3.)

 <Setter Property="Slider.IsSnapToTickEnabled" Value="True" />
 <Setter Property="Slider.VerticalAlignment" Value="Center" />
 <Setter Property="Slider.HorizontalAlignment" Value="Center" />
 <Setter Property="Slider.Value" Value="0" />
 <Setter Property="Slider.AutoToolTipPlacement"
 Value="TopLeft" />

 <!-- set event handler for ValueChanged event -->
 <EventSetter Event="Slider.ValueChanged"
 Handler="slider_ValueChanged" />
 </Style>
</Window.Resources>

Style="{StaticResource SliderStyle}"
Value="{Binding Text, ElementName=redBox}" />

Style="{StaticResource SliderStyle}"
Value="{Binding Text, ElementName=greenBox}"/>

Style="{StaticResource SliderStyle}"
Value="{Binding Text, ElementName=blueBox}"/>

csfp6_23_WPF.fm Page 27 Thursday, July 7, 2016 10:16 AM

23_28 Chapter 23 GUI with Windows Presentation Foundation

66 <Slider x:Name="alphaSlider" Grid.Row="3" Grid.Column="1"
67
68
69
70 <TextBox x:Name="redBox" Grid.Row="0" Grid.Column="2"
71 />
72 <TextBox x:Name="greenBox" Grid.Row="1" Grid.Column="2"
73 />
74 <TextBox x:Name="blueBox" Grid.Row="2" Grid.Column="2"
75 />
76 <TextBox x:Name="alphaBox" Grid.Row="3" Grid.Column="2"
77 />
78 </Grid>
79 </Window>

1 // Fig. 23.16: MainWindow.xaml.cs
2 // Color chooser app showing the use of styles (code-behind).
3 using System.Windows;
4 using System.Windows.Media;
5
6 namespace ColorChooser
7 {
8 public partial class MainWindow : Window
9 {

10 public MainWindow()
11 {
12 InitializeComponent();
13 alphaSlider.Value = 255; // override Value from style
14 } // constructor
15
16 // handles the ValueChanged event for the Sliders
17 private void slider_ValueChanged(object sender,
18 RoutedPropertyChangedEventArgs< double > e)
19 {
20 // generates new color
21 SolidColorBrush backgroundColor = new SolidColorBrush();
22 backgroundColor.Color = Color.FromArgb(
23 (byte) alphaSlider.Value, (byte) redSlider.Value,
24 (byte) greenSlider.Value, (byte) blueSlider.Value);
25
26 // set colorLabel's background to new color
27 colorLabel.Background = backgroundColor;
28 } // end method slider_ValueChanged
29 } // end class MainWindow
30 } // end namespace ColorChooser

Fig. 23.16 | Color-chooser app showing the use of styles (code-behind). (Part 1 of 2.)

Fig. 23.15 | Color-chooser app showing the use of styles (XAML). (Part 3 of 3.)

Style="{StaticResource SliderStyle}"
Value="{Binding Text, ElementName=alphaBox}" />

Text="{Binding Value, ElementName=redSlider}"

Text="{Binding Value, ElementName=greenSlider}"

Text="{Binding Value, ElementName=blueSlider}"

Text="{Binding Value, ElementName=alphaSlider}"

csfp6_23_WPF.fm Page 28 Thursday, July 7, 2016 10:16 AM

23.9 Using Styles to Change the Appearance of Controls 23_29

RGBA Colors
This app uses the RGBA color system. Every color is represented by its red, green and blue
color values, each ranging from 0 to 255, where 0 denotes no color and 255 full color. For
example, a color with a red value of 0 would contain no red component. The alpha value
(A)—which also ranges from 0 to 255—represents a color’s opacity, with 0 being com-
pletely transparent and 255 completely opaque. The two colors in Fig. 23.16’s sample out-
puts have the same RGB values, but the color displayed in Fig. 23.16(b) is semitransparent.

Slider Controls
The color-chooser GUI uses four Slider controls that change the RGBA values of a color
displayed by a Label. Next to each Slider is a TextBox that displays the Slider’s current
value. You also can type a number in a TextBox to update the value of the corresponding
Slider. A Slider is a numeric user input control that allows users to drag a “thumb” along
a track to select the value. Whenever the user moves a Slider, the app generates a new col-
or, the corresponding TextBox is updated and the Label displays the new color as its back-
ground. The new color is generated by using class Color’s FromArgb method, which returns
a color based on the four RGBA byte values you pass it (Fig. 23.16, lines 22–24). The color
is then applied as the Background of the Label. Similarly, changing the value of a TextBox
updates the thumb of the corresponding Slider to reflect the change, which then updates
the Label with the new color. We discuss the updates of the TextBoxes shortly.

Style for the Sliders
Styles can be defined as a resource of any control. In the color-chooser app, we defined the
style as a resource of the entire Window. We also could have defined it as a resource of the
Grid. To define resources for a control, you set a control’s Resources property. Thus, to
define a resource for a Window, as we did in this example, you would use Window.Resourc-
es (lines 8–26 in Fig. 23.15). To define a resource for a Grid, you’d use Grid.Resources.

