
15

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Ordering App
Text-to-Speech, Speech-to-Text and Telephony

O b j e c t i v e s
In this chapter you’ll:

■ Use Android’s text-to-speech engine to speak audio
instructions to the user.

■ Use Android’s speech-to-text engine to interpret voice input
from the user.

■ Use the SMSManager to send text messages.

■ Send Message objects to a Handler to ensure that GUI
modifications occur in the GUI thread.

Androidfp_15_speech.fm Page 1 Monday, April 16, 2012 11:10 AM

15-2 Chapter 15 Pizza Ordering App

O
u

tl
in

e

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

15.1 Introduction
The Pizza ordering app (Fig. 15.1) uses Android’s text-to-speech and speech-to-text engines
to communicate with the user by speaking text and by receiving the user’s spoken input.
The app creates a pizza order by asking the user to answer questions about the pizza size
and toppings. The user responds by speaking the answer into the phone when prompted.
If the app cannot understand the user or gets an unexpected answer, the app asks the user
to repeat the answer. After processing the user’s responses, the app summarizes the order,
asks the user whether it’s correct and whether it should be submitted. If so, the app sends
the order to a mobile phone number (specified in the app’s strings.xml file) as an SMS
message using the Android telephony APIs. If the user wishes to change the order, the app
resets and begins asking the questions again. After the order is placed, the user has the op-
tion to exit the app or begin again with a new order.

15.2 Test-Driving the Pizza Ordering App

Opening and Running the App
Open Eclipse and import the Pizza app project. To import the project:

15.1 Introduction
15.2 Test-Driving the Pizza Ordering App
15.3 Technologies Overview
15.4 GUI and Resource Files

15.4.1 Creating the Project

15.4.2 AndroidManifest.xml
15.4.3 main.xml, strings.xml and

arrays.xml

15.5 Building the App
15.6 Wrap-Up

Fig. 15.1 | Pizza ordering app.

Androidfp_15_speech.fm Page 2 Monday, April 16, 2012 11:10 AM

15.3 Technologies Overview 15-3

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

1. Select File > Import… to display the Import dialog.

2. Expand the General node, select Existing Projects into Workspace, then click Next >.

3. To the right of the Select root directory: text field, click Browse…, then locate and
select the Pizza folder.

4. Click Finish to import the project.

At the time of this writing, the speech synthesis and speech recognition capabilities and
the SMS message-sending capability work only on actual devices, not in the Android em-
ulator. In addition, a network connection is required (data plan or WiFi) for the voice rec-
ognition to work. To use the SMS message-sending functionality, enter your own mobile
phone number for the phone_number <string> resource in strings.xml. Ensure that you
have an Android device with USB debugging enabled connected to your computer, right
click the project’s folder and select Run As > Android Application to install and run the app
on your device.

Choosing your Pizza
Listen to each question spoken by the app—the questions are also displayed on the screen
for your convenience. Respond to each question only after the app prompts you to speak.
Be sure to speak clearly into your device’s microphone. If there’s too much background
noise the app may ask you to repeat certain answers.

Sending an Order
The app will repeat your completed order back to you, then ask if you want to place the
order. Say “yes” to submit the order, which sends an SMS message to the phone number
specified in your strings.xml file. If the phone number specified represents an actual mo-
bile phone, that phone will receive an SMS text message detailing your order; otherwise,
the SMS message will not send correctly.

15.3 Technologies Overview

Speech Synthesis
The app speaks to the user using an instance of the TextToSpeech class. The text-to-speech
engine requires initialization that’s performed asynchronously. For this reason, the app’s
TextToSpeech.OnInitListener is notified when this initialization completes. Text-
ToSpeech’s speak method converts Strings to audio messages. A TextToSpeech.OnUt-
teranceCompletedListener is notified when the speech synthesizer finishes speaking an
audio message.

Speech Recognition
The app listens for user input by launching an Intent for the RecognizerIntent using
the RecognizerIntent.ACTION_RECOGNIZE_SPEECH constant. We use startActivity-
ForResult to receive the speech recognition results in Activity’s onActivityResult
method. An ArrayList of possible matches for the user’s speech is included as an extra in
the Intent returned by the RecognizerIntent and passed to onActivityResult. By com-
paring the elements in this ArrayList to options in the ordering menu we can determine
which option the user chose and build the order accordingly.

Androidfp_15_speech.fm Page 3 Monday, April 16, 2012 11:10 AM

15-4 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Sending SMS Messages
When an order is completed, the app sends a text message programmatically using class
SMSManager. SMSManager’s static method getDefault returns the SMSManager object
that your app can use to send a message. SMSManager method sendTextMessage sends an
SMS message to a specified phone number. One of the arguments to sendTextMessage
method is a PendingIntent that is broadcast when the SMS message is sent. This enables
us to use a BroadcastReceiver to listen for the broadcast to determine whether the SMS
message was sent successfully.

Using a Handler to Pass Messsages Between Threads
As you know, all GUI modifications must be performed from the GUI thread of execution
in Android. In this app, other non-GUI threads need to notify the GUI thread to display
text. For example, speech synthesis happens in a separate thread of execution. When
speech synthesis completes and we need to display text, we’ll notify the GUI thread by
passing a Message object to a Handler that’s created from the GUI thread. A Handler’s
handleMessage method is called on the thread that created the Handler.

