
 IN THIS CHAPTER

 ▶ Introduction to PHP

 ▶ Basic Functions

 ▶ Handling HTML Forms

 ▶ Databases

 ▶ References

 BONUS CHAPTER 46

 Using PHP

 This chapter introduces you to the world of PHP program-
ming, from the point of view of using it as a web script-
ing language and as a command-line tool. PHP originally
stood for personal home page because it was a collection of
Perl scripts designed to ease the creation of guest books,
message boards, and other interactive scripts commonly
found on home pages. However, since those early days, it
has received two major updates (PHP 3 and PHP 4), plus a
substantial revision in PHP 5, which is the version bundled
with Ubuntu.

 Part of the success of PHP has been its powerful integra-
tion with databases—its earliest uses nearly always took
advantage of a database back end. In PHP 5, two big new
data storage mechanisms were introduced: SQLite, which
is a powerful and local database system; and SimpleXML,
which is an application programming interface (API) designed
to make Extensible Markup Language (XML) parsing and
querying easy. As you will see over time, the PHP develop-
ers did a great job: Both SQLite and SimpleXML are easy to
learn and use.

 NOTE

 Many packages for PHP are available from the Ubuntu
repositories. The basic package is just called php5 ,
but you might also want to add extensions such as
 php5-ldap , php5-mysql , or php5-pgsql .

48_9780134268118_ch46.indd 4348_9780134268118_ch46.indd 43 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:44

 Introduction to PHP
 In terms of the way it looks, PHP is a cross between Java and Perl, having taken the best
aspects of both and merged them successfully into one language. The Java parts include a
powerful object-orientation system, the capability to throw program exceptions, and the
general style of writing that both languages borrowed from C. Borrowed from Perl is the
“it should just work” mentality where ease of use is favored over strictness. As a result,
you will find a lot of “there is more than one way to do it” in PHP. This also means that
it is possible to accomplish tasks in ways that are less than ideal or without consideration
for good security. Many criticize PHP for this, but for simple tasks or if written carefully,
it can be a pretty good language and is easy to understand and use, especially for quick
website creation.

 Entering and Exiting PHP Mode

 Unlike PHPs predecessors, you embed your PHP code inside your HTML as opposed to the
other way around. Before PHP, many websites had standard HTML pages for most of their
content, linking to Perl CGI pages to do back-end processing when needed. With PHP, all
your pages are capable of processing and containing HTML. This is a huge factor in PHPs
popularity.

 Each PHP file is processed by PHP that looks for code to execute. PHP considers all the text
it finds to be HTML until it finds one of four things:

 ▶ <?php

 ▶ <?

 ▶ <%

 ▶ <script language="php">

 The first option is the preferred method of entering PHP mode because it is guaranteed
to work.

 When in PHP mode, you can exit it by using ?> (for <?php and <?); %> (for <%); or
 </script> (for <script language="php">). This code example demonstrates entering and
exiting PHP mode:

 In HTML mode

 <?php

 echo "In PHP mode";

 ?>

 In HTML mode

 In <?php echo "PHP"; ?> mode

 Variables

 All variables in PHP start with a dollar sign ($). Unlike many other languages, PHP
does not have different types of variable for integers, floating-point numbers, arrays, or

48_9780134268118_ch46.indd 4448_9780134268118_ch46.indd 44 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:45
4

6

Booleans. They all start with a $, and all are interchangeable. As a result, PHP is a weakly
typed language, which means you do not declare a variable as containing a specific type
of data; you just use it however you want to.

 Save the code in Listing 46.1 into a new file called ubuntu1.php .

 LISTING 46.1 Testing Types in PHP

 <?php

 $i = 10;

 $j = "10";

 $k = "Hello, world";

 echo $i + $j;

 echo $i + $k;

 ?>

 To run that script, bring up a console and browse to where you saved it. Then type this
command:

 matthew@seymour:~$ php ubuntu1.php

 If PHP is installed correctly, you should see the output 2010 , which is really two things.
The 20 is the result of 10 + 10 ($i plus $j), and the 10 is the result of adding 10 to the text
string Hello, world . Neither of those operations are really straightforward. Whereas $i
is set to the number 10 , $j is actually set to be the text value "10" , which is not the same
thing. Adding 10 to 10 gives 20, as you would imagine, but adding 10 to "10" (the string)
forces PHP to convert $j to an integer on-the-fly before adding it.

 Running $i + $k adds another string to a number, but this time the string is Hello,
world and not just a number inside a string. PHP still tries to convert it, though, and
converting any non-numeric string into a number converts it to 0. So, the second echo
statement ends up saying $i + 0 .

 As you should have guessed by now, calling echo outputs values to the screen. Right now,
that prints directly to your console, but internally PHP has a complex output mechanism
that enables you to print to a console, send text through Apache to a web browser, send
data over a network, and more.

 Now that you have seen how PHP handles variables of different types, it is important that
you understand the selection of types available to you, as shown in Table 46.1 .

 TABLE 46.1 PHP Variable Types

 Type Stores

 integer Whole numbers; for example, 1, 9, or 324809873

 float Fractional numbers; for example, 1.1, 9.09, or 3.141592654

 string Characters; for example, “a”, “sfdgh”, or “Ubuntu Unleashed”

48_9780134268118_ch46.indd 4548_9780134268118_ch46.indd 45 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:46

 Type Stores

 boolean True or false

 array Several variables of any type

 resource Any external data

 The first four can be thought of as simple variables, and the last three as complex vari-
ables. Arrays are simply collections of variables. You might have an array of numbers (the
ages of all the children in a class); an array of strings (the names of all Wimbledon tennis
champions); or even an array of arrays, known as a multidimensional array . Arrays are
covered in more depth in the next section because they are unique in the way in which
they are defined.

 Objects are used to define and manipulate a set of variables that belong to a unique entity.
Each object has its own personal set of variables, as well as functions that operate on those
variables. Objects are commonly used to model real-world things. You might define an
object that represents a TV, with variables such as $CurrentChannel (probably an integer),
 $SupportsHiDef (a Boolean), and so on.

 Of all the complex variables, the easiest to grasp are resources. PHP has many extensions
available to it that allow you to connect to databases, manipulate graphics, or even make
calls to Java programs. Because they are all external systems, they need to have types of
data unique to them that PHP cannot represent using any of the six other data types. So,
PHP stores their custom data types in resources—data types that are meaningless to PHP
but can be used by the external libraries that created them.

 Arrays

 Arrays are one of our favorite parts of PHP because the syntax is smart and easy to read
and yet manages to be as powerful as you could want. You need to know four pieces of
jargon to understand arrays:

 ▶ An array is made up of many elements .

 ▶ Each element has a key that defines its place in the array. An array can have only
one element with a given key.

 ▶ Each element also has a value , which is the data associated with the key.

 ▶ Each array has a cursor , which points to the current key.

 The first three are used regularly; the last one less often. The array cursor is covered later
in this chapter in the section “Basic Functions,” but we look at the other three now. With
PHP, your keys can be almost anything: integers, strings, objects, or other arrays. You can
even mix and match the keys so that one key is an array; another is a string, and so on.
The one exception to all this is floating-point numbers; you cannot use floating-point
numbers as keys in your arrays.

48_9780134268118_ch46.indd 4648_9780134268118_ch46.indd 46 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:47
4

6

 There are two ways of adding values to an array: with the [] operator, which is unique to
arrays; and with the array() pseudo-function. You should use [] when you want to add
items to an existing array and use array() to create a new array.

