
Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 1 Exercises
1. Given the following directory listing:

$ ls

feb96

jan12.02

jan19.02

jan26.02

jan5.02

jan95

jan96

jan97

jan98

mar98

memo1

memo10

memo2

memo2.sv

$

 What is the expected output from the following commands?
echo *

echo *[!0-9]

echo m[a-df-z]*

echo [A-Z]*

echo jan*

echo *.*

echo ?????

echo *02

echo jan?? feb?? mar??`

echo [fjm][ae][bnr]*

2. What is the result of the following command sequences?

ls | wc -l

rm ???

who | wc -l

mv progs/* /users/steve/backup

ls *.c | wc -l

rm *.o

who | sort

cd; pwd

cp memo1 ..

plotdata 2>errors &

3. You have a filename with spaces in it. How do you copy it? How do you delete it?

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

4. Describe the difference between > and >>, and then describe <. Explain what the sequence << means to the shell.

5. The ls command is important for shell programmers, but it has some quirks. Offer solutions for the following:

 a. ls gives you single-column output, but you want it to be shown in multiple columns.

 b. ls shows output sorted alphabetically. Sort it by most recently modified to least instead.

 c. Type two different ways to have ls include file size information.

 d. The opposite of a: Force ls to output a one-column file listing.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 2 Exercises

1. Gareth has this /etc/login entry:
 gareth:*:117:100:Gareth T:/users/gareth:/bin/bash

 What are his home directory, login shell, and user ID?

2. Use the command echo /bin/*sh to see how many shells you have on your system. Are they all login shells?

3. When you type in a command to your shell, it uses a particular variable to ascertain where to look for that
command. What is it, and what happens if it's set to NULL?

4. Suppose you were in a directory with the following files:
 $ ls

 arsenal

 chelsea

 manchester city

 tottenham hotspurs

How many arguments would be sent to the shell in each of the following cases?
 echo *

 echo "*"

 echo [ac]*

 echo *\ *

5. What do you think would happen if you invoked the following command on the shell? Why?
 cat infile | sort | wc -l > infile

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 3 Exercises

1. What will be matched by the following ed regular expressions? (Tip: If you're using them in other contexts, you
should omit the backslashes)

 x*

 [0-9]\{3\}

 xx*

 [0-9]\{3,5\}

 x\{5,\}

 ^\...

 x\{10\}

 [A-Za-z_][A-Za-z_0-9]*

 [0-9]*

 ^Begin$

 [0-9][0-9][0-9]

 ^\(.\).*\1$

2. What will be the effect of the following commands?
 who | grep 'mary'

 who | grep '^mary'

 grep '[Uu]nix' ch?/*

 ls -l | sort -k4n

 sed '/^$/d' text > text.out

 sed 's/\([Uu]nix\)/\1(TM)/g' text > text.out

 date | cut -c12-16

3. Write the command to find all logged-in users with usernames of at least four characters.

4. Find all users on your system whose user IDs are greater than 99, and the number of users on your system whose
user IDs are greater than 99.

5. List all the files in your directory in decreasing order of file size.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 4 Exercises

1. Which of the following are valid variable names?
 XxXxXx

 HOMEDIR

 file_name

 x09

 file1

 Slimit

2. Suppose that your HOME directory is /users/steve. Assuming that you just logged in to the system and executed
the following commands:

 $ docs=/users/steve/documents

 $ let=$docs/letters

 $ prop=$docs/proposals

 Write the commands in terms of these variables to:

 a. List the contents of the documents directory.

 b. Copy all files from the letters directory to the proposals directory.

 c. Move all files whose names contain a capital letter from the letters directory to the current directory.

 d. Count the number of files in the memos directory.

3. Suppose that your HOME directory is /users/steve. Assuming that you just logged in to the system and executed
the following commands:

 $ docs=/users/steve/documents

 $ let=$docs/letters

 $ prop=$docs/proposals

What would be the effect of the following commands?

 a. ls $let/..

 b. cat $prop/sys.A >> $let/no.JSK

 c. echo $let/*

 d. cp $let/no.JSK $progs

4. Write a program called nf to display the number of files in your current directory. Type in the program and test it
out.

5. Write a program called whos to display a sorted list of the logged-in users. Just display the usernames and no other
information. Type in the program and test it out.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 5 Exercises

1. Given the following assignments:
 $ x=*

 $ y=?