Style objects can be defined in XAML using the Style element. The x:Key attribute
(i.e., attribute Key from the standard XAML namespace) must be set in every style (or

Fig. 23.16 | Color-chooser app showing the use of styles (code-behind). (Part 2 of 2.)

a) Using the Red and
Green sliders to create an

opaque orange color

b) Using the Red, Green
and Alpha sliders to

create a semi-transparent
orange color

thumbtrack

R: 255
G: 128
B: 0
A: 255

R: 255
G: 128
B: 0
A: 128

csfp6_23_WPF.fm Page 29 Thursday, July 7, 2016 10:16 AM

23_30 Chapter 23 GUI with Windows Presentation Foundation

other resource) so that it can be referenced later by other controls (line 9). The children of
a Style element set properties and define event handlers. A Setter sets a property to a
specific value (e.g., line 12, which sets the styled Slider’s Width property to 256). An
EventSetter specifies the method that responds to an event (e.g., lines 23–24, which spec-
ifies that method slider_ValueChanged handles the Slider’s ValueChanged event).

The Style in the color-chooser example (SliderStyle) primarily uses Setters. It lays
out the color Sliders by specifying the Width, VerticalAlignment and Horizonta-
lAlignment properties (lines 12, 16 and 17). It also sets the Minimum and Maximum prop-
erties, which determine a Slider’s range of values (lines 13–14). In line 18, the default
Value is set to 0. IsSnapToTickEnabled is set to True, meaning that only values that fall
on a “tick” are allowed (line 15). By default, each tick is separated by a value of 1, so this
setting makes the styled Slider accept only integer values. Lastly, the style also sets the
AutoToolTipPlacement property, which specifies where a Slider’s tooltip should appear,
if at all.

Although the Style defined in the color-chooser example is clearly meant for Sliders,
it can be applied to any control. Styles are not control specific. You can make all controls
of one type use the same default style by setting the style’s TargetType attribute to the con-
trol type. For example, if we wanted all of the Window’s Sliders to use a Style, we would
add TargetType="Slider" to the Style’s start tag.

Using a Style
To apply a style to a control, you create a resource binding between a control’s Style
property and the Style resource. You can create a resource binding in XAML by specify-
ing the resource in a markup extension—an expression enclosed in curly braces ({}). The
form of a markup extension calling a resource is {ResourceType ResourceKey} (for example,
{StaticResource SliderStyle} in Fig. 23.15, line 58).

Static and Dynamic Resources
There are two types of resources. Static resources are applied only at initialization time.
Dynamic resources are applied every time the resource is modified by the app. To use a
style as a static resource, use StaticResource as the type in the markup extension. To use
a style as a dynamic resource, use DynamicResource as the type. Because styles don’t nor-
mally change during runtime, they are usually used as static resources. However, using one
as a dynamic resource is sometimes necessary, such as when you wish to enable users to
customize a style at runtime.

In this app, we apply SliderStyle as a static resource to each Slider (lines 58, 61,
64 and 67). Once you apply a style to a control, the Design view and Properties window
update to display the control’s new appearance settings. If you then modify the control
through the Properties window, the control itself is updated, not the style.

Element-to-Element Bindings
In this app, we use a new feature of WPF called element-to-element binding in which a
property of one element is always equal to a property of another element. This enables us
to declare in XAML that each TextBox’s Text property should always have the value of the
corresponding Slider’s Value property, and that each Slider’s Value property should al-
ways have the value of the corresponding TextBox’s Text property. Once these bindings
are defined, changing a Slider updates the corresponding TextBox and vice versa. In

csfp6_23_WPF.fm Page 30 Thursday, July 7, 2016 10:16 AM

23.9 Using Styles to Change the Appearance of Controls 23_31

Fig. 23.15, lines 59, 62, 65 and 68 each use a Binding markup extension to bind a Slid-
er’s Value property to the Text property of the appropriate TextBox. Similary, lines 71,
73, 75 and 77 each use a Binding markup extension to bind a TextBox’s Text property to
the Value property of the appropriate Slider.

Programmatically Changing the Alpha Slider’s Value
As shown in Fig. 23.17, the Slider that adjusts the alpha value in the color-chooser ex-
ample starts with a value of 255, whereas the R, G and B Sliders’ values start at 0. The
Value property is defined by a Setter in the style to be 0 (line 18 in Fig. 23.15). This is
why the R, G and B values are 0. The Value property of the alpha Slider is programmat-
ically defined to be 255 (line 13 in Fig. 23.16), but it could also be set locally in the XAML.
Because a local declaration takes precedence over a style setter, the alpha Slider’s value
would start at 255 when the app loads.

Dependency Properties
Most WPF properties, though they might look and behave exactly like ordinary ones, are
in fact dependency properties. Such properties have built-in support for change notifica-
tion—that is, an app knows and can respond to changes in property values. In addition,
they support inheritance down the control-containment hierarchy. For example, when
you specify FontSize in a Window, every control in the Window inherits it as the default
FontSize. You also can specify a control’s property in one of its child elements. This is
how attached properties work.

A control’s properties may be set at many different levels in WPF, so instead of
holding a fixed value, a dependency property’s value is determined during execution by a
value-determination system. If a property is defined at several levels at once, then the cur-
rent value is the one defined at the level with the highest precedence. A style, for example,
overwrites the default appearance of a control, because it takes higher precedence. A sum-
mary of the levels, in order from highest to lowest precedence, is shown in Fig. 23.18.

Fig. 23.17 | GUI of the color-chooser app at initialization.

Levels of value determination system

Animation The value is defined by an active animation. For more information
about animation, see Chapter 33.

