
 IN THIS CHAPTER

 ▶ Using Perl with Linux

 ▶ Perl Variables and Data
Structures

 ▶ Operators

 ▶ Conditional Statements:
 if/else and unless

 ▶ Looping

 ▶ Regular Expressions

 ▶ Access to the Shell

 ▶ Modules and CPAN

 ▶ Code Examples

 ▶ References

 BONUS CHAPTER 44

 Using Perl

 Perl (the Practical Extraction and Report Language , or the
 Pathologically Eclectic Rubbish Lister , depending on who you
speak to) is a powerful scripting tool that enables you to
manage files, create reports, edit text, and perform many
other tasks. Perl is included with and installed in Ubuntu
by default and could be considered an integral part of the
distribution because Ubuntu depends on Perl for many
types of software services, logging activities, and software
tools.

 Perl is not the easiest of programming languages to learn
because it is designed for flexibility. This chapter shows
how to create and use Perl scripts on your system. You
learn what a Perl program looks like, how the language is
structured, and where you can find modules of prewritten
code to help you write your own Perl scripts. This chapter
also includes several examples of Perl used to perform a few
common functions on a computer system.

 Using Perl with Linux
 Although originally designed as a data-extraction and
report-generation language, Perl appeals to many Linux
system administrators because they can use it to create util-
ities that fill a gap between the capabilities of shell scripts
and compiled C programs (see Chapter 13 , “Automating
Tasks and Shell Scripting,” and Chapter 37 , “Using
Programming Tools for Ubuntu”). Another advantage of
Perl over other UNIX tools is that it can process and extract
data from binary files, whereas sed and awk cannot.

46_9780134268118_ch44.indd 146_9780134268118_ch44.indd 1 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:2

 NOTE

 In Perl, “there is more than one way to do it.” This is the unofficial motto of Perl, and it
comes up so often that it is usually abbreviated as TIMTOWTDI.

 You can use Perl at your shell’s command line to execute one-line Perl programs, but most
often the programs (usually ending in .pl) are run as a command. These programs gener-
ally work on any computer platform because Perl has been ported to nearly every operat-
ing system.

 Perl programs are used to support a number of Ubuntu services, such as system logging.
For example, if you install the logwatch package, the logwatch.pl program is run every
morning at 6:25 a.m. by the crond (scheduling) daemon on your system. Other Ubuntu
services supported by Perl include the following:

 ▶ Amanda for local and network backups

 ▶ Fax spooling with the faxrunqd program

 ▶ Printing supported by Perl document-filtering programs

 ▶ Hardware sensor monitoring setup using the sensors-detect Perl program

 Perl Versions

 Perl is installed by default.

 You can download the code from www.perl.com and build the newest version from
source if you want to, although a stable and quality release of Perl is already installed by
default in Ubuntu and most (all?) Linux and UNIX-like distributions, including Mac OS
X. Updated versions might appear in the Ubuntu repositories, but they’re generally only
security fixes that can be installed by updating your system. See Chapter 9 , “Managing
Software,” to see how to quickly get a list of available updates for Ubuntu.

 You can determine what version of Perl you installed by typing perl -v at a shell prompt.
If you are installing the latest Ubuntu distribution, you should have the latest version
of Perl that was available when the software for your Ubuntu release was gathered and
finalized.

 A Simple Perl Program

 This section introduces a very simple Perl program example to get you started using Perl.
Although trivial for experienced Perl hackers, a short example is necessary for new users
who want to learn more about Perl.

 To introduce you to the absolute basics of Perl programming, Listing 44.1 illustrates a
simple Perl program that prints a short message.

46_9780134268118_ch44.indd 246_9780134268118_ch44.indd 2 10/28/15 5:08 PM10/28/15 5:08 PM

Using Perl with Linux Web:3
4

4

 LISTING 44.1 A Simple Perl Program

 #!/usr/bin/perl

 print 'Look at all the camels!\n';

 Type that in and save it to a file called trivial.pl . Then make the file executable using
the chmod command (see the following sidebar) and run it at the command prompt.

 COMMAND-LINE ERROR

 If you get the message bash: trivial.pl: command not found or bash:
./trivial.pl: Permission denied , you have either typed the command line incorrectly
or forgotten to make trivial.pl executable with the chmod command, as shown here:

 matthew@seymour:~$ chmod +x trivial.pl

 You can force the command to execute in the current directory as follows:

 matthew@seymour:~$./trivial.pl

 Or you can use Perl to run the program like this:

 matthew@seymour:~$ perl trivial.pl

 The sample program in the listing is a two-line Perl program. Typing in the program and
running it (using Perl or making the program executable) shows how to create your first
Perl program, a process duplicated by Linux users around the world every day.