 To sum all this up in code, Listing 46.2 shows a script that creates an array without speci-
fying keys, adds various items to it both without keys and with keys of varying types, does
a bit of printing, and then clears the array.

 LISTING 46.2 Manipulating Arrays

 <?php

 $myarr = array(1, 2, 3, 4);

 $myarr[4] = "Hello";

 $myarr[] = "World!";

 $myarr["elephant"] = "Wombat";

 $myarr["foo"] = array(5, 6, 7, 8);

 echo $myarr[2];

 echo $myarr["elephant"];

 echo $myarr["foo"][1];

 $myarr = array();

 ?>

 The initial array is created with four elements, to which we assign the values 1 , 2 , 3 , and
 4. Because no keys are specified, PHP automatically assigns keys for us starting at 0 and
counting upward—giving keys 0 , 1 , 2 , and 3 . Then we add a new element with the []
operator, specifying 4 as the key and "Hello" as the value. Next, [] is used again to add an
element with the value "World!" and no key and then again to add an element with the
key "elephant" and the value "wombat" . The line after that demonstrates using a string
key with an array value—an array inside an array (a multidimensional array).

 The next three lines demonstrate reading back from an array, first using a numeric key,
then using a string key, and then using a string key and a numeric key. Remember, the
 "foo" element is an array in itself, so that third reading line retrieves the array and then
prints the second element (arrays start at 0, remember). The last line blanks the array
by simply using array() with no parameters, which creates an array with elements and
assigns it to $myarr .

 The following is an alternative way of using array() that allows you to specify keys along
with their values:

 $myarr = array("key1" => "value1", "key2" => "value2",

 7 => "foo", 15 => "bar");

 Which method you choose really depends on whether you want specific keys or want PHP
to pick them for you.

48_9780134268118_ch46.indd 4748_9780134268118_ch46.indd 47 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:48

 Constants

 Constants are frequently used in functions that require specific values to be passed in.
For example, a popular function is extract() , which takes all the values in an array and
places them into variables in their own right. You can choose to change the name of the
variables as they are extracted using the second parameter—send it a 0 and it overwrites
variables with the same names as those being extracted, send it a 1 and it skips variables
with the same names, send it a 5 and it prefixes variables only if they exist already, and so
on. Of course, no one wants to have to remember a lot of numbers for each function, so
you can instead use EXTR_OVERWRITE for 0, EXTR_SKIP for 1, EXTR_PREFIX_IF_EXISTS for 5,
and so on, which is much easier.

 You can create constants of your own by using the define() function. Unlike variables,
constants do not start with a dollar sign. Code to define a constant looks like this:

 <?php

 define("NUM_SQUIRRELS", 10);

 define("PLAYER_NAME", "Jim");

 define("NUM_SQUIRRELS_2", NUM_SQUIRRELS);

 echo NUM_SQUIRRELS_2;

 ?>

 That script demonstrates how you can set constants to numbers, strings, or even the value
of other constants, although that doesn’t really get used much!

 References

 Using the equal sign (=) copies the value from one variable to another so they both have
their own copy of the value. Another option here is to use references, which is where
a variable does not have a value of its own; instead, it points to another variable. This
enables you to share values and have variables mutually update themselves.

 To copy by reference, use the & symbol, as follows:

 <?php

 $a = 10;

 $b = &$a;

 echo $a . "\n";

 echo $b . "\n";

 $a = 20;

 echo $a . "\n";

 echo $b . "\n";

 $b = 30;

 echo $a . "\n";

 echo $b . "\n";

 ?>

48_9780134268118_ch46.indd 4848_9780134268118_ch46.indd 48 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:49
4

6

 If you run that script, you will see that updating $a also updates $b , but also that updating
 $b updates $a .

 Comments

 Adding short comments to your code is recommended and usually a requirement in larger
software houses. In PHP, you have three options for commenting style: // , /* */ , and # .
The first option (two slashes) instructs PHP to ignore everything until the end of the line.
The second (a slash and an asterisk) instructs PHP to ignore everything until it reaches */ .
The last (a hash symbol) works like // and is included because it is common among shell
scripting languages.

 This code example demonstrates the difference between // and /* */ :

 <?php

 echo "This is printed!";

 // echo "This is not printed";

 echo "This is printed!";

 /* echo "This is not printed";

 echo "This is not printed either"; */

 ?>

 It is generally preferred to use // because it is a known quantity. However, it is easy to
introduce coding errors with /* */ by losing track of where a comment starts and ends.

 NOTE

 Contrary to popular belief, having comments in your PHP script has almost no effect
on the speed at which the script executes. What little speed difference exists is wholly
removed if you use a code cache.

 Escape Sequences

 Some characters cannot be typed, and yet you will almost certainly want to use some of
them from time to time. For example, you might want to use an ASCII character for a new
line, but you cannot type it. Instead, you need to use an escape sequence: \n . Similarly,
you can print a carriage return character with \r . It is important to know both of these
because, on the Windows platform, you need to use \r\n to get a new line. If you do not
plan to run your scripts anywhere else, you need not worry about this.

 Going back to the first script you wrote, recall that it printed 2010 because you added 10 +
10 and then 10 + 0. You can rewrite that using escape sequences, like this:

 <?php

 $i = 10;

 $j = "10";

 $k = "Hello, world";

 echo $i + $j;

48_9780134268118_ch46.indd 4948_9780134268118_ch46.indd 49 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:50

 echo "\n";

 echo $i + $k;

 echo "\n";

 ?>

 This time, PHP prints a new line after each of the numbers, making it obvious that the
output is 20 and 10 rather than 2010 . Note that the escape sequences must be used in
double quotation marks because they will not work in single quotation marks.

 Three common escape sequences are \\ , which means “ignore the backslash”; \" , which
means “ignore the double quote”; and \' , which means “ignore the single quote.” This
is important when strings include quotation marks inside them. If we had a string such
as "Are you really Conan O'Brien?" , which has a single quotation mark in it, this code
would not work:

 <?php

 echo 'Are you really Conan O'Brien?';

 ?>

 PHP would see the opening quotation mark, read all the way up to the O in O’Brien, and
then see the quotation mark following the O as being the end of the string. The Brien?
part would appear to be a fragment of text and would cause an error. You have two
options here: You can either surround the string in double quotation marks or escape the
single quotation mark with \' .

 If you choose the escaping route, it will look like this:

 echo 'Are you really Conan O\'Brien?';

 Although they are a clean solution for small text strings, be careful with overusing escape
sequences. HTML is particularly full of quotation marks, and escaping them can get messy:

 $mystring = "<img src=\"foo.png\" alt=\"My picture\"

 width=\"100\" height=\"200\" />";

 In that situation, you are better off using single quotation marks to surround the text
simply because it is a great deal easier on the eye.

 Variable Substitution

 PHP allows you to define strings using three methods: single quotation marks, double
quotation marks, or heredoc notation. Heredoc is not discussed in this chapter because it
is fairly rare compared to the other two methods, but single quotation marks and double
quotation marks work identically, with one minor exception: variable substitution.

48_9780134268118_ch46.indd 5048_9780134268118_ch46.indd 50 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:51
4

6

 Consider the following code:

 <?php

 $age = 25

 echo "You are ";

 echo $age;

 ?>

 That is a particularly clumsy way to print a variable as part of a string. Fortunately, if you
put a variable inside a string, PHP performs variable substitution , replacing the variable
with its value. That means we can rewrite the code like this:

 <?php

 $age = 25

 echo "You are $age";

 ?>

 The output is the same. The difference between single quotation marks and double quota-
tion marks is that single-quoted strings do not have their variables substituted. Here’s an
example:

 <?php

 $age = 25

 echo "You are $age";

 echo 'You are $age';

 ?>

 The first echo prints You are 25 , but the second one prints You are $age .