Fig. 23.18 | Levels of value determination from highest to lowest precedence. (Part 1 of 2.)

csfp6_23_WPF.fm Page 31 Thursday, July 7, 2016 10:16 AM

23_32 Chapter 23 GUI with Windows Presentation Foundation

23.10 Customizing Windows
For over a decade, the standard design of an app window has remained practically the
same—a framed rectangular box with a header in the top left and a set of buttons in the
top right for minimizing, maximizing and closing the window. Cutting-edge apps, how-
ever, have begun to use custom windows that diverge from this standard to create a more
interesting look.

WPF lets you do this more easily. To create a custom window, set the WindowStyle
property to None. This removes the standard frame around your Window. To make your
Window irregularly shaped, you set the AllowsTransparency property to True and the
Background property to Transparent. If you then add controls, only the space within the
boundaries of those controls behaves as part of the window. This works because a user
cannot interact with any part of a Window that’s transparent. You still define your Window
as a rectangle with a width and a height, but when a user clicks in a transparent part of the
Window, it behaves as if the user clicked outside the Window’s boundaries—that is, the
window does not respond to the click.

Figure 23.19 is the XAML markup that defines a GUI for a circular digital clock. The
Window’s WindowStyle is set to None and AllowsTransparency is set to True (line 7). In
this example, we set the background to be an image using an ImageBrush (lines 10–12).
The background image is a circle with a drop shadow surrounded by transparency. Thus, the
Window appears circular.

Local declaration The value is defined as an attribute in XAML or set in code. This is
how ordinary properties are set.

Trigger The value is defined by an active trigger. For more information about
triggers, see Section 23.11.

Style The value is defined by a setter in a style.

Inherited value The value is inherited from a definition in a containing element.

Default value The value is not explicitly defined.

1 <!-- Fig. 23.19: MainWindow.xaml -->
2 <!-- Creating a custom window and using a timer (XAML). -->
3 <Window x:Class="Clock.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Clock" Name="clockWindow" Height="118" Width="118"
7
8 MouseLeftButtonDown="clockWindow_MouseLeftButtonDown">
9

10 <Window.Background> <!-- Set background image -->
11 <ImageBrush ImageSource="images/circle.png" />

Fig. 23.19 | Creating a custom window and using a timer (XAML). (Part 1 of 2.)

Levels of value determination system

Fig. 23.18 | Levels of value determination from highest to lowest precedence. (Part 2 of 2.)

WindowStyle="None" AllowsTransparency="True"

csfp6_23_WPF.fm Page 32 Thursday, July 7, 2016 10:16 AM

23.10 Customizing Windows 23_33

The time is displayed in the center of the window in a TextBox (lines 15–18). Its
Background is set to Transparent so that the text displays directly on the circular back-
ground (line 16). We configured the text to be size 16, bold, and white by setting the
FontSize, FontWeight, and Foreground properties. The Cursor property is set to Arrow,
so that the mouse cursor doesn’t change when it moves over the time (line 18). Setting
Focusable to False disables the user’s ability to select the text (line 18).

When you create a custom window, there’s no built-in functionality for doing the
simple tasks that normal windows do. For example, there is no way for the user to move,
resize, minimize, maximize, or close a window unless you write the code to enable these
features. You can move the clock around, because we implemented this functionality in
the Window’s code-behind class (Fig. 23.20). Whenever the left mouse button is held down
on the clock (handled by the MouseLeftButtonDown event), the Window is dragged around
using the DragMove method (lines 27–31). Because we did not define how to close or min-
imize the Window, you can shut down the clock by pressing Alt-F4—this is a feature built
into Windows—or by right clicking its icon on the taskbar and selecting Close window.

12 </Window.Background>
13

14 <Grid>
15 <TextBox x:Name="timeTextBox" Margin="0,42,0,0"
16 Background="Transparent" TextAlignment="Center"
17 FontWeight="Bold" Foreground="White" FontSize="16"
18 BorderThickness="0" Cursor="Arrow" Focusable="False" />
19 </Grid>
20 </Window>

1 // Fig. 23.20: MainWindow.xaml.cs
2 // Creating a custom window and using a timer (code-behind).
3 using System;
4 using System.Windows;
5 using System.Windows.Input;
6
7 namespace Clock
8 {
9 public partial class MainWindow : Window

10 {
11 // create a timer to control clock
12 private System.Windows.Threading.DispatcherTimer timer =
13 new System.Windows.Threading.DispatcherTimer();

Fig. 23.20 | Creating a custom window and using a timer (code-behind). (Part 1 of 2.)

Fig. 23.19 | Creating a custom window and using a timer (XAML). (Part 2 of 2.)

csfp6_23_WPF.fm Page 33 Thursday, July 7, 2016 10:16 AM

23_34 Chapter 23 GUI with Windows Presentation Foundation

The clock works by getting the current time every second and displaying it in the
TextBox. To do this, the clock uses a DispatcherTimer object (of the Windows.Threading
namespace), which raises the Tick event repeatedly at a prespecified time interval. Since
the DispatcherTimer is defined in the C# code rather than the XAML, we need to specify
the method to handle the Tick event in the C# code. Line 23 assigns method timer_Tick
to the Tick event’s delegate. This adds the timer_Tick method as an EventHandler for
the specified event. After it’s declared, you must specify the interval between Ticks by set-
ting the Interval property, which takes a TimeSpan as its value. TimeSpan has several class
methods for instantiating a TimeSpan object, including FromSeconds, which defines a
TimeSpan lasting the number of seconds you pass to the method. Line 20 creates a one-
second TimeSpan and sets it as the DispatcherTimer’s Interval. A DispatcherTimer is
disabled by default. Until you enable it by setting the IsEnabled property to true (line
21), it will not Tick. In this example, the Tick event handler gets the current time and
displays it in the TextBox.