 NOTE

 #! is often pronounced she-bang , which is short for sharp (the musicians name for the
 # character), and bang , which is another name for the exclamation point. This notation is
also used in shell scripts. See Chapter 13 , “Automating Tasks and Shell Scripting,” for
more information about writing shell scripts.

 The #! line is technically not part of the Perl code at all. The # character indicates that
the rest of the screen line is a comment. The comment is a message to the shell, telling it
where it should go to find the executable to run this program. The interpreter ignores the
comment line.

 Exceptions to this practice include when the # character is in a quoted string and when it
is being used as the delimiter in a regular expression. Comments are useful to document
your scripts, like this:

 #!/usr/bin/perl

 # a simple example to print a greeting

 print "hello there\n";

46_9780134268118_ch44.indd 346_9780134268118_ch44.indd 3 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:4

 A block of code, such as what might appear inside a loop or a branch of a conditional
statement, is indicated with curly braces ({}). For example, here is an infinite loop:

 #!/usr/bin/perl

 # a block of code to print a greeting forever

 while (1) {

 print "hello there\n";

 };

 Perl statements are terminated with a semicolon (;). A Perl statement can extend over
several screen lines because Perl is not concerned about whitespace.

 The second line of the simple program prints the text enclosed in quotation marks. \n is
the escape sequence for a newline character.

 TIP

 Using the perldoc and man commands is an easy way to get more information about
the version of Perl installed on your system. To learn how to use the perldoc command,
enter the following:

 matthew@seymour:~$ perldoc perldoc

 To get introductory information on Perl, you can use either of these commands:

 matthew@seymour:~$ perldoc perl

 matthew@seymour:~$ man perl

 For an overview or table of contents of Perl’s documentation, use the perldoc command,
like this:

 matthew@seymour:~$ perldoc perltoc

 The documentation is extensive and well organized. Perl includes a number of standard
Linux manual pages as brief guides to its capabilities, but perhaps the best way to learn
more about Perl is to read its perlfunc document, which lists all the available Perl func-
tions and their usage. You can view this document by using the perldoc script and typing
 perldoc perlfunc at the command line. You can also find this document online at
 http://perldoc.perl.org/ .

 Perl Variables and Data Structures
 Perl is a weakly typed language, meaning that it does not require that you declare a data
type, such as a type of value (data) to be stored in a particular variable. C, for example,
makes you declare that a particular variable is an integer, a character, a structure, or what-
ever the case may be. Perl variables are whatever type they need to be and can change
type when you need them to.

46_9780134268118_ch44.indd 446_9780134268118_ch44.indd 4 10/28/15 5:08 PM10/28/15 5:08 PM

Perl Variables and Data Structures Web:5
4

4

 Perl Variable Types

 Perl has three variable types: scalars, arrays, and hashes . A different character is used to
signify each variable type, so you can have the same name used with each type at the
same time.

 Scalar variables are indicated with the $ character, as in $penguin . Scalars can be numbers
or strings, and they can change type from one to the other as needed. If you treat a
number like a string, it becomes a string. If you treat a string like a number, it is translated
into a number if it makes sense to do so; otherwise, it usually evaluates to 0 . For example,
the string "76trombones" evaluates as the number 76 if used in a numeric calculation, but
the string "polar bear" evaluates to 0 .

 Perl arrays are indicated with the @ character, as in @fish . An array is a list of values refer-
enced by index number, starting with the first element numbered 0 , just as in C and awk .
Each element in the array is a scalar value. Because scalar values are indicated with the $
character, a single element in an array is also indicated with a $ character.

 For example, $fish[2] refers to the third element in the @fish array. This tends to throw
some people off but is similar to arrays in C in which the first array element is 0 .

 Hashes are indicated with the % character, as in %employee . A hash is a list of name and
value pairs. Individual elements in the hash are referenced by name rather than by index
(unlike an array). Again, because the values are scalars, the $ character is used for indi-
vidual elements.

 For example, $employee{name} gives you one value from the hash. Two rather useful func-
tions for dealing with hashes are keys and values . The keys function returns an array
containing all the keys of the hash, and values returns an array of the values of the hash.
Using this approach, the Perl program in Listing 44.2 displays all the values in your envi-
ronment, much like typing the bash shell’s env command.

