
RFCOMM

RS-232 serial ports have nine circuits, which can be used for transferring data and sig-
nalling. RFCOMM can emulate the serial cable line settings and status of an RS-232 ser-
ial port. RFCOMM provides multiple concurrent connections by relying on L2CAP to
handle multiplexing over single connections, and to provide connections to multiple de-
vices.

RFCOMM relies on the Bluetooth baseband to provide reliable in-sequence deliv-
ery of byte streams. It does not have any ability to correct errors. RFCOMM’s flow con-
trol also uses the baseband’s capabilities.

RFCOMM data rates will be limited in devices where there is a physical serial port
involved (Type 2 devices). Implementations may optionally pace data on virtual serial
ports (in Type 1 devices). In the absence of pacing, RFCOMM will deliver the highest
possible data rate, although what the highest data rate is can be a complicated issue in the
presence of multiple connections (see Chapter 18).

RFCOMM is a simple, reliable transport protocol with framing, multiplexing, and
the following additional provisions:

• Modem status—RTS/ CTS, DSR/ DTR, DCD, ring.

• Remote line status—Break, overrun, parity.

• Remote port settings—Baud rate, parity, no of data bits etc.

• Parameter negotiation (frame size).

10

172

Snell, Peter
Bluetooth: Connect Without CablesBy Jennifer Bray and Charles Thurman© 2001 by Prentice Hall PTRPrentice-Hall, Inc.Upper Saddle River, NJ 07458

10.1 SERIAL PORTS AND UARTS

Typically, serial port transmit and receive data lines are connected to a UART (Universal
Asynchronous Receiver Transmitter). The job of the UART is to convert between the
serial data sent down cables and the parallel data processing which devices use. UARTs
use buffers to convert between serial and parallel data. This allows them to reduce the
load on the processor. Instead of the processor having to be interrupted for every single
bit that is sent down the cables, the UART transfers the bits between the cables and
buffers, then the processor only has to get involved when there is a whole buffer to deal
with.

The signals from a UART are connected, so they appear in the system address map.
Some processors reserve a special range of addresses for I/O; other systems can map them
into any part of normal memory. Because UARTs look like areas of memory to a micro-
processor, it is possible to emulate a serial port in software by taking an area of memory
and setting values as they would appear if they were set by a UART.

The Bluetooth RFCOMM specification talks about emulating the nine circuits of an
RS-232 serial port, and specifies how a serial data stream can be emulated. But because
the serial stream from an RS-232 port is viewed by the microprocessor after it has been
through a UART, software dealing with serial ports is actually handling parallel data.
Similarly, RFCOMM software deals with parallel data delivered by the lower layers of
the Bluetooth stack.

A UART connects to some piece of hardware: wires or buffers. RFCOMM connects
up to the lower layers of the software stack via L2CAP.

10.2 TYPES OF RFCOMM DEVICES

RFCOMM supports two types of devices:

• Type 1—Internal emulated serial port (or equivalent).

• Type 2—Intermediate device with physical serial port.

A protocol stack for a Type 1 RFCOMM device is shown at the left of Figure 10–1.
The port emulation entity maps a system specific communication interface (API) to the
RFCOMM services. This can be used to connect to legacy applications as shown, or it can
be used to connect to applications specifically written for Bluetooth. A Type 1 device
would usually be the end of a communication path, for example, a PC or printer.

A protocol stack for a Type 2 RFCOMM device is shown at the right of
Figure 10–1. The port proxy entity relays data from RFCOMM to an external
RS-232 interface linked to another device. Type 2 devices are intermediate devices
which sit in the middle of a communication path. A modem is an example of a Type 2
device.

Types of RFCOMM Devices 173

10.3 RFCOMM FRAME TYPES

RFCOMM is based on GSM TS 07.10, which is an asymmetric protocol used by GSM
cellular phones to multiplex several streams of data onto one physical serial cable.
RFCOMM is symmetric, and sends TS 07.10 frames over L2CAP using a subset of TS
07.10 feature frames and commands. Some of TS 07.10’s features are adapted for Blue-
tooth.

