
Low-Power Operation

Many Bluetooth devices will be battery powered. Because a Bluetooth radio can use up to
30mA when receiving, it is important that it be used as little as possible to save battery
power. Bluetooth provides low-power modes of operation to minimise non-essential oper-
ation and conserve power.

It can take several seconds to set up an ACL link, so once one has been established,
devices which are likely to have more data to transfer don’t want to lose it and have to go
through the delay of setting it up again. For instance, if a headset is connected to a cellular
phone, it is vital that the headset can pick up a call quickly before the caller decides that
nobody’s listening and hangs up. But in between calls there are long periods when no data
needs to be transferred, and leaving the handset and headset fully connected would run
down their batteries.

The need to keep connections going for fast response conflicts with the need to
maximise battery life. The Bluetooth specification solves this dilemma by providing low-
power modes. These allow devices to keep connections, but switch off receivers for as
long as possible. There are three low-power modes:

• Hold—Allows devices to be inactive for a single short period.

• Sniff—Allows devices to be inactive except for periodic sniff slots.

• Park—Similar to Sniff, except parked devices give up their active member address.

17

314

Snell, Peter
Bluetooth: Connect Without CablesBy Jennifer Bray and Charles Thurman© 2001 by Prentice Hall PTRPrentice-Hall, Inc.Upper Saddle River, NJ 07458

The radio is the biggest power drain on a Bluetooth device, but the Voltage Controlled
Oscillator (VCO) that drives the Bluetooth clock is another power hungry component
which can be switched off. For devices with requirements for maximum power saving,
the Bluetooth specification provides the means to switch to a less accurate lower power
oscillator (LPO) when the accuracy of the normal oscillator is not needed.

17.1 CONTROLLING LOW-POWER MODES

A host can check the link policy settings on a module by sending the HCI_Read_
Link_Policy_Settings command. Because link policy can be different on each ACL con-
nection, the command takes a Connection_Handle parameter to specify which connec-
tion’s link policy is being read. This handle must belong to an ACL (data) connection, not
a SCO (voice) connection. The Connection_Handle and the link policy for that handle are
returned in an HCI_Connection_Complete event.

The HCI_Write_Link_Policy_Settings command can be used by a host to control
power saving settings on a Bluetooth module. The settings are configured on a per con-
nection basis, so the command takes a Connection_Handle parameter as well as link pol-
icy settings. Because power saving can only be used on ACL (data) connections, the
Connection_Handle parameter must be the handle of an ACL connection. This command
can be used to independently disable or enable each of the low-power modes (the same
command is also used to control whether or not Master Slave switch is enabled or dis-
abled).

17.2 HOLD MODE

Hold mode is used to stop ACL traffic for a specified period of time. It does not affect
SCO traffic. An example of when Hold mode might be used is if a device wanted to per-
form an inquiry, page, or scan operation. These operations take up all the ACL slots for a
known length of time, so the link may as well be held, allowing the device at the other end
to switch off its receiver.

A hold message does not order a device to switch off its receiver during ACL slots;
it is left entirely up to the held device to decide what to do in the free slots.

17.2.1 Requesting Hold Mode

Both Master and Slave can force or request Hold mode. A connection enters Hold mode
because of a request from the local host, because a link manager at the remote end of a
connection requested it to hold, or because the local link manager autonomously decided
to put the connection in Hold mode.

A device may have several active connections, either because it is a Master with
several Slaves, or because it is active on more than one piconet. A complete device enters
Hold mode when all of its connections are in Hold mode.

Hold Mode 315

The HCI_Hold_Mode command is used by the host to ask a module’s Link Man-
ager to put a specific connection into Hold mode. This command takes three parameters:

• Connection_Handle—Identifies the connection to be put into Hold mode. The con-
nection handle must belong to an ACL (data) connection; SCO (voice) connections
cannot be held.

• Hold_Mode_Max_Interval—The longest time the connection should be held.

• Hold_Mode_Min_Interval—The shortest time the connection should be held.

The Bluetooth module will take some time to process this command, as negotiation
between link managers is needed to put a device into Hold mode. So the module acknowl-
edges the HCI_Hold_Mode command with an HCI_Command_Status event, then when
Hold mode is finally entered, the module sends its host an HCI_Mode_Change event. The
host sets minimum and maximum values for time in Hold mode, so it does not know the
actual time which was negotiated. The HCI_Mode_Change event tells the host what value
was negotiated for the hold time.