15.4 GUI and Resource Files
In this section, we create the Pizza ordering app and discuss its XML files.

15.4.1 Creating the Project
Begin by creating a new Android project named Pizza. Specify the following values in the
New Android Project dialog, then press Finish:

• Build Target: Ensure that Android 2.3.3 is checked

• Application name: Pizza

• Package name: com.deitel.pizza

• Create Activity: Pizza

• Min SDK Version: 8

15.4.2 AndroidManifest.xml
Figure 15.2 shows this app’s AndroidManifest.xml file. The only new feature is the per-
mission android.permission.SEND_SMS for sending SMS messages (line 16).

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="com.deitel.pizza" android:versionCode="1"
4 android:versionName="1.0">
5 <application android:icon="@drawable/icon"
6 android:label="@string/app_name" android:debuggable="true">
7 <activity android:name=".Pizza" android:screenOrientation="portrait"
8 android:label="@string/app_name">
9 <intent-filter>

10 <action android:name="android.intent.action.MAIN" />

Fig. 15.2 | AndroidManifest.xml. (Part 1 of 2.)

Androidfp_15_speech.fm Page 4 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-5

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

15.4.3 main.xml, strings.xml and arrays.xml
The main.xml layout for this app is a vertical LinearLayout containing a TextView and
an ImageView. We display the spoken Strings in the TextView so that the user can also
read them. The app’s Strings are defined as <string> resources in strings.xml and as
<string-array> resources in arrays.xml. You can review the contents of these XML files
by opening them in Eclipse.

15.5 Building the App
The Pizza class (Figs. 15.3–15.17) is the only Activity in the app. The app asks a num-
ber of questions to determine the user’s desired pizza order, then sends the order as an SMS
message to a phone number that’s specified as a <string> resource in strings.xml.

Pizza Activity Class package Statement, import Statements and Fields
Figure 15.3 contains the package statement, import statements and fields for class Pizza.
We’ve highlighted the import statements for the new classes and interfaces that were in-
troduced in Section 15.3. We discuss the class’s fields as they’re used. Method
loadResources (Fig. 15.7) initializes most of the class’s instance variables using XML re-
sources that we load from strings.xml and arrays.xml.

11 <category android:name="android.intent.category.LAUNCHER" />
12 </intent-filter>
13 </activity>
14 </application>
15 <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="10"/>
16
17 </manifest>

1 // Pizza.java
2 // Main Activity for the Pizza App.
3 package com.deitel.pizza;
4
5 import java.util.ArrayList;
6 import java.util.HashMap;
7 import java.util.Locale;
8
9 import android.app.Activity;

10 import android.app.PendingIntent;
11 import android.content.ActivityNotFoundException;
12
13 import android.content.Context;
14 import android.content.Intent;
15
16 import android.content.res.Resources;
17 import android.os.Bundle;
18 import android.os.Handler;

Fig. 15.3 | Pizza Activity class package statement, import statements and fields. (Part 1 of 3.)

Fig. 15.2 | AndroidManifest.xml. (Part 2 of 2.)

<uses-permission android:name="android.permission.SEND_SMS"/>

import android.content.BroadcastReceiver;

import android.content.IntentFilter;

Androidfp_15_speech.fm Page 5 Monday, April 16, 2012 11:10 AM

15-6 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

19 import android.os.Message;
20
21
22
23
24
25 import android.widget.TextView;
26 import android.widget.Toast;
27
28 public class Pizza extends Activity
29 {
30 private String phoneNumber; // phone number to which order is sent
31
32 // identifying String for sent SMS message broadcast Intent
33 private static final String BROADCAST_STRING =
34 "com.deitel.pizza.sent_sms";
35
36 // SMS message broadcast Intent
37
38
39 // 0-based index of each pizza question
40 private static final int PIZZA_SIZE_INDEX = 1;
41 private static final int PEPPERONI_INDEX = 2;
42 private static final int MUSHROOM_INDEX = 3;
43 private static final int ORDER_SUMMARY_INDEX = 4;
44
45 // message IDs to differentiate between a
46 // regular message and the final message
47 private final static int UPDATE_TEXT_ID = 15;
48 private final static int FINAL_UPDATE_TEXT_ID = 16;
49 private final static int DISPLAY_TOAST_ID = 17;
50
51 // String identifiers for restoring instance state
52 private final static String INDEX_ID = "index";
53 private final static String ORDER_ID = "order";
54 private final static String LISTENING_ID = "listening";
55
56
57 private int currentMessageIndex; // index of the current message
58
59 private boolean waitingForResponse; // waiting for user response?
60 private boolean listening; // waiting for Activity result?
61 private TextView messageText; // used to display the current message
62 private String order; // the pizza order
63
64 private String[] audioMessages; // messages spoken by the app
65 private String[] displayMessages; // messages displayed by the app
66
67 private String errorMessageString; // message for unexpected response
68 private String finalMessageString; // message when app sends order
69
70 // possible choices for each of the five order options
71 private String[][] choices = new String[6][];

Fig. 15.3 | Pizza Activity class package statement, import statements and fields. (Part 2 of 3.)

import android.speech.RecognizerIntent;
import android.speech.tts.TextToSpeech;
import android.speech.tts.TextToSpeech.OnInitListener;
import android.speech.tts.TextToSpeech.OnUtteranceCompletedListener;
import android.telephony.SmsManager;

private BroadcastReceiver textMessageStatusBroadcastReceiver;

private TextToSpeech textToSpeech; // converts text to speech

Androidfp_15_speech.fm Page 6 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-7

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Activity Method onCreate
The onCreate method (Fig. 15.4) sets up the Pizza Activity. Lines 89–115 create a new
TextToSpeech object and configure its listeners. We’ll use this object to speak commands
and questions to the user during the pizza-ordering process. The first argument to the
TextToSpeech constructor is the Context in which the object will be used. The second ar-
gument is the TextToSpeech.OnInitListener (lines 90–114) that’s notified when the
TextToSpeech engine’s initialization is complete.