You may recall that the Timer component provided the same capabilities in Windows
Forms. A similar object that you can drag-and-drop onto your GUI doesn’t exist in WPF.
Instead, you must create a DispatcherTimer object, as illustrated in this example.

14

15 // constructor
16 public MainWindow()
17 {
18 InitializeComponent();
19
20 timer.Interval = TimeSpan.FromSeconds(1); // tick every second
21 timer.IsEnabled = true; // enable timer
22
23 timer.Tick += timer_Tick;
24 } // end constructor
25
26 // drag Window when the left mouse button is held down
27 private void clockWindow_MouseLeftButtonDown(object sender,
28 MouseButtonEventArgs e)
29 {
30 this.DragMove(); // moves the window
31 } // end method clockWindow_MouseLeftButtonDown
32
33 // update the time when the timer ticks
34 private void timer_Tick(object sender, EventArgs e)
35 {
36 DateTime currentTime = DateTime.Now; // get the current time
37
38 // display the time as hh:mm:ss
39 timeTextBox.Text = currentTime.ToLongTimeString();
40 } // end method timer_Tick
41 } // end class MainWindow
42 } // end namespace Clock

Fig. 23.20 | Creating a custom window and using a timer (code-behind). (Part 2 of 2.)

csfp6_23_WPF.fm Page 34 Thursday, July 7, 2016 10:16 AM

23.11 Defining a Control’s Appearance with Control Templates 23_35

23.11 Defining a Control’s Appearance with Control
Templates
We now update the clock example to include buttons for minimizing and closing the app.
We also introduce control templates—a powerful tool for customizing the look-and-feel
of your GUIs. As previously mentioned, a custom control template can redefine the ap-
pearance of any control without changing its functionality. In Windows Forms, if you want
to create a round button, you have to create a new control and simulate the functionality
of a Button. With control templates, you can simply redefine the visual elements that com-
pose the Button control and still use the preexisting functionality.

All WPF controls are lookless—that is, a control’s properties, methods and events are
coded into the control’s class, but its appearance is not. Instead, the appearance of a control
is determined by a control template, which is a hierarchy of visual elements. Every control
has a built-in default control template. All of the GUIs discussed so far in this chapter have
used these default templates.

The hierarchy of visual elements defined by a control template can be represented as
a tree, called a control’s visual tree. Figure 23.21(b) shows the visual tree of a default
Button (Fig. 23.22). This is a more detailed version of the same Button’s logical tree,
which is shown in Fig. 23.21(a). A logical tree depicts how a control is a defined, whereas
a visual tree depicts how a control is graphically rendered.

 A control’s logical tree always mirrors its definition in XAML. For example, you’ll
notice that the Button’s logical tree, which comprises only the Button and its string cap-
tion, exactly represents the hierarchy outlined by its XAML definition, which is

 To actually render the Button, WPF displays a ContentPresenter with a Border
around it. These elements are included in the Button’s visual tree. A ContentPresenter is
an object used to display a single element of content on the screen. It’s often used in a tem-
plate to specify where to display content.

Fig. 23.21 | The logical and visual trees for a default Button.

<Button>
 Click Me
</Button>

Button

Border

ContentPresenter

String

a) Logical tree b) Visual tree
Button

String

csfp6_23_WPF.fm Page 35 Thursday, July 7, 2016 10:16 AM

23_36 Chapter 23 GUI with Windows Presentation Foundation

In the updated clock example, we create a custom control template (named Button-
Template) for rendering Buttons and apply it to the two Buttons in the app. The XAML
markup is shown in Fig. 23.23. Like a style, a control template is usually defined as a
resource, and applied by binding a control’s Template property to the control template
using a resource binding (for example, lines 47 and 52). After you apply a control template
to a control, the Design view will update to display the new appearance of the control. The
Properties window remains unchanged, since a control template does not modify a con-
trol’s properties.

Fig. 23.22 | The default Button.

1 <!-- Fig. 23.23: MainWindow.xaml -->
2 <!-- Using control templates (XAML). -->
3 <Window x:Class="Clock.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Clock" Name="clockWindow" Height="118" Width="118"
7 WindowStyle="None" AllowsTransparency="True"
8 MouseLeftButtonDown="clockWindow_MouseLeftButtonDown">
9

10 <Window.Resources>
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 </Window.Resources>
31
32 <Window.Background> <!-- Set background image -->
33 <ImageBrush ImageSource="images/circle.png" />
34 </Window.Background>
35

Fig. 23.23 | Using control templates (XAML). (Part 1 of 2.)

<!-- control template for Buttons -->
<ControlTemplate x:Key="ButtonTemplate" TargetType="Button">
 <Border Name="Border" BorderThickness="2" CornerRadius="2"
 BorderBrush="RoyalBlue">

 <!-- Template binding to Button.Content -->
 <ContentPresenter Margin="0" Width="8"
 Content="{TemplateBinding Content}" />
 </Border>

 <ControlTemplate.Triggers>
 <!-- if mouse is over the button -->
 <Trigger Property="IsMouseOver" Value="True">
 <!-- make the background blue -->
 <Setter TargetName="Border" Property="Background"
 Value="LightBlue" />
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

csfp6_23_WPF.fm Page 36 Thursday, July 7, 2016 10:16 AM

23.11 Defining a Control’s Appearance with Control Templates 23_37

To define a control template in XAML, you create a ControlTemplate element. Just
as with a style, you must specify the control template’s x:Key attribute so you can reference
it later (line 12). You must also set the TargetType attribute to the type of control for
which the template is designed (line 12). Inside the ControlTemplate element, you can
build the control using any WPF visual element (lines 13–19). In this example, we replace
the default Border and ContentPresenter with our own custom ones.