If the module has more than one active connection, this command only affects one
connection; the other connections are still active. If the module only has one active con-
nection, then the command stops all ACL traffic.

By default, a Bluetooth device in Hold mode maintains its current power state;
however, a host can set the activities a module can perform during Hold mode, enabling it
to save power. This is done with the HCI_Write_Hold_Mode_Activity command. Possi-
ble settings are:

• Maintain the current power state (this is the default).

• Suspend page scan.

• Suspend inquiry scan.

• Suspend periodic inquiries.

When all of a device’s connections are in Hold mode, these settings provide an op-
portunity for power saving. If a module is set to not do page scan, inquiry scan, and periodic
inquiries, then it can enter a low-power state for the period during which it will be held.

A host can check the settings for Hold mode activity on its module by sending the
HCI_Read_Hold_Mode_Activity command.

17.2.2 LMP Negotiations for Hold Mode

The Bluetooth devices at either end of the connection have to agree on the time for which
the connection will be held. The Link Manager handles negotiating timing of Hold mode
between devices.

An LMP_hold_req message is used to request Hold mode. It includes parameters
for the hold time (length of hold), and hold instant (when to start). When one side requests
Hold mode, the other side has three choices: it can accept the hold request with an
LMP_accepted, reject it with LMP_not_accepted, or return the request with a different

316 Low-Power Operation

hold time. LMP_hold_req messages can be sent back and forth until one side sends an
LMP_accepted or LMP_not_accepted, as shown in Figure 17–1.

Hold mode is forced with an LMP_hold from the Master. The Master can only force
Hold mode if the Slave has previously accepted a request for Hold mode. The Hold mode
time in the LMP_hold message can be no longer than a hold time the Slave has previously
accepted in a LMP_hold_req. The Slave cannot force Hold mode, it may only request the
Master to hold.

If a Slave wishes to request Hold mode, it sends an LMP_hold to the Master, this
message specifies the hold time (length of hold), and the hold instant (when to start). The
Master echoes the LMP_hold back to the Slave as shown in Figure 17–2.

While a Slave is in Hold mode, its clock free-runs and drifts out of synchronisation
with the Master. So when it returns from Hold mode, it must open its correlators over a
wider uncertainty window. Bluetooth clocks are allowed 10�S jitter, meaning that at any
time, the slot start can be 10�S too soon or too late (this is the reason for the +/- 10�S

Hold Mode 317

LMP_hold_req

LMP_hold_req

LMP_hold_req

LMP_accepted

•
•
•

Repeated attempts at Hold mode

One side accepts Hold mode

In
iti

at
in

g
Li

nk
 M

an
ag

er

R
es

po
nd

in
g

Li
nk

 M
an

ag
er

Figure 17–1 LMP message sequence chart for requesting Hold mode.

LMP_hold

Slave requests Hold mode

LMP_holdM
as

te
r

S
la

ve

LMP_holdMaster forces Hold mode

M
as

te
r

S
la

ve

Figure 17–2 LMP message sequence chart for forcing Hold mode.

window normally used for reception). In addition, the clock can drift by up to 250ppm. So
device going into Hold mode, it has a default uncertainty window of +/- 10�S. After a 1s
hold time, its own clock can have drifted by 250 microseconds, and the clock at the other
end could have drifted in the other direction by 250 microseconds. So the device returning
from hold must add 500 microseconds to its uncertainty giving a window of +/- 510�S.

Some Bluetooth devices will have more accurate clocks than the worst case the
standard permits. A device always knows its own clock accuracy, but if it can find out the
accuracy at the other end of the link too, then it can minimise the scan window for a given
hold time. The LMP_timing_accuracy_req message can be used to request the accuracy
of the clock at the opposite end of the link; an LMP_timing_res message responds with
the clock’s accuracy, as shown in Figure 17–3.

Bluetooth devices don’t have to support the LMP_timing_accuracy_req message. If
they don’t, they respond to an LMP_timing_accuracy_req message with LMP_not_ac-
cepted containing an error code of LMP_unsupported_feature, and the requesting device
has to assume that it is dealing with worst case timings.