 Operators

 Now that you have data values to work with, you need some operators to use, too. You
have already used + to add variables together, but many others in PHP handle arithmetic,
comparison, assignment, and other operators. Operator is just a fancy word for something
that performs an operation, such as addition or subtraction. However, operand might be
new to you. Consider this operation:

 $a = $b + c;

 In this operation, = and + are operators, and $a , $b , and $c are operands. Along with + ,
you also already know – (subtract), * (multiply), and / (divide), but Table 46.2 provides
some more.

48_9780134268118_ch46.indd 5148_9780134268118_ch46.indd 51 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:52

 TABLE 46.2 PHP Operators

 Operator What It Does

 = Assigns the right operand to the left operand.

 == Returns true if the left operand is equal to the right operand.

 != Returns true if the left operand is not equal to the right operand.

 === Returns true if the left operand is identical to the right operand. This is not
the same as == .

 !== Returns true if the left operand is not identical to the right operand. This is
not the same as != .

 < Returns true if the left operand is smaller than the right operand.

 > Returns true if the left operand is greater than the right operand.

 <= Returns true if the left operand is equal to or smaller than the right
operand.

 && Returns true if both the left operand and the right operand are true.

 || Returns true if either the left operand or the right operand is true.

 ++ Increments the operand by one.

 — Decrements the operand by one.

 += Increments the left operand by the right operand.

 -= Decrements the left operand by the right operand.

 . Concatenates the left operand and the right operand (joins them together).

 % Divides the left operand by the right operand and returns the remainder.

 | Performs a bitwise OR operation. It returns a number with bits that are set in
either the left operand or the right operand.

 & Performs a bitwise AND operation. It returns a number with bits that are set
both in the left operand and the right operand.

 At least 10 other operators are not listed; to be fair, however, you’re unlikely to use them.
Even some of the ones in this list are used infrequently (bitwise AND , for example). Having
said that, the bitwise OR operator is used regularly because it allows you to combine values.

 Here is a code example demonstrating some of the operators:

 <?php

 $i = 100;

 $i++; // $i is now 101

 $i—; // $i is now 100 again

 $i += 10; // $i is 110

 $i = $i / 2; // $i is 55

 $j = $i; // both $j and $i are 55

 $i = $j % 11; // $i is 0

 ?>

48_9780134268118_ch46.indd 5248_9780134268118_ch46.indd 52 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:53
4

6

 The last line uses modulus, which takes some people a little bit of effort to understand.
The result of $i % 11 is 0 because $i is set to 55 , and modulus works by dividing the left
operand (55) by the right operand (11) and returning the remainder. 55 divides by 11
exactly 5 times, and so has the remainder 0.

 The concatenation operator, a period (.), sounds scarier than it is: It just joins strings
together. For example:

 <?php

 echo "Hello, " . "world!";

 echo "Hello, world!" . "\n";

 ?>

 There are two “special” operators in PHP that are not covered here and yet are used
frequently. Before we look at them, though, it is important that you see how the compari-
son operators (such as < , <= , and !=) are used inside conditional statements.

 Conditional Statements

 In a conditional statement , you instruct PHP to take different actions depending on the
outcome of a test. For example, you might want PHP to check whether a variable is greater
than 10 and, if so, print a message. This is all done with the if statement, which looks
like this:

 if (your condition) {

 // action to take if condition is true

 } else {

 // optional action to take otherwise

 }

 The your condition part can be filled with any number of conditions you want PHP to
evaluate, and this is where the comparison operators come into their own. For example:

 if ($i > 10) {

 echo "11 or higher";

 } else {

 echo "10 or lower";

 }

 PHP looks at the condition and compares $i to 10 . If it is greater than 10, it replaces the
whole operation with 1 ; otherwise, it replaces it with 0 . So, if $i is 20 , the result looks like
this:

 if (1) {

 echo "11 or higher";

 } else {

 echo "10 or lower";

 }

48_9780134268118_ch46.indd 5348_9780134268118_ch46.indd 53 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:54

 In conditional statements, any number other than 0 is considered to be equivalent to the
Boolean value true ; so 1 always evaluates to true . There is a similar case for strings: If
your string has any characters in it, it evaluates to true , with empty strings evaluating to
 false . This is important because you can then use that 1 in another condition through &&
or || operators. For example, if you want to check whether $i is greater than 10 but less
than 40 , you could write this:

 if ($i > 10 && $i < 40) {

 echo "11 or higher";

 } else {

 echo "10 or lower";

 }

 If you presume that $i is set to 50 , the first condition ($i, 10) is replaced with 1 and the
second condition ($i < 40) is replaced with 0 . Those two numbers are then used by the
 && operator, which requires both the left and right operands to be true . Whereas 1 is
equivalent to true , 0 is not, so the && operand is replaced with 0 and the condition fails.

 = , == , === , and similar operators are easily confused and often the source of program-
ming errors. The first, a single equal sign, assigns the value of the right operand to the left
operand. However, all too often you see code like this:

 if ($i = 10) {

 echo "The variable is equal to 10!";

 } else {

 echo "The variable is not equal to 10";

 }

 That is incorrect. Rather than checking whether $i is equal to 10 , it assigns 10 to $i and
returns true . What is needed is == , which compares two values for equality. In PHP, this is
extended so that there is also === (three equal signs), which checks whether two values are
identical, more than just equal.

 The difference is slight but important: If you have a variable with the string value "10"
and compare it against the number value of 10 , they are equal. Thus, PHP converts the
type and checks the numbers. However, they are not identical. To be considered identi-
cal, the two variables must be equal (that is, have the same value) and be of the same data
type (that is, both are strings, both are integers, and so on).

 NOTE

 It is common practice to put function calls in conditional statements rather than direct
comparisons. For example:

 if (do_something()) {

 If the do_something() function returns true (or something equivalent to true , such as a
nonzero number), the conditional statement evaluates to true .

48_9780134268118_ch46.indd 5448_9780134268118_ch46.indd 54 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:55
4

6

 Special Operators

 The ternary operator and the execution operator work differently from those we have seen
so far. The ternary operator is rarely used in PHP, thankfully, because it is really just a
condensed conditional statement. Presumably it arose through someone needing to make
a code occupy as little space as possible because it certainly does not make PHP code any
easier to read.

 The ternary operator works like this:

 $age_description = ($age < 18) ? "child" : "adult";

 Without explanation, that code is essentially meaningless; however, it expands into the
following five lines of code:

 if ($age < 18) {

 $age_description = "child";

 } else {

 $age_description = "adult";

 }

 The ternary operator is so named because it has three operands: a condition to check
($age < 18 in the previous code), a result if the condition is true ("child"), and a result
if the condition is false ("adult"). Although we hope you never have to use the ternary
operator, it is at least important to know how it works in case you stumble across it.

 The other special operator is the execution operator, which is the backtick symbol, ̀ . The
position of the backtick key varies depending on your keyboard, but it is likely to be just
to the left of the 1 key (above Tab). The execution operator executes the program inside
the backticks, returning any text the program outputs. For example:

 <?php

 $i = `ls –l`;

 echo $i;

 ?>

 That executes the ls program, passing in - l (a lowercase L) to get the long format, and
stores all its output in $i . You can make the command as long or as complex as you like,
including piping to other programs. You can also use PHP variables inside the command.

 Switching

 Having multiple if statements in one place is ugly, slow, and prone to errors. Consider
the code in Listing 46.3 .

