
© Copyright 2002 by Prentice Hall. All Rights Reserved.

[Authors Note: This article is an excerpt from Chapter 21, Sections 21.1 and 21.2 of
C# How to Program and Visual Basic .NET How to Program, Second Edition.]

21.1 Introduction1 To ASP .NET and Web services
Creating dynamic link libraries (DLLs—a DLL contains compiled classes and methods) fa-
cilitates software reusability and modularity—the cornerstones of good object-oriented
programming. However, DLLs are limited by the fact that they must reside on the same ma-
chine as the programs that use them. This article introduces Web services (sometimes
called XML Web services) and how they promote software reusability in distributed sys-
tems.

Distributed-systems technologies allow applications to execute across multiple com-
puters on a network. A Web service is a software component that enables distributed com-
puting by allowing an application on one computer to call methods that reside on other
computers via common data formats and protocols, such as XML and HTTP. In .NET,
these method calls are implemented using the Simple Object Access Protocol (SOAP)—an
XML-based protocol that describes how to mark up requests and responses so they can be
transferred via protocols such as HTTP. Using SOAP, applications represent data with
XML. The underlying implementation of the Web service is irrelevant to clients of that
Web service.

Microsoft is encouraging software vendors and e-businesses to deploy Web services.
As more people worldwide connect to the Internet, applications that call methods across the
Internet become more practical. Web services represent the next step in object-oriented
programming: Instead of developing software from a small number of class libraries pro-
vided at one location, programmers can access countless libraries in multiple locations.

Web services also facilitate business collaboration. By purchasing Web services that
are relevant to their businesses, companies that create applications can spend less time
coding and more time developing new products from existing components. In addition, e-
businesses can employ Web services to provide customers with enhanced shopping expe-
riences. As a simple example, consider an online music store that enables users to purchase
music CDs or to obtain information about artists. Now, suppose another company that sells
concert tickets provides a Web service that determines the dates of upcoming concerts by
various artists and allows users to buy concert tickets. By licensing the concert-ticket Web
service for use on its site, the online music store can sell concert tickets to its customers,
which likely will result in increased traffic to its site. The company that sells concert tickets
also benefits from the business relationship. In addition to selling more tickets, the com-
pany receives revenue from the online music store in exchange for licensing the Web ser-
vice.

Visual Studio and the .NET Framework provide a simple way to create Web services.
This article explores creating and accessing Web services. For this example, we provide the
code for the Web service, then show an example of an application that might use the Web
service. Our example is designed to offer a brief introduction to Web services and how they
work in Visual Studio.

1. Internet Information Services (IIS) must be running to create a Web service in Visual Studio.

Ordering information: Visual Basic .NET How to Program 2/e �
The Complete Visual Basic .NET Training Course
 DEITELTM on InformIT: www.informIT.com/deitel

Sign up for the DEITEL™ BUZZ ONLINE newsletter: www.deitel.net/newsletter/subscribeinformIT.html.
DEITELTM instructor-led training at your site: www.deitel.com/training

Chapter 21 ASP .NET and Web Services 2

© Copyright 2002 by Prentice Hall. All Rights Reserved.

A Web service is a software component stored on one computer that can be accessed
by another computer over a network. The computer on which the Web service resides com-
monly is referred to as a remote machine. The application that accesses the Web service
sends a method call to the remote machine, which processes the call and sends a response
back to the application. Such distributed computing benefits various systems. For example,
a Web service might provide limited access to data that is not normally accessible directly
from a client. Or, a Web service might perform a computing-intensive task for a client
application residing on a less-powerful computer.

A Web service, in its simplest form, is a method of a class. Normally, when we want
to include a class in a project, we either define the class in our project or add a reference to
the compiled DLL. This compiled DLL is placed in the bin directory of an application by
default. As a result, all pieces of our application reside on one computer. When using Web
services, the class (and its compiled DLL) we wish to include in our project are stored on
a remote machine—a compiled version of this class is not placed in the current application.