17.3 SNIFF MODE

Sniff mode is used to reduce traffic to periodic sniff slots. This mode can be used to
save power on low data rate links. For example, consider the case of a PDA which needs
to receive email from a data-enabled mobile phone. Normally there would be no traffic on
such a link, but when there is traffic, the PDA needs to be ready quickly. Sniff mode can
be used to allow the PDA to reduce the slots in which it has to listen, but to react fast
when traffic appears.

17.3.1 Sniff Mode Timing

A device in Sniff mode only wakes up periodically in pre-arranged sniff slots. The
Master and Slave must negotiate the timing of the first sniff slot (Dsniff) and the interval at
which further sniff slots follow (Tsniff). They also negotiate the window in which the sniff-
ing Slave will listen for transmissions (Nsniff attempt) and the sniff timeout.

The sniffing Slave listens for traffic during the sniff slots determined by the sniff at-
tempt parameter (coloured dark grey in Figure 17–4). If no message addressed to the
sniffing Slave is received, the sniffing Slave ceases listening for packets. If a message

318 Low-Power Operation

LMP_timing_accuracy_req

LMP_timing_res

Li
nk

M
an

ag
er

Li
nk

M
an

ag
er

Figure 17–3 Message sequencing chart for requesting timing accuracy.

with the sniffing Slave’s active member address is received, it continues listening for fur-
ther sniff timeout slots after the sniff slot.

In the example of a PDA wanting to receive email from a mobile phone given
above, the mobile would be the Master and the PDA the sniffing Slave. The mobile could
use the sniff slots to send a command to unsniff the PDA; after the email had been sent,
the mobile could then force the PDA back into Sniff mode.

Alternatively, the sniff timeout could be set to a value large enough to transmit as
much data as the phone needs to send. An extreme case would be setting the sniff timeout
large enough to keep the sniffing Slave listening throughout the sniff interval. In this way,
once a packet had been sent to the Slave in the sniff slot, it would automatically keep lis-
tening throughout the transmission.

Because Bluetooth’s radio links are unreliable, the sniff attempt window should
be wide enough to give the Master a chance to retry transmissions to the sniffing Slave
if necessary. (The size of the broadcast window might be a good size to pick for this, as
the broadcast window is set to give enough retries to give a reasonable guarantee of
reception.)

17.3.2 Requesting Sniff Mode

A device enters Sniff mode because of a request from its own host, or because a link man-
ager at the remote end of a connection requested or forced it to enter Sniff mode. (Masters
can force Slaves into Sniff mode; Slaves can only request that they enter Sniff mode, and
must get the Master’s consent.)

The HCI_Sniff_Mode command is used by the host to ask a module’s Link
Manager to put a specific connection into Sniff mode. This command takes five param-
eters:

• Connection_Handle—Identifies the connection to be put into Sniff mode. Only
ACL connections can be put into Sniff mode, so this must not be an SCO connec-
tion handle.

• Sniff _Max_Interval—The maximum time between sniff periods.

• Sniff _Min_Interval—The minimum time between sniff periods.

Sniff Mode 319

Sniff
Attempt

Sniff
Timeout

Sniff
Attempt

Sniff
Timeout

Sniff Interval

O
ffset

Figure 17–4 Timing of Sniff mode slots.

• Sniff_Attempt—Time at the end of a sniff interval during which a Slave listens for
transmissions.

• Sniff_Timeout—If a Slave receives during the sniff attempt time, it keeps listening
until the sniff timeout time elapses.

The Bluetooth module will take some time to process this command, as negotiation
between link managers is needed to put a device into Sniff mode. So the module acknowl-
edges the HCI_Sniff_Mode command with an HCI_Command_Status event, then when
Sniff mode is finally entered, the module sends its host an HCI_Mode_Change event. The
host sets minimum and maximum values for the sniff interval, so it does not know the ac-
tual sniff interval which was negotiated. The HCI_Mode_Change event tells the host what
value was negotiated for the sniff interval.

If a host wishes to end Sniff mode for a connection on its module, it simply sends
the HCI_Exit_Sniff_Mode command. This command only needs one parameter: the con-
nection handle of the connection to be removed from Sniff mode.