48_9780134268118_ch46.indd 5548_9780134268118_ch46.indd 55 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:56

 LISTING 46.3 How Multiple Conditional Statements Lead to Ugly Code

 <?php

 $cat_age = 3;

 if ($cat_age == 1) {

 echo "Cat age is 1";

 } else {

 if ($cat_age == 2) {

 echo "Cat age is 2";

 } else {

 if ($cat_age == 3) {

 echo "Cat age is 3";

 } else {

 if ($cat_age == 4) {

 echo "Cat age is 4";

 } else {

 echo "Cat age is unknown";

 }

 }

 }

 }

 ?>

 Even though it certainly works, it is a poor solution to the problem. Much better is a
 switch / case block, which transforms the previous code into what’s shown in Listing 46.4 .

 LISTING 46.4 Using a switch/case Block

 <?php

 $cat_age = 3;

 switch ($cat_age) {

 case 1:

 echo "Cat age is 1";

 break;

 case 2:

 echo "Cat age is 2";

 break;

 case 3:

 echo "Cat age is 3";

 break;

 case 4:

 echo "Cat age is 4";

 break;

 default:

48_9780134268118_ch46.indd 5648_9780134268118_ch46.indd 56 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:57
4

6

 echo "Cat age is unknown";

 }

 ?>

 Although it is only slightly shorter, it is a great deal more readable and much easier to
maintain. A switch / case group is made up of a switch() statement in which you provide
the variable you want to check, followed by numerous case statements. Notice the break
statement at the end of each case . Without that, PHP would execute each case statement
beneath the one it matches. Calling break causes PHP to exit the switch / case . Notice also
that there is a default case at the end that catches everything that has no matching case.

 It is important that you do not use case default : but merely default :. Also, it is the last
 case label, so it has no need for a break statement because PHP exits the switch / case
block there anyway.

 Loops

 PHP has four ways you can execute a block of code multiple times: while , for , foreach ,
and do...while . Of the four, only do...while sees little use; the others are popular, and
you will certainly encounter them in other people’s scripts.

 The most basic loop is the while loop, which executes a block of code for as long as a
given condition is true . So, we can write an infinite loop—a block of code that continues
forever—with this PHP:

 <?php

 $i = 10;

 while ($i >= 10) {

 $i += 1;

 echo $i;

 }

 ?>

 The loop block checks whether $i is greater or equal to 10 and, if that condition is true ,
adds 1 to $i and prints it. Then it goes back to the loop condition again. Because $i starts
at 10 and we only ever add numbers to it, that loop continues forever. With two small
changes, we can make the loop count down from 10 to 0:

 <?php

 $i = 10;

 while ($i >= 0) {

 $i -= 1;

 echo $i;

 }

 ?>

48_9780134268118_ch46.indd 5748_9780134268118_ch46.indd 57 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:58

 So, this time we check whether $i is greater than or equal to 0 and subtract 1 from it with
each loop iteration. while loops are typically used when you are unsure of how many
times the code needs to loop because while keeps looping until an external factor stops it.

 With a for loop, you specify precise limits on its operation by giving it a declaration, a
condition, and an action. That is, you specify one or more variables that should be set
when the loop first runs (the declaration), you set the circumstances that will cause the
loop to terminate (the condition), and you tell PHP what it should change with each loop
iteration (the action). That last part is what really sets a for loop apart from a while loop:
You usually tell PHP to change the condition variable with each iteration.

 We can rewrite the script that counts down from 10 to 0 using a for loop:

 <?php

 for($i = 10; $i >= 0; $i -= 1) {

 echo $i;

 }

 ?>

 This time you do not need to specify the initial value for $i outside the loop, and neither
do you need to change $i inside the loop; it is all part of the for statement. The actual
amount of code is really the same, but for this purpose the for loop is arguably tidier and
therefore easier to read. With the while loop, the $i variable was declared outside the loop
and so was not explicitly attached to the loop.

 The third loop type is foreach , which is specifically for arrays and objects, although it is
rarely used for anything other than arrays. A foreach loop iterates through each element
in an array (or each variable in an object), optionally providing both the key name and
the value.

 In its simplest form, a foreach loop looks like this:

 <?php

 foreach($myarr as $value) {

 echo $value;

 }

 ?>

 This loops through the $myarr array you created earlier, placing each value in the $value
variable. You can modify that so you get the keys as well as the values from the array, like
this:

 <?php

 foreach($myarr as $key => $value) {

 echo "$key is set to $value\n";

 }

 ?>

48_9780134268118_ch46.indd 5848_9780134268118_ch46.indd 58 10/28/15 5:09 PM10/28/15 5:09 PM

Introduction to PHP Web:59
4

6

 As you can guess, this time the array keys go in $key and the array values go in $value .
One important characteristic of the foreach loop is that it goes from the start of the array
to the end and then stops—and by start we mean the first item to be added rather than
the lowest index number. This script shows this behavior:

 <?php

 $array = array(6 => "Hello", 4 => "World",

 2 => "Wom", 0 => "Bat");

 foreach($array as $key => $value) {

 echo "$key is set to $value\n";

 }

 ?>

 If you try this script, you will see that foreach prints the array in the original order of 6 , 4 ,
 2 , 0 rather than the numeric order of 0 , 2 , 4 , 6 .

 The do...while loop works like the while loop, with the exception that the condi-
tion appears at the end of the code block. This small syntactical difference means a lot,
though, because a do...while loop is always executed at least once. Consider this script:

 <?php

 $i = 10;

 do {

 $i -= 1;

 echo $i;

 } while ($i < 10);

 ?>

 Without running the script, what do you think it will do? One possibility is that it will
do nothing; $i is set to 10 , and the condition states that the code must loop only while
 $i is less than 10 . However, a do...while loop always executes once, so what happens is
that $i is set to 10 and PHP enters the loop, decrements $i , prints it, and then checks the
condition for the first time. At this point, $i is indeed less than 10 , so the code loops, $i is
decremented again, the condition is rechecked, $i is decremented again, and so on. This is
in fact an infinite loop and so should be avoided!

 If you ever want to exit a loop before it has finished, you can use the same break state-
ment that you used earlier to exit a switch / case block. This becomes more interesting if
you find yourself with nested loops (loops inside of loops). This is a common situation to
be in. For example, you might want to loop through all the rows in a chessboard and, for
each row, loop through each column. Calling break exits only one loop or switch / case ,
but you can use break 2 to exit two loops or switch / cases , or break 3 to exit three, and
so on.

 Including Other Files

 Unless you are restricting yourself to the simplest programming ventures, you will want
to share code among your scripts at some point. The most basic need for this is to have

48_9780134268118_ch46.indd 5948_9780134268118_ch46.indd 59 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:60

a standard header and footer for your website, with only the body content changing.
However, you might also find yourself with a small set of custom functions you use
frequently, and it would be an incredibly bad move to simply copy and paste the func-
tions into each of the scripts that use them.

 The most common way to include other files is with the include keyword. Save this script
as include1.php :

 <?php

 for($i = 10; $i >= 0; $i -= 1) {

 include "echo_i.php";

 }

 ?>

 Then save this script as echo_i.php :

 <?php

 echo $i;

 ?>

 If you run include1.php , PHP loops from 10 to 0 and includes echo_i.php each time.
For its part, echo_i.php just prints the value of $i , which is a crazy way of performing
an otherwise simple operation, but it does demonstrate how included files share data.
Note that the include keyword in include1.php is inside a PHP block, but we reopen PHP
inside echo_i.php . This is important because PHP exits PHP mode for each new file, so
you always have a consistent entry point.