 LISTING 44.2 Displaying the Contents of the env Hash

 #!/usr/bin/perl

 foreach $key (keys %ENV) {

 print "$key = $ENV{$key}\n";

 }

 Special Variables

 Perl has a variety of special variables, which usually look like punctuation— $_, $! , and
$] —and are all extremely useful for shorthand code. $_ is the default variable, $! is the
error message returned by the operating system, and $] is the Perl version number.

 $_ is perhaps the most useful of these. You will see that variable used often in this
chapter. $_ is the Perl default variable, which is used when no argument is specified. For
example, the following two statements are equivalent:

46_9780134268118_ch44.indd 546_9780134268118_ch44.indd 5 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:6

 chomp;

 chomp($_);

 The following loops are equivalent:

 for $cow (@cattle) {

 print "$cow says moo.\n";

 }

 for (@cattle) {

 print "$_ says moo.\n";

 }

 For a complete listing of the special variables, see the perlvar man page.

 Operators
 Perl supports a number of operators to perform various operations. There are comparison
operators (used to compare values, as the name implies), compound operators (used to
combine operations or multiple comparisons), arithmetic operators (to perform math), and
special string constants.

 Comparison Operators

 The comparison operators used by Perl are similar to those used by C, awk , and the csh
shells, and are used to specify and compare values (including strings). A comparison
operator is most often used within an if statement or loop. Perl has comparison operators
for numbers and strings. Table 44.1 shows the numeric comparison operators and their
meanings.

 TABLE 44.1 Numeric Comparison Operators in Perl

 Operator Meaning

 == Is equal to

 < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 <=> Returns –1 if less than, 0 if equal, and 1 if greater than

 != Not equal to

 .. Range of >= first operand to <= second operand

46_9780134268118_ch44.indd 646_9780134268118_ch44.indd 6 10/28/15 5:08 PM10/28/15 5:08 PM

Operators Web:7
4

4

 Table 44.2 shows the string comparison operators and their meanings.

 TABLE 44.2 String Comparison Operators in Perl

 Operator Meaning

 eq Is equal to

 lt Less than

 gt Greater than

 le Less than or equal to

 ge Greater than or equal to

 ne Not equal to

 cmp Returns -1 if less than, 0 if equal, and 1 if greater than

 =~ Matched by regular expression

 !~ Not matched by regular expression

 Compound Operators

 Perl uses compound operators, similar to those used by C or awk , which can be used to
combine other operations (such as comparisons or arithmetic) into more complex forms
of logic. Table 44.3 shows the compound pattern operators and their meanings.

 TABLE 44.3 Compound Pattern Operators in Perl

 Operator Meaning

 && Logical AND

 || Logical OR

 ! Logical NOT

 () Parentheses; used to group compound statements

 Arithmetic Operators

 Perl supports a variety of math operations. Table 44.4 summarizes these operators.

 TABLE 44.4 Perl Arithmetic Operators

 Operator Purpose

 x**y Raises x to the y power (same as x^y)

 x%y Calculates the remainder of x/y

 x+y Adds x to y

 x-y Subtracts y from x

46_9780134268118_ch44.indd 746_9780134268118_ch44.indd 7 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:8

 Operator Purpose

 x*y Multiplies x times y

 x/y Divides x by y

 -y Negates y (switches the sign of y); also known as the unary minus

 ++y Increments y by 1 and uses value (prefix increment)

 y++ Uses value of y and then increments by 1 (postfix increment)

 —y Decrements y by 1 and uses value (prefix decrement)

 y— Uses value of y and then decrements by 1 (postfix decrement)

 x=y Assigns value of y to x . Perl also supports operator-assignment operators
 (+=, -=, *=, /=, %=, **=, and others)

 You can also use comparison operators (such as == or <) and compound pattern operators
(&& , || , and !) in arithmetic statements. They evaluate to the value 0 for false and 1 for
 true .

 Other Operators

 Perl supports a number of operators that do not fit any of the prior categories. Table 44.5
summarizes these operators.

 TABLE 44.5 Other Perl Operators

 Operator Purpose

 ~x Bitwise not (changes 0 bits to 1 and 1 bits to 0)

 x & y Bitwise and

 x | y Bitwise or

 x ^ y Bitwise exclusive or (XOR)

 x << y Bitwise shift left (shifts x by y bits)

 x >> y Bitwise shift right (shifts x by y bits)

 x . y Concatenate y onto x

 a x b Repeats string a for b number of times

 x, y Comma operator—evaluates x and then y

 x ? y : z Conditional expression (If x is true , y is evaluated; otherwise, z is
evaluated.)

 Except for the comma operator and conditional expression, you can also use these opera-
tors with the assignment operator, similar to the way addition (+) can be combined with
assignment (=), giving += .