17.3.3 LMP Negotiation for Sniff Mode

Sniff mode applies to a connection, so the devices at either end of the connection must
share the same parameters for Sniff mode. The Link management protocol is used to co-
ordinate Sniff mode at either end of a connection as shown in Figure 17–5.

The Link Manager of the Master can force the Slave into Sniff mode using an
LMP_sniff message. The Slave is not allowed to refuse the request, so there is no need for
it to reply with an LMP_accepted.

Negotiation of Sniff mode is similar to negotiation of Hold mode. An
LMP_sniff_req message is used to request Sniff mode. When one side requests Sniff
mode, the other side has three choices: it can accept the sniff request with an LMP_ac-
cepted, reject it with LMP_not_accepted, or return the request with different timing para-
meters. LMP_sniff_req messages can be sent back and forth until one side agrees to Sniff
mode by sending an LMP_accepted as shown in Figure 17–6 or terminates the transaction
by sending LMP_not_accepted.

Version 1.0 of the Bluetooth specification specifies that a sniffing Slave shall only
listen to packets with its own active member address. This would imply that it is not pos-
sible to send broadcast packets to sniffing Slaves, so to send a piconet broadcast to every
Slave on a piconet, each sniffing Slave would have to receive the broadcast message as a
unicast message.

320 Low-Power Operation

LMP_sniff

M
as

te
r

S
la

ve

Figure 17–5 LMP message sequence chart for Master-forced Sniff mode.

17.4 PARK MODE

A device which has parked gives up its active member address and ceases to be an
active member of the piconet. As long as it is parked, it cannot transmit, and as it has no
active member address, it cannot be addressed directly by the Master. However, it wakes
up periodically and listens for broadcasts, so these can be used to unpark it, bringing it
back to active life.

A device in Park mode only wakes periodically to listen for transmissions from the Mas-
ter at pre-arranged beacon instants. A beacon instant marks the start of a beacon train, with each
train having a series of beacon slots during which the Master can transmit to parked Slaves.

17.4.1 Beacon Instant

The Master transmits to parked Slaves using a periodic beacon, which begins at a beacon
instant. The Master tells the Slaves when the first beacon instant will be using two

Park Mode 321

LMP_sniff_req

LMP_sniff_req

LMP_sniff_req

LMP_accepted

•
•
•

Repeated attempts at Sniff mode

One side accepts Hold mode

In
iti

at
in

g
Li

nk
 M

an
ag

er

R
es

po
nd

in
g

Li
nk

 M
an

ag
er

Figure 17–6 LMP message sequence chart for negotiation of Sniff mode.

∆B

NB ∆B

B
eacon Instant

1 2 3 4 NB

Figure 17–7 Slots within a beacon train.

parameters: DB, which gives the timing of the first beacon slot, and the timing control
flags, which are used to avoid uncertainties in timing caused by clock wrap around.

17.4.2 Beacon Retransmissions

Parked Slaves do not respond immediately to the Master’s transmissions in the beacon train,
so there is no acknowledgment mechanism to tell the Master that its transmission has been
received. Therefore, the Master needs to retransmit its messages several times to increase
the chances of the packet being received. The number of retransmissions is given by NB.

17.4.3 Beacon Spacing

Figure 17–7 shows the arrangement of slots within a beacon train. The beacon slots are
coloured grey; all other slots are available for transmission of traffic. The spacing of bea-
con slots within a train is given by �B. In the example, �B = 2, so every second slot within
the train is a beacon slot. Spacing out the slots within a beacon train in this way can be
used to allow the Master the regularly spaced slots needed to maintain SCO links to other
Slaves while transmitting the beacon train. After the first beacon slot, beacons are trans-
mitted periodically at a spacing of TB.

The parked Slaves use the beacons to resynchronise to the Master’s timing. There-
fore, the parked Slaves need some sort of transmission in the beacon slot. If there is noth-
ing else to send the Master sends a NULL packet (which carries no data) to allow the
Slaves to synchronise.

17.4.4 Access Windows

The Master can command the Slaves to unpark in the beacon slots, but a mechanism for
Slaves to transmit a request for unparking is also required. The opportunity for parked
Slaves to request unparking is provided by a series of access windows which come after
the beacon train. The length of the beacon train is given by NB �B. A series of access win-
dows come after the beacon train. The start of the first access window comes Daccess after
the beacon instant. Usually the access windows come straight after the beacon train, so
Daccess = NB �B.