72
73 private String positiveResponseString; // "Yes"
74 private String negativeResponseString; // "No"
75
76 private Resources resources; // used to access the app's Resources
77 private boolean quitInProgress;
78
79 private HashMap<String, String> ttsParams; // TextToSpeech parameters
80

81 // Called when the Activity is first created
82 @Override
83 public void onCreate(Bundle savedInstanceState)
84 {
85 super.onCreate(savedInstanceState);
86 setContentView(R.layout.main); // set the Activity's layout
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Fig. 15.4 | Overriding Activity method onCreate. (Part 1 of 2.)

Fig. 15.3 | Pizza Activity class package statement, import statements and fields. (Part 3 of 3.)

// initialize TextToSpeech engine and register its OnInitListener
textToSpeech = new TextToSpeech(this,
 new OnInitListener()
 {
 // called when the TextToSpeech is initialized
 @Override
 public void onInit(int status)
 {
 // speak U.S. English
 textToSpeech.setLanguage(Locale.US);

 // set listener that responds to events generated
 // when messages are completed
 textToSpeech.setOnUtteranceCompletedListener(
 new OnUtteranceCompletedListener()
 {
 @Override
 public void onUtteranceCompleted(String id)
 {
 utteranceCompleted();
 } // end method onUtteranceCompleted
 } // end anonymous inner class
); // end call to setOnUtteranceCompletedListener

Androidfp_15_speech.fm Page 7 Monday, April 16, 2012 11:10 AM

15-8 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

The TextToSpeech.OnInitListener’s onInit method is called when the TextTo-
Speech object finishes initializing. Line 97 uses TextToSpeech’s setLanguage method to
specify that the app will speak U.S. English (Locale.US). Class Locale provides constants
for many locales, but it’s not guaranteed that all are supported on every device. You can
use method isLanguageAvailable to check whether a specific Locale is available before
using it. Lines 101–110 define the TextToSpeech object’s OnUtteranceCompletedLis-
tener, which is notified when the TextToSpeech object finishes speaking a message. When
this occurs, the event handler’s onUtteranceCompleted method (lines 104–108) calls our
method utteranceCompleted (Fig. 15.9) to process that event.

Lines 119–120 create and configure the ttsParams HashMap that will be used as the
last argument in each call to the TextToSpeech object’s speak method. To ensure that the
OnUtteranceCompletedListener is notified when speech completes, the HashMap must
contain the key TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID with a value that’s a
non-empty string. The value associated with this key is passed to the OnUtteranceCom-
pletedListener’s onUtteranceCompleted method and can be used in the method to
determine the text that the TTS engine just completed speaking, so that you can perform
specific tasks based on that information. We do not use the onUtteranceCompleted
method’s argument in this app.

Instance variable currentMessageIndex (line 122) keeps track of the index in a
String array of the messages and questions the app speaks to the user. The waitingFor-
Response boolean indicates whether or not the app is currently waiting for the user to
respond before continuing with the order—the app has not spoken any text yet, so this is
initialized to false (line 123). Line 128 calls our method loadResources (Fig. 15.7) to
load the String values from the app’s strings.xml and arrays.xml files.

111
112
113
114
115
116
117
118
119
120
121
122 currentMessageIndex = 1; // start at the first message
123 waitingForResponse = false; // not waiting for user response
124
125 // get the Activity's TextView
126 messageText = (TextView) findViewById(R.id.mainText);
127
128 loadResources(); // load String resources from xml
129 } // end method onCreate
130

Fig. 15.4 | Overriding Activity method onCreate. (Part 2 of 2.)

 playFirstMessage();
 } // end method onInit
 } // end anonymous inner class that implements OnInitListener
); // end call to TextToSpeech constructor

// used in calls to TextToSpeech's speak method to ensure that
// OnUtteranceCompletedListener is notified when speech completes
ttsParams = new HashMap<String, String>();
ttsParams.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, "speak");

Androidfp_15_speech.fm Page 8 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-9

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Activity Method onResume
When the user completes the order, the app asks whether the order should be sent as an SMS
message. To ensure that the SMS is sent, we can register a BroadcastReceiver to check the
result of the Intent that sent the message. Method onResume (Fig. 15.5) creates and registers
the textMessageStatusBroadcastReceiver. When the BroadcastReceiver’s onReceive
method is called, we check whether the result code is not Activity.RESULT_OK (line 144),
in which case we display an error message on the app. The BroadcastReceiver is notified
asynchronously, so we need to display the error from the GUI thread, which we do by pass-
ing a Message to a Handler’s sendMessage method (lines 146–148). The viewUpdateHan-
dler is defined in Fig. 15.15 and used throughout the Pizza Activity.

A Handler’s handleMessage method executes in the thread from which the Handler
was created and receives the Message sent by the Handler’s sendMessage method. Because
viewUpdateHandler is an instance variable of Activity class Pizza, the viewUpdate-
Handler is created in the GUI thread of execution. This helps us ensure that modifications
to the GUI happen in the GUI thread.