 Basic Functions
 PHP has a vast number of built-in functions that enable you to manipulate strings,
connect to databases, and more. There is not room here to cover even 10 percent of the
functions; for more detailed coverage of functions, check the “References” section at the
end of this chapter.

 Strings

 Several important functions are used for working with strings, and there are many more
less-frequently used ones for which there is not enough space here. We are going to look
at the most important here, ordered by difficulty—easiest first!

 The easiest function is strlen() , which takes a string as its parameter and returns the
number of characters in there, like this:

 <?php

 $ourstring = " The Quick Brown Box Jumped Over The Lazy Dog ";

 echo strlen($ourstring);

 ?>

48_9780134268118_ch46.indd 6048_9780134268118_ch46.indd 60 10/28/15 5:09 PM10/28/15 5:09 PM

Basic Functions Web:61
4

6

 We will be using that same string in subsequent examples to save space. If you execute
that script, it outputs 48 because 48 characters are in the string. Note the two spaces on
either side of the text, which pad the 44-character phrase up to 48 characters. You can fix
that padding with the trim() function, which takes a string to trim and returns it with all
the whitespace removed from either side. This is a commonly used function because all
too often you encounter strings that have an extra new line at the end or a space at the
beginning. This cleans it up perfectly.

 Using trim() , you can turn the 48-character string into a 44-character string (the same
thing, without the extra spaces), like this:

 echo trim($ourstring);

 Keep in mind that trim() returns the trimmed string, so that outputs "The Quick Brown
Box Jumped Over The Lazy Dog" . You can modify that so trim() passes its return value
to strlen() so that the code trims it and then outputs its trimmed length:

 echo strlen(trim($ourstring));

 PHP always executes the innermost functions first, so the previous code takes $ourstring ,
passes it through trim() , uses the return value of trim() as the parameter for strlen() ,
and prints it.

 Of course, everyone knows that boxes do not jump over dogs; the usual phrase is “the
quick brown fox.” Fortunately, there is a function to fix that problem: str_replace() .
Note that it has an underscore in it. PHP is inconsistent on this matter, so you really need
to memorize the function name.

 The str_replace() function takes three parameters: the text to search for, the text to
replace it with, and the string you want to work with. When working with search func-
tions, people often talk about needles and haystacks . In this situation, the first parameter
is the needle (the thing to find), and the third parameter is the haystack (what you are
searching through).

 So, you can fix the error and correct box to fox with this code:

 echo str_replace("Box", "Fox", $ourstring);

 There are two little addendums to make here. First, note that we have specified "Box"
as opposed to "box" because that is how it appears in the text. The str_replace() func-
tion is a case-sensitive function, which means it does not consider "Box" to be the same
as "box" . If you want to do a non-case-sensitive search and replace, you can use the
 stri_replace() function, which works in the same way.

 The second addendum is that because you are actually changing only one character (B to
 F), you need not use a function at all. PHP enables you to read (and change) individual
characters of a string by specifying the character position inside braces ({ and }). As with
arrays, strings are zero based, which means in the $ourstring variable $ourstring{0}
is T , $ourstring{1} is h , $ourstring{2} is e , and so on. You could use this instead of
 str_replace() , like this:

48_9780134268118_ch46.indd 6148_9780134268118_ch46.indd 61 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:62

 <?php

 $ourstring = " The Quick Brown Box Jumped Over The Lazy Dog ";

 $ourstring{18} = "F";

 echo $ourstring;

 ?>

 You can extract part of a string using the substr() function, which takes a string as its
first parameter, a start position as its second parameter, and an optional length as its third
parameter. Optional parameters are common in PHP. If you do not provide them, PHP
assumes a default value. In this case, if you specify only the first two parameters, PHP
copies from the start position to the end of the string. If you specify the third parameter,
PHP copies that many characters from the start. You can write a simple script to print
 "Lazy Dog" by setting the start position to 38 , which, remembering that PHP starts count-
ing string positions from 0, copies from the 39th character to the end of the string:

 echo substr($ourstring, 38);

 If you just want to print the word "Lazy ,” you need to use the optional third parameter to
specify the length as 4 , like this:

 echo substr($ourstring, 38, 4);

 You can also use the substr() function with negative second and third parameters. If you
specify just parameter one and two and provide a negative number for parameter two,
 substr() counts backward from the end of the string. So, rather than specifying 38 for the
second parameter, you can use - 10 , so it takes the last 10 characters from the string. Using
a negative second parameter and positive third parameter counts backward from the end
string and then uses a forward length. You can print "Lazy" by counting 10 characters
back from the end and then taking the next 4 characters forward:

 echo substr($ourstring, -10, 4);

 Finally, you can use a negative third parameter, too, which also counts back from the end
of the string. For example, using "-4" as the third parameter means to take everything
except the last four characters. Confused yet? This code example should make it clear:

 echo substr($ourstring, -19, -11);

 That counts 19 characters backward from the end of the string (which places it at the O
in Over) and then copies everything from there until 11 characters before the end of the
string. That prints Over The . You could write the same thing using – 19 and 8 , or even 29
and 8 ; there is more than one way to do it.

 Moving on, the strpos() function returns the position of a particular substring inside
a string; however, it is most commonly used to answer the question, “Does this string
contain a specific substring?” You need to pass it two parameters: a haystack and a needle.
(Yes, that’s a different order from str_replace() .)

48_9780134268118_ch46.indd 6248_9780134268118_ch46.indd 62 10/28/15 5:09 PM10/28/15 5:09 PM

Basic Functions Web:63
4

6

 In its most basic use, strpos() can find the first instance of Box in your phrase, like this:

 echo strpos($ourstring, "Box");

 This outputs 18 because that is where the B in Box starts. If strpos() cannot find the
substring in the parent string, it returns false rather than the position. Much more
helpful, though, is the ability to check whether a string contains a substring; a first
attempt to check whether your string contains the word The might look like this:

 <?php

 $ourstring = "The Quick Brown Box Jumped Over The Lazy Dog";

 if (strpos($ourstring, "The")) {

 echo "Found 'The'!\n";

 } else {

 echo "'The' not found!\n";

 }

 ?>

 Note that we have temporarily taken out the leading and trailing whitespace from
 $ourstring and are using the return value of strpos() for our conditional statement.
This reads, “If the string is found then print a message; if not, print another message.”
Or does it?

 Run the script, and you will see it print the "not found" message. The reason for this is
that strpos() returns false if the substring is not found and otherwise returns the posi-
tion where it starts. If you recall, any nonzero number equates to true in PHP, which
means that 0 equates to false . With that in mind, what is the string index of the first The
in your phrase? Because PHP’s strings are zero based and you no longer have the spaces on
either side of the string, the The is at position 0 , which your conditional statement evalu-
ates to false (hence, the problem).

 The solution here is to check for identicality. We know that 0 and false are equal, but
they are not identical because 0 is an integer, whereas false is a Boolean. So, you need to
rewrite the conditional statement to see whether the return value from strpos() is identi-
cal to false . If it is, the substring was not found:

 <?php

 $ourstring = "The Quick Brown Box Jumped Over The Lazy Dog";

 if (strpos($ourstring, "The") !== false) {

 echo "Found 'The'!\n";

 } else {

 echo "'The' not found!\n";

 }

 ?>

48_9780134268118_ch46.indd 6348_9780134268118_ch46.indd 63 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:64

 Arrays

 Working with arrays is no easy task, but PHP makes it easier by providing a selection of
functions that can sort, shuffle, intersect, and filter them. As with other functions, there is
only space here to choose a selection; this is by no means a definitive reference to PHP’s
array functions.