RFCOMM communicates with frames. The RFCOMM frames become the data
payload in L2CAP packets. There are five different frame types:

• SABM—Start Asynchronous Balanced Mode (startup command).

• UA—Unnumbered Acknowledgement (response when connected).

• DISC—Disconnect (disconnect command).

• DM—Disconnected Mode (response to a command when disconnected).

• UIH—Unnumbered Information with Header check.

SABM, UA, DM, and DISC are “low- level” control frames. RFCOMM uses chan-
nels, each of which has a Data Link Connection Identifier (DLCI). UIH frames on DLCI
= 0 are used to send control messages. UIH frames on DLCIs ≠ 0 are used to send
data.

174 RFCOMM

Legacy Application

Port Emulation Entity

RFCOMM

Host Controller Interface

Link Manager

Link Controller

Radio

L2CAP

DCE (e.g. A Modem)

Port Proxy Entity

RFCOMM

Host Controller Interface

Link Manager

Link Controller

Radio

L2CAP

R
S

-232
C

able

Figure 10–1 Type 1 and Type 2 RFCOMM devices.

GSM TS 07.10 also has optional UI (Unnumbered Information) frames; RFCOMM
doesn’t use these.

10.4 CONNECTING AND DISCONNECTING

Because RFCOMM frames are carried in the payload of L2CAP packets, an L2CAP con-
nection must be set up before an RFCOMM connection can be set up.

RFCOMM has a reserved Protocol and Service Multiplexor (PSM) value for
L2CAP. This is defined in the Bluetooth core specification as 0x0003. Any L2CAP
frames received with this value in the PSM field will be sent to RFCOMM for processing.

The first frame to be sent on an RFCOMM channel is a SABM frame; this is a Start
Asynchronous Balanced Mode command. If the responding device’s RFCOMM is willing
to connect, it goes into Asynchronous Balanced Mode (ABM), and sends back an UA
frame. If the responding device’s RFCOMM doesn’t want to connect, it refuses the con-
nection by sending a DM frame. Figure 10–2 shows an RFCOMM channel setup being
refused in this way.

RFCOMM has a 60s timer which is started when a command is sent. If an acknowl-
edgement isn’t received when the timer elapses, the connection will be shut down. This is
different from GSM 07.10, which resends the command when the timer elapses. In the
case of RFCOMM, the Bluetooth baseband provides a reliable link, so if the command
wasn’t acknowledged first time, it is not likely to be acknowledged a second time. For the
SABM command, the timeout can be extended because security procedures might mean
that this command takes longer to process than others. If RFCOMM ever times out and
disconnects, it must send a DISC (disconnect) command frame on the same DLCI as the
original SABM frame just in case the other side has come back into range and thinks the
connection is still active. Figure 10–3 shows a channel being closed down because the ini-
tiator timed out.

If the connection succeeds, the responder replies to the SABM frame with a UA (un-
numbered acknowledgement) frame. This is followed by a Parameter Negotiation (PN)
command from the initiator and PN response from the responder, as shown in Figure 10–4.

Connecting and Disconnecting 175

SABM Frame (DLCI = 0)

DM Frame (DLCI = 0)

Disconnect L2CAP

Set up L2CAP connectionSet up L2CAP channel for RFCOMM
with PSM = 0x0003

For first RFCOMM connection,
try to start multiplexor
Responder refuses

L2CAP connection is not needed
(because it uses PSM = 0x0003,
it can’t be used for other services)

In
iti

at
in

g
R

F
C

O
M

M

R
es

po
nd

in
g

R
F

C
O

M
M

Figure 10–2 Refusing an RFCOMM connection.

176 RFCOMM

SABM Frame (DLCI = 0)

DISC Frame (DLCI = 0)

Disconnect L2CAP

Set up L2CAP connectionSet up L2CAP channel for RFCOMM
with PSM = 0x0003

For first RFCOMM connection,
try to start multiplexor

Timeout and send DISC frame

L2CAP connection is not needed
(because it uses PSM = 0x0003,
it can’t be used for other services)

In
iti

at
in

g
R

F
C

O
M

M

R
es

po
nd

in
g

R
F

C
O

M
M

Figure 10–3 RFCOMM channel timeout.