46_9780134268118_ch44.indd 846_9780134268118_ch44.indd 8 10/28/15 5:08 PM10/28/15 5:08 PM

Conditional Statements: if/else and unless Web:9
4

4

 Special String Constants

 Perl supports string constants that have special meaning or cannot be entered from the
keyboard.

 Table 44.6 shows most of the constants supported by Perl.

 TABLE 44.6 Perl Special String Constants

 Expression Meaning

 \\ The means of including a backslash

 \a The alert or bell character

 \b Backspace

 \cC Control character (like holding the Ctrl key down and pressing the
C character)

 \e Escape

 \f Formfeed

 \n Newline

 \r Carriage return

 \t Tab

 \xNN Indicates that NN is a hexadecimal number

 \0NNN Indicates that NNN is an octal (base 8) number

 Conditional Statements: if/else and unless
 Perl offers two conditional statements, if and unless , which function opposite one
another. if enables you to execute a block of code only if certain conditions are met so
that you can control the flow of logic through your program. Conversely, unless performs
the statements when certain conditions are not met.

 The following sections explain and demonstrate how to use these conditional statements
when writing scripts for Linux.

 if
 The syntax of the Perl if/else structure is as follows:

 if (condition) {

 statement or block of code

 } elsif (condition) {

 statement or block of code

 } else {

 statement or block of code

 }

 condition is a statement that returns a true or false value.

46_9780134268118_ch44.indd 946_9780134268118_ch44.indd 9 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:10

 Truth is defined in Perl in a way that might be unfamiliar to you, so be careful. Everything
in Perl is true except 0 (the digit zero), "0" (the string containing the number 0), “” (the
empty string), and an undefined value. Note that even the string "00" is a true value
because it is not one of the four false cases.

 The statement or block of code is executed if the test condition returns a true value.

 For example, Listing 44.3 uses the if/else structure and shows conditional statements
using the eq string comparison operator.

 LISTING 44.3 if/elsif/else

 if ($favorite eq "chocolate") {

 print "I like chocolate too.\n";

 } elsif ($favorite eq "spinach") {

 print "Oh, I do not like spinach.\n";

 } else {

 print "Your favorite food is $favorite.\n";

 }

 unless
 unless works just like if , only backward. unless performs a statement or block if a condi-
tion is false:

 unless ($name eq "Rich") {

 print "Go away, you're not allowed in here!\n";

 }

 NOTE

 You can restate the preceding example in more natural language, like this:
 print "Go away!\n" unless $name eq "Rich";

 Looping
 A loop is a way to repeat a program action multiple times. A simple example is a count-
down timer that performs a task (waiting for one second) 300 times before telling you that
your egg is done boiling.

 Looping constructs (also known as control structures) can be used to iterate a block of code
as long as certain conditions apply, or while the code steps through (evaluates) a list of
values, perhaps using that list as arguments.

 Perl has four looping constructs: for , foreach , while , and until .

46_9780134268118_ch44.indd 1046_9780134268118_ch44.indd 10 10/28/15 5:08 PM10/28/15 5:08 PM

Looping Web:11
4

4

 for
 The for construct performs a statement (block of code) for a set of conditions defined as
follows:

 for (start condition; end condition; increment function) {

 statement(s)

 }

 The start condition is set at the beginning of the loop. Each time the loop is executed,
the increment function is performed until the end condition is achieved. This looks much
like the traditional for/next loop. The following code is an example of a for loop:

 for ($i=1; $i<=10; $i++) {

 print "$i\n"

 }

 foreach
 The foreach construct performs a statement block for each element in a list or array:

 @names = ("alpha","bravo","Charlie");

 foreach $name (@names) {

 print "$name sounding off!\n";

 }

 The loop variable ($name in the example) is not merely set to the value of the array
elements; it is aliased to that element. That means if you modify the loop variable, you’re
actually modifying the array. If no loop array is specified, the Perl default variable $_ may
be used:

 @names = ("alpha","bravo","Charlie");

 foreach (@names) {

 print "$_ sounding off!\n";

 }

 This syntax can be very convenient, but it can also lead to unreadable code. Give a
thought to the poor person who’ll be maintaining your code. (It will probably be you.)

 NOTE

 foreach is frequently abbreviated as for .