 The easiest function to use is array_unique() , which takes an array as its only parameter
and returns the same array with all duplicate values removed. Also in the realm of “so easy
you do not need a code example” is the shuffle() function, which takes an array as its
parameter and randomizes the order of its elements. Note that shuffle() does not return
the randomized array; it uses your parameter as a reference and scrambles it directly. The
last too-easy-to-demonstrate function is in_array() , which takes a value as its first param-
eter and an array as its second and returns true if the value is in the array.

 With those out of the way, we can focus on the more interesting functions, two of which
are array_keys() and array_values() . They both take an array as their only parameter
and return a new array made up of the keys in the array or the values of the array, respec-
tively. The array_values() function is an easy way to create a new array of the same data,
just without the keys. This is often used if you have numbered your array keys, deleted
several elements, and want to reorder it.

 The array_keys() function creates a new array where the values are the keys from the old
array, like this:

 <?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 $mykeys = array_keys($myarr);

 foreach($mykeys as $key => $value) {

 echo "$key = $value\n";

 }

 ?>

 That prints "0 = foo" , "1 = bar" , and "2 = baz" .

 Several functions are used specifically for array sorting, but only two get much use:
 asort() and ksort() , the first of which sorts the array by its values and the second of
which sorts the array by its keys. Given the array $myarr from the previous example,
sorting by the values would produce an array with elements in the order bar/blue ,
 baz/green , and foo/red . Sorting by key would give the elements in the order bar/blue ,
 baz/green , and foo/red . As with the shuffle() function, both asort() and ksort() do
their work in place , meaning they return no value, directly altering the parameter you pass
in. For interest’s sake, you can also use arsort() and krsort() for reverse value sorting
and reverse key sorting, respectively.

 This code example reverse sorts the array by value and then prints it as before:

 <?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 arsort($myarr);

48_9780134268118_ch46.indd 6448_9780134268118_ch46.indd 64 10/28/15 5:09 PM10/28/15 5:09 PM

Basic Functions Web:65
4

6

 foreach($myarr as $key => $value) {

 echo "$key = $value\n";

 }

 ?>

 Previously when discussing constants, we mentioned the extract() function that
converts an array into individual variables; now it is time to start using it for real. You
need to provide three variables: the array you want to extract, how you want the variables
prefixed, and the prefix you want used. Technically, the last two parameters are optional,
but practically you should always use them to properly namespace your variables and keep
them organized.

 The second parameter must be one of the following:

 ▶ EXTR_OVERWRITE —If the variable exists already, overwrites it.

 ▶ EXTR_SKIP —If the variable exists already, skips it and moves on to the next variable.

 ▶ EXTR_PREFIX_SAME —If the variable exists already, uses the prefix specified in the
third parameter.

 ▶ EXTR_PREFIX_ALL —Prefixes all variables with the prefix in the third parameter,
regardless of whether it exists already.

 ▶ EXTR_PREFIX_INVALID —Uses a prefix only if the variable name would be invalid (for
example, starting with a number).

 ▶ EXTR_IF_EXISTS —Extracts only variables that already exist. We have never seen
this used.

 You can also, optionally, use the bitwise OR operator, |, to add in EXTR_REFS to have
 extract() use references for the extracted variables. In general use, EXTR_PREFIX_ALL is
preferred because it guarantees name spacing. EXTR_REFS is required only if you need to be
able to change the variables and have those changes reflected in the array.

 This next script uses extract() to convert $myarr into individual variables, $arr_foo ,
 $arr_bar , and $arr_baz :

 <?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 extract($myarr, EXTR_PREFIX_ALL, 'arr');

 ?>

 Note that the array keys are "foo" , "bar" , and "baz" and that the prefix is "arr" , but that
the final variables will be $arr_foo , $arr_bar , and $arr_baz. PHP inserts an underscore
between the prefix and array key.

 Files

 As you have learned from elsewhere in the book, the UNIX philosophy is that everything
is a file. In PHP, this is also the case: A selection of basic file functions is suitable for

48_9780134268118_ch46.indd 6548_9780134268118_ch46.indd 65 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:66

opening and manipulating files, but those same functions can also be used for opening
and manipulating network sockets. We cover both here.

 Two basic read and write functions for files make performing these basic operations easy.
They are file_get_contents() , which takes a filename as its only parameter and returns
the file’s contents as a string, and file_put_contents() , which takes a filename as its first
parameter and the data to write as its second parameter.

 Using these two, you can write a script that reads all the text from one file, filea.txt ,
and writes it to another, fileb.txt :

 <?php

 $text = file_get_contents("filea.txt");

 file_put_contents("fileb.txt", $text);

 ?>

 Because PHP enables you to treat network sockets like files, you can also use file_get_
contents() to read text from a website, like this:

 <?php

 $text = file_get_contents("http://www.slashdot.org");

 file_put_contents("fileb.txt", $text);

 ?>

 The problem with using file_get_contents() is that it loads the whole file into memory
at once; that’s not practical if you have large files or even smaller files being accessed by
many users. An alternative is to load the file piece by piece, which can be accomplished
through the following five functions: fopen() , fclose() , fread() , fwrite() , and feof() .
The f in those function names stands for file , so they open, close, read from, and write
to files and sockets. The last function, feof() , returns true if the end of the file has been
reached.

 The fopen() function takes a bit of learning to use properly, but on the surface it looks
straightforward. Its first parameter is the filename you want to open, which is easy
enough. However, the second parameter is where you specify how you want to work with
the file, and you should specify one of the following:

 ▶ r —Read-only; it overwrites the file.

 ▶ r+ —Reading and writing; it overwrites the file.

 ▶ w —Write-only; it erases the existing contents and overwrites the file.

 ▶ w+ —Reading and writing; it erases the existing content and overwrites the file.

 ▶ a —Write-only; it appends to the file.

 ▶ a+ —Reading and writing; it appends to the file.

 ▶ x —Write-only, but only if the file does not exist.

 ▶ a+ —Reading and writing, but only if the file does not exist.

48_9780134268118_ch46.indd 6648_9780134268118_ch46.indd 66 10/28/15 5:09 PM10/28/15 5:09 PM

Basic Functions Web:67
4

6

 Optionally, you can also add b (for example, a+b or rb) to switch to binary mode. This is
recommended if you want your scripts and the files they write to work smoothly on other
platforms.

 When you call fopen() , you should store the return value. It is a resource known as a
 file handle , which the other file functions all need to do their jobs. The fread() function,
for example, takes the file handle as its first parameter and the number of bytes to read as
its second, returning the content in its return value. The fclose() function takes the file
handle as its only parameter and frees up the file.

 So, you can write a simple loop to open a file, read it piece by piece, print the pieces, and
then close the handle:

 <?php

 $file = fopen("filea.txt", "rb");

 while (!feof($file)) {

 $content = fread($file, 1024);

 echo $content;

 }

 fclose($file);

 ?>

 That only leaves the fwrite() function, which takes the file handle as its first parameter
and the string to write as its second. You can also provide an integer as the third parame-
ter, specifying the number of bytes you want to write of the string, but if you exclude this,
 fwrite() writes the entire string.