Android maintains a global pool of reusable Message objects, so rather than creating
Message objects with the default constructor, lines 147–148 create the Message that’s
passed to the viewUpdateHandler by calling Handler method obtainMessage. The ver-
sion of obtainMessage used here requires four arguments—an int ID that indicates the

131 // called when this Activity is resumed
132 @Override
133 public void onResume()
134 {
135 super.onResume();
136
137 // create BroadcastReceiver to receive SMS message status broadcast
138 textMessageStatusBroadcastReceiver =
139 {
140 @Override
141
142 {
143 // if the message was not sent
144 if (getResultCode() != Activity.RESULT_OK)
145 {
146
147
148
149 } // end if
150 } // end method onReceive
151 }; // end BroadcastReceiver anonymous inner class
152
153 // register the receiver
154
155
156 } // end method onResume
157

Fig. 15.5 | Overriding Activity method onResume.

new BroadcastReceiver()

public void onReceive(Context context, Intent intent)

viewUpdateHandler.sendMessage(
 viewUpdateHandler.obtainMessage(Pizza.DISPLAY_TOAST_ID,
 R.string.text_error_message, 0, null));

registerReceiver(textMessageStatusBroadcastReceiver,
 new IntentFilter(Pizza.BROADCAST_STRING));

Androidfp_15_speech.fm Page 9 Monday, April 16, 2012 11:10 AM

15-10 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Message’s purpose (used to decide how to process it) and two arbitrary int values and an
arbitrary Object that can be used when handling the Message. In our case, the second
argument is a String resource ID for the error message we’ll display. We pass 0 and null
for the last two arguments because we do not use them in this app.

Lines 154–155 pass the BroadcastReceiver and a new IntentFilter to Activity’s
registerReceiver method to allow the app to receive broadcast Intents. The String
argument to the IntentFilter constructor is an app-specific String that allows the app
to receive the broadcasts intended for the app. When we send the SMS message
(Fig. 15.14), we’ll arrange to receive a broadcast Intent with an action String that uses
the same Pizza.BROADCAST_STRING constant.

Overriding Activity Method onPause
When the Activity is paused, there’s no need to receive broadcast Intents, so we override
onPause (Fig. 15.6) to unregister our BroadcastReceiver by passing it to Activity’s un-
registerReceiver method.

Pizza Method loadResources
The loadResources method (Fig. 15.7) is called from onCreate (line 128 of Fig. 15.4)
and loads the app’s String and String array resources using the Activity’s Resource ob-
ject’s getString and getStringArray methods. The choices two-dimensional String ar-
ray contains the possible answers for each question asked by the app. For example, the
String array at index PEPPERONI_INDEX contains all acceptable responses to the question:
"Do you want pepperoni?"—in this case, "Yes" and "No". These Strings are loaded in the
array binaryChoices (lines 194–195) and reused for several of the questions.

158 // called when this Activity is paused
159 @Override
160 public void onPause()
161 {
162 super.onPause();
163
164 // if the BroadcastReceiver is not null, unregister it
165 if (textMessageStatusBroadcastReceiver != null)
166
167
168 textMessageStatusBroadcastReceiver = null;
169 } // end method onPause
170

Fig. 15.6 | Overriding Activity method onPause.

171 // load String resources from XML
172 private void loadResources()
173 {
174 resources = getResources(); // get the app's resources
175 phoneNumber = resources.getString(
176 R.string.phone_number); // load audio messages

Fig. 15.7 | Pizza method loadResources. (Part 1 of 2.)

unregisterReceiver(textMessageStatusBroadcastReceiver);

Androidfp_15_speech.fm Page 10 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-11

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Method playFirstMessage
The playFirstMessage method (Fig. 15.8) is called (Fig. 15.4, line 112) after the Text-
ToSpeech engine is initialized. The method speaks the app’s welcome message (stored in au-
dioMessages[0]) by calling TextToSpeech’s speak method with three arguments—the
String to speak, the queue mode and a HashMap of parameters for the TextToSpeech engine.
The queue mode is either TextToSpeech.QUEUE_FLUSH or TextToSpeech.QUEUE_ADD. The
mode QUEUE_FLUSH empties the speech queue (the list of Strings waiting to be spoken) so
that the new String can be spoken immediately. The mode QUEUE_ADD adds the new text to
speak to the end of the speech queue.

177 audioMessages = resources.getStringArray(
178 R.array.audio_messages); // load audio messages
179 displayMessages = resources.getStringArray(
180 R.array.display_messages); // load the display messages
181 errorMessageString = resources.getString(
182 R.string.error_message); // error message
183 finalMessageString = resources.getString(
184 R.string.final_message); // final message
185 positiveResponseString = resources.getString(
186 R.string.positive_response); // "Yes"
187 negativeResponseString = resources.getString(
188 R.string.negative_response); // "No"
189
190 // initialize the pizza order
191 order = resources.getString(R.string.initial_order);
192
193 // load the valid user responses
194 String[] binaryChoices =
195 resources.getStringArray(R.array.binary_choices);
196 choices[PIZZA_SIZE_INDEX] =
197 resources.getStringArray(R.array.size_choices);
198 choices[PEPPERONI_INDEX] = binaryChoices;
199 choices[MUSHROOM_INDEX] = binaryChoices;
200 choices[ORDER_SUMMARY_INDEX] = binaryChoices;
201 } // end method loadResources
202

203 // speak the first message
204 private void playFirstMessage()
205 {
206 // speak the first message
207
208
209 } // end method playFirstMessage
210

Fig. 15.8 | Pizza method playFirstMessage.