SABM Frame (DLCI = 0)

SABM Frame

UA Frame (DLCI = 0)

UA Frame

PN Command

PN Response

User Data on UIH Frames

Set up L2CAP connection

LMP Authenticaton & Encryption

MSC

Set up L2CAP channel for RFCOMM
with PSM = 0x0003

For first RFCOMM connection,
start multiplexor

Optionally negotiate parameters
for data link connection

Open data link connection;
optionally negotiate security

Exchange modem status commands
and responses

Exchange data on the connection

In
iti

at
in

g
R

F
C

O
M

M

R
es

po
nd

in
g

R
F

C
O

M
M

Figure 10–4 Message sequence chart for establishing an RFCOMM connection.

Once a connection with DLCI = 0 has been set up, this is available for RFCOMM
signalling. To transfer data, other RFCOMM channels must be set up. Figure 10–4 shows
a second RFCOMM channel being set up to transfer data. In this case, the channel re-
quires authentication, so there is a pause for LMP authentication and encryption between
the SABM command frame and the UA response frame. Once the UA frame has been re-
ceived, modem status commands are exchanged to communicate the state of the control

signals. Data can then be transferred immediately as shown, or there could be an ex-
change of PN command and response to configure the new connection’s parameters.

The user data should include MSCs (Modem Status Commands), which communi-
cate the state of serial port control signals.

To shut down an RFCOMM connection, a DISC command is sent. When the last
data link has been shut down, a DISC should be sent on DLCI=0 to shut down the multi-
plexor. Then, whichever device shut down the multiplexor is responsible for disconnect-
ing the L2CAP channel.

10.5 STRUCTURE OF RFCOMM FRAMES

RFCOMM borrows its frame structure from the GSM 07.10 standard. Figure 10–5 shows
the frame structure for the GSM 07.10 basic option. (There is also an advanced option,
which lacks the length field; RFCOMM always uses the basic option.)

Figure 10–6 shows the structure of an RFCOMM frame. This is identical to the
GSM07.10 basic option frame except that RFCOMM misses out the start and end flags,
and RFCOMM has to limit the number of bytes in a packet because of the limit on the
size of L2CAP packets.

RFCOMM doesn’t need the start and end flags because each RFCOMM frame is
carried in a single L2CAP packet. There is no need to pick RFCOMM frames out of a
data stream, so there is no need for flag bits to mark where the frames start and end.

10.5.1 Address Field

An RFCOMM frame begins with an address field. This identifies which of the many mul-
tiplexed channels the frame belongs to. The address field is split up as shown in Fig-
ure 10–7.

Structure of RFCOMM Frames 177

FCS

Data (Integral Number of Bytes)

Length
or Data

LengthControlAddress

16 24 32282012840

Flag =
10011111

Flag =
10011111

Figure 10–5 Structure of a GSM07.10 basic option frame.

The EA (Extend Address) field can be used to extend an address. If EA=0, then
more address octets follow; if EA=1, then this is the last octet of the address. Since the
Bluetooth specification says that server applications are assigned a server channel number
in the range 1 to 30 and an RFCOMM address frame has 5 bits for the server channel,
there will never be any need to use extended addressing, so the EA bit will always be set
to 1 in an RFCOMM address field.

The C/R (Command/Response) bit says whether the frame is a command or a re-
sponse. Its value depends not only on whether the frame carries a command or a response,
but also on which end of the channel is sending the frame. The device which set up the
connection (by sending a SABM command on DLCI 0) is called the initiator. The device
which responded (by sending the UA response on DLCI 0) is called the responder. As
long as the traffic follows this original pattern, the C/R bit is 1, so commands from the ini-
tiator and responses from the responder have C/R = 1. For exchanges in the opposite di-
rection, the C/R bit is 0, so commands from the responder and responses from the initiator
have C/R = 0. When sending data, the initiator sets C/R = 1 and the responder sets
C/R = 0. Figure 10–8 illustrates how the C/R bit is set.