 If you recall, you can use a as the second parameter to fopen() to append data to a file.
So, you can combine that with fwrite() to have a script that adds a line of text to a file
each time it is executed:

 <?php

 $file = fopen("filea.txt", "ab");

 fwrite($file, "Testing\n");

 fclose($file);

 ?>

 To make that script a little more exciting, you can stir in a new function, filesize() , that
takes a filename (not a file handle, but an actual filename string) as its only parameter and
returns the file’s size in bytes. Using that new function brings the script to this:

 <?php

 $file = fopen("filea.txt", "ab");

 fwrite($file, "The filesize was" . filesize("filea.txt") . "\n");

 fclose($file);

 ?>

 Although PHP automatically cleans up file handles for you, it is still best to use fclose()
yourself so that you are always in control.

48_9780134268118_ch46.indd 6748_9780134268118_ch46.indd 67 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:68

 Miscellaneous

 Several functions do not fall under the other categories and so are covered here. The first
one is isset() , which takes one or more variables as its parameters and returns true if
they have been set. It is important to note that a variable with a value set to something
that would be evaluated to false —such as 0 or an empty string—still returns true from
 isset() because it does not check the value of the variable. It merely checks that it is set;
hence, the name.

 The unset() function also takes one or more variables as its parameters, simply delet-
ing the variable and freeing up the memory. With these two, you can write a script that
checks for the existence of a variable and, if it exists, deletes it (see Listing 46.5).

 LISTING 46.5 Setting and Unsetting Variables

 <?php

 $name = "Ildiko";

 if (isset($name)) {

 echo "Name was set to $name\n";

 unset($name);

 } else {

 echo "Name was not set";

 }

 if (isset($name)) {

 echo "Name was set to $name\n";

 unset($name);

 } else {

 echo "Name was not set";

 }

 ?>

 That script runs the same isset() check twice, but it unset() s the variable after the first
check. As such, it prints "Name was set to Ildiko" and then "Name was not set" .

 Perhaps the most frequently used function in PHP is exit , although purists will tell you
that it is in fact a language construct rather than a function. exit terminates the process-
ing of the script as soon as it is executed, meaning subsequent lines of code are not
executed. That is really all there is to it; it barely deserves an example, but here is one just
to make sure:

 <?php

 exit;

 echo "Exit is a language construct!\n";

 ?>

 That script prints nothing because the exit comes before the echo .

48_9780134268118_ch46.indd 6848_9780134268118_ch46.indd 68 10/28/15 5:09 PM10/28/15 5:09 PM

Basic Functions Web:69
4

6

 One function we can guarantee you will use a lot is var_dump() , which dumps out infor-
mation about a variable, including its value, to the screen. This is invaluable for arrays
because it prints every value and, if one or more of the elements is an array, it prints all
the elements from those, and so on. To use this function, just pass it a variable as its only
parameter:

 <?php

 $drones = array("Graham", "Julian", "Nick", "Paul");

 var_dump($drones);

 ?>

 The output from that script looks like this:

 array(4) {

 [0]=>

 string(6) "Graham"

 [1]=>

 string(6) "Julian"

 [2]=>

 string(4) "Nick"

 [3]=>

 string(4) "Paul"

 }

 The var_dump() function sees a lot of use as a basic debugging technique because it is the
easiest way to print variable data to the screen to verify it.

 Finally, we briefly discuss regular expressions; with the emphasis on briefly because regular
expression syntax is covered elsewhere in this book and the only unique thing relevant to
PHP are the functions you use to run the expressions. You have the choice of either
Perl-Compatible Regular Expressions (PCRE) or POSIX Extended Regular Expressions, but
there really is little to choose between them in terms of functionality offered. For this
chapter, we use the PCRE expressions because, to the best of our knowledge, they see more
use by other PHP programmers.

 The main PCRE functions are preg_match() , preg_match_all() , preg_replace() , and
 preg_split() . We start with preg_match() because it provides the most basic functional-
ity by returning true if one string matches a regular expression. The first parameter to
 preg_match() is the regular expression you want to search for, and the second is the string
to match. So, if you want to check whether a string has the word Best , Test , rest , zest ,
or any other word containing est preceded by any letter of either case, you could use this
PHP code:

 $result = preg_match("/[A-Za-z]est/", "This is a test");

 Because the test string matches the expression, $result is set to 1 (true). If you change
the string to a nonmatching result, you get 0 as the return value.

48_9780134268118_ch46.indd 6948_9780134268118_ch46.indd 69 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:70

 The next function is preg_match_all() , which gives you an array of all the matches it
found. However, to be most useful, it takes the array to fill with matches as a by-reference
parameter and saves its return value for the number of matches that were found.

 We suggest you use preg_match_all() and var_dump() to get a feel for how the function
works. This example is a good place to start:

 <?php

 $string = "This is the best test in the west";

 $result = preg_match_all("/[A-Za-z]est/", $string, $matches);

 var_dump($matches);

 ?>

 That outputs the following:

 array(1) {

 [0]=>

 array(3) {

 [0]=>

 string(4) "best"

 [1]=>

 string(4) "test"

 [2]=>

 string(4) "west"

 }

 }

 If you notice, the $matches array is actually multidimensional in that it contains one
element, which itself is an array containing all the matches to your regular expression.
The reason for this is because your expression has no subexpressions , meaning no inde-
pendent matches using parentheses. If you had subexpressions, each would have its own
element in the $matches array containing its own array of matches.

 Moving on, preg_replace() is used to change all substrings that match a regular expres-
sion into something else. The basic manner of using this is quite easy: You search for
something with a regular expression and provide a replacement for it. However, a more
useful variant is back referencing , using the match as part of the replacement. For our
example, we will imagine you have written a tutorial on PHP but want to process the text
so each reference to a function is followed by a link to the PHP manual.

 PHP manual page URLs take the form www.php.net/ < somefunc > (for example, www.php.
net/preg_replace). The string we need to match is a function name, which is a string of
alphabetic characters, potentially also mixed with numbers and underscores and termi-
nated with two parentheses, () . As a replacement, we will use the match we found,
surrounded in HTML emphasis tags (), and then with a link to the relevant PHP
manual page. Here is how that looks in code:

48_9780134268118_ch46.indd 7048_9780134268118_ch46.indd 70 10/28/15 5:09 PM10/28/15 5:09 PM

Handling HTML Forms Web:71
4

6

 <?php

 $regex = "/([A-Za-z0-9_]*)\(\)/";

 $replace = "$1 (manual)";

 $haystack = "File_get_contents()is easier than using fopen().";

 $result = preg_replace($regex, $replace, $haystack);

 echo $result;

 ?>

 The $1 is our back reference; it will be substituted with the results from the first
sub expression. The way we have written the regular expression is very exact. The
[A-Za-z0-9_]* part, which matches the function name, is marked as a subexpression.
After that is \(\) , which means the exact symbols (and), not the regular expression mean-
ings of them, which means that $1 in the replacement will contain fopen rather than
 fopen() , which is how it should be. Of course, anything that is not back referenced in the
replacement is removed, so we have to put the () after the first $1 (not in the hyperlink)
to repair the function name.

 After all that work, the output is perfect:

 File_get_contents() (<a href="http://www.php.net/

 file_get_contents">manual) is easier than using fopen()

 (manual).

 Handling HTML Forms
 Given that PHPs primary role is handling web pages, you might wonder why this section
has been left so late in the chapter. It is because handling HTML forms is so central to
PHP that it is essentially automatic.

 Consider this form:

 <form method="POST" action="thispage.php">

 User ID: <input type="text" name="UserID" />

 Password: <input type="password" name="Password" />

 <input type="submit" />

 </form>

 When a visitor clicks Submit, thispage.php is called again, and this time PHP has the vari-
ables available to it inside the $_REQUEST array. Given that script, if the user enters 12345
and frosties as her user ID and password, PHP provides you with $_REQUEST['UserID']
set to 12345 and $_REQUEST['Password'] set to frosties . Note that it is important that
you use HTTP POST unless you specifically want GET . POST enables you to send a great deal
more data and stops people from tampering with your URL to try to find holes in your
script.