Sometimes, when defining a control template, it may be beneficial to use the value of
one of the templated control’s properties. For example, if you want several controls of dif-
ferent sizes to use the same control template, you may need to use the values of their Width
and Height properties in the template. WPF allows you to do this with a template
binding, which can be created in XAML with the markup extension, {TemplateBinding

36 <Grid>
37 <Grid.RowDefinitions>
38 <RowDefinition Height="Auto" />
39 <RowDefinition />
40 </Grid.RowDefinitions>
41
42 <StackPanel Grid.Row="0" Orientation="Horizontal"
43 HorizontalAlignment="Right">
44
45 <!-- these buttons use the control template -->
46 <Button x:Name="minimizeButton" Margin="0" Focusable="False"
47 IsTabStop="False"
48 Click="minimizeButton_Click">
49 <Image Source="images/minimize.png" Margin="0" />
50 </Button>
51 <Button x:Name="closeButton" Margin="1,0,0,0" Focusable="False"
52 IsTabStop="False"
53 Click="closeButton_Click">
54 <Image Source="images/close.png" Margin="0"/>
55 </Button>
56 </StackPanel>
57
58 <TextBox x:Name="timeTextBox" Grid.Row="1" Margin="0,30,0,0"
59 Background="Transparent" TextAlignment="Center"
60 FontWeight="Bold" Foreground="White" FontSize="16"
61 BorderThickness="0" Cursor="Arrow" Focusable="False" />
62 </Grid>
63 </Window>

Fig. 23.23 | Using control templates (XAML). (Part 2 of 2.)

Template="{StaticResource ButtonTemplate}"

Template="{StaticResource ButtonTemplate}"

a) Templated minimize
and close buttons

b) Minimize button
with light blue

background

Templated Buttons

csfp6_23_WPF.fm Page 37 Thursday, July 7, 2016 10:16 AM

23_38 Chapter 23 GUI with Windows Presentation Foundation

PropertyName}. To bind a property of an element in a control template to one of the prop-
erties of the templated control (that is, the control that the template is applied to), you
need to set the appropriate markup extension as the value of that property. In ButtonTem-
plate, we bind the Content property of a ContentPresenter to the Content property of
the templated Button (line 18). The nested element of a ContentControl is the value of
its Content property. Thus, the images defined in lines 49 and 54 are the Content of the
Buttons and are displayed by the ContentPresenters in their respective control templates.
You also can create template bindings to a control’s events.

Often you’ll use a combination of control templates, styles and local declarations to
define the appearance of your app. Recall that a control template defines the default
appearance of a control and thus has a lower precedence than a style in dependency prop-
erty-value determination.

Triggers
The control template for Buttons used in the updated clock example defines a trigger,
which changes a control’s appearance when that control enters a certain state. For example,
when your mouse is over the clock’s minimize or close Buttons, the Button is highlighted
with a light blue background. This simple change in appearance is caused by a trigger that
fires whenever the IsMouseOver property becomes True.

A trigger must be defined in the Style.Triggers or ControlTemplate.Triggers ele-
ment of a style or a control template, respectively (for example, lines 21–28). You can
create a trigger by defining a Trigger object. The Property and Value attributes define
the state when a trigger is active. Setters nested in the Trigger element are carried out
when the trigger is fired. When the trigger no longer applies, the changes are removed. A
Setter’s TargetName property specifies the name of the element that the Setter applies
to (for example, line 25).

Lines 23–27 define the IsMouseOver trigger for the minimize and close Buttons.
When the mouse is over the Button, IsMouseOver becomes True, and the trigger becomes
active. The trigger’s Setter makes the background of the Border in the control template
temporarily light blue. When the mouse exits the boundaries of the Button, IsMouseOver
becomes False. Thus, the Border’s background returns to its default setting, which in this
case is transparent.

Functionality
Figure 23.24 shows the code-behind class for the clock app. Although the custom control
template makes the Buttons in this app look different, it doesn’t change how they behave.
Lines 3–40 remain unchanged from the code in the first clock example (Fig. 23.20). The
functionality for the minimize and close Buttons is implemented in the same way as any
other button—by handling the Click event (lines 43–47 and 50–53 of Fig. 23.24, respec-
tively). To minimize the window, we set the WindowState of the Window to Window-
State.Minimized (line 46).