After the C/R bit comes the Data Link Connection Identifier (DLCI). In GSM
TS0.10, this is one undivided field, but in RFCOMM, it is split up into a direction bit and
a server channel number. The initiator always sets the direction bit to 1 (D=1); the respon-
der always sets the direction bit to 0 (D=0). As with the C/R bits, who is the initiator and
responder is defined by which device sent the SABM frame to start up the connection.

The server channel number has 5 bits; this would give it a range from 0 to 31, but 0
and 31 are reserved, so only 1 to 30 can be allocated as server channel numbers for ser-
vices. Channel 0 is used for sending control information; channel 31 is reserved by TS
07.10. Bluetooth avoids using channels which are reserved by TS 07.10 to preserve com-
patibility with TS 07.10 applications.

178 RFCOMM

FCS

Data (0 - 32767 Bytes)

Length
or Data

LengthControlAddress

16 24 32282012840

Figure 10–6 Structure of an RFCOMM frame.

D Server ChannelC/REA=1

4 6 8753210

Figure 10–7 Address field.

The DLCI is calculated once before the data link connection is established. The
RFCOMM server channel number in the responding device is used for the DLCI. Because
server channel numbers 1 to 30 are available, one device can have up to 30 services using
RFCOMM.

10.5.2 Control Field

Referring back to Figure 10–6, the next field in an RFCOMM frame is the control field. This
is used to identify the type of the frame. Table 10–1 shows the control field values used in RF-
COMM frames. (These match the values used in the corresponding GSM TS 07.10 Frames.)

P/F is the Poll/Final bit. In commands, it is called the P (Poll) bit; in responses, it is
called the F (Final) bit.

Structure of RFCOMM Frames 179

SABM Frame (DLCI = 0, C/R = 1)

UA Frame (DLCI = 0, C/R = 1)

Command (C/R = 1)

Response (C/R = 1)

Command (C/R = 0)

Response (C/R = 0)

Data (C/R = 1)

Data (C/R = 0)

For first RFCOMM connection,
initiator starts multiplexor
C/R = 1

Command from initiator
Response from responder
C/R = 1

Command from responder
Response from initiator
C/R = 0

Data from responder
Data from initiator
C/R set as for commands

In
iti

at
in

g
R

F
C

O
M

M

R
es

po
nd

in
g

R
F

C
O

M
M

Figure 10–8 Settings of C/R bit in RFCOMM exchanges.

Table 10–1 Control Field Values

Control Bit Number 1 2 3 4 5 6 7 8

SABM (Set Asynchronous 1 1 1 1 P/F 1 0 0
Balanced Mode)

UA (Unnumbered Acknowledgement) 1 1 0 0 P/F 1 1 0

DM (Disconnect Mode) 1 1 1 1 P/F 0 0 0

DISC (Disconnect) 1 1 0 0 P/F 0 1 1

UIH (Unnumbered Information with 1 1 1 1 P/F 1 1 1
Header Check)

A command with its P bit set to 1 is used when a response or a series of responses is
wanted from the device at the far end of the link. The responding device should send back
its responses with the F bit set to 1. There should only ever be one command frame with P
bit set to 1 waiting for a response.

DM packets are processed regardless of the state of the P/F bit, but SABM or
DISC commands and UA responses are thrown away if the P/F bit is set to zero.

10.5.3 Length Field

The length field begins with an EA bit as shown in Figure 10–9. If this is 1, then it is fol-
lowed by 7 bits of length, so the length field is one byte long. If the EA bit is 0, then it is
followed by 15 bits of length, so the length field is two bytes long.

The default length of an RFCOMM frame is 32 bytes; the maximum length is 32767.

10.5.4 Data

The data field is only present in UIH frames. There must be an integral number of bytes in
the data up to 32767. The size limit is set by the Maximum Transmission Unit (MTU) on
L2CAP packets, so if a system has a smaller L2CAP MTU, the size of RFCOMM data
will also be restricted.

10.5.5 Frame Check Sequence

To calculate the FCS:
Count up k, the number of bits the FCS will be calculated on. For SABM, DISC,

UA, and DM frames, the frame check sequence is calculated on the address control and
length fields. For UIH frames, it is calculated on the address and control fields.