Fig. 15.7 | Pizza method loadResources. (Part 2 of 2.)

textToSpeech.speak(
 audioMessages[0], TextToSpeech.QUEUE_FLUSH, ttsParams);

Androidfp_15_speech.fm Page 11 Monday, April 16, 2012 11:10 AM

15-12 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Method utteranceCompleted
Method utteranceCompleted (Fig. 15.9) is called by the TextToSpeech object’s onUtter-
anceCompleted event handler (Fig. 15.4, lines 104–108) and whenever the app needs to
move to the next message to speak. We first obtain from the ttsParams object the value of
the key TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID so we can determine whether the
user has chosen to quit the app (lines 220–225). If so, we shutDown the TextToSpeech engine
to release its resources and terminate the app by calling Activity method finish.

211 // utility method called when speech completes and
212 // when it's time to move to the next message
213 private void utteranceCompleted()
214 {
215 // if the TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID
216 // contains "quit" terminate the app
217 String quit =
218 ttsParams.get(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID);
219
220 if (quit.equals("quit")) // check whether user wishes to quit
221 {
222
223 finish();
224 return;
225 } // end if
226
227 // allow user to quit
228 if (currentMessageIndex >= displayMessages.length &&
229 !quitInProgress)
230 {
231 allowUserToQuit();
232 } // end if
233 else if (!waitingForResponse) // if we're not waiting for a response
234 {
235 // update the TextView
236
237
238
239 String words = "";
240
241 // summarize the order
242 if (currentMessageIndex == ORDER_SUMMARY_INDEX)
243 {
244 words = resources.getString(R.string.order_summary_prefix);
245 words += order.substring(order.indexOf(':') + 1);
246 } // end if
247
248 words += audioMessages[currentMessageIndex]; // next message
249 words = words.replace(resources.getString(R.string.pepperoni),
250 resources.getString(R.string.pepperoni_speech));
251 words = words.replace(resources.getString(R.string.pizza),
252 resources.getString(R.string.pizza_speech));
253

Fig. 15.9 | Pizza method utteranceCompleted. (Part 1 of 2.)

textToSpeech.shutdown(); // shut down the TextToSpeech

viewUpdateHandler.sendMessage(
 viewUpdateHandler.obtainMessage(UPDATE_TEXT_ID));

Androidfp_15_speech.fm Page 12 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-13

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Next, we determine whether the order has been completed (lines 228–229). If so, we
call method allowUserToQuit to allow the user to exit the app or start a new order. If we’re
not waiting for a user response (line 233) we pass a Message to the viewUpdateHandler so
that it can update the TextView’s text. Lines 239–252 configure the String words, which
will contain the String representation of the words to speak to the user. If we’re on the last
of the messages that the app speaks to the user (line 242), lines 244–245 summarize the
order. Line 248 appends the current String from the audioMessages array to words. Lines
249–250 replace the words “pepperoni” and “pizza” with strings that allow the Text-
ToSpeech engine to speak these words with better pronunciation—such as “pehperohnee”
for “pepperoni.” Then line 255 speaks the message using TextToSpeech’s speak. We also set
waitingForResponse to true. If we’re waiting for a user response (line 258), we call the
listen method (Fig. 15.10) to start an Intent for the speech recognition Activity.

Pizza Method listen
The listen method (Fig. 15.10) uses an Intent (270–271) to start an Activity that lis-
tens for audio input from the user. The RecognizerIntent.ACTION_RECOGNIZE_SPEECH
constant represents the speech recognition Activity. We launch the Intent using start-
ActivityForResult (line 276) so that we can receive results in the Pizza Activity’s over-
ridden onActivityResult method. We catch an ActivityNotFoundException that will
be thrown by an AVD or any device that does not have speech recognition capability. If
this happens, we send a Message to the viewUpdateHandler to display a Toast explaining
why this app will not work.

254 // speak the next message
255
256 waitingForResponse = true; // we are waiting for a response
257 } // end if
258 else if (!listening && currentMessageIndex > 0)
259 {
260 listen(); // capture the user's response
261 } // end else if
262 } // end method utteranceCompleted
263

264 // listens for a user response
265 private void listen()
266 {
267 listening = true; // we are now listening
268
269 // create Intent for speech recognition Activity
270
271
272
273 // try to launch speech recognition Activity
274 try
275 {

Fig. 15.10 | Pizza method listen. (Part 1 of 2.)

Fig. 15.9 | Pizza method utteranceCompleted. (Part 2 of 2.)

textToSpeech.speak(words, TextToSpeech.QUEUE_FLUSH, ttsParams);

Intent speechRecognitionIntent =
 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

Androidfp_15_speech.fm Page 13 Monday, April 16, 2012 11:10 AM

15-14 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Activity Method onActivityResult
The Pizza Activity overrides the onActivityResult method (Fig. 15.11) to process results
from the speech recognition Activity. We pass the RecognizerIntent.EXTRA_RESULTS to
the received Intent’s getStringArrayListExtra (lines 296–298) to get an ArrayList con-
taining String representations of the speech recognition Activity’s interpretations of the
user’s spoken input. Speech recognition is not exact, so if any of these Strings matches a re-
sponse that the app expects, we’ll assume that the user spoke that response and act accord-
ingly. Lines 316–327 loop through each of the valid choices, comparing them with each of
the possible matches to the user’s speech input. We save the first match in result (line 323).
If there’s no match, we call the playError method to ask the user to repeat the response (line
330). Otherwise lines 331–418 process the user’s response. Lines 331–371 quit or continue
the app. Lines 373–387 send the pizza order or start over. Lines 388–412 continue the order
process—we call the utteranceCompleted method (line 411) with the empty String to
speak the next message to the user. Lines 414–418 process the case in which the user cancels
the speech input.