46_9780134268118_ch44.indd 1146_9780134268118_ch44.indd 11 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:12

 while
 while performs a block of statements as long as a particular condition is true:

 while ($x<10) {

 print "$x\n";

 $x++;

 }

 Remember that the condition can be anything that returns a true or false value. For
example, it could be a function call:

 while (InvalidPassword($user, $password)) {

 print "You've entered an invalid password. Please try again.\n";

 $password = GetPassword;

 }

 until
 until is the exact opposite of the while statement. It performs a block of statements as
long as a particular condition is false (or, rather, until it becomes true):

 until (ValidPassword($user, $password)) {

 print "YSdpgm_m

 Sdpgm_m

 You have entered an invalid password. Please try again.\n";

 Sdpgm_m

 $password = GetPassword;

 }

 last and next
 You can force Perl to end a loop early by using a last statement. last is similar to the C
 break command; the loop is exited. If you decide you need to skip the remaining contents
of a loop without ending the loop itself, you can use next , which is similar to the C
 continue command. Unfortunately, these statements do not work with do ... while .
However, you can use redo to jump to a loop (marked by a label) or inside the loop where
called:

 $a = 100;

 while (1) {

 print "start\n";

 TEST: {

 if (($a = $a / 2) > 2) {

 print "$a\n";

 if (—$a < 2) {

 exit;

 }

46_9780134268118_ch44.indd 1246_9780134268118_ch44.indd 12 10/28/15 5:08 PM10/28/15 5:08 PM

Regular Expressions Web:13
4

4

 redo TEST;

 }

 }

 }

 In this simple example, the variable $a is repeatedly manipulated and tested in a loop. The
word start will be printed only once.

 do ... while and do ... until
 The while and until loops evaluate the conditional first. The behavior is changed by
applying a do block before the conditional. With the do block, the condition is evalu-
ated last, which results in the contents of the block always executing at least once (even
if the condition is false). This is similar to the C language do ... while (conditional)
statement.

 Regular Expressions
 Perl’s greatest strength is in text and file manipulation, which is accomplished by using
the regular expression (regex) library. Regexes, which are quite different from the wildcard-
handling and filename-expansion capabilities of the shell (see Chapter 13 , “Automating
Tasks and Shell Scripting”), allow complicated pattern matching and replacement to be
done efficiently and easily.

 For example, the following line of code replaces every occurrence of the string bob or the
string mary with fred in a line of text:

 $string =~ s/bob|mary/fred/gi;

 Without going into too many of the details, Table 44.7 explains what the preceding line
says.

 TABLE 44.7 Explanation of $string =~ s/bob|mary/fred/gi;

 Element Explanation

 $string =~ Performs this pattern match on the text found in the variable called
 $string .

 s Substitute.

 / Begins the text to be matched.

 bob|mary Matches the text bob or mary. You should remember that it is looking
for the text mary , not the word mary ; that is, it will also match the text
 mary in the word maryland .

 fred Replaces anything that was matched with the text fred .

 / Ends replace text.

46_9780134268118_ch44.indd 1346_9780134268118_ch44.indd 13 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:14

 Element Explanation

 g Does this substitution globally; that is, replaces the match text wherever
in the string you match it (and any number of times).

 i The search text is not case sensitive. It matches bob , Bob , or bOB .

 ; Indicates the end of the line of code.

 If you are interested in the details, you can get more information using the regex (7)
section of the man page by entering man 7 regex from the command line.

 Although replacing one string with another might seem a rather trivial task, the code
required to do the same thing in another language (for example, C) is rather daunting
unless supported by additional subroutines from external libraries.

 Access to the Shell
 Perl can perform for you any process you might ordinarily perform by typing commands
to the shell through the \\ syntax. For example, the code in Listing 44.4 prints a directory
listing.

 LISTING 44.4 Using Backticks to Access the Shell

 $curr_dir = 'pwd';

 @listing = 'ls -al';

 print "Listing for $curr_dir\n";

 foreach $file (@listing) {

 print "$file";

 }

 NOTE

 The \\ notation uses the backtick found above the Tab key (on most keyboards), not the
single quotation mark.

 You can also use the Shell module to access the shell. Shell is one of the standard
modules that comes with Perl; it allows creation and use of a shell-like command line.
Look at the following code for an example:

 use Shell qw(cp);

 cp ("/home/httpd/logs/access.log", :/tmp/httpd.log");

 This code almost looks like it is importing the command-line functions directly into
Perl. Although that is not really happening, you can pretend that the code is similar to a
command line and use this approach in your Perl programs.

46_9780134268118_ch44.indd 1446_9780134268118_ch44.indd 14 10/28/15 5:08 PM10/28/15 5:08 PM

Modules and CPAN Web:15
4

4

 A third method of accessing the shell is via the system function call:

 $rc = 0xffff & system('cp /home/httpd/logs/access.log /tmp/httpd.log');

 if ($rc == 0) {

 print "system cp succeeded \n";

 } else {

 print "system cp failed $rc\n";

 }

 The call can also be used with the or die clause:

 system('cp /home/httpd/logs/access.log /tmp/httpd.log') == 0

 or die "system cp failed: $?"