48_9780134268118_ch46.indd 7148_9780134268118_ch46.indd 71 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:72

 Is that it? Well, almost. That tells you how to retrieve user data, but you should be sure
to sanitize it so users do not try to sneak HTML or JavaScript into your database as some-
thing you think is innocuous. PHP gives you the strip_tags() function for this purpose.
It takes a string and returns the same string with all HTML tags removed.

 Databases
 The ease with which PHP can be used to create dynamic, database-driven websites is
the key reason to use it for many people. The stock build of PHP comes with support
for MySQL, PostgreSQL, SQLite, Oracle, Microsoft SQL Server, ODBC, plus several other
popular databases, so you are sure to find something to work with your data.

 If you want to, you can learn all the individual functions for connecting to and manipu-
lating each database PHP supports, but a much smarter, or at least easier, idea is to use
 PEAR::DB , which is an abstraction layer over the databases that PHP supports. You write
your code once, and—with the smallest of changes—it works on every database server.

 PEAR is the script repository for PHP, and it contains numerous tools and prewritten
solutions for common problems. PEAR::DB is perhaps the most popular part of the PEAR
project, but it is worth checking out the PEAR site to see whether anything else catches
your eye.

 To get basic use out of PEAR::DB , you need to learn how to connect to a database, run a
SQL query, and work with the results. This is not a SQL tutorial, so we have assumed you
are already familiar with the language. For the sake of this tutorial, we have also assumed
you are working with a database called dentists and a table called patients that contains
the following fields:

 ▶ ID—The primary key, auto-incrementing integer for storing a number unique to
each patient

 ▶ Name—A varchar(255) field for storing a patient name

 ▶ Age—Integer

 ▶ Sex—1 for male, 2 for female

 ▶ Occupation—A varchar(255) field for storing a patient occupation

 Also for the sake of this tutorial, we use a database server on IP address 10.0.0.1 , running
MySQL, with username ubuntu and password alm65z . You need to replace these details
with your own; use localhost for connecting to the local server.

 The first step to using PEAR::DB is to include the standard PEAR::DB file, DB.php . Your PHP
will be configured to look inside the PEAR directory for include() files, so you do not
need to provide any directory information.

48_9780134268118_ch46.indd 7248_9780134268118_ch46.indd 72 10/28/15 5:09 PM10/28/15 5:09 PM

Databases Web:73
4

6

 PEAR::DB is object oriented, and you specify your connection details at the same time as
you create the initial DB object. This is done using a URL-like system that specifies the
database server type, username, password, server, and database name all in one. After you
have specified the database server here, everything else is abstracted, meaning you only
need to change the connection line to port your code to another database server.

 This first script connects to our server and prints a status message (see Listing 46.6).

 LISTING 46.6 Connecting to a Database Through PEAR::DB

 <?php

 include("DB.php");

 $dsn = "mysql://ubuntu:alm65z@10.0.0.1/dentists";

 $conn = DB::connect($dsn);

 if (DB::isError($conn)) {

 echo $conn->getMessage() . "\n";

 } else {

 echo "Connected successfully!\n";

 }

 ?>

 You should be able to see how the connection string breaks down. It is server name first,
then a username and password separated by a colon, then an @ symbol followed by the IP
address to which to connect, and then a slash and the database name. Notice how the call
to connect is DB::connect() , which calls PEAR::DB directly and returns a database connec-
tion object for storage in $conn . The variable name $dsn was used for the connection
details because it is a common acronym standing for data source name.

 If DB::connect() successfully connects to a server, it returns a database object we can
use to run SQL queries. If not, we get an error returned that we can query using func-
tions such as getMessage() . In the previous script, we print the error message if we fail
to connect, but we also print a message if we succeed. Next, we change that so we run an
SQL query if we have a connection.

 Running SQL queries is done through the query() function of our database connection,
passing in the SQL we want to execute. This then returns a query result that can be used
to get the data. This query result can be thought of as a multidimensional array because it
has many rows of data, each with many columns of attributes. This is extracted using the
 fetchInto() function, which loops through the query result converting one row of data
into an array that it sends back as its return value. You need to pass in two parameters
to fetchInto() specifying where the data should be stored and how you want it stored.
Unless you have unusual needs, specifying DB_FETCHMODE_ASSOC for the second parameter
is a smart move.

48_9780134268118_ch46.indd 7348_9780134268118_ch46.indd 73 10/28/15 5:09 PM10/28/15 5:09 PM

BONUS CHAPTER 46 Using PHPWeb:74

 Listing 46.7 shows the new script.

 LISTING 46.7 Running a Query Through PEAR::DB

 <?php

 include("DB.php");

 $dsn = "mysql://ubuntu:alm65z@10.0.0.1/dentists";

 $conn = DB::connect($dsn);

 if (DB::isError($conn)) {

 echo $conn->getMessage() . "\n";

 } else {

 echo "Connected successfully!\n";

 $result = $conn->query("SELECT ID, Name FROM patients;");

 while ($result->fetchInto($row, DB_FETCHMODE_ASSOC)) {

 extract($row, EXTR_PREFIX_ALL, 'pat');

 echo "$pat_ID is $pat_Name\n";

 }

 }

 ?>

 The first half is identical to the previous script, with all the new action happening if we
get a successful connection.

 Going along with the saying “never leave to PHP what you can clean up yourself,” the
current script has problems. We do not clean up the query result, and we do not close the
database connection. If this code were being used in a longer script that ran for several
minutes, this would be a huge waste of resources. Fortunately, we can free up the memory
associated with these two by calling $result->free() and $conn->disconnect() . If we add
those two function calls to the end of the script, it is complete.

 References
 ▶ https://secure.php.net/ —The best place to look for information is the PHP online

manual. It is comprehensive, well written, and updated regularly.

 ▶ www.phpbuilder.com —A large PHP scripts and tutorials site where you can learn
new techniques and also chat with other PHP developers.

 ▶ www.zend.com —The home page of a company founded by two of the key develop-
ers of PHP. Zend develops and sells proprietary software, including a powerful IDE
and a code cache, to aid PHP developers.

 ▶ http://pear.php.net/ —The home of the PEAR project contains a large collection of
software you can download and try, and it has thorough documentation for it all.

 ▶ www.phparch.com/ —There are quite a few good PHP magazines around, but PHP
Architect probably leads the way. It posts some of its articles online for free, and its
forums are good, too.

48_9780134268118_ch46.indd 7448_9780134268118_ch46.indd 74 10/28/15 5:09 PM10/28/15 5:09 PM

References Web:75
4

6

 ▶ Quality books on PHP abound, and you are certainly spoiled for choice. For begin-
ning developers, the best available is PHP and MySQL Web Development (Sams
Publishing), ISBN: 0-672-32916-6. For a concise, to-the-point-book covering
all aspects of PHP, check out PHP in a Nutshell (O’Reilly), ISBN: 0-596-10067-1.
Finally, for advanced developers, you can consult Advanced PHP Programming (Sams
Publishing), ISBN: 0-672-32561-6.

48_9780134268118_ch46.indd 7548_9780134268118_ch46.indd 75 10/28/15 5:09 PM10/28/15 5:09 PM

48_9780134268118_ch46.indd 7648_9780134268118_ch46.indd 76 10/28/15 5:09 PM10/28/15 5:09 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