Then:

(a) Calculate the remainder of xk (x7 + x6 x5 + x4 + x3 + x2 + x1 + 1) divided modulo 2
by the generator polynomial (x8 + x2 + x + 1).

(b) Take the contents of the frame that the FCS is calculated over before any start and
stop elements have been inserted, and before any other extra bits have been in-
serted. Multiply by x8 and divide by the generator polynomial (x8 + x2 + x + 1).

(c) Add the results of (a) and (b) modulo 2, and take the 1’s complement to get the FCS.

180 RFCOMM

7 bits of Length FieldEA
=1

8 12 1614106420

15 bits of Length FieldEA
=0

Figure 10–9 Structure of RFCOMM length fields.

Because UIH frames only calculate FCS on the address and control fields, their data
field is not protected by the FCS. This might be a drawback for reliable data transmission,
but it does have the advantage that the FCS patterns can be pre-calculated for all the
DLCIs that are in use. This pre-calculation could be done when the channel is set up.

10.6 MULTIPLEXOR FRAMES

Multiplexor commands and responses are sent on DLCI = 0. They are used to control the
RFCOMM link. There are seven types of commands or responses:

• PN—DLC parameter negotiation.
• Test—Checks communication link.
• FCon / FCoff—Aggregate flow control on all connections.
• MSC—Modem status, used for flow control per connection.
• RPN—Remote Port Negotiation.
• RLS—Remote Line Status.
• NSC—Non-Supported Command (response only).

The multiplexor commands and responses are carried as messages inside an
RFCOMM UIH frame as shown in Figure 10–10. It is possible to send several multi-
plexor command messages in one RFCOMM frame, or to split a multiplexor command
message over more than one frame.

10.6.1 PN—DLC Parameter Negotiation

The PN command is used to negotiate the parameters of a data link connection. PN com-
mands are exchanged before a new data link connection is opened, although this is not com-
pulsory. If no PN commands are sent, default parameters will be used for the connection.

A PN command is identified by the type field shown in Figure 10–11. This type
field is the first information byte in the UIH frame carrying the PN command (see Figure

Multiplexor Frames 181

DLCI = 0 Control = UIH Length Information FCS

Type Length Value 1 Value 2 … Value N

Figure 10–10 Structure of an RFCOMM multiplexor control frame.

10–11). The EA bit is 1 because the type field occupies one byte. The C/R bit is used to
indicate whether the message is a command or a response.

The length field in a PN message is always set to 8, and the value field contains 8
bytes as shown in Figure 10–12. These bytes define the parameters which will be used on
a data link connection as follows:

• Six DLCI bits identify the data link connection for which parameters are being ne-
gotiated.

• Two padding bits which are always set to zero follow the DLCI; these are inserted
to avoid splitting parameters across bytes.

• Four I bits give the type of frames used to carry information on the channel. In RF-
COMM UIH frames indicated by the value 0b1000 are used.

182 RFCOMM

Type = 000001C/REA=1

4 6 8753210

Figure 10–11 Type field for Parameter Negotiation (PN).

0b00DLCI

CL (Convergence Layer to Use)
=0b0000

I (Type of Frame for Information)
= 0b1000 for UIH Frames

0b00P (priority)

T (Value of Acknowledgement Timer)
60-second Timer = 0b00000000

N (Maximum Frame Size - 16 bits)

NA (Maximum Number of Retransmissions) = 0b00000000

0b00000
K (Error Recovery Window)

=0b000

4 6 8753210

Figure 10–12 Content of value bytes in a PN message.

• Four CL bits give the convergence layer to used. RFCOMM uses Type 1 (unstruc-
tured octet stream) = 0b0000 in versions after 1.0b this may also be set to 0x0F to
enable credit based flow control.

• Six P bits assign a priority to the data link connection: 0 is the lowest priority, 63 is
the highest.

• Two padding bits which are always set to zero follow the P bits; these are inserted
to avoid splitting parameters across bytes.

• Eight T bits give the value of the acknowledgement timer, in GSM 07.10, this
would be used to trigger a retransmit; in RFCOMM, if the timer elapses, the con-
nection is closed down. The timer’s value is not negotiable, but is fixed at 60s. This
field is set to 0 to indicate that the timer is not negotiable.