 However, you cannot capture the output of a command executed through the system
function.

 Modules and CPAN
 A great strength of the Perl community (and the Linux community) is the fact that it
is an open-source community. This community support is expressed for Perl via the
 Comprehensive Perl Archive Network (CPAN) , which is a network of mirrors of a repository of
Perl code.

 Most of CPAN is made up of modules , which are reusable chunks of code that do useful
things, similar to software libraries containing functions for C programmers. These
modules help speed development when building Perl programs and free Perl hackers from
repeatedly reinventing the wheel when building a bicycle.

 Perl comes with a set of standard modules installed. Those modules should contain much
of the functionality that you will initially need with Perl. If you need to use a module not
installed with Ubuntu, use the CPAN module (which is one of the standard modules) to
download and install other modules onto your system. At www.perl.com/CPAN , you will
find the CPAN Multiplex Dispatcher, which will attempt to direct you to the CPAN site
closest to you.

 Typing the following command puts you into an interactive shell that gives you access to
CPAN. You can type help at the prompt to get more information on how to use the CPAN
program:

 matthew@seymour:~$ perl -MCPAN -e shell

 After installing a module from CPAN (or writing one of your own), you can load that
module into memory where you can use it with the use function:

 use Time::CTime;

 use looks in the directories listed in the variable @INC for the module. In this example, use
looks for a directory called Time , which contains a file called CTime.pm , which in turn is

46_9780134268118_ch44.indd 1546_9780134268118_ch44.indd 15 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:16

assumed to contain a package called Time::CTime . The distribution of each module should
contain documentation on using that module.

 For a list of all the standard Perl modules (those that come with Perl when you install it),
see perlmodlib in the Perl documentation. You can read this document by typing perldoc
perlmodlib at the command prompt.

 Code Examples
 The following sections contain a few examples of things you might want to do with Perl.

 Sending Mail

 You can get Perl to send email in several ways. One method that you see frequently is
opening a pipe to the sendmail command and sending data to it (shown in Listing 44.5).
Another method is using the Mail::Sendmail module (available through CPAN), which
uses socket connections directly to send mail (as shown in Listing 44.6). The latter method
is faster because it does not have to launch an external process. Note that sendmail must
be running on your system for the Perl program in Listing 44.5 to work.

 LISTING 44.5 Sending Mail Using Sendmail

 #!/usr/bin/perl

 open (MAIL, "| /usr/sbin/sendmail -t"); # Use -t to protect from users

 print MAIL <<EndMail;

 To: you\

 From: me\

 Subject: A Sample Email\nSending email from Perl is easy!\n

 .

 EndMail

 close MAIL;

 NOTE

 The @ sign in the email addresses must be escaped so that Perl does not try to
evaluate an array of that name. That is, dpitts@mk.net will cause a problem, so you
need to use dpitts\<indexterm startref="iddle2799" class="endofrange"
significance="normal"/>:}] .

 The syntax used to print the mail message is called a here document . The syntax is as
follows:

 print <<EndText;

 EndText

 The EndText value must be identical at the beginning and at the end of the block, includ-
ing any whitespace.

46_9780134268118_ch44.indd 1646_9780134268118_ch44.indd 16 10/28/15 5:08 PM10/28/15 5:08 PM

Code Examples Web:17
4

4

 LISTING 44.6 Sending Mail Using the Mail::Sendmail Module

 #!/usr/bin/perl

 use Mail::Sendmail;

 %mail = (To => "you@there.com",

 From => "me@here.com",

 Subject => "A Sample Email",

 Message => "This is a very short message"

);

 sendmail(%mail) or die $Mail::Sendmail::error;

 print "OK. Log says:\n", $Mail::Sendmail::log;

 use Mail::Sendmail;

 Perl ignores the comma after the last element in the hash. It is convenient to leave it
there; if you want to add items to the hash, you do not need to add the comma. This is
purely a style decision.

 USING PERL TO INSTALL A CPAN MODULE

 You can use Perl to interactively download and install a Perl module from the CPAN
archives by using the -M and -e commands. Start the process by using Perl like this:

 # perl -MCPAN -e shell

 When you press Enter, you see some introductory information, and you are asked to
choose an initial automatic or manual configuration, which is required before any down-
load or install takes place. Type no and press Enter to have Perl automatically configure
for the download and install process; or if you want, just press Enter to manually config-
ure for downloading and installation. If you use manual configuration, you must answer a
series of questions regarding paths, caching, terminal settings, program locations, and so
on. Settings are saved in a directory named .cpan in the current directory.