A series of Maccess access windows come after the beacon train. As Figure 17–8
shows, the access windows start Daccess after the beacon instant. Each window is the same
width, and that width is given by T access.

Within an access window, the Master broadcasts transmitting on even slots as usual.
Normally Slaves cannot respond to broadcasts, but in the access windows, this is changed.
Each Slave in turn is allocated a half slot in the Slave to Master slots. Figure 17–9 shows
an access window for a Master with four parked Slaves. The Slave to Master half slots are
allocated to each Slave in turn according to their access request addresses. So in the first
Slave to Master slot of the access window, the two parked Slaves with access request ad-
dresses 1 and 2 can respond. If the Master does not broadcast, the parked Slaves are not
allowed to respond, and must wait for the next access slot. For example, if the Master has
SCO links, some Slaves’ access request slots will be used by the SCO packets.

322 Low-Power Operation

Park Mode 323

Taccess

Daccess Access
Window 1

Access
Window 2

Access
Window Maccess

B
eacon Instant

1 2 • • • • • •NB

Figure 17–8 Access windows for Slave-initiated unparking.

Taccess

S
tart of A

ccess W
indow

A
R

_A
D

D
R

=
1

A
R

_A
D

D
R

=
2

Master
Broadcast

Slot

Master
Broadcast

Slot

Slave
Slot

A
R

_A
D

D
R

=
3

A
R

_A
D

D
R

=
4

Slave
Slot

Figure 17–9 Structure of an access window.

After the Slave has sent an access request, it listens for the Master broadcasting an
unpark message with the parked Slave’s Bluetooth device address or parked member ad-
dress (the parked member address was allocated to the Slave when it was parked and gave
up its active member address).

17.4.5 Sleeping through Beacon Slots

A parked Slave can sleep for longer times by sleeping through some beacon trains. The park
message carries a parameter telling a Slave the count of beacon trains to wake up at, NBsleep,
and a parameter, DBsleep, identifying the first train to wake in. The maximum interval be-
tween beacon trains is just under 41 seconds. Theoretically, the Slave could wake after 255
beacon trains, but parked Slaves can use an inaccurate low power oscillator which means

they slowly drift away from the Master’s timing. With the maximum gap between beacon
trains and sleeping through the maximum number of slots, a Slave would have over 29 hours
between waking up! By this time, it would have hopelessly lost synchronisation with the
Master, so parked Slaves should obviously not be set to wake so infrequently.

To ensure that parked Slaves do not totally lose synchronisation with the Master,
the Master should unpark and repark them occasionally. This is the only way that the
Master can be sure that they are still synchronised.

17.4.6 Requesting Park and Unpark

Both Master and Slave can request that a connection be parked. For systems with an HCI,
a host can request its module’s LM to park a specific connection using the
HCI_Park_Mode command. This command has three parameters:

• Connection_Handle—Identifies the connection to be parked. Only ACL connec-
tions can be parked, so this must not be a SCO connection handle.

• Beacon_Max_Interval—The maximum interval between beacon slots.

• Beacon_Min_Interval—The minimum interval between beacon slots.

The Bluetooth module will take some time to process this command, as negotiation
between link managers is needed to put a device into Park mode. So the module acknowl-
edges the HCI_Park_Mode command with an HCI_Command_Status event, then when
the connection is finally parked, the module sends its host an HCI_Mode_Change event.
The host sets minimum and maximum values for beacon interval, so it does not know the
actual interval which was negotiated. The HCI_Mode_Change event tells the host what
value was negotiated for the beacon interval.

If a host wishes to end Park mode for a connection on its module, it simply sends
the HCI_Exit_Park_Mode command. This command only needs one parameter: the con-
nection handle of the connection to be removed from Park mode.

17.4.7 LMP_park Message

The LMP_park_req message shown in Figure 17–10 carries more parameters than any
other LMP message. The parameters in the park message are as follows:

• Timing control flags—Used to avoid uncertainties in timing caused by clock wrap
around.

• DB—Timing of the first beacon slot.

• TB—Interval between beacon trains.

• NB—Number of beacon slots within one beacon train.