• Sixteen N bits give the maximum size of the frame.

• Eight NA bits give the maximum number of retransmissions. Because the Bluetooth
baseband gives RFCOMM a reliable transport layer, RFCOMM will not retransmit,
so this value is set to zero.

• Three K bits define the window size for error recovery mode. RFCOMM uses basic
mode, so these bits are not interpreted by RFCOMM.

• Five padding bits set to zero fill the rest of the last value field to round up the values
to an integral number of bytes.

All parameters being negotiated are sent with the LSB in bit 1; this is the general
rule for RFCOMM information.

It is worth noting that RFCOMM follows the conventions of the GSM 07.10 stan-
dard and numbers the bits in a frame from 1 for the least-significant bit to 8 for the most
significant bit. This may be confusing to people who are used to seeing the bits in a byte
numbered from 0 to 7.

One device sends a PN message, and the other responds with another PN message.
The response may not change the DLCI, the priority, the convergence layer, or the timer
value. The response may send back a different timer value. In this case, the device which
sent the first PN messages will still use the timer it proposed, but the device at the other
end of the connection will use the value it sent in its message.

The response may have a smaller value for the maximum frame size, but it may not
propose a larger value for this parameter.

In GSM 07.10, PN messages are optional. In RFCOMM, support of the PN message
and its response are compulsory, although if default parameters are satisfactory, PN mes-
sages do not have to be sent. PN messages may be exchanged until the device which sent
the first message is happy with the parameters it gets sent back to it. Once it has a satis-
factory set of parameters in the reply, it can go on to set up the connection.

Multiplexor Frames 183

10.6.2 Test

The test command is used to check the RFCOMM connection. As is normal, the length byte
gives the number of value bytes which follow. The number of value bytes is not fixed, and
is used to hold a test pattern. The remote end of the link echoes the same value bytes back.

The type field for the test command is shown in Figure 10–13. Because only a sin-
gle byte is used, the EA bit is set to 1. The C/R bit is used to indicate whether the message
is a command or a response.

10.6.3 FCon / FCoff—Aggregate Flow Control on All Connections

RFCOMM has a flow control mechanism which applies to all channels between two
RFCOMM entities. When either RFCOMM entity can’t receive RFCOMM information,
it sends a Flow Control off (FCoff) command. When it is able to receive data again, it
sends a Flow Control on (FCon) command.

The structure of the type field for the two flow control commands is shown in Fig-
ure 10–14. Both begin with an EA bit, which is 1 to indicate that there is only one byte in
the command type. The length field in the frame carrying the command is set to zero be-
cause there is no other data in the frame. The C/R bit is used to indicate whether the mes-
sage is a command or a response.

10.6.4 MSC—Modem Status Command

RFCOMM also has a flow control mechanism which can be applied to just one channel at
a time. This is the Modem Status Command (MSC), and it is indicated by the type field
shown in Figure 10–15. The EA bit is 1 because the type field occupies one byte. The C/R
bit is used to indicate whether the message is a command or a response.

The command field of the MSC contains virtual V.24 control signals, that is to say
the settings that the RS-232 control wires would have if the RFCOMM data were being
transferred across wires rather than across a Bluetooth connection. The signals in the
command field are as follows:

• EA—Extended Address, set to 1 to indicate there is only 1 byte of command.

• FC—Flow Control bit, set to 1 when a device is unable to accept any RFCOMM
frames. When the device is able to receive again, it sends another MSC with the
flow control bit set to 0.

• RTC—Ready To Communicate bit, set to 1 when the device is ready to communi-
cate.

184 RFCOMM

Type = 0b000100C/REA=1

4 6 8753210

Figure 10–13 Type field for test.

• RTR—Ready To Receive bit, set to 0 when the device cannot receive data and 1
when it can receive data.

• IC—Incoming Call, 1 indicates an incoming call.

• DV—Data Valid, set to 1 to indicate that valid data is being sent.

These values may not seem to make sense when sent in a packet, but that is because
they map onto the lines of an RS-232 interface. It might be obvious when a packet is sent
that it is going to have valid data; who would bother to send a packet with invalid data?
However, when dealing with physical serial port lines, such signals make more sense. A
signal to say that valid data is being sent can be used to activate circuits to handle the
data. The MSC command just mimics the values of the V.24 signals, which would be
used on a wired RS-232 -interface.