 When finished, you see the CPAN prompt:

 cpan>

 To have Perl examine your system and then download and install a large number of
modules, use the install keyword, specify Bundle at the prompt and then press Enter,
like this:

 cpan> install Bundle::CPAN

 To download a desired module (using the example in Listing 44.6), use the get keyword
like this:

 cpan> get Mail::Sendmail

46_9780134268118_ch44.indd 1746_9780134268118_ch44.indd 17 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:18

 The source for the module is downloaded into the .cpan directory. You can then build and
install the module using the install keyword, like this:

 cpan> install Mail::Sendmail

 The entire process of retrieving, building, and installing a module can also be accom-
plished at the command line by using Perl’s -e option, like this:

 # perl -MCPAN -e "install Mail::Sendmail"

 Note also that the @ sign did not need to be escaped within single quotation marks (‘ ’).
Perl does not interpolate (evaluate variables) within single quotation marks but does within
double quotation marks and here strings (similar to << shell operations).

 Purging Logs

 Many programs maintain some variety of logs. Often, much of the information in the logs
is redundant or just useless. The program shown in Listing 44.7 removes all lines from a
file that contain a particular word or phrase, so lines that you know are not important can
be purged. For example, you might want to remove all the lines in the Apache error log
that originate with your test client machine because you know those error messages were
produced during testing.

 LISTING 44.7 Purging Log Files

 #!/usr/bin/perl

 # Be careful using this program!

 # This will remove all lines that contain a given word

 # Usage: remove <word> <file>

 $word=@ARGV[0];

 $file=@ARGV[1];

 if ($file) {

 # Open file for reading

 open (FILE, "$file") or die "Could not open file: $!"; @lines=<FILE>;

 close FILE;

 # Open file for writing

 open (FILE, ">$file") or die "Could not open file for writing: $!";

 for (@lines) {

 print FILE unless /$word/;

 } # End for

 close FILE;

 } else {

 print "Usage: remove <word> <file>\n";

 } # End if...else

 The code uses a few idiomatic Perl expressions to keep it brief. It reads the file into an
array using the <FILE> notation; it then writes the lines back out to the file unless they
match the pattern given on the command line.

46_9780134268118_ch44.indd 1846_9780134268118_ch44.indd 18 10/28/15 5:08 PM10/28/15 5:08 PM

Code Examples Web:19
4

4

 The die function kills program operation and displays an error message if the open state-
ments fail. $! in the error message, as mentioned in the section on special variables, is the
error message returned by the operating system. It will likely be something like 'file not
found' or 'permission denied' .

 Posting to Usenet

 If some portion of your job requires periodic postings to Usenet—an FAQ listing, for
example—the following Perl program can automate the process for you. In the code
example, the posted text is read in from a text file, but your input can come from
anywhere.

 The program shown in Listing 44.8 uses the Net::NNTP module, which is a standard part
of the Perl distribution. You can find more documentation on the Net::NNTP module by
entering 'perldoc Net::NNTP' at the command line.

 LISTING 44.8 Posting an Article to Usenet

 #!/usr/bin/perl

 # load the post data into @post

 open (POST, "post.file");

 @post = <POST>;

 close POST;

 # import the NNTP module

 use Net::NNTP;

 $NNTPhost = 'news';

 # attempt to connect to the remote host;

 # print an error message on failure

 $nntp = Net::NNTP->new($NNTPhost)

 or die "Cannot contact $NNTPhost: $!";

 # $nntp->debug(1);

 $nntp->post()

 or die "Could not post article: $!";

 # send the header of the post

 $nntp->datasend("Newsgroups: news.announce\n");

 $nntp->datasend("Subject: FAQ - Frequently Asked Questions\n");

 $nntp->datasend("From: ADMIN <root>\n"

 $nntp->datasend("\n\n");

 # for each line in the @post array, send it

 for (@post) {

 $nntp->datasend($_);

 } # End for

 $nntp->quit;

46_9780134268118_ch44.indd 1946_9780134268118_ch44.indd 19 10/28/15 5:08 PM10/28/15 5:08 PM

BONUS CHAPTER 44 Using PerlWeb:20

 One-Liners

 One medium in which Perl excels is the one-liner. Folks go to great lengths to reduce tasks
to one line of Perl code. Perl has the rather undeserved reputation of being unreadable.
The fact is that you can write unreadable code in any language. Perl allows for more than
one way to do something, and this leads rather naturally to people trying to find the most
arcane way to do things.