• �B—Spacing of beacon slots in the beacon train.

• PM_ADDR—Parked member address; identifies the Slave when it is unparked by
the Master.

• AR_ADDR—Access request address used when the Slave requests unparking.

324 Low-Power Operation

• NBsleep—Number of beacon train at which Slave wakes (it sleeps for NBsleep-1 bea-
con trains).

• DBsleep—Timing of first beacon train at which the Slave wakes.

• Daccess—Time from beacon instant to first access slot.

• Taccess—Width of access window.

• Nacc-slots—Number of Slave to Master access slots.

• Npoll—Number of slots after access window a Slave listens after requesting unpark.

• Maccess—Number of repetitions of the access window.

• Access scheme—Slave access techniques supported (only polling is defined!).

The LMP_park message is used to park a Slave as shown in Figure 17–11. There are two
ways that a Slave can be parked:

• The Master requests a Slave to enter Park mode.

• The Slave requests to be put into Park mode.

Park Mode 325

DB
OpCode

= LMP_park Timing Control FlagsTID

PM_ADDR

TB

16 24 32282012840

NBsleep

NB

AR_ADDR DBsleep

Daccess Nacc-slotsTaccess

Maccess
Access
Scheme

Npoll

∆B

Figure 17–10 The LMP_park_req message.

LMP_ park_req

M
as

te
r

S
la

ve

LMP_accepted

Figure 17–11 LMP message sequence chart for when a Master requests a
Slave to enter Park Mode and slave accepts

To put a slave into park mode a Master sends an LMP_park _req message. If the
Slave accepts the request, it replies with an LMP_accepted as shown in Figure 17-11; if it
rejects the request, it responds with an LMP_not_accepted as shown in Figure 17-12.

If there is no interference the Slave sends a packet in its response slot and the
packet’s acknowledge flag bit tells the Master that the LMP_park_req message had been
received, however the Slave’s response could get lost due to interference on air. This
leaves the Master unsure whether the slave has seen the LMP_park_req message, so it re-
sends. If the slave parked immediately the Master would keep resending until the link
timed out. To avoid this the Slave starts a timer of 6 * Tpoll when.it sends the LMP_ac-
cepted, and parks when it receives a baseband level acknowledgement of the LMP_ac-
cepted, or when the timer expires (whichever happens sooner). This keeps the Slave
active for long enough for the LMP_park_req and LMP_accepted to be exchanged even
in the prescence of some interference.

A Slave requests to be put into Park mode by sending an LMP_park_req as shown
in Figure 17–13. The Master can reply with an LMP_not_accepted, or with an
LMP_park_req in which case parking proceeds as if the Master requested it. (in version
1.0b the Master can reply with LMP_park, this is kept for backwards compatibility). The
timing parameters in the Slave’s LMP_park_req message are suggestions, and the
PM_ADDR and AR_ADDR are ignored entirely: the Master decides the park parameters.

Once the Master has parked Slaves, it can broadcast LMP_unpark messages or data
to them in beacon slots. If a Master has more data than will fit in the beacon slots, it can
broadcast an LMP_set_broadcast_scan_window message, which tells the parked Slaves to
keep listening for an extra window after the beacon slots.

If the Master will regularly have more or less data to send to the Slaves, it can send
an LMP_modify_beacon message to change the beacon parameters. Parameters which
can be changed by the LMP_modify_beacon message are:

• DB—Timing of the first beacon slot.

• TB—Interval between beacon trains.

• NB—Number of beacon slots within one beacon train.

• �B—Spacing of beacon slots in the beacon train.

• Daccess—Time from beacon instant to first access slot.

326 Low-Power Operation

LMP_ park_req

LMP_not_acceptefM
as

te
r

S
la

ve

Figure 17–12 LMP message sequence chart for when a Master requests park mode
and Slave does not accept

• Taccess—Width of access window.

• Nacc-slots—Number of Slave to Master access slots.

• Npoll—Number of slots after access window a Slave listens after requesting Unpark
mode.

• Maccess—Number of repetitions of the access window.

• Access scheme—Slave access techniques supported (only polling is defined!).

17.4.8 LMP_unpark Message

When Slaves are parked, they give up the Active Member Address (AM_ADDR) and are
assigned a Parked Member Address (PM_ADDR). To return a parked Slave to active
mode, the Master must send that Slave a new AM_ADDR to use.