The signals from an MSC map onto RS-232 signals as follows:

• RTC maps onto DSR (Data Set Ready) and DTR (Data Terminal Ready).

• RTR maps onto RTS (Request To Send) and CTS (Clear To Send).

• IC maps onto RI (Ring Indication).

• DV maps onto DCD (Data Carrier Detect).

Figure 10–16 shows how the signals are carried in the control field of the command.
The MSC is sent on a connection before any data is sent to establish the state of the

RS-232 control signals. It should also be sent whenever the signals need to be changed.
In the MSC, the state of the signals in the device sending the command is sent. The

response just carries a copy of the signals from the command.

Multiplexor Frames 185

FC On = 0b000101C/REA=1

FC Off = 0b000110C/REA=1

4 6 8753210

Figure 10–14 Type fields for FCon and FCoff commands.

Type = 0b000111C/REA=1

4 6 8753210

Figure 10–15 Type field for MSC command.

186 RFCOMM

Type = 0b001001C/REA=1

4 6 8753210

Figure 10–17 Type field for RPN.

10.6.5 RPN—Remote Port Negotiation

The Remote Port Negotiation (RPN) command is used to set communication settings at
the remote end of a data link connection. If any of the communication settings need to be
changed during a connection, the RPN command can be resent to change them.

The RPN type field is shown in Figure 10–17.
The EA bit is 1 because the type field occupies one byte. The C/R bit is used to in-

dicate whether the message is a command or a response.
The length byte in an RPN command is either 1 or 8. If the length is 1, then there is

a single value byte which contains the DLCI for the connection, and the message is inter-
preted as a request for the link’s parameters. In this case, the remote end replies with the
current parameters on the link. If the length byte is set to 8, then eight bytes of link para-
meters follow. If they are sent in a command, then they are a request to set up the link’s
parameters.

Figure 10–18 shows the order of values within an RPN command with length byte
set to 8.

The parameter mask defines which parameters are being changed by the message.
Figure 10–19 shows the position of bits in the RPN parameter mask.

In an RPN command, if a parameter mask bit is set to 1, it indicates a particular pa-
rameter that should be changed. If it is set to 0, then the parameter is not being changed
and the value can be ignored.

In an RPN response, if a parameter mask bit is set to 0, then it means the proposal
sent in an RLS has not been accepted. Conversely, a parameter mask bit set to 1 means
the new value has been accepted, and the sender of the response is now using the new
value.

The values of the various fields in an RLS command have the same meanings as in
GSM 07.10.

ReservedFCEA=1 RTRRTC DVIC

4 6 8753210

Figure 10–16 MSC control signal field.

Multiplexor Frames 187

ReservedParity TypeData Bits

ReservedFlow Control

Baud Rate

Parameter Mask

XON

XOFF

DLCI1EA

ParityStop Bits

4 6 8753210

Figure 10–18 Value bytes in a RPN command.

Data
Bits

Bit
Rate Parity

Stop
Bits

Reserved
= 0b0

XOFF
Char

Reserved = 0b00
Output
XON/
XOFF

Input
XON/
XOFF

Output
RTR

Input
RTR

Output
RTC

Input
RTC

XON
Char

Parity
Type

4 6 8753210

Figure 10–19 Bits in an RPN parameter mask.

Type = 0b001010C/REA=1

4 6 8753210

Figure 10–20 Type field for RLS.

10.6.6 RLS—Remote Line Status

A device sends a Remote Line Status (RLS) command when it needs to tell the other end
of the link about an error.

The RLS command is identified by the type field shown in Figure 10–20. The EA
bit is 1 because the type field occupies one byte. The C/R bit is used to indicate whether
the message is a command or a response.

The length byte is set to 2, as there are two value bytes: the first value byte carries
an EA bit C/R bit and the data link connection identifier common to all multiplexor com-
mand messages; the second value byte carries the error status in its first four bytes as
shown in Figure 10–21.