276
277 } // end try
278 catch (ActivityNotFoundException exception)
279 {
280
281
282 } // end catch
283 } // end method listen
284

285 // called when the speech recognition Activity returns
286 @Override
287 protected void onActivityResult(int requestCode, int resultCode,
288 Intent dataIntent)
289 {
290 listening = false;
291
292 // if there was no error
293 if (requestCode == 0 && resultCode == RESULT_OK)
294 {
295 // get list of possible matches to user's speech
296
297
298
299
300 // get current list of possible valid choices
301 String[] validResponses;
302
303 if (!quitInProgress)
304 validResponses = choices[currentMessageIndex];

Fig. 15.11 | Overriding Activity method onActivityResult. (Part 1 of 4.)

Fig. 15.10 | Pizza method listen. (Part 2 of 2.)

startActivityForResult(speechRecognitionIntent, 0);

viewUpdateHandler.sendMessage(viewUpdateHandler.obtainMessage(
 Pizza.DISPLAY_TOAST_ID, R.string.no_speech_message, 0, null));

ArrayList<String> possibleMatches =
 dataIntent.getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);

Androidfp_15_speech.fm Page 14 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-15

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

305 else
306 validResponses =
307 resources.getStringArray(R.array.binary_choices);
308
309 if (validResponses == null)
310 return;
311
312 String result = null;
313
314 // for each possible valid choice, compare to the user's speech
315 // to determine whether the user spoke one of those choices
316 checkForMatch:
317 for (String validResponse : validResponses)
318 {
319 for (String match : possibleMatches)
320 {
321 if (validResponse.compareToIgnoreCase(match) == 0)
322 {
323 result = validResponse; // store the user response
324 break checkForMatch; // stop checking possible responses
325 } // end if
326 } // end for
327 } // end for
328
329 if (result == null) // there was no match
330 playError(); // ask the user to repeat the response
331 else if (quitInProgress)
332 {
333 quitInProgress = false;
334
335 // the user said to quit
336 if (result.equalsIgnoreCase(positiveResponseString))
337 {
338 if (currentMessageIndex >= displayMessages.length)
339 {
340 reset(); // reset the order
341 return; // return
342 } // end if
343 else
344 {
345
346
347
348 // speak the final message
349
350
351
352 } // end else
353 } // end if
354 else // the user wants to return
355 {
356 if (currentMessageIndex >= displayMessages.length)
357 {

Fig. 15.11 | Overriding Activity method onActivityResult. (Part 2 of 4.)

ttsParams.put(
 TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, "quit");

textToSpeech.speak(
 resources.getString(R.string.quit_message),
 TextToSpeech.QUEUE_FLUSH, ttsParams);

Androidfp_15_speech.fm Page 15 Monday, April 16, 2012 11:10 AM

15-16 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

358
359
360
361 // speak the final message
362
363
364
365 } // end if
366 else
367 {
368 listen();
369 } // end else
370 } // end else
371 } // end else if
372 // there was a match and it is on the last message
373 else if (currentMessageIndex == displayMessages.length - 1)
374 {
375 // the user said to send the order
376 if (result.equalsIgnoreCase(positiveResponseString))
377 {
378 waitingForResponse = false;
379 ++currentMessageIndex;
380 sendMessage(); // send the order as a text message
381 } // end if
382 else // the user canceled the order
383 {
384 reset(); // reset the order
385 return; // return
386 } // end else
387 } // end else if
388 else // there was a match and it is not the last message
389 {
390 // the user responded positively
391 if (result.equalsIgnoreCase(positiveResponseString))
392 {
393 // if previous question asked if the user wants pepperoni
394 if (currentMessageIndex == PEPPERONI_INDEX)
395 {
396 // add pepperoni to the pizza order
397 order += resources.getString(R.string.pepperoni);
398 } // end if
399 else if (currentMessageIndex == MUSHROOM_INDEX)
400 {
401 // add mushrooms to the pizza order
402 order += resources.getString(R.string.mushrooms);
403 } // else if
404 } // end if
405 else if (!result.equalsIgnoreCase(negativeResponseString))
406 order += ", " + result; // update the order
407
408 waitingForResponse = false;
409 ++currentMessageIndex; // move to the next question
410

Fig. 15.11 | Overriding Activity method onActivityResult. (Part 3 of 4.)

ttsParams.put(
 TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, "quit");

textToSpeech.speak(
 resources.getString(R.string.leave_message),
 TextToSpeech.QUEUE_FLUSH, ttsParams);

Androidfp_15_speech.fm Page 16 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-17

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Method playError
The playError method (Fig. 15.12, lines 425–429) is called by onActivityResult when-
ever Android’s speech recognizer fails to recognize the user’s spoken response. Lines 427–
428 use the textToSpeech object’s speak method to ask the user to try again. Method re-
set (lines 432–441) is called by onActivityResult whenever the user decides to restart the
order process.

Overriding Activity Methods onSaveInstanceState and onRestoreInstance-
State
Activity methods onSaveInstanceState and onRestoreInstanceState (Fig. 15.13)
save and restore the values for the Pizza Activity’s currentMessageIndex, order and
listening instance variables in the event that the Pizza Activity is pushed to the back-
ground and brought back to the foreground.