Because a parked Slave has no AM_ADDR, it is addressed by its Bluetooth Device
Address (BD_ADDR) or by its PM_ADDR. There are two different unpark messages ac-
cording to which type of address is being used to unpark Slaves: LMP_unpark_PM_
ADDR_req and LMP_unpark_BD_ADDR_req.

Two Slaves can be unparked with a single message simply by placing both their ad-
dresses in one unpark message. As Figure 17–14 shows, the sequence of messages and ac-
tions is the same whether the parked Slaves are addressed using their PM_ADDRs or
BD_ADDRs.

First, an unpark message is sent. This message is broadcast by the Master in a bea-
con slot. It contains the addresses of the Slaves the Master wishes to unpark (BD_ADDR
or PM_ADDR); the message also assigns a new AM_ADDR for each Slave to be un-
parked.

When the Slaves receive the unpark message, they return to active mode instead of
going to sleep as parked Slaves would. To check that the Slaves have received the unpark
message, the Master must poll each Slave in turn. Each Slave responds with an LMP_ac-
cepted message when it receives the poll.

As the Master is establishing a new active connection, the same timeout is used for
unparking Slaves as is used for setting up new connections (newconnectionTO). The
Master may continue polling the Slaves until the timeout expires. If the Master does not
receive an LMP_accepted, it must assume the unpark failed, and wait until the next bea-
con before trying again to unpark Slaves which did not respond.

Park Mode 327

LMP_ park_req

LMP_ park_req

S
la

v
e

M
as

te
r

LMP_accepted

Figure 17–13 LMP message sequence chart for when a Slave requests to
enter Park mode.

17.4.9 Timing Accuracy

When a Slave device returns from Hold mode, it has not received any transmissions for a
while, so its clock will have drifted out of synchronisation with the Master’s clock. Nor-
mally, a Slave predicts the start of the next transmission from the Master, and opens its
correlator for a period of 10�S on either side of the expected start. On returning from
Hold mode, because it can’t accurately predict the start of the Master’s transmission, a
Slave must open its correlator across a wider scan window than normal.

Figure 17–15 shows the difference between the slot timing of an active device and a
device returning from Hold mode. The shaded blocks at the top of the diagram show the
correlator opening for 10�S on either side of the estimated start of the receive slot. If the
device is a Slave, it recalibrates its estimate of the start of the slot according to when it ac-
tually begins to receive.

328 Low-Power Operation

LMP_accepted (from Slave 1)

LMP_accepted (from Slave 2)

LMP_unpark_PM_ADDR_req (broadcast)

Poll (Sent to Slave 1)

Poll (Sent to Slave 2)

Broadcast unpark, addressing
Slaves 1 & 2

Master polls Slave 1

Slave 1 replies

Slave 2 replies

Master polls Slave 2

M
as

te
r

S
la

ve
 2

LMP_accepted (from Slave 1)

LMP_accepted (from Slave 2)

LMP_unpark_BD_ADDR_req (broadcast)

Poll (Sent to Slave 1)

Poll (Sent to Slave 2)

Broadcast unpark, addressing
Slaves 1 & 2

Master polls Slave 1

Slave 1 replies

Slave 2 replies

Master polls Slave 2

M
as

te
r

S
la

ve
 2

Figure 17–14 LMP message sequence charts for when a Master requests Unpark
mode.

The shaded blocks at the bottom of the diagram show the correlator opening on re-
turn from Hold mode. The device has not received any packets from the Master during
Hold mode, so its estimate of the slot timing has not been corrected for a while.

The device can work out how wide to open the correlators by looking at the accu-
racy of its own clock and the accuracy of the clock at the other end of the connection. If
the accuracy is unknown, the worst case accuracy is used as a default. The worst case al-
lowed by the Bluetooth specification is a clock with jitter of ±10�S and drift of 250ppm.
This worst case is for a low-power oscillator (see Section 17.5); most active devices will
perform much better than this.

The accuracy of the clock at the other end of the connection can be retrieved with
an LMP_timing_accuracy_req. The remote link manager responds with a LMP_timing_
accuracy_res message, which includes parameters for drift and jitter.