 Named for Randal Schwartz, a Schwartzian transform is a way of sorting an array by
something that is not obvious. The sort function sorts arrays alphabetically; that is pretty
obvious. What if you want to sort an array of strings alphabetically by the third word?
Perhaps you want something more useful, such as sorting a list of files by file size? A
Schwartzian transform creates a new list that contains the information that you want to
sort by, referencing the first list. You then sort the new list and use it to figure out the
order that the first list should be in. Here’s a simple example that sorts a list of strings by
length:

 @sorted_by_length =

 map { $_ => [0] } # Extract original list

 sort { $a=>[1] <=> $b=>[1] } # Sort by the transformed value

 map { [$_, length($_)] } # Map to a list of element lengths

 @list;

 Because each operator acts on the thing immediately to the right of it, it helps to read this
from right to left (or bottom to top, the way it is written here).

 The first thing that acts on the list is the map operator. It transforms the list into a hash in
which the keys are the list elements and the values are the lengths of each element. This is
where you put in your code that does the transformation by which you want to sort.

 The next operator is the sort function, which sorts the list by the values.

 Finally, the hash is transformed back into an array by extracting its keys. The array is now
in the desired order.

 Command-Line Processing

 Perl is great at parsing the output of various programs. This is a task for which many
people use tools such as awk and sed . Perl gives you a larger vocabulary for performing
these tasks. The following example is very simple but illustrates how you might use Perl to
chop up some output and do something with it. In the example, Perl is used to list only
those files that are larger than 10KB:

 matthew@seymour:~$ ls -la | perl -nae 'print "$F[8] is $F[4]\n" if $F[4] > 10000;'

 The -n switch indicates that I want the Perl code run for each line of the output. The -a
switch automatically splits the output into the @F array. The -e switch indicates that the
Perl code is going to follow on the command line.

46_9780134268118_ch44.indd 2046_9780134268118_ch44.indd 20 10/28/15 5:08 PM10/28/15 5:08 PM

References Web:21
4

4

 RELATED UBUNTU AND LINUX COMMANDS

 You will use these commands and tools when using Perl with Linux:

 ▶ a2p — A filter used to translate awk scripts into Perl

 ▶ find2perl — A utility used to create Perl code from command lines using the find
command

 ▶ perldoc — A Perl utility used to read Perl documentation

 ▶ s2p — A filter used to translate sed scripts into Perl

 ▶ vi — The vi (actually vim) text editor

 References
 ▶ Sams Teach Yourself Perl in 21 Days, Second Edition , by Laura Lemay, Sams Publishing,

ISBN: 0-672-32035-5.

 ▶ Sams Teach Yourself Perl in 24 Hours , Second Edition , by Clinton Pierce, Sams
Publishing, ISBN: 0-672-32793-7.

 ▶ Learning Perl, Third Edition , by Randal L. Schwartz, Tom Phoenix, O’Reilly &
Associates, ISBN: 1-449-30358-7.

 ▶ Programming Perl , Third Edition, by Larry Wall, Tom Christiansen, and Jon Orwant,
O’Reilly & Associates, ISBN: 0-596-00492-3.

 ▶ Effective Perl Programming: Writing Better Programs with Perl , by Joseph Hall, Addison-
Wesley Publishing Company, ISBN: 0-321-49694-9.

 ▶ Mastering Regular Expressions , by Jeffrey Friedl, O’Reilly & Associates, ISBN:
0-596-52812-4.

 ▶ www.perl.com —This is the place to find all sorts of information about Perl, from its
history and culture to helpful tips. This is also the place to download the Perl inter-
preter for your system.

 ▶ http://cpan.perl.org —CPAN is the place for you to find modules and programs in
Perl. If you write something in Perl that you think is particularly useful, you can
make it available to the Perl community here.

 ▶ http://perldoc.perl.org/index-faq.html —FAQ index of common Perl queries; this
site offers a handy way to quickly search for answers about Perl.

 ▶ http://learn.perl.org —One of the best places to start learning Perl online. If you
master Perl, go to http://jobs.perl.org .

 ▶ www.pm.org —The Perl Mongers are local Perl user groups. There might be one in
your area. The Perl advocacy site is www.perl.org.

46_9780134268118_ch44.indd 2146_9780134268118_ch44.indd 21 10/28/15 5:08 PM10/28/15 5:08 PM

46_9780134268118_ch44.indd 2246_9780134268118_ch44.indd 22 10/28/15 5:08 PM10/28/15 5:08 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