Methods in a Web service are invoked remotely using a Remote Procedure Call
(RPC). These methods, which are marked with the WebMethod attribute, often are
referred to as Web-service methods. Declaring a method with this attribute makes the
method accessible to other classes via an RPC. The declaration of a Web-service method
with attribute WebMethod is known as exposing the method—i.e., enabling it to be called
remotely.

Common Programming Error 21.1
Attempting to call a remote Web service method if the method is not declared with the Web-
Method attribute is a compilation error. 21.1

Most requests to and responses from Web services are transmitted via SOAP. This
means that any client capable of generating and processing SOAP messages can use a Web
service, regardless of the language in which the Web service is written.

Web services have important implications for business-to-business (B2B) transac-
tions—i.e., transactions that occur between two or more businesses. Now, instead of using
proprietary applications, businesses can conduct transactions using simpler and more effi-
cient Web services. Web services and SOAP are platform- and programming-language
independent, so companies can collaborate and use Web services without worrying about
the compatibility of various technologies or programming languages. In this way, Web ser-
vices are an inexpensive, readily-available solution that facilitates B2B transactions.

A Web service created in Visual Studio .NET has two parts—an ASMX file and a code-
behind file. The ASMX file, by default, can be viewed in any Web browser and contains
valuable information about the Web service, such as descriptions of Web-service methods
and mechanisms to test these methods. The code-behind file provides the implementation
for the methods that the Web service encompasses. Figure 21.1 depicts Internet Explorer
rendering an ASMX file.

3 ASP .NET and Web Services Chapter 21

© Copyright 2002 by Prentice Hall. All Rights Reserved.

The top of the page provides a link to the Web service’s Service Description. A ser-
vice description is an XML document that conforms to the Web Service Description Lan-
guage (WSDL)—an XML vocabulary that defines the methods that the Web service makes
available and specifies how clients interact with those methods. The WSDL document also
specifies lower-level information that clients might need, such as the required formats for
requests and responses. Visual Studio .NET generates the WSDL service description.
When the client programs are compiled, the compiler can use the service description to con-
firm that the client program invokes the Web service methods correctly.

The programmer should not alter the service description, as it defines how clients use
the Web service. When a user clicks the Service Description link at the top of the
ASMX page, WSDL is displayed that defines the service description for this Web service
(Fig. 21.2).

Below the Service Description link, the Web page shown in Fig. 21.1 lists the
methods that the Web service provides (i.e., all methods in the application that are declared
with WebMethod attributes). Clicking any method name requests a test page that describes
the corresponding method (Fig. 21.3). After explaining the method’s arguments, the test
page allows users to test the method by entering the proper parameters and clicking
Invoke. Below the Invoke button, the page displays sample request and response mes-
sages using SOAP, HTTP get and HTTP post. These protocols are the three options for
sending and receiving messages in Web services. The protocol used to transmit request and
response messages is sometimes known as the Web service’s wire protocol or wire format,
because the protocol specifies how information is transmitted “along the wire.” Notice that
Fig. 21.3 uses the HTTP get protocol to test a method.

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 ASMX file rendered in Internet Explorer.

Link to
service

description

Links to
Web-

service
methods

Chapter 21 ASP .NET and Web Services 4

© Copyright 2002 by Prentice Hall. All Rights Reserved.

In Fig. 21.3, users can test a method by entering Values in the first: and second:
fields and then clicking Invoke (in this example, we tested method Bigger). The method
executes, and a new Web browser window opens to display an XML document that con-
tains the result (Fig. 21.4).

Testing and Debugging Tip 21.1
Using the ASMX page of a Web service to test and debug methods makes that Web service
more reliable and robust; it also reduces the likelihood that clients using the Web service will
encounter errors. 21.1

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Service description for a Web service.

5 ASP .NET and Web Services Chapter 21

© Copyright 2002 by Prentice Hall. All Rights Reserved.

21.1

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 Invoking a method of a Web service from a Web browser.

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Results of invoking a Web-service method from a Web browser.