 $ z='one

 > two

 > three'

 $ now=$(date)

 $ symbol='>'

 and these files in your current directory:
 $ echo *

 names test1 u vv zebra

What will the output be from the following commands?
 echo *** error ***

 echo 'Is 5 * 4 > 18 ?'

 echo $x

 echo What is your name?

 echo $y

 echo Would you like to play a game?

 echo "$y"

 echo ***

2. Given the following assignments:
 $ x=*

 $ y=?

 $ z='one

 > two

 > three'

 $ now=$(date)

 $ symbol='>'

What would the output of the following commands?
 echo $z | wc -l

 echo \$$symbol

 echo "$z" | wc -l

 echo $\$symbol

 echo '$z' I wc -l

 echo "\"

 echo _$now_

 echo "\\"

 echo hello $symbol out

 echo \\

 echo "\""

 echo I don't understand

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

3. Write the commands to remove all the space characters stored in the shell variable text. Be sure to assign the
result back to text. First use tr to do it and then do the same thing with sed.

4. Write the commands to count the number of characters stored in the shell variable text. Then write the
commands to count all the alphabetic characters. (Hint: Use sed and wc.) What happens to special character
sequences such as \n if they're stored inside text?

5. Write the commands to assign the unique lines in the file names to the shell variable namelist.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 6 Exercises

1. Modify lu so that it ignores case when doing the lookup.

2. What happens if you forget to supply an argument to the lu program? What happens if the argument is null (as in,
lu "")?

3. The program ison from this chapter has a shortcoming as shown in the following example:

 $ ison ed

 fred tty03 Sep 4 14:53

 The output indicates that fred is logged on, while we were checking to see whether ed was logged on. Modify
ison to correct this problem.

4. Write a program called twice that takes a single integer argument and doubles its value:
 $ twice 15

 30

 $ twice 0

 0

 $

 What happens if a non-integer value is typed? What if the argument is omitted?

5. Write a program called home that takes the name of a user as its single argument and prints that user's home
directory. Specifically:

 home steve

 should print
 /users/steve

 if /users/steve is steve's home directory. (Hint: Recall that the home directory is the sixth field stored in the
file /etc/passwd.)

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 7 Exercises

1. Write a program called valid that prints yes if its argument is a legal shell variable name and no otherwise:
 $ valid foo_bar

 yes

 $ valid 123

 no

2. Write a program called thetime that displays the time of day in am or pm notation rather than in 24-hour clock
time.

 $ date

 Wed Aug 28 19:34:01 EDT 2002

 $ thetime

 7:21 pm

 Suggestion: Use the shell's built-in integer arithmetic to convert from 24-hour clock time. Then rewrite the
program to use a case command instead. Rewrite it again to perform arithmetic with the expr command.

3. Write a program called mysed that applies the sed script given as the first argument against the file given as the
second. If the sed succeeds (that is, exit status of zero), replace the original file with the modified one. Thus:

 mysed '1,10d' text

 will use sed to delete the first 10 lines from text, and, if successful, will replace text with the modified file.

4. Write a program called isyes that returns an exit status of 0 if its argument is yes, and 1 otherwise. For purposes

of this exercise, consider y, yes, Yes, YES, and Y all to be valid yes arguments:
 $ isyes yes

 $ echo $?

 0

 $ isyes no

 $ echo $?

 1

 Write the program using an if command and then rewrite it using a case command. This program can be useful
when reading yes/no responses from the terminal.

5. Use the date and who commands to write a program called conntime that prints the number of hours and
minutes that a user has been logged on to the system (assume that this is less than 24 hours).

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 8 Exercises

1. Modify the prargs program to precede each argument by its number. Thus, typing

 prargs a 'b c' d

 should give the following output:
 1: a

 2: b c

 3: d

2. Modify the waitfor program to also print the tty number that the user logs on to. That is, the output should look
like:

 sandy logged onto tty13

 if sandy logs on to tty13.

3. Add a -f option to waitfor to have it periodically check for the existence of a file (ordinary file or directory)
instead of for a user logging on. So typing:

 waitfor -f /usr/spool/steve/newmemo &

 should cause waitfor to periodically check for the existence of the indicated file and inform you when it does (by
displaying a message or by mail if the -m option is also selected).

4. Add a -n option to waitfor that inverts the monitoring function. So
 waitfor -n sandy

 checks for sandy logging off the system, and
 waitfor -n -f /tmp/dataout &

 periodically checks for the removal of the specified file.