1 // Fig. 23.24: MainWindow.xaml.cs
2 // Using control templates (code-behind).
3 using System;

Fig. 23.24 | Using control templates (code-behind). (Part 1 of 2.)

csfp6_23_WPF.fm Page 38 Thursday, July 7, 2016 10:16 AM

23.11 Defining a Control’s Appearance with Control Templates 23_39

4 using System.Windows;
5 using System.Windows.Input;
6
7 namespace Clock
8 {
9 public partial class MainWindow : Window

10 {
11 // creates a timer to control clock
12 private System.Windows.Threading.DispatcherTimer timer =
13 new System.Windows.Threading.DispatcherTimer();
14
15 // constructor
16 public MainWindow()
17 {
18 InitializeComponent();
19
20 timer.Interval = TimeSpan.FromSeconds(1); // tick every second
21 timer.IsEnabled = true; // enable timer
22
23 timer.Tick += timer_Tick;
24 } // end constructor
25
26 // drag Window when the left mouse button is held down
27 private void clockWindow_MouseLeftButtonDown(object sender,
28 MouseButtonEventArgs e)
29 {
30 this.DragMove();
31 } // end method clockWindow_MouseLeftButtonDown
32
33 // update the time when the timer ticks
34 private void timer_Tick(object sender, EventArgs e)
35 {
36 DateTime currentTime = DateTime.Now; // get the current time
37
38 // display the time as hh:mm:ss
39 timeTextBox.Text = currentTime.ToLongTimeString();
40 } // end method timer_Tick
41
42 // minimize the app
43 private void minimizeButton_Click(object sender,
44 RoutedEventArgs e)
45 {
46 this.WindowState = WindowState.Minimized; // minimize window
47 } // end method minimizeButton_Click
48
49 // close the app
50 private void closeButton_Click(object sender, RoutedEventArgs e)
51 {
52 Application.Current.Shutdown(); // shut down app
53 } // end method closeButton_Click
54 } // end class MainWindow
55 } // end namespace Clock

Fig. 23.24 | Using control templates (code-behind). (Part 2 of 2.)

csfp6_23_WPF.fm Page 39 Thursday, July 7, 2016 10:16 AM

23_40 Chapter 23 GUI with Windows Presentation Foundation

23.12 Data-Driven GUIs with Data Binding
WPF provides a comprehensive model for allowing GUIs to interact with data.

Bindings
A data binding is a pointer to data, represented by a Binding object. WPF allows you to
create a binding to a broad range of data types. At the simplest level, you could create a
binding to a single property. Often, however, it’s useful to create a binding to a data ob-
ject—an object of a class with properties that describe the data. You also can create a bind-
ing to objects like arrays, collections and data in an XML document. The versatility of the
WPF data model even allows you to bind to data represented by LINQ statements.

Like other binding types, a data binding can be created declaratively in XAML
markup with a markup extension. To declare a data binding, you must specify the data’s
source. If it’s another element in the XAML markup, use property ElementName. Other-
wise, use Source. Then, if you’re binding to a specific data point of the source, such as a
property of a control, you must specify the Path to that piece of information. Use a comma
to separate the binding’s property declarations. For example, to create a binding to a con-
trol’s property, you would use {Binding ElementName=ControlName, Path=PropertyName}.

Figure 23.25 presents the XAML markup of a book-cover viewer that lets the user
select from a list of books, and displays the cover of the currently selected book. The list
of books is presented in a ListView control (lines 15–24), which displays a set of data as
items in a selectable list. Its current selection can be retrieved from the SelectedItem
property. A large image of the currently selected book’s cover is displayed in an Image con-
trol (lines 27–28), which automatically updates when the user makes a new selection. Each
book is represented by a Book object, which has four string properties:

1. ThumbImage—the full path to the small cover image of the book.

2. LargeImage—the full path to the large cover image of the book.

3. Title—the title of the book.

4. ISBN—the 10-digit ISBN of the book.

Class Book also contains a constructor that initializes a Book and sets each of its prop-
erties. The full source code of the Book class is not presented here but you can view it in
the IDE by opening this example’s project.

1 <!-- Fig. 23.25: MainWindow.xaml -->
2 <!-- Using data binding (XAML). -->
3 <Window x:Class="BookViewer.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Book Viewer" Height="400" Width="600">
7
8 <Grid> <!-- define GUI -->
9 <Grid.ColumnDefinitions>

10 <ColumnDefinition Width="Auto" />
11 <ColumnDefinition />
12 </Grid.ColumnDefinitions>

Fig. 23.25 | Using data binding (XAML). (Part 1 of 2.)

csfp6_23_WPF.fm Page 40 Thursday, July 7, 2016 10:16 AM

23.12 Data-Driven GUIs with Data Binding 23_41

To synchronize the book cover that’s being displayed with the currently selected book,
we bind the Image’s Source property to the file location of the currently selected book’s
large cover image (lines 27–28). The Binding’s ElementName property is the name of the
selector control, booksListView. The Path property is SelectedItem.LargeImage. This
indicates that the binding should be linked to the LargeImage property of the Book object
that’s currently booksListView’s SelectedItem.

Some controls have built-in support for data binding, and a separate Binding object
doesn’t need to be created. A ListView, for example, has a built-in ItemsSource property
that specifies the data source from which the items of the list are determined. There is no
need to create a binding—instead, you can just set the ItemsSource property as you would
any other property. When you set ItemsSource to a collection of data, the objects in the

13
14
15
16
17
18
19
20
21
22
23
24
25
26 <!-- bind to selected item's full-size image -->
27 <Image Grid.Column="1"
28 Margin="5" />
29 </Grid>
30 </Window>

Fig. 23.25 | Using data binding (XAML). (Part 2 of 2.)

<!-- use ListView and GridView to display data -->
<ListView x:Name="booksListView" Grid.Column="0" MaxWidth="250">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Title" Width="100"
 DisplayMemberBinding="{Binding Path=Title}" />
 <GridViewColumn Header="ISBN" Width="80"
 DisplayMemberBinding="{Binding Path=ISBN}" />
 </GridView>
 </ListView.View>
</ListView>

Source="{Binding ElementName=booksListView,
Path=SelectedItem.LargeImage}"

csfp6_23_WPF.fm Page 41 Thursday, July 7, 2016 10:16 AM

23_42 Chapter 23 GUI with Windows Presentation Foundation

collection automatically become the items in the list. Figure 23.26 presents the code-
behind class for the book-cover viewer. When the Window is created, a collection of six
Book objects is initialized (lines 17–29) and set as the ItemsSource of the booksListView,
meaning that each item displayed in the selector is one of the Books.