The Line (L) status bits can signal three different errors as follows:

• 0b1100—Overrun error, a received character has overwritten a character which had
not yet been read.

• 0b1010—Parity error, the parity was wrong on a received character.

• 0b1001—Framing error, a character did not end with a stop bit.

If the first line status bit is set to 0, then the RLS command is simply reporting that
there are no errors on the line.

When an RLS command is received, a response is sent back with the line status
copied from the command into the response.

RFCOMM implementations must recognise and respond to RLS commands, but
how they deal with the line status information is up to the implementor to decide.

188 RFCOMM

Reserved = 0b0000Line Status

4 6 8753210

Figure 10–21 Second value byte of RLS message.

Type = 0b001000C/REA=1

4 6 8753210

Figure 10–22 Type field for NSC response.

10.6.7 NSC—Non-Supported Command (Response Only)

The Non-Supported Command (NSC) Response is sent whenever a device receives a
command it does not support.

The type field used to identify a message containing an NSC is shown in Fig-
ure 10–22. The EA bit is 1 because the type field occupies one byte. The C/R bit is used
to indicate the message is a response. If the message comes from the device which initi-
ated the connection by sending a SABM, then C/R = 0. If the message comes from the de-
vice which responded to the initial SABM, then C/R = 1.

10.7 SERVICE RECORDS

Bluetooth devices offering services supported by RFCOMM must have an entry in
their service discovery database which gives information on how to connect over
RFCOMM.

RFCOMM server channel numbers are dynamic. That is to say a service’s channel
number can change. Although a service’s channel number doesn’t change while the ser-
vice is in use, it can be re-allocated when the service is not in use.

The minimum information needed to connect to a service over RFCOMM is a ser-
vice name (to identify the type of service) and a channel number on which to transfer
data. Many services will have other additional parameters which are also needed to con-
nect to the service. By querying SDP records, a device can find out all the information it
needs to connect to a service via RFCOMM.

Table 10–2 shows a minimal service record which might be used to provide the in-
formation needed to connect to a service across RFCOMM. The ServiceClassIDList gives
the name of the service. The ProtocolDescriptorList gives the supported protocols. Since
RFCOMM rests on L2CAP, the L2CAP service must be present whenever RFCOMM

Summary 189

Table 10–2 Service Attributes Needed to Connect to an RFCOMM Service

Item Type Value Attribute ID

ServicerRecordHandle Uint32 Assigned by Server 0x0000

ServiceClassIDList 0x0001

ServiceClass0 UUID SERVICE NAME Service UUID

ProtocolDescriptorList 0x0004

Protocol0 UUID L2CAP 0x0100

Protocol1 UUID RFCOMM 0x0003

ProtocolSpecificParameter0 Uint8 Server Channel #

ServiceName String “TEXT NAME” 0x0000 +Language Offset

is present. This service also has a text name which can be used to represent it on a user
interface.

For more information, see Chapter 11, Table 11–1, which shows how RFCOMM
information is presented for a headset application. The headset application also uses
RFCOMM services to set up and control headset connections.

10.8 SUMMARY

RFCOMM provides serial port emulation, which can be used to connect to legacy appli-
cations, and is also used for data transfer in several of the Bluetooth profiles.

RFCOMM supports two types of devices: A Type 1 device is the end of a commu-
nications path and supports an application on top of RFCOMM, and a Type 2 device is an
intermediate device and has a physical RS-232 serial port on top of RFCOMM.

To set up an RFCOMM connection, an L2CAP connection must first be set up.
RFCOMM frames are sent in the payload field of L2CAP packets. Once the L2CAP con-
nection is set up, RFCOMM control frames are sent back and forth to establish a sig-
nalling channel with a Data Link Connection Identifier (DLCI) set to 0. After this is set
up, subsequent channels are established for transferring data. Up to 30 data channels can
be set up, so RFCOMM can theoretically support 30 different services at once. (In prac-
tice, most bluetooth devices will not have the resources to support 30 different services.)

RFCOMM is based on the GSM 07.10 standard with a few minor differences to
allow for the differences between a Bluetooth connection and a GSM cellular phone con-
nection.

190 RFCOMM