411 utteranceCompleted(); // move to next message
412 } // end else
413 } // end if
414 else if ((currentMessageIndex > 0 && !listening) ||
415 resultCode == Activity.RESULT_CANCELED)
416 {
417 allowUserToQuit(); // listen for user input
418 } // end else
419
420 // call super method
421 super.onActivityResult(requestCode, resultCode, dataIntent);
422 } // end method onActivityResult
423

424 // called when the user says an unexpected response
425 private void playError()
426 {
427
428
429 } // end method playError
430
431 // start a new order
432 private void reset()
433 {
434 // reset the instance variables associated with taking an order
435 currentMessageIndex = 1;
436 order = resources.getString(R.string.initial_order);
437 waitingForResponse = false;
438 listening = false;
439
440 playFirstMessage();
441 } // end method reset
442

Fig. 15.12 | Pizza methods playError and reset.

Fig. 15.11 | Overriding Activity method onActivityResult. (Part 4 of 4.)

textToSpeech.speak(errorMessageString, // play error message
 TextToSpeech.QUEUE_FLUSH, ttsParams);

Androidfp_15_speech.fm Page 17 Monday, April 16, 2012 11:10 AM

15-18 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Method sendMessage
The sendMessage method (Fig. 15.14) is called by onActivityResult to send the final or-
der String as an SMS text message. To do this, we create a new Intent (line 469) with an
action String that matches the one we used to register the textMessageStatus-
BroadcastReceiver. We then use this Intent to create a PendingIntent (lines 470–471)
by calling PendingIntent’s static getBroadcast method. Recall from Chapter 14 that
a PendingIntent represents an Intent and an action to perform with that Intent. When
the PendingIntent completes, it broadcasts the Intent specified as the third argument to
getBroadcast—this is the Intent that the BroadcastReceiver (Fig. 15.5) receives indi-
cating whether the SMS message was sent successfully.

443 // save the order state
444 @Override
445 public void onSaveInstanceState(Bundle savedStateBundle)
446 {
447 // store the currentMessageIndex, order and listening values
448 savedStateBundle.putInt(INDEX_ID, currentMessageIndex);
449 savedStateBundle.putString(ORDER_ID, order);
450 savedStateBundle.putBoolean(LISTENING_ID, listening);
451
452 super.onSaveInstanceState(savedStateBundle);
453 } // end method onSaveInstanceState
454
455 // restore the order state
456 @Override
457 public void onRestoreInstanceState(Bundle savedStateBundle)
458 {
459 // retrieve the currentMessageIndex, order and listening values
460 currentMessageIndex = savedStateBundle.getInt(INDEX_ID);
461 order = savedStateBundle.getString(ORDER_ID);
462 listening = savedStateBundle.getBoolean(LISTENING_ID);
463 super.onRestoreInstanceState(savedStateBundle);
464 } // end method onRestoreInstanceState
465

Fig. 15.13 | Overriding Activity methods onSaveInstanceState and
onRestoreInstanceState.

466 // send order as a text message
467 private void sendMessage()
468 {
469
470
471
472
473 // get the default SMSManager
474
475

Fig. 15.14 | Pizza method sendMessage. (Part 1 of 2.)

Intent broadcastIntent = new Intent(Pizza.BROADCAST_STRING);
PendingIntent messageSentPendingIntent =
 PendingIntent.getBroadcast(this, 0, broadcastIntent, 0);

SmsManager smsManager = SmsManager.getDefault();

Androidfp_15_speech.fm Page 18 Monday, April 16, 2012 11:10 AM

15.5 Building the App 15-19

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Line 474 gets the SMSManager by calling SMSManager static method getDefault.
SMSManager’s sendTextMessage method (lines 477–478) sends the SMS message. The
first argument is the phone number to which the message will be sent. The second argu-
ment, null, indicates that the default SMS center (SMSC) should be used to forward the
SMS message to its destination. The third argument is the message to send. The Pending-
Intent in the fourth argument is broadcast when the message is sent—the Pending-
Intent’s result code will indicate whether the sending the SMS succeeded or failed. The
last argument (if not null) is another PendingIntent that’s broadcast when the SMS mes-
sage is delivered to the recipient. Lines 481–482 send a Message to the viewUpdateHan-
dler to display an order-completed message to the user and to speak that message.

viewUpdateHandler for Updating the GUI
The viewUpdateHandler (Fig. 15.15) is called throughout the Pizza Activity to update
the GUI based on the current order state and to display error messages. Lines 489–519 over-
ride Handler’s handleMessage method, which receives a Message as an argument and up-
dates the GUI based on the contents of that Message. Lines 492–518 process the Message
based on the ID contained in receivedMessage.what. For Pizza.UPDATE_TEXT_ID, we dis-
play the next message in displayMessages, so that the user can see the same text that the
app is speaking. For Pizza.FINAL_UPDATE_TEXT_ID, we display and speak the finalMes-
sageString. For Pizza.DISPLAY_TOAST_ID, we display a Toast containing the value that
was stored in the Message’s arg1 instance variable when the Message was sent—this instance
variable contains the text to display in the Toast.

476 // send the order to PHONE_NUMBER
477
478
479
480 // display the final message
481 viewUpdateHandler.sendMessage(
482 viewUpdateHandler.obtainMessage(FINAL_UPDATE_TEXT_ID));
483 } // end method sendMessage
484

485 // updates the UI
486 private Handler viewUpdateHandler = new Handler()
487 {
488 // displays the given next message
489
490 {
491 // process Message based on the ID stored in receivedMessage.what
492 switch ()
493 {
494 case Pizza.UPDATE_TEXT_ID: // if it is not the last message
495 // display the message
496 String text = "";
497

Fig. 15.15 | viewUpdateHandler for updating the GUI. (Part 1 of 2.)