Displaying Data in the ListView
For a ListView to display objects in a useful manner, you must specify how. For example,
if you don’t specify how to display each Book, the ListView simply displays the result of
the item’s ToString method, as shown in Fig. 23.27.

There are many ways to format the display of a ListView. One such method is to dis-
play each item as a row in a tabular grid, as shown in Fig. 23.25. This can be achieved by
setting a GridView as the View property of a ListView (lines 16–23). A GridView consists
of many GridViewColumns, each representing a property. In this example, we define two
columns, one for Title and one for ISBN (lines 18–19 and 20–21, respectively). A Grid-
ViewColumn’s Header property specifies what to display as its header. The values displayed

1 // Fig. 23.26: MainWindow.xaml.cs
2 // Using data binding (code-behind).
3 using System.Collections.Generic;
4 using System.Windows;
5
6 namespace BookViewer
7 {
8 public partial class MainWindow : Window
9 {

10 private List< Book > books = new List< Book >();
11
12 public MainWindow()
13 {
14 InitializeComponent();
15
16 // add Book objects to the List
17 books.Add(new Book("C How to Program", "013299044X",
18 "images/small/chtp.jpg", "images/large/chtp.jpg"));
19 books.Add(new Book("C++ How to Program", "0133378713",
20 "images/small/cpphtp.jpg", "images/large/cpphtp.jpg"));
21 books.Add(new Book(
22 "Internet and World Wide Web How to Program", "0132151006",
23 "images/small/iw3htp.jpg", "images/large/iw3htp.jpg"));
24 books.Add(new Book("Java How to Program", "0132940949",
25 "images/small/jhtp.jpg", "images/large/jhtp.jpg"));
26 books.Add(new Book("Visual Basic How to Program", "0133406954",
27 "images/small/vbhtp.jpg", "images/large/vbhtp.jpg"));
28 books.Add(new Book("Visual C# How to Program", "0133379337",
29 "images/small/vcshtp.jpg", "images/large/vcshtp.jpg"));
30
31 booksListView.ItemsSource = books; // bind data to the list
32 } // end constructor
33 } // end class MainWindow
34 } // end namespace BookViewer

Fig. 23.26 | Using data binding (code-behind).

csfp6_23_WPF.fm Page 42 Thursday, July 7, 2016 10:16 AM

23.12 Data-Driven GUIs with Data Binding 23_43

in each column are determined by its DisplayMemberBinding property. We set the Title
column’s DisplayMemberBinding to a Binding object that points to the Title property
(line 19), and the ISBN column’s to one that points to the ISBN property (line 21). Neither
of the Bindings has a specified ElementName or Source. Because the ListView has already
specified the data source (line 31 of Fig. 23.26), the two data bindings inherit this source,
and we do not need specify it again.

Data Templates
A much more powerful technique for formatting a ListView is to specify a template for
displaying each item in the list. This template defines how to display bound data and is
called a data template. Figure 23.28 is the XAML markup that describes a modified ver-
sion of the book-cover viewer GUI. Each book, instead of being displayed as a row in a
table, is represented by a small thumbnail of its cover image with its title and ISBN. Lines
11–32 define the data template (that is, a DataTemplate object) that specifies how to dis-
play a Book object. Note the similarity between the structure of a data template and that
of a control template. If you define a data template as a resource, you apply it by using a
resource binding, just as you would a style or control template. To apply a data template
to items in a ListView, use the ItemTemplate property (for example, line 43).

Fig. 23.27 | ListView display with no data template.

1 <!-- Fig. 23.28: MainWindow.xaml -->
2 <!-- Using data templates (XAML). -->
3 <Window x:Class="BookViewer.MainWindow"
4 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
5 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
6 Title="Book Viewer" Height="400" Width="600" Name="bookViewerWindow">
7
8 <Window.Resources> <!-- Define Window's resources -->
9

10
11
12
13
14
15
16
17
18
19
20
21

Fig. 23.28 | Using data templates (XAML). (Part 1 of 3.)

<!-- define data template -->
<DataTemplate x:Key="BookTemplate">
 <Grid MaxWidth="250" Margin="3">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <!-- bind image source -->
 <Image Grid.Column="0" Source="{Binding Path=ThumbImage}"
 Width="50" />

csfp6_23_WPF.fm Page 43 Thursday, July 7, 2016 10:16 AM

23_44 Chapter 23 GUI with Windows Presentation Foundation

22
23
24
25
26
27
28
29
30
31
32
33 </Window.Resources>
34
35 <Grid> <!-- define GUI -->
36 <Grid.ColumnDefinitions>
37 <ColumnDefinition Width="Auto" />
38 <ColumnDefinition />
39 </Grid.ColumnDefinitions>
40
41 <!-- use ListView and template to display data -->
42 <ListView x:Name="booksListView" Grid.Column="0"
43 />
44
45 <!-- bind to selected item's full-size image -->
46 <Image Grid.Column="1" Source="{Binding ElementName=booksListView,
47 Path=SelectedItem.LargeImage}" Margin="5" />
48 </Grid>
49 </Window>

Fig. 23.28 | Using data templates (XAML). (Part 2 of 3.)