5. Write a shell program called wgrep that searches a file for a given pattern, just as grep does. For each line in the
file that matches, print a "window" around the matching line. That is, print the line preceding the match, the
matching line, and the line following the match. Be sure to properly handle the special cases where the pattern
matches the first line of the file and where the pattern matches the last line of the file.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 9 Exercises

1. Write a program called mymv that does with the mv command what mycp does with the cp command. How many
changes did you have to make to mycp to produce this new program?

2. Modify mycp to prompt for arguments if none are supplied. A typical execution of the modified version should
look like this:

 $ mycp

 Source file name? voucher

 Destination file name? voucher.sv

 $

 Make sure that the program allows one or both of the files to be specified with filename substitution characters.

3. Add a -n option to mycp that suppresses the normal check for the existence of the destination files.

4. Modify the addi command to loop until the user enters quit and to allow users to specify what function they want
to apply to the pair of numbers given so that the following session would work.

 $ addi

 100 200

 300

 100 - 50

 50

 5 * 5

 25

 5/5

 error: not enough arguments given

 quit

 $

5. Modify lu from Chapter 6 to use printf to print the name and phone number so that they line up in columns for
names up to 40 characters in length (Hint: use cut –f and the fact that the fields in the phonebook are separated
by tabs).

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 10 Exercises

1. Write a program called myrm that takes as arguments the names of files to be removed. If the global variable
MAXFILES is set, take it as the maximum number of files to remove without question. If the variable is not set, use
10 as the maximum. If the number of files to be removed exceeds this count, ask the user for confirmation before
removing the files.

 $ ls | we -l

 25

 $ myrm * Remove them all

 Remove 25 files (y/n)? n

 files not removed

 $ MAXFILES=l00 myrm *

 $ ls

 $ All files removed

 If MAXFILES is set to zero, the check should be suppressed.

2. Here are two programs called prog1 and prog2:
 $ cat prog1

 e1=100

 export e1

 e2=200

 e3=300 prog2

 $ cat prog2

 echo e1=$e1 e2=$e2 e3=$e3 e4=$e4

 $

What output would you expect after typing the following:
 $ prog1

 $ e2=20; export e2

 $ e4=40 prog1

3. Modify rolo from this chapter so that a person running the program can keep their phone book file in whatever
directory they prefer. This can be done by requiring that the user have set a variable called PHONEBOOK to be the
name of the phone book file. Check to make sure that it's a valid file and default to the phone book file being in
their $HOME directory if the variable's not set.

 Here is an example:
 $ PHONEBOOK=/users/steve/personal lu Gregory

 Gregory 973-747-0370

 $ PHONEBOOK=/users/pat/phonebook lu Toritos

 El Toritos 973-945-2236

 $

In the preceding example, we assume that the user steve has been granted read access to pat's phone book file.

4. Write a shell script checkpath that extracts each directory from the user's PATH and ensures that the directory
exists and is readable. Report either error condition or confirm that the directory is correctly configured. Hint:
directories in the PATH are separated by a colon (:).

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

5. Write a script cmprpaths that compares the directories specified in CDPATH and PATH, reporting on any that don't
appear in both. For example, if

 PATH="/bin:/usr/bin/:$HOME/bin"

 CDPATH="$HOME/bin:$HOME/projects"

Then the program would report:
 $ cmprpaths

 /bin appears only in PATH

 /usr/bin/appears only in PATH

 $HOME/projects appears only in CDPATH

 $

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 11 Exercises

1. Rewrite the home program from Exercise 5 in Chapter 6 to use IFS to extract the home directory from
/etc/passwd. What happens to the program if one of the fields in the file is null, as in

 steve:*:203:100::/users/steve:/bin/ksh

 Here the fifth field is null (::).

2. Using the fact that the shell construct ${#var} gives the number of characters stored in var, rewrite wc in the
shell. Be sure to use integer arithmetic! (Notes: Change your IFS variable to just a newline character so that
leading whitespace characters on input are preserved, and also use the -r option to the shell's read command so
that terminating backslash characters on the input are ignored.)

3. Write a function called rightmatch that takes two arguments as shown:
 rightmatch value pattern

 where value is a sequence of one or more characters, and pattern is a shell pattern that is to be removed from
the right side of value. The shortest matching pattern should be removed from value and the result written to
standard output. Here is some sample output:

 $ rightmatch test.c .c

 test

 $ rightmatch /usr/spool/uucppublic '/*'

 /usr/spool

 $ rightmatch /usr/spool/uucppublic o

 /usr/spool/uucppublic

 $

 The last example shows that the rightmatch function should simply echo its first argument if it does not end with
the specified pattern.