Fig. 15.14 | Pizza method sendMessage. (Part 2 of 2.)

smsManager.sendTextMessage(phoneNumber, null, order,
 messageSentPendingIntent, null);

public void handleMessage(Message receivedMessage)

receivedMessage.what

Androidfp_15_speech.fm Page 19 Monday, April 16, 2012 11:10 AM

15-20 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Pizza Method allowUserToQuit
The allowUserToQuit method (Fig. 15.16) is called from the utteranceCompleted and
onActivityResult methods to ask the user whether to exit the Pizza app. If we’ve com-
pleted an order (line 529), we ask the user whether to quit the app or to start another order
(lines 531–533); otherwise, we ask whether they want to quit or continue the current or-
der.

498 // if next message is the last one
499 if (currentMessageIndex == displayMessages.length - 1)
500 text = order;
501
502 text += displayMessages[currentMessageIndex];
503 messageText.setText(text);
504 break;
505 case Pizza.FINAL_UPDATE_TEXT_ID: // if order is complete
506 // display and play the final message
507 messageText.setText(finalMessageString);
508
509 // speak the final message
510
511
512 break;
513 case DISPLAY_TOAST_ID:
514 // if speech recognition is not available on this device
515 // inform the user using a Toast
516 Toast.makeText(Pizza.this, ,
517 Toast.LENGTH_LONG).show();
518 } // end switch statement
519 } // end method handleMessage
520 }; // end Handler
521

522 // allow the user to exit the app
523 private void allowUserToQuit()
524 {
525 quitInProgress = true;
526 waitingForResponse = true;
527
528 // if the order is complete, ask whether to quit or start new order
529 if (currentMessageIndex >= displayMessages.length)
530 {
531
532
533
534 } // end if
535 else // ask whether to quit or continue order
536 {

Fig. 15.16 | Pizza method allowUserToQuit. (Part 1 of 2.)

Fig. 15.15 | viewUpdateHandler for updating the GUI. (Part 2 of 2.)

textToSpeech.speak(finalMessageString,
 TextToSpeech.QUEUE_FLUSH, ttsParams);

receivedMessage.arg1

textToSpeech.speak(
 resources.getString(R.string.leave_question),
 TextToSpeech.QUEUE_FLUSH, ttsParams);

Androidfp_15_speech.fm Page 20 Monday, April 16, 2012 11:10 AM

15.6 Wrap-Up 15-21

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

Overriding Activity Method onDestroy
The onDestroy method (Fig. 15.17) is called when this Activity is destroyed. We call
TextToSpeech’s shutdown method to release the native Android resources used by the
TextToSpeech engine.

15.6 Wrap-Up
The Pizza ordering app used Android’s text-to-speech and speech-to-text engines to commu-
nicate with the user by speaking text and by receiving the user’s spoken input. Once an
order was complete, the app sent the order to a mobile phone number as an SMS message
using the Android telephony APIs.

The app used a TextToSpeech object to speak text. Because the text-to-speech engine
is initialized asynchronously, you used a TextToSpeech.OnInitListener so the app could
be notified when the initialization completed. You converted text to spoken messages by
calling TextToSpeech’s speak method and determined how to proceed in the app when
speech completed by implementing a TextToSpeech.OnUtteranceCompletedListener.

You listened for user input by launching a RecognizerIntent with the constant
ACTION_RECOGNIZE_SPEECH then responded to the speech recognition results in the Pizza
Activity’s onActivityResult method. The RecognizerIntent returned an ArrayList
of possible matches for the user’s speech. By comparing the elements in this ArrayList to
the app’s ordering options, you determined which option the user chose and processed the
order accordingly.

When an order was completed, you sent an SMS message programmatically with an
SMSManager that you obtained with SMSManager’s static method getDefault. You sent
the SMS by calling SMSManager’s sendTextMessage method. You used a PendingIntent
to receive a notification of whether the SMS message was sent successfully and handled the
notification with a BroadcastReceiver.

537
538
539
540 } // end else
541 } // end method allowUserToQuit
542

543 // when the app is shut down
544 @Override
545 public void onDestroy()
546 {
547 super.onDestroy(); // call super method
548
549 } // end method onDestroy
550 } // end class Pizza

Fig. 15.17 | Overriding Activity method onDestroy.

Fig. 15.16 | Pizza method allowUserToQuit. (Part 2 of 2.)

textToSpeech.speak(
 resources.getString(R.string.quit_question),
 TextToSpeech.QUEUE_FLUSH, ttsParams);

textToSpeech.shutdown(); // shut down the TextToSpeech

Androidfp_15_speech.fm Page 21 Monday, April 16, 2012 11:10 AM

15-22 Chapter 15 Pizza Ordering App

DRAFT: © Copyright 2011 by Deitel & Associates, Inc. All Rights Reserved.

To ensure that all GUI modifications were performed from the GUI thread of execu-
tion, you passed a Message object to a Handler that was created from the GUI thread. The
Handler’s handleMessage method was called on the thread that created the Handler—the
GUI thread in this app.

In Chapter 16, we present the Voice Recorder app, which allows the user to record
sounds using the phone’s microphone and save the audio files for playback later.

Androidfp_15_speech.fm Page 22 Monday, April 16, 2012 11:10 AM