 <StackPanel Grid.Column="1">
 <!-- bind Title and ISBN -->
 <TextBlock Margin="3,0" Text="{Binding Path=Title}"
 FontWeight="Bold" TextWrapping="Wrap" />
 <StackPanel Margin="3,0" Orientation="Horizontal">
 <TextBlock Text="ISBN: " />
 <TextBlock Text="{Binding Path=ISBN}" />
 </StackPanel>
 </StackPanel>
 </Grid>
</DataTemplate>

ItemTemplate="{StaticResource BookTemplate}"

a) App showing the
ListView with the

DataTemplate applied
to its items

csfp6_23_WPF.fm Page 44 Thursday, July 7, 2016 10:16 AM

23.12 Data-Driven GUIs with Data Binding 23_45

A data template uses data bindings to specify how to display data. Once again, we can
omit the data binding’s ElementName and Source properties, because its source has already
been specified by the ListView (line 31 of Fig. 23.26). The same principle can be applied
in other scenarios as well. If you bind an element’s DataContext property to a data source,
then its child elements can access data within that source without your having to specify
it again. In other words, if a binding already has a context (i.e, a DataContext has already
been defined by a parent), it automatically inherits the data source. For example, if you
bind a data source to the DataContext property of a Grid, then any data binding created
in the Grid uses that source by default. You can, however, override this source by explicitly
defining a new one when you define a binding.

In the BookTemplate data template, lines 19–20 of Fig. 23.28 define an Image whose
Source is bound to the Book’s ThumbImage property, which stores the relative file path to
the thumbnail cover image. The Book’s Title and ISBN are displayed to the right of the
book using TextBlocks—lightweight controls for displaying text. The TextBlock in lines
24–25 displays the Book’s Title because the Text property is bound to it. Because some
of the books’ titles are long, we set the TextWrapping property to Wrap (line 25) so that, if
the title is too long, it will wrap to multiple lines. We also set the FontWeight property to
Bold. Lines 26–29 display two additional TextBlocks, one that displays ISBN:, and
another that’s bound to the Book’s ISBN property.

Figure 23.28(a) shows the book-viewer app when it first loads. Each item in the List-
View is represented by a thumbnail of its cover image, its title and its ISBN, as specified in
the data template. As illustrated by Fig. 23.28(b), when you select an item in the List-
View, the large cover image on the right automatically updates, because it’s bound to the
SelectedItem property of the list.

Fig. 23.28 | Using data templates (XAML). (Part 3 of 3.)

b) Selecting an item from
the ListView

csfp6_23_WPF.fm Page 45 Thursday, July 7, 2016 10:16 AM

23_46 Chapter 23 GUI with Windows Presentation Foundation

Collection Views
A collection view (of class type CollectionView) is a wrapper around a collection of data and
can provide multiple “views” of the data based on how it’s filtered, sorted and grouped. A
default view is created in the background every time a data binding is created. To retrieve the
collection view, use the CollectionViewSource.GetDefaultView method and pass it the
source of your data binding. For example, to retrieve the default view of bookListView,
you’d use CollectionViewSource.GetDefaultView(bookListView.ItemsSource).

You can then modify the view to create the exact view of the data that you want to
display. The methods of filtering, sorting and grouping data are beyond the scope of this
book. For more information, see msdn.microsoft.com/en-us/library/ms752347.aspx#
what_are_collection_views.

Asynchronous Data Binding
Sometimes you may wish to create asynchronous data bindings that don’t hold up your app
while data is being transmitted. To do this, you set the IsAsync property of a data binding
to True (it’s False by default). Often, however, it’s not the transmission but the instanti-
ation of data that’s the most expensive operation. An asynchronous data binding does not
provide a solution for instantiating data asynchronously. To do so, you must use a data
provider, a class that can create or retrieve data. There are two types of data providers, Xm-
lDataProvider (for XML) and ObjectDataProvider (for data objects). Both can be de-
clared as resources in XAML markup. If you set a data provider’s IsAsynchronous
property to True, the provider will run in the background. Creating and using data pro-
viders is beyond the scope of this book. See msdn.microsoft.com/en-us/library/
aa480224.aspx for more information.

23.13 Wrap-Up
Many of today’s commercial apps provide GUIs that are easy to use and manipulate. The
demand for sophisticated and user-friendly GUIs makes GUI design an essential program-
ming skill. In Chapters 14–15, we showed you how to create GUIs with Windows Forms.
In this chapter, we demonstrated how to create GUIs with WPF. You learned how to de-
sign a WPF GUI with XAML markup and how to give it functionality in a C# code-be-
hind class. We presented WPF’s new flow-based layout scheme, in which a control’s size
and position are both defined relatively. You learned not only to handle events just as you
did in a Windows Forms app, but also to implement WPF commands when you want mul-
tiple user interactions to execute the same task. We demonstrated the flexibility WPF of-
fers for customizing the look-and-feel of your GUIs. You learned how to use styles, control
templates and triggers to define a control’s appearance. The chapter concluded with a
demonstration of how to create data-driven GUIs with data bindings and data templates.

But WPF is not merely a GUI-building platform. Chapter 24 explores some of the
many other capabilities of WPF, showing you how to incorporate 2D and 3D graphics,
animation and multimedia into your WPF apps.

csfp6_23_WPF.fm Page 46 Thursday, July 7, 2016 10:16 AM