Once the device has predicted the width of the uncertainty window, it opens its cor-
relators over the wider window. This may lead to the correlator being opened over more
than a slot, as is the case in Figure 17–15. The device continues opening its correlators for
the calculated uncertainty window centered on its predicted timing until it receives a
packet, or its link supervision timeout elapses.

Park Mode 329

1250µS

±10µS

Transmit
Slot

hop(k)

Receive
Slot

hop(k+1)

Transmit
Slot

hop(k+2)

Receive
Slot

hop(k+3)

Transmit
Slot

hop(k+4)

Receive
Slot

hop(k+5)

Transmit
Slot

hop(k+6)

Receive
Slot

hop(k+1)

Receive
Slot

hop(k+5)

625µS

±XµS

625µS

Figure 17–15 Widening correlation window on return from Hold mode.

When slots are missed because the correlator is open over more than a slot, the hop
frequency used is the frequency for the receive slot the correlator is centred upon.

Parked and sniffing devices also have to open their correlators wider than usual, be-
cause like devices returning from Hold mode, they have not received transmissions from a
Master for a while, so their estimate of the beginning of the receive slot will be less
accurate.

17.5 LOW-POWER OSCILLATOR

While a device is not receiving because it is in standby (unconnected) Hold or Park mode,
it is allowed to save power by switching off the reference crystal oscillator which drives
the Bluetooth clock. Some system is still needed to drive the clock, so instead of the refer-
ence oscillator, a low-power oscillator is used.

The reference crystal oscillator has an accuracy of ± 20ppm; the low-power oscilla-
tor (LPO) has a far more relaxed requirement for accuracy at only ±250ppm. It is the low-
power oscillator’s accuracy that sets the default of 250ppm, which devices must assume
when calculating the uncertainty in their prediction of slot boundaries.

17.6 SUMMARY

Many Bluetooth devices will be operated by batteries, so it is important that they do not
use more power than necessary.

Some Bluetooth devices such as headsets connected to cellular mobile phones need
to respond fast to signals, so ideally they should stay connected all the time to avoid the
delay of setting up a connection extending their response time. However, being constantly
connected would mean using the radio a lot and would drain the device’s batteries. Blue-
tooth provides three low-power modes which extend battery life by reducing activity on a
connection. These modes are called Park, Hold, and Sniff.

Park mode provides the greatest opportunities for power saving. The device only
wakes up in periodic beacon slots, where it listens for unpark transmissions from the Mas-
ter. If it is not unparked, it goes back to sleep, switching off its receiver. A special unpark
message is used to restore the device to normal activity. Devices which are parked give up
their active member addresses, so the unpark messages either use a special parked mem-
ber address, which is assigned to devices when they are parked, or they can use the de-
vice’s Bluetooth Device Address (BD_ADDR). Because a parked device gives up its
active member address, one Master can have more than seven devices in Park mode at
once (it is the size of the active member address which limits a Master to having a maxi-
mum of seven active Slaves).

In Sniff mode, the device wakes up periodically and listens for transmissions, but
no special unpark messages are needed to communicate with it. Devices in Sniff mode
keep their active member address. Typically, sniffing devices will be active more often
than parked devices.

330 Low-Power Operation

Park and Sniff modes both involve putting devices into a state where they wake up
periodically. Conversely, Hold mode just puts a connection in a low-power state for a sin-
gle period. Connections to Slaves might usefully be put into Hold mode while a Master
performs an inquiry or a page, as the Master knows in advance that it will not be able to
service the connections for a while.

Many layers of the Bluetooth protocol stack are involved in low-power modes: the
baseband/link controller layer alters correlator properties, as after periods of inactivity,
the device may lose synchronisation and need to listen for transmissions over a wider
window than usual. The link controller layer is also involved with state machines for tim-
ing the low-power modes. The link manager provides a variety of messages to configure
and negotiate the low-power modes between ends of a connection. HCI provides a set of
commands which may be used by a host to configure and control the power-saving capa-
bilities of a module. L2CAP must be aware of low-power modes for its quality of service
commitments.

The detailed operation of the power-saving modes can be complex to understand,
but for the user of a Bluetooth device, that complexity will be invisible. Properly config-
ured, a Bluetooth device will perform power saving, and the only visibility to the user will
be an extended battery life.

Summary 331