4. Write a function called leftmatch that works similarly to the rightmatch function developed in Exercise 3. Its
two arguments should be as follows:

 leftmatch pattern value

 Here are some example uses:
 $ leftmatch /usr/spool/ /usr/spool/uucppublic

 uucppublic

 $ leftmatch s. s.main.c

 main.c

 $

5. Write a function called substring that uses the leftmatch and rightmatch functions developed in Exercises 3
and 4 to remove a pattern from the left and right side of a value. It should take three arguments as shown:

 $ substring /usr/ /usr/spool/uucppublic /uucppublic

 spool

 $ substring s. s.main.c .c

 main

 $ substring s. s.main.c .o Only left match

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

 main.c

 $ substring x. s.main.c .o No matches

 s.main.c

 $

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 12 Exercises

1. Using eval, write a program called recho that prints its arguments in reverse order. So
 recho one two three

 should produce
 three two one

 Assume that more than nine arguments can be passed to the program.

2. Write a script that counts how many times a user tries to quit the program with an interrupt (typically Control-C),
showing the count and finally letting them quit on the fifth attempt. Tip: You'll need to use trap for this and the
interrupt signal is SIGINT.

3. Write a script that lets users specify echo and wc command sequences, allowing them to use the word "pipe" to
represent a pipe symbol. So input like:

 echo this is a test pipe wc -w

 should result in the script displaying 4 since there are four words in the invocation.

4. Modify the shar program presented in this chapter to handle directories: If the user specifies a directory instead of

a file, it will archive every file within that directory and create the directory as needed when the archive is
unpacked.

5. Modify shar to include in the archive the character count for each file and commands to compare the count of
each extracted file against the count of the original file. If a discrepancy occurs, output an appropriate error
message.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 13 Exercises

1. Add a -m command-line option to rolo to make it easy to look up someone and have the result emailed to the
specified recipient. So

 rolo -m john Susan

 will result in john getting an email containing the result of a lookup for Susan in the phonebook.

2. After adding the -m option, add a -s option to specify that the mail message is only to be sent if there's one and
only one match to the search query.

3. Can you think of other ways to use rolo? For example, could it be used as a small general-purpose database
program (for example, for storing recipes or employee data)?

4. Modify rolo to look for a file .rolo in each rolo user's home directory that contains the full pathname to that
user's phone book file. For example:

 $ cat $HOME/.rolo

 /users/steve/misc/phonebook

 $

5. Add the -u flag to rolo to allow you to look up someone in another user's phone book (provided that you have
read access to it). For example:

 $ rolo -u pat Pizza

 would look up Pizza in pat's phone book, no matter who is running rolo. The program can find pat's phone
book by looking at .rolo in pat's home directory.

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

Chapter 14 Exercises

1. Write a function that prints all filenames in a specified directory hierarchy without using either ls or find. Its
output should be similar to the output of the find command:

 $ myfind /users/pat

 /users/pat

 /users/pat/bin

 /users/pat/bin/ksh

 /users/pat/bin/lf

 /users/pat/bin/pic

 /users/pat/chapt1

 /users/pat/chapt1/intro

 /users/pat/rje

 /users/pat/rje/filel

 (Hint: Bash and Korn shell functions can be recursive.)

2. Write a shell function called octal that converts octal numbers given as command-line arguments to decimal
numbers and prints them out, one per line:

 $ octal 10 11 12

 8

 9

 10

 $

 (Korn shell users, remember that if you assign a decimal number to a variable when it's declared – for example,
typeset –i d=10#0 – assignments to this variable from other bases are automatically converted to decimal.)

3. Modify the cdh function to filter out multiple occurrences of the same directory. The new function should work as
shown:

 $ cdh –l

 0 /users/pat

 $ cdh

 $ cdh

 $ cdh –l

 0 /users/pat

 $

4. Modify the cdh function to set the prompt (PS1) to show the current directory; for example:
 /users/pat: cdh /tmp

 /tmp: cdh

 /users/pat:

5. Modify the cdh function to allow the user to specify a partial name of a directory in the history file preceded by a
dash:

 /etc: cdh –l

 0 /users/pat

Shell Programming in Unix, Linux, and OS X, Fourth Edition
Stephen G. Kochan and Patrick Wood

 1 /tmp

 2 /users/steve

 3 /usr/spool/uucppublic

 4 /usr/local/bin

 5 /etc

 /etc: cdh –pub

 /usr/spool/uucppublic: cdh –bin

 /usr/local/bin:

