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Endnotes

The pricing of energy and power derivatives are reviewed in detail in this chapter. In
§7.1, we discuss electricity markets. In §7.2, we review electricity pricing models includ-
ing both one-factor and two-factor models, jump diffusion models, and stochastic volatility
models. Estimation of model parameters is also discussed. In §7.3, we discuss electric-
ity swing options. In §7.4, we review the Longstaff-Schwartz algorithm of least-squares
Monte Carlo (LSM) for pricing American and Bermudan options. In §7.5, we then extend
the application of LSM to pricing swing options based on the work of Doerr (2003) and
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334 Energy and Power Derivatives Chapter 7

Meyer (2004). In §7.6, we incorporate upswings, downswings, and penalty functions, gen-
eral features of swing options, into the LSM pricing algorithm. In §7.7, a swing option
pricing implementation in Matlab of Doerr is provided. In §7.8, LSM simulation results
are provided from the work of Doerr (2003). In §7.9, we discuss the pricing of energy
commodity derivatives including cross-commodity spread options, as well as crack and
spark spread options. In §7.10, we discuss jump diffusion models for pricing electricity
derivatives, while in §7.11, we discuss stochastic volatility electricity pricing models. In
§7.12, we discuss parameter estimation of the pricing models in §7.10 and §7.11 based
on the work of Xiong (2004). Estimation methods like maximum likelihood (ML), gener-
alized method of moments (GMM), ML of the conditional characteristic function (CCF),
and spectral generalized method of moments (SGMM) are discussed. In §7.13, the param-
eter estimation methodology of Xiong (2004) is provided in Matlab. In §7.14, we review
general energy commodity pricing models. We discuss natural gas derivatives, giving an
overview of the market, in §7.15 and discuss pricing models based on the work of Xu
(2004) in §7.16. In §7.17, a natural gas pricing implementation in Matlab of Xu is given.
Finally, in §7.18, we discuss natural gas and electricity swaps.

7.1 ELECTRICITY MARKETS

Electricity, like weather, is characterized by its non-storability, in addition to its very
limited transportability, making electricity delivered at different times and on different
dates to be perceived by consumers as distinct commodities. On-peak and off-peak de-
mand for electricity at different time periods (i.e., seasons) has a significant impact on
electricity prices and is important in power markets as they determine, for instance, deriva-
tive contractual terms. Electricity prices are strongly dependent on the electricity needs
(demand) of consumers and their determinants, including business activity and temporal
weather conditions.

The non-storability and limited transportability of electricity affects the ability of “car-
rying” electricity across time and space and is essential in explaining the behavior of elec-
tricity spot and forward derivative prices as compared to other commodities. In other words,
“arbitrage across time and space, which is based on storability and transportation, is seri-
ously limited, if not completely eliminated, in electricity markets.”1 One would expect spot
prices to be highly dependent on temporal and local supply and demand conditions if the
links across time and space provided by arbitrage break down.2

Thus, the limits of arbitrage would be expected to affect decisively the relationship
between spot and forward prices. Non-storability implies that arbitrage arguments cannot
be used in defining a pricing model when electricity, like weather, is the underlying asset
of a derivative contract. As a result, cost-of-carry models do not work (see Geman and
Roncoroni [2001]) because they cannot capture the physical and temporal constraints of
electricity as a non-storable commodity.

Transportation constraints on electricity are imposed by capacity limits of transmission
lines and transportation loads, which can make transmission of electricity to certain regions
impossible or uneconomical. The supply of electricity is also based on the availability of
transportation line connections, which can be damaged by rare and extreme events such as
power plant failures—e.g., the occurrence in August 2003 that led to severe power outages
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in the Midwest and Northeast. Such power failures can lead to dramatic price spikes. In the
summer of 1998, the spot price of electricity in Eastern and Midwestern U.S. skyrocketed
from $50/MWh to $70/MWh because of unexpected unavailability of some power gen-
eration plants and congestion on key transmission lines. As an example, consider Figure
7.1, which shows the historical on-peak electricity spot prices in Texas (ERCOT) and at
the California and Oregon border (COB). The jumpy behavior in electricity spot prices is
mainly attributed to the fact that “a typical regional aggregate supply function of electricity
almost always has a kink at certain capacity levels and the supply curve has a steep upward
slope beyond that capacity level.”3

Figure 7.2 shows a comparison of wholesale electricity prices from 1999 to 2002 in the
Midwest (ECAR) and Pennsylvania-Maryland-New Jersey (PJM) regions, the California-
Oregon border, and at Palo Verde, a major hub for importing electricity into California,
which show a large number of “spikes” in summer months.

These limitations make electricity contracts and prices “highly local; i.e., strongly de-
pendent on the local determinants of supply and demand (such as characteristics of local
generation plants, and local climate and weather conditions together with their derived
uses of electricity).”4 Given the non-storability and transportation limitations of electricity,
derivative pricing is usually done in an incomplete market framework.

Electricity On-Peak Spot Price
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Figure 7.1 ERCOT and COB on-peak electricity spot prices.
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Figure 7.2 Source: Commodity Futures Trading Commission (see Energy Information Adminis-
tration, EIAGIS-NG Geographic Information System).

The deregulation of the energy market has led to competitive wholesale electricity mar-
kets and has been accompanied by power derivative contracts, both OTC and exchange-
traded, providing a variety of contract provisions to meet the needs of electricity market
participants. In the U.S., electricity futures and options contracts have been listed in re-
cent years by the Chicago Board of Trade (CBOT), the New York Mercantile Exchange
(NYMEX), and the Minneapolis Grain Exchange.5 The demand for these contracts has
increased based on the increased forecasted demand for energy and investment in power
generators. The Energy Information Administration (EIA) forecasts that meeting U.S. de-
mand for electricity over the next decade will require about 198 gigawatts of new generating
capacity.6

7.2 ELECTRICITY PRICING MODELS

Modeling the Price Process

Energy prices are mostly driven by supply and demand. Together with some charac-
teristic properties of electricity, such as its heterogeneous nature with respect to time and
location of its generation, its non-storability, and the incomplete market for electricity given
arbitrage technical constraints, electricity spot prices exhibit pronounced short-term volatil-
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ity. In addition, electricity prices exhibit the following properties that result from the pecu-
liarities of supply and demand: mean-reversion, cyclical variations, and occasional prices
spikes.

With mean-reversion, volatility decreases with increasing time horizon. There is a long-
term equilibrium (“fair price”) that is much less volatile than the spot price. The mean-
reversion speed is determined by how quickly supply can react to sudden demand change
(see Pilipovic (1998)).7 Cyclical variations occur on different time-scales (time of day, day
of week, seasons) and are driven by cyclical demand changes. This aspect of the price
process can be considered deterministic and therefore can be easily separated from the
stochastic time dependence.8 Price spikes (surges) occasionally occur in addition to the
large short-term volatility, but last only for a short time. Positive spikes can be caused by
outages in the generation or transmission process (see Eydeland and Geman [1999]), while
negative spikes occur when it is difficult to reduce generation capacity in periods of low
demand.

Given these observations, simple geometric Brownian motion is not well suited to mod-
eling electricity price processes because they do not capture spikes. Therefore, jump dif-
fusion processes are frequently used. For instance, a discrete jump diffusion component
can be added to a log-normal model. One-factor and two-factor lognormal mean-reverting
processes with jumps have been proposed. We will examine the one-factor model.

One-Factor Model

Denote the spot price for electricity St. The stochastic process can be represented as the
sum of two components—a deterministic function of time, f(t), and a diffusion stochastic
process, Xt, of a state variable (e.g., power load). That is,

St = f(t) + Xt. (7.1)

We assume that Xt follows a stationary mean-reverting Ornstein-Uhlenbeck process:

dXt = −κXtdt + σdWt (7.2)

where κ > 0 is the speed of mean-reversion, X(0) = x0, and dWt represents an increment
to a standard Brownian motion. Because Xt = St − f(t), and assuming that the function
f(t) satisfies the appropriate regularity conditions, we can write (7.1) and (7.2) as

d(St − f(t)) = κ(f(t) − St)dt + σdW (7.3)

which shows that when St deviates from the deterministic term f(t), it is pulled back at a
rate proportional to its deviation. In this model, the only source of uncertainty comes from
the stochastic behavior of Xt as described by (7.2).

Following Lucia and Schwartz (2001), the process followed by St can be expressed as
the solution of the stochastic differential equation (provided that the function f(t) satis-

fies the appropriate regularity conditions, such as
∞∫

−∞
f(t)2dt < ∞ —i.e., the function is

bounded), as follows:

dSt = κ(α(t) − St)dt + σdW (7.4)
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where α(t) is the deterministic function of t defined by:

α(t) =
1
κ

df(t)
dt

+ f(t) (7.5)

which can be viewed as a particular case of the extended Vasicek model.
The assumed simple one-factor model is analytically tractable. An explicit solution for

(7.2), in conjunction with (7.1), yields:

St = f(t) + X0e
−κt + σ

t∫
0

eκ(s−t)dW (s) (7.6)

We find that the conditional distribution of Et is normal with conditional mean and
variance given by (using X0 = E0 − f(0)):

E[St] = E[St|Xt] = f(t) + (S0 − f(0))e−κt (7.7)

Var[St] = Var[St|X0] =
σ2

2κ

(
1 − e−2κt

)
, κ > 0

where E[·] is the expectation operator.
The price process of St tends to a mean value of f(t) in the long run, given its initial

value of S0. The higher the value of κ (assuming κ > 0), the faster the convergence. The
variance, in turn, decreases with the time horizon and has a finite limit of σ2/2κ as the
horizon tends to infinity.

To price electricity derivatives, we need the risk-neutral process under a martingale
measure for the state variable Xt, instead of the real process under the physical measure in
(7.2). Taking into account the non-tradable nature of Xt, standard arbitrage arguments with
two derivative assets allow us to obtain the risk-neutral process for Xt. Under the change of
measure using Girsonov’s transformation, we change the drift by setting dW ∗ = dW−λdt,
so that

dXt = κ (α∗ − Xt) dt + σdW ∗ (7.8)

where

α∗ = −λσ

κ
(7.9)

and dW ∗ is an increment to W ∗
t , a standard Brownian motion under the risk-neutral proba-

bility measure, and λ denotes the market price of risk linked to the state variable Xt. While
we assume λ is constant, it could be a function of t and the state variable Xt.

The explicit solution for the SDE in (7.8) yields:

St = f(t) + X0e
−κt + α∗(1 − e−κt) + σ

t∫
0

eκ(s−t)dW ∗(s) (7.10)
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with α∗ as defined in (7.9). We find from this that St is conditionally normally distributed
under the risk-neutral measure, with the following conditional mean:

E∗[St] = f(t) + X0e
−κt + α∗(1 − e−κt) (7.11)

We know that the value of any derivative security is its expected value of its payoff,
under the risk-neutral measure, discounted back to the valuation date at the risk-free rate,
which we assume to be constant. The value at time zero of a forward contract on the spot
price of electricity maturing at time T must be:

V0(Xt, T ) = e−rT E∗
0[ST − F0(S0, T )] (7.12)

where F0(X0, T ) is the forward price set at time zero for a contract maturing at time T ,
and r is the riskless continuously compounded interest rate. Because the value of a forward
contract must be zero when initially entered into, we finally derive the following closed-
form solution for the forward (futures) price of electricity9 using (7.11) and (7.1) for t = 0:

F0(S0, T ) = E∗
0[ST ] = f(T ) + (S0 − f(0))e−κT + α∗(1 − e−κT ) (7.13)

with α∗ = −λσ/κ.
Suppose the model in (7.1) is modified to incorporate the natural logarithm of the spot

price instead of the spot price itself written as:

lnSt = f(t) + Yt (7.14)

so that

St = f(t)eYt

where f(t) is a known deterministic function of time, and Yt is a stochastic process whose
dynamics are given by:

dYt = −κYtdt + σdW (7.15)

with κ > 0 and Y (0) = y0. The log-price follows a zero mean-reverting process, which
implies the following price process under suitable conditions for f(t):

dSt = κ (b(t) − lnSt)Stdt + σStdW (t) (7.16)

where

b(t) =
1
κ

(
σ2

2
+

d log f(t)
dt

)
+ log f(t)

From (7.16), lnSt has a conditional normal distribution with conditional mean and
variance:

E0[St] = exp
(

E0[lnSt] +
1
2

Var0[ln St]
)

= exp
(

(f(t) + (lnS0 − f(0)) e−κt +
σ2

4κ
(1 − e−2κt)

)
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and

Var0(St) = exp (2E0[lnSt] + Var0[lnSt]) (exp (Var0[lnSt]) − 1)

= E0[St]2
[
exp

(
σ2

2κ
(1 − e−2κt)

)
− 1

]
After changing the log price process to the risk-neutral measure under Girsonov’s the-

orem, similar to (7.8), it can be shown that the forward (future) of the log electricity price
is:10

F0(S0, T )
= E∗

0[ST ] (7.17)

= exp
[
f(T ) + (lnS0 − f(0))e−κT + α∗(1 − e−κT ) +

σ2

4κ

(
1 − e−2κT

)]
where α∗ = −λσ/κ. Note that the deterministic component of the behavior of the spot
price (log-price) appears directly in the price of the forward (futures) contracts (see (7.13)
and (7.17)), that term “being an important determinant of the shape of the forward (fu-
tures) curve.”11 In both the one-factor and log-factor models, all forward (futures) prices
are perfectly correlated.12

Estimating the Deterministic Component

In order to implement the models in (7.1) and (7.14), it is necessary to specify the
deterministic time function f(t). This function tries to capture any relevant predictable
components of the electricity prices behavior arising from genuine regularities along time.
Although there are various choices available, the chosen function should have a determin-
istic general trend and capture seasonal and cyclical behavior. For instance, as suggested
by Pilipovic (1998), a sinusoidal function like the cosine function could be used to reflect
the general seasonal pattern of the price time series.

Lucia and Schwartz (2001) suggest the following function:

f(t) = α + βDt + γ cos
(

(t + τ )
2π

365

)
(7.18)

where

Dt =
{

1 if date t is weekend or holiday
0 otherwise

and cos is the cosine function measured in radians, and α, β, γ, and τ are all constant
parameters. Here, the coefficient β tries to capture the changes in the level of the variable
for weekends and holidays where electricity usage typically increases. The cosine function
is expected to reflect the seasonal pattern in the evolution of the relevant variable throughout
the year and so has annual periodicity.
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Estimation of the Stochastic Process for the One-Factor Models

To estimate the stochastic process for the one-factor model from the spot price data, we
discretize (7.1):

Xt = (1 − κ)Xt−1 + ξt (7.19)

for t = 0, 1, 2, ..., N , and where the innovations ξt are i.i.d normal random variables with
mean 0 and variance σ2. The same discretization can be used for the process Yt in equation
(7.15).

Given the discretization, we can estimate by the one-factor price and log-price models:

One-Factor Model

St = α + βDt + γ cos
(

(t + τ )
2π

365

)
+ Xt (7.20)

Xt = φXt−1 + ut

One-Factor Log Price Model

lnSt = α + βDt + γ cos
(

(t + τ )
2π

365

)
+ Yt (7.21)

Yt = φYt−1 + ut

with the dummy variable defined in (7.18) and φ = 1−κ. For both models, the parameters
are estimated simultaneously using nonlinear least squares. To be formal, one can write any
of these models in the general form:

yt = f(Φ, xt) + ξt (7.22)

ξt = φξt−1 + ut

The first equation expresses the dependent variable yt (i.e., the price or the log-price
variable) as a function of a vector of parameters, Φ, and the vector of explanatory variables
xt. The second equation is the first order autoregressive equation of the disturbance term
ξt in the first equation. Substituting ξt in the second equation, and rearranging terms, we
get:

yt = φyt−1 + f(Φ, xt) − φf(Φ, xt−1) + ut (7.23)

whose parameters φ and Φ are estimated simultaneously using a nonlinear least squares
procedure.13 Finally, we take κ̂ = 1 − φ̂ as the estimate of the mean-reversion parameter
κ, and the standard error of the regression as the estimate of σ. Lucia and Schwartz (2005)
estimate the coefficients of these models (as well as for two-factor models) using this pro-
cedure based on daily electricity prices at the Nordic Power Exchange14 from January 1,
1993 to December 31, 1999, as provided in Table 7.1.
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Table 7.1
Models based on the Price Models based on the Log-price

Model 1 Model 2 Model 3 Model 4

Parameter Estimate t-statistic Estimate t-statistic Estimate t-statistic Estimate t-statistic

153.051 8.146 145.732 8.670 4.938 38.711 4.867 46.192
-9.514 -28.085 -9.542 -28.277 -0.090 -28.339 -0.090 -28.523

29.735 2.336 0.306 2.986
6.691 0.269 0.836 0.043

2 -2.527 -0.754 -0.027 -0.878

3 -4.511 -0.998 -0.041 -0.977

4 -3.484 -0.664 -0.041 -0.849

5 -13.248 -2.317 -0.185 -3.480

6 -12.656 -2.114 -0.097 -1.744

7 -7.038 -1.157 -0.062 -1.093

8 -8.109 -1.347 -0.101 -1.807

9 -10.061 -1.740 -0.094 -1.749

10 -9.597 -1.795 -0.067 -1.352

11 -7.304 -1.566 -0.052 -1.190

12 -6.019 -1.674 -0.057 -1.703
0.990 355.4 0.989 340.4 0.986 299.0 0.984 277.5
0.010 0.011 0.014 0.016

S.E. of Regression 9.001 9.222 0.086 0.086
Adjusted R2 0.981 0.981 0.974 0.973
Log likelihood -9294.2 -9299.0 2652.9 2640.2
Errors:

M.A.E. 5.847 5.855 0.053 0.053
M.A.P.E. 4.980 5.000 1.176 1.179

Source: Lucia, J. and Schwartz, E. (2001), 32.

Model 1 and model 3 only contain the dummy variable and exclude the cosine cyclical
component for the price and log-price, respectively.15 In the four models, the independent
coefficient α is significantly different from zero. The estimates of the coefficients β, φ, and
σ are virtually indistinguishable between models 1 and 2, and between models 3 and 4. The
null hypothesis of φ = 1 is rejected by the usual t-test for every model. This means that
the estimate for the reversion coefficient κ, though very small, turns out to be significant
in all cases. The coefficient β corresponding to the dummy variable Dt is negative, as
expected, and different from zero in the four models, but not all the coefficients of the
monthly dummy variables are significant.16

Figures 7.3 and 7.4 plot the actual daily system prices against the fitted model estimates,
as well as the associated residual errors of equation (7.23), also called the one period-ahead
prediction errors.

Two-Factor Model

The one-factor model can be extended to two factors. According to Hillard and Reis
(1998), we can model electricity prices based on the two-factor model:

dSt = (r − δt)Stdt + σSStdWS
t

dδt = α(κδ − δt)dt + σδdW δ
t (7.24)

where r is the interest rate, σS is the variance of the geometric Brownian motion followed
by S, and δt is a stochastic convenience yield that follows a mean-reverting process. The
variance of the convenience yield represented by σδ, αδ is the speed of adjustment, and
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Figure 7.3 Source: Lucia, J. and Schwartz, E. (2002). Reproduced with permission from Review
of Dervatives Research.
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Figure 7.4 Source: Lucia, J. and Schwartz, E. (2002). Reproduced with permission from Review
of Dervatives Research.
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κδ is the long-run mean yield. The two Wiener processes WS
t and W δ

t are correlated with
correlation coefficient ρ. As Doerr (2003) notes, since “the concept of convenience yield
is usually only applied to storable commodities, this model is more appropriate for gas
or oil prices than electricity.”17 However, it is relevant for swing options, as discussed in
the next section. Moreover, the net convenience yield can be “interpreted as a theoretical
construction to incorporate the special effects of supply, demand, and other particularities
of the power market into one variable.”18 Those effects are “usually stochastic, implying a
model for the stochastic behavior of convenience yield. As a key assumption of the model,
electricity is therefore modeled as an asset with stochastic (positive or negative) dividend
yield δt, which itself follows a mean-reverting Ornstein-Uhlenbeck process.”19 We assume
that the market price of convenience yield risk is zero.

7.3 SWING OPTIONS

In order to hedge market risk arising from sudden changes in the commodity prices,
consumers may use forwards or options on the commodity price. However, for some market
participants, this reduction of risk is not sufficient because they do not know their exact
future need of the commodity. In particular, this is a serious problem with commodities
that cannot be stored (e.g., energy and electricity), or for which storage is very expensive.
As a result of this problem, so-called swing options have been developed in order to give
the holder a certain flexibility with respect to the amount purchased in the future.20 Because
energy is non-storable or expensive to store and exhibits extreme price fluctuations, swing
contracts are typically used in the energy markets. This refers specifically to electricity, but
swing contracts appear also in coal and gas markets.21

We will focus on swing options on electricity. However, the main characteristic prop-
erties of swing options—namely, the multiple early exercise features—are the same for all
underlying commodities. Typical swing contracts contain a so-called base load agreement
(see Jaillet, Ronn, and Tompaidis [2001]). The base load agreement is a set of forward
contracts with different expiry dates, tj , j = 1, ..., N . Each forward contract fj is based
on a fixed amount of electricity (or, in general, any commodity), qj . At each expiry date,
the holder has the option to purchase an excess amount or decrease the base load volume.22

This means that the amount of electricity purchased at a predetermined price (i.e., the strike
price) by the holder of the swing option can “swing” within a certain range (qj + ∆j). If
∆j is positive (negative), the option exercised by the holder at an opportunity time tj is
called upswing (downswing). Thus, an upswing is a buy and a downswing is a sell. For
a typical contract, there usually are further restrictions: The total number of upswings, U ,
and downswings, D, are limited—i.e., U ≤ N , D ≤ N , or U+D ≤ N , for some boundary
N > 0.

The swing contract might include penalties if the overall volume bought during the
term of the contract lies outside the predefined boundaries. These additional constraints
lower the price of the swing option on one side. On the other side, they lead to a non-
trivial exercise strategy of the option. The reason for this is that the decision to exercise a
single swing right does not depend only on the electricity price at that time. Because the
number of swing rights are limited, the exercise of one swing right reduces the number of
rights available for later exercises. In addition, the exercise (or non-exercise) may result in
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penalties. Thus, to exercise a swing right, the payoff from exercise has to exceed the value
of the remaining option. As a result, the optimal exercise strategy depends not only on the
electricity price, but also on its history and its future distribution.

The combination of swing options with forward contracts is called a swing contract.
Swing contracts allow one to add flexibility to the volume of the contract. A typical exam-
ple for a swing contract is a supply contract. Here, the receiver has the right to receive an
arbitrary volume of electricity up to some maximum load. Penalties are introduced in the
form of “take-or-pay” clauses, which say that regardless of the volume received, a certain
minimum amount of electricity has to be paid in any event. Such a contract can be decom-
posed into a swing option and a forward contract. The supplier of electricity is selling an
implicit swing option.

We will follow the direct work of Doerr (2003) and Meyer (2004) in the discussion that
follows on the pricing of swing options.

7.4 THE LONGSTAFF-SCHWARTZ ALGORITHM FOR
AMERICAN AND BERMUDAN OPTIONS

The basic idea of the Longstaff-Schwartz algorithm, described in detail in Longstaff
and Schwartz (2001) (and similar approaches like those reported in Clement and Protter
(2002)), is to use least squares regression on a finite set of functions as a proxy for condi-
tional expectation estimates. In a first step, the time axis has to be discretized—i.e., if the
American option is alive within the time horizon [0, T ], early exercise is only allowed at
discrete times 0 < t1 < t2 < ... < tJ = T . The American option is thus approximated
by a Bermudan option. For a particular exercise date tk, early exercise is performed if the
payoff from immediate exercise exceeds the continuation value—i.e., the value of the (re-
maining) option if it is not exercised at tk. This continuation value can be expressed as
conditional expectation of the option payoff with respect to the risk-neutral pricing mea-
sure Q. The expectation is taken conditional on the information set �tk , which is available
at tk. Representing the continuation value for a particular sample path ω by F (ω, tk), we
can write

F (ω, tk) = EQ

 K∑
j=k+1

D(tk, tj)C(ω, tj, tk, T )|�tk

 (7.25)

where D(tk , tj) is the discount factor from tk to tj , and C(ω, tj, tk, T ) denotes the path
of cashflows generated by the option, conditional on the option not being exercised at or
prior to time tk and the holder following the optimal exercise strategy for all remaining
opportunities tj between tk and T . Note that for every path ω, there is at most one exercise
date j where C(ω, tj, tk, T ) > 0, because Bermudan options have only one exercise right.
The decision of exercising at tJ−1 is made by comparing the continuation value F (ω, tJ−1)
with the immediate payoff P (SJ−1), where SJ−1 is the value of the underlying at time
tJ−1. While P (SJ−1) is known, the continuation value has to be estimated.
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To find an estimator, the continuation value is represented in a set of basis functions Bj :

F (ω, tJ−1) =
∞∑

i=0

aiBi(SJ−1)

which is approximated by

F̂ (ω, tJ−1) =
M∑

i=0

aiBi(SJ−1). (7.26)

The coefficient ai is found by regressing the discounted values of C(ω, tJ , tJ−1, T )
onto the basis functions. These cashflows are the cashflows that occur at time tJ . The
regression is done over all paths that have a continuation value,—i.e., an option is in the
money at time tJ . F̂ (ω, tJ−1) is an unbiased estimator of the continuation value.

The exercise decision can now be made by comparing the estimator F̂ (ω, tj−1) with
the immediate exercise payoff P (SJ−1) for each path. With the higher of both taken as
new cashflow C(ω, tJ−2, tJ−1, T ) at time tJ−1, the iteration is stepped further backward
in time.

At the end, the resulting value of the option is calculated by averaging over the cash-
flows from each path ω:

V N
LSM =

1
N

N∑
i=1

C(ωi) (7.27)

Here, C(ωi) denotes the discounted cashflow of path ωi.

The LSM Algorithm

Assume that all interest rates are zero and, therefore, discounting can be omitted. Be-
fore starting the actual algorithm, the paths that form the underlying spot prices have to
be sampled. For N paths and J exercise opportunities (timesteps), this yields an N x J
matrix S, where the matrix Si,j is the spot price in the ith path at time tj . Next, the set
of basis functions (Bj)M

j=0 for the regression has to be chosen from a great variety of pos-
sibilities, including Hermite, Legendre, Chebyshev, Gegenbauer, or Jacobi polynomials.23

However, Longstaff and Schwartz emphasize that their numerical tests indicate that Fourier
or trigonometric series and even simple powers of the state variables also give accurate re-
sults. A basis function of order M = 2—i.e., quadratic polynomials—works well in the
LSM algorithm and is used by Dorr.

B0 = 1
B1 = X

B2 = X2
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The initial step of the actual algorithm is to determine the cashflow vector CJ at the
last timestep tJ . These cashflows are easy to get because the continuation values are then
zero—i.e.,

CJ
i = P (Si,J) (7.28)

where P is the payoff function. In the following, we focus on the payoff of a vanilla call
option

P (Si,j) = max(Si,j − Xj , 0) (7.29)

where the strike prices Xj can vary from timestep to timestep.
Second, we consider the spot prices at timestep tJ−1 and select those for which

P (Si,J−1) > 0. This yields the LJ−1 x 1−vector ŜJ−1 where LJ−1 is the number of
in-the-money paths at timestep tJ−1. The least squares regression of CJ onto the basis
functions BJ is now performed by minimizing the expression∥∥BJ−1aJ−1 − CJ

∥∥ (7.30)

where aJ−1 is the (M + 1) x 1-vector of regression coefficients for timestep tJ−1 and the
matrix BJ−1 is given by:

BJ−1 =

 B0(Ŝ1,J−1) . . . BM (Ŝ1,J−1)
... . . .

...
B0(ŜLJ−1,J−1 ) . . . BM (ŜLJ−1,J−1 )

 (7.31)

The solution of the minimization is given by:

aJ−1 = ((BJ−1)T BJ−1)−1(BJ−1)T CJ−1 (7.32)

With that, we obtain the vector of continuation values ContJ−1 by:

ContJ−1
i =

M∑
k=0

aJ−1
k BJ−1

i,k (7.33)

Once we have the continuation of values, we perform early exercise whenever

P (Ŝi,J−1) > ContJ−1
i . (7.34)

The elements CJ−1
i of the cashflow vector CJ−1 are then given by:

• P (Ŝi,J−1), if the early exercise condition (7.34) is true

• 0 otherwise

Subsequently, the elements of the cashflow vector CJ have to be set to zero for those
paths where (7.34) is true.
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We then step backward through time until we reach the first timestep.24 At each timestep,
early exercise is performed as described previously. Note that whenever a cashflow at
timestep tk is generated by early exercise in path i, all cashflows that occur in this path
later than tk (this is, at most, one) have to be removed.25

At the end, we can build the cashflow matrix C from the cashflow vectors Ck by con-
catenating the cashflow vectors Ck, k = 1, ..., J , and the option value is given by the
arithmetic average of the row sums.26

7.5 EXTENSION OF LONGSTAFF-SCHWARTZ TO
SWING OPTIONS

Following the presentation by Doerr,27 we show how least-squares Monte Carlo can
be adopted for the valuation of swing options. Because we now have more than one exer-
cise right, however, we have to deal with an additional “dimension”—i.e., the number of
exercises left. Consider a swing option with exercise opportunities at times t1, t2, t3, t4,
and t5, with five exercise opportunities and three exercise rights (upswings) with a strike
price at each opportunity X. Sampling N paths yields N x 5-spot price matrix S. The main
difficulties arising from the presence of more than one exercise rights are the following:

• The benefit from immediate exercise is not only the payoff, but the payoff plus the
value of the remaining swing option (which has one upswing fewer than the original
one).

• When early exercise is performed at time tk , rearranging the cashflows at later op-
portunities requires the cashflow matrix of the swing option with one upswing less
than the original one.

The generalized cashflow matrix of our algorithm must, therefore, have three dimen-
sions:

• First dimension: number of paths

• Second dimension: number of timesteps (exercise opportunity)

• Third dimension: number of exercise rights (upswings) left

We denote the cashflow matrix for j upswings left as Cj . In our example, there are thus
three N x 5 matrices C1, C2, and C3. After the initial step, the cashflow matrices look as
follows:

C3 =


% % P (S1,3) P (S1,4) P (S1,5)
% % P (S2,3) P (S2,4) P (S2,5)
...

...
...

...
...

% % P (SN,3) P (SN,4) P (SN,5)

 (7.35)

C2 =


% % % P (S1,4) P (S1,5)
% % % P (S2,4) P (S2,5)
...

...
...

...
...

% % % P (SN,4) P (SN,5)

 (7.36)



“London” — 2006/11/26 — 12:10 — page 349 — #371
�

�

�

�

�

�

�

�

Section 7.5 Extension of Longstaff-Schwartz to Swing Options 349

C1 =


% % % % P (S1,5)
% % % % P (S2,5)
...

...
...

...
...

% % % % P (SN,5)

 (7.37)

where

P (S) = max(S − X, 0) (7.38)

is the payoff of the upswing. The %-signs mean that these cashflows are undefined at this
stage. For C3, we can combine the last three timesteps in the initial step of the algorithm be-
cause it is obvious that early exercise takes place at t3 whenever the payoff at this timestep
is positive. Notice that this is the third timestep from the last.

Similarly, when two upswings are left, immediate early exercise is performed at t4
and thus we can combine the last two timesteps for C2. The matrix C1 corresponds to
the cashflow matrix in the Longstaff-Schwartz algorithm for Bermudan options. As an
example, if we have only six paths, after the initial step, the matrices might look as follows:

C3 =


% % P1,3 0 P1,5

% % P2,3 P2,4 0
% % P3,3 0 0
% % P4,3 P4,4 P4,5

% % P5,3 0 P5,5

% % P6,3 P6,4 P6,5

 (7.39)

C2 =


% % % 0 P1,5

% % % P2,4 0
% % % 0 0
% % % P4,4 P4,5

% % % 0 P5,5

% % % P6,4 P6,5

 (7.40)

C1 =


% % % % P1,5

% % % % 0
% % % % 0
% % % % P4,5

% % % % P5,5

% % % % P6,5

 (7.41)

Here, all Pi,j = P (Si,j) are non-zero.
We now start stepping backwards in time. For t4, we calculate the continuation values

for one upswing left by least squares regression of the cashflow vector Ĉ1
5 onto the basis

functions.28 In Ĉ1
5 , only the paths where the payoff at t4 is positive are considered. We

denote the vector of continuation values at timestep four with one upswing left at Cont14.
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With the continuation values, we can perform early exercise, and C1 may look like:

C1 =


% % % 0 P1,5

% % % P2,4 0
% % % 0 0
% % % P4,4 0
% % % 0 P5,5

% % % P6,4 0


In our example, early exercise at t4 was carried out for all possible paths—i.e., paths 2,

4, and 6. Note that for paths 4 and 6, the cashflows at t5 have been removed. The cashflow
matrices C2 and C3 remain unchanged in this step.

Now we move on to t3. In order to get Cont23, we first have to add the cashflow vectors
C2

4 and C2
5 . Denoting the sum vector as C2

4+5, we obtain the relevant sum vector Ĉ2
4+5 by

omitting all paths where P (Si,3) is zero. The continuation vector Cont23 is then obtained by
linear regression of Ĉ2

4+5 on the basis functions.
The early exercise condition now reads:

P (Si,3) + Cont13(i) > Cont23(i) (7.42)

That means we have to calculate Cont13 before we can perform early exercise in C2.
This calculation is easily done according to the usual Longstaff-Schwartz algorithm. For
those paths where condition (7.42) is fulfilled, early exercise is performed. This means that
for each corresponding path, i, C2

3(i) is set equal to the payoff P (Si,3) and the cashflows
C2

4(i) and C2
5 (i) are replaced by C1

4(i) and C1
5(i), respectively. After this, early exercise

for t3 is performed in C1. Although C3 still remains unchanged in this step, the other
cashflow matrices in our example might like the following:

C2 =


% % P1,3 0 P1,5

% % P2,3 P2,4 0
% % P3,3 0 0
% % 0 P4,4 P4,5

% % 0 0 P5,5

% % P6,3 P6,4 0

 (7.43)

C1 =


% % 0 0 P1,5

% % P2,3 0 0
% % 0 0 0
% % 0 P4,4 0
% % 0 0 P5,5

% % P6,3 0 0

 (7.44)

For C2, early exercise was performed in paths 1, 2, 3, and 6. Note that in path 6, the
cashflows after t3 had to be modified according to C1 at the iteration step before—i.e., t4.
For C1, early exercise occurs only in paths 2 and 6.

Moving on to t2, early exercise must be performed for all three cashflow matrices.
First, the continuation vectors are calculated by regressing ĈJ

3+4+5, j = 1, 2, 3 onto the
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basis functions as described previously. Then, early exercise is carried out starting with C3

by evaluating the condition

P (Si,2) + Cont22(i) > Cont32(i). (7.45)

The condition for C2 reads

P (Si,2) + Cont12(i) > Cont22(i). (7.46)

For C1, we obtain

P (Si,2) > Cont12(i). (7.47)

Because early exercise includes rearranging the cashflows after t2 according to the
cashflow matrix (with one upswing fewer) at the preceding iteration step, it is important
that the procedure is first done with C3, then with C2, and finally with C1. Repeating
the same procedure for t1, we end up with the final cashflow matrices C1, C2, and C3.
From these matrices, we obtain the value of the corresponding swing options by taking the
average of the row sums.29

7.6 GENERAL CASE: UPSWINGS, DOWNSWINGS, AND

PENALTY FUNCTIONS

Application of the LSM algorithm to price swing options must incorporate not only
call (upswings), but also put features (downswings). In addition, the algorithm must in-
corporate penalty functions that depend on the total number of exercises (upswings and
downswings).30 These features have two important implications for the LSM algorithm.
First, in the initial step, only the last timestep can be treated because continuation values
might be negative because of penalty, and thus it could be sensible to let one or more exer-
cise rights expire worthless. Second, we have an additional dimension—i.e., the number of
downswings left.

We introduce some notation:

• u and d are the numbers of upswings and downswings exercised, respectively (in a
particular iteration step).

• umax and dmax are the total numbers of upswings and downswings, respectively.

• J is the number of timesteps (exercise opportunities).

The generalized cashflow tensor has now four dimensions (path, timestep, upswings
exercised, and downswings exercised) and consists of [(umax+1)·(dmax+1)−1] cashflow
matrices Cu,d. Each of these matrices has dimension N x J.

In the initial step, we have to evaluate the cashflows at the last exercise opportunities.
With φ(u, d) denoting the penalty function for u upswings and d downswings exercised,
we obtain the following cashflows in path i at the final timestep tJ : for 0 ≤ u < umax,
0 ≤ d < dmax :

Cu,d
J (i) = max[Pu(Si,J ) − φ(u + 1, d), Pd(Si,J ) − φ(u, d + 1), 0] (7.48)
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for 0 ≤ d < dmax :

Cumax,d
J (i) = max[Pd(Si,J ) − φ(umax, d + 1), 0] (7.49)

for 0 ≤ u < umax:

Cu,dmax
J (i) = max[Pu(Si,J) − φ(u + 1, dmax), 0] (7.50)

where Pu,d is the payoff of the upswing and downswing.
Now starting for a given path, to work backwards from tJ in time, we have to do the

following at each step:

• Calculate the continuation values by least squares regression.

• Perform early exercise.

When performing early exercise, we have to step forward from (u, d) = (0, 0) to
(u, d) = (umax, dmax). It does not matter whether we start with u or d, however. At
timestep j (and thus iteration step J + 1 − j), the early exercise conditions for the up-
swings are for 0 ≤ u < umax, 0 ≤ d < dmax, u + d < j :

Pu(Si,j) + Contu+1,d
j (i) > Contu,d

j (i) (7.51)

For the downswings, we obtain for 0 ≤ u < umax, 0 ≤ d < dmax, u + d < j :

Pd(Si,j) + Contu,d+1
j (i) > Contu,d

j (i) (7.52)

Eventually, the value of the swing option is obtained by calculating the average of the
row sums of C0,0 after the final iteration step. Note that in each row, there are at most
umax + dmax non-zero cashflows.

7.7 SWING OPTION PRICING IN MATLAB

Refer to Appendix B, “Chapter 7 Code Files,” to see the full listing of Matlab code
written by Doerr (2004). The code provides the implementation of the LSM algorithm for
pricing swing options using upswings, downswings, and penalty functions.

7.8 LSM SIMULATION RESULTS

Doerr (2003) computes the value of swing options using a one-factor and two-factor
mean-reversion model. The follow parameters given in Table 7.2 are used for the one-factor
model—see (7.2).

Figure 7.5 shows the swing option value as a function of the spot price for two different
values of the mean-reversion speed. The swing consists of 6 upswings and 10 opportunities.
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Figure 7.5 shows swing option value as a function of the spot price for two different
values of the mean-reversion speed without (left) and with penalty (right). The swing con-
sists of six upswings and four downswings at 10 opportunities. As a consequence of the
downswings, the option value exhibits a minimum. Introducing a penalty

Table 7.2

Source: Doerr (2004).
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Figure 7.5 Source: Doerr (2003). Reproduced with permission.
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φ(v) =


50 for v ≤ −1
30(v − 2) for v > 2
0 otherwise

where v = u − d and u and d are the total number of upswings and downswings, respec-
tively, exercised, leads to an overall decrease of the option value, as shown in the left part
of Figure 7.6.

The introduction of four downswings in addition to the six upswings (and keeping
all other parameters constant31) must lead to an overall increase in the swing options value
because the new option has more exercise rights while keeping all rights of the old option,32

as shown in Figure 7.6. Because the downswings are in the money for low spot prices, the
option’s value as a function of the spot price now exhibits a minimum for both values of α.

Figure 7.7 shows the relative difference between the swing option values obtained by
least squares Monte Carlo and finite differences. The calculations have been performed for
a swing option with 10 opportunities and mean-reversion speeds of 0.05 (left, no down-
swings) and 0.5 (right, four downswings). The other parameters are those given in Ta-
ble 7.2.

The relative deviations are significantly smaller than 1% and thus lie within numerical
accuracy. For the Monte Carlo, the accuracy is about 0.3%.

Upper and Lower Boundaries

Because the numerical valuation of Swing options is—in general—quite costly, one
tries to find approximation methods that are as simple as possible. In this context, it is im-
portant to find upper and lower bounds that can be considered as a first approximation step.

From simple considerations, we can deduce the following boundaries for a swing option
with m exercise rights and N opportunities:

• Upper boundary: m Bermudan options (each of them with N opportunitiesaccording
to the opportunities of the Swing option)

• Lower boundary: Callstrip—i.e., the sum of the m most valuable in the set of the N
vanilla call options, which expire at the N opportunities of the Swing option

These boundaries are frequently discussed in the literature about this topic (see Jaillet,
Ronn, and Tompaidis [2003], for example) and can be explained in the following way:

• Upper boundary: A holder of m Bermudan options can exercise in the same way
a swing option’s holder can. Furthermore, he has the right of exercising more than
one option at the same opportunity. This means that he has more possibilities than
the holder of the swing option, and thus a set of m Bermudan options is an upper
boundary for the swing option.

• Lower boundary: The holder of a swing option can exercise at each opportunity,
while the holder of the callstrip is restricted to m exercise dates, which are fixed at
the beginning. The swing option’s holder can exercise at these m dates, but he doesn’t
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Figure 7.6 Source: Doerr (2003). Reproduced with permission.
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Figure 7.7 Source: Doerr (2003), 36. Reproduced with permission.
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have to. Thus, the callstrip must be a lower boundary. In the next step, we want to
investigate where the swing options value is situated between the two boundaries.
We, therefore, introduce the position p:

p =
value of Swing option− lower boundary

upper boundary − lower boundary

Figure 7.8 shows the empirical error as a function of the number of paths for the two-
factor mean-reverting process given in (7.24) with the parameters shown in Table 7.3.

As with the one-factor process, an approximate straight line is given in the logarithmic
representation in Figure 7.8.

It is obvious that p lies between 0 and 1. For fixed N , we now consider p as a function
of m and immediately find the two trivial cases:

p(1) = 1 (7.53)

p(N) = 0 (7.54)

because for m = 1(N), the swing option is the same as the Bermudan option (callstrip).
As a computer experiment, p(m) has been determined for both processes and various sets
of process parameters.

The line u between the two limiting cases of (7.53) and (7.54) is given by

u(m) =
N − m

N − 1

and the position u(m) corresponds to a swing option value Vu(m) of

Vu(m) =
N − m

N − 1
m · Bermudan +

m − 1
N − 1

· Callstrip.

Figure 7.9 shows the swing option value as a function of the spot price for the two-factor
process. As for the one-factor process, adding downswings leads to an overall increase and
the occurrence of a minimum (middle), and subsequent introduction of a penalty leads to
an overall decrease of the option value (right).

Exercise Strategies

Doerr (2003) discusses various exercise strategies that impact the valuation of swing
options. The valuation of the swing option has been (implicitly) based on the following
assumptions:

• The holder applies the optimal exercise strategy.

• The payoff from early exercise can be realized immediately.

However, as Dörr points out, in reality these assumptions are not necessarily fulfilled.
First, applying the optimal strategy requires knowledge at each opportunity as to whether it
is better to exercise or not. Second, if physical delivery is settled, the holder may not be able
to benefit from early exercise because he has to sell the electricity delivered. In this section,
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Figure 7.8 Source: Doerr (2003), pg. 38. Reproduced with permission.

Table 7.3

Source: Doerr (2003), 36. Reproduced with permission.
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we focus on the valuation of swing options in terms of different exercise strategies—i.e.,
we determine the expected payoff under the condition that a particular exercise strategy is
applied. In particular, we try to find an approach to the value of a swing option for a holder
who

• Does not know the optimal exercise strategy explicitly, or

• Cannot decide by himself when to exercise because he is exposed to external con-
straints

In the first case, the aim is to find a simple strategy that yields an option value close to
the optimal exercise value. This strategy is to be found by simple considerations about the
process parameters. An example for the second case could be the following. The holder has
bought the swing option in order to protect himself from extremely high spot prices, but he
does not know in advance when his need for electricity will occur. When there is no need for
electricity, he cannot realize the payoff from an early exercise because he is not able to sell
the electricity delivered. Under these circumstances, this holder is interested in knowing
the difference between his expected payoff and the market price of the option, which is
assumed to be based on optimal exercise. We restrict ourselves to the one-factor (logarithm)
process discussed in §7.14. In this way, we keep the number of process parameters small.
In particular, this allows us to investigate the interplay of mean-reversion and volatility
systematically. Furthermore, some aspects of the early exercise problem can be treated
analytically.

The Threshold of Early Exercise

At time t0, the holder has to decide whether to exercise or not. If the holder decides not
to exercise, the option turns into a vanilla call option. Therefore, early exercise is optimal
if the payoff from realization is greater than the value of the call option—i.e.,

C(S, t0, t) > S − K

where S and K denote the spot and strike prices, respectively. In the following, we keep
the strike price K, the mean-reversion level F , and the time to maturity t − t0 constant
and consider the value of the vanilla call option as a function of the spot price S, the mean-
reversion speed α, and the volatility σ. Omitting the time arguments

C(S, α, σ) = A(t, t0)ev(t,t0)/2N0
v(t,t0)

(d1) − KN0
v(t,t0)

(d2) (7.55)

where A and v are given by

A(t, t0) = S(t0)e−α(t−t0)
F 1−e−α(t−t0)

(7.56)

and

v(t, t0) =
σ2

2α
(1 − e−2α(t−t0)). (7.57)
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With these parameters, d1 and d2 can be written as

d1 = log
A

K
+ v = d2 + v

and Na
b (·) is the cumulative standard normal distribution defined by

Na
b (·) =

y∫
−∞

1√
2πb

e−
(x−a)2

2b dx

Differing (7.55) with respect to S yields the delta of the call option:

∂C

∂S
= ev/2 ∂A

∂S

(
N0

v (d1) +
1√
2πv

e−
d2
1

2v

)
− K

A

∂A

∂S

1√
2πv

e−
d2
2

2v

where

∂A

∂S
= xSx−1F 1−x

x = e−α(t−t0)

Because 0 < x < 1, we obtain the following limits as S → ∞:

A → ∞
∂A

∂S
→ 0

d1 → ∞
d2 → ∞

From that, it follows directly that

lim
S→∞

∂C

∂S
= 0.

Figure 7.10 shows a typical plot of a call option against spot price, together with the
payoff from immediate exercise. Because both the call and the delta of the call are always
greater than zero and delta approaches zero for S → ∞, the equation

C(X, t0, t) = max(X − K, 0)

always has a solution for X—i.e., there is a (unique) threshold for early exercise.
We can show that this threshold is always greater than the mean-reversion level F . This

is intuitively clear—why should we exercise early if we know that the spot price is “drawn
up” toward F ?
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Figure 7.10 Source: Doerr (2003), 48. Reproduced with permission.

Doerr (2003) finds that the threshold for early exercise:

• Always exists if α > 0

• Is always greater than the mean-reversion level

• Decreases with increasing α and approaches f in the limit α → ∞

• Increases with increasing σ

These results are illustrated in Figure 7.11. Intuitively, it is not surprising that the thresh-
old (which lies always above the mean-reversion level) decreases with increasing mean-
reversion speed. If α is large, we should immediately make use of early exercise, because
the spot price is expected to be pulled down toward the mean-reversion level. However, if α
is large, there is still some hope that the spot price will rise again toward values significantly
above the mean-reversion level. Therefore, the need for early exercise is relaxed.

Interplay Between Early Exercise and Option Value

For Bermudan options, the holder can maximize his expected payoff by early exer-
cise. The optimal exercise strategy is very simple: If the spot price at time t0 exceeds the
threshold X, he decides to exercise. However, applying the optimal strategy requires exact
knowledge of X. In a simple case, it is quite easy to determine X numerically, but for more
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Figure 7.11 Source: Doerr (2003), 51. Reproduced with permission.

realistic situations (e.g., more than one opportunity), this may not be the case. Therefore, it
is important to investigate the benefit from early exercise in more detail. This means that we
should get a feeling for the sensitivity of the expected option payoff to the actual strategy.
This shall now be achieved in an intuitive way. As can be seen in Figure 7.11, the cut-
ting angle between the payoff from early exercise and the continuation function increases
with increasing α. In Figure 7.12, this is illustrated in an even more drastic manner. For
α = 0.05, the curves are so close to each other that a suboptimal early exercise decision is
expected to have virtually no impact on the expected option payoff. However, the opposite
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Figure 7.12 Source: Doerr (2003), 52. Reproduced with permission.
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is right for α = 0.5. In this case, the sensitivity of the expected payoff with respect to the
actual strategy must be significant.

The cutting angle φ is given by:

φ(α, σ) =
π

4
− arctan

(
∂C

∂S
|S=X

)
We can use φ as an indicator for the sensitivity of the expected option payoff on the

strategy. For the simple case described previously, it is obvious that the sensitivity increases
with increasing φ. Because an analytic treatment of φ is very difficult (if possible), this
has been done numerically. It has turned out that φ increases with increasing α, while
it decreases with increasing volatility. However, the dependence on α seems to be much
stronger than the dependence on σ. See Doerr (2003) for details.

7.9 PRICING OF ENERGY COMMODITY DERIVATIVES

Cross-Commodity Spread Options

In the petroleum industry, refinery managers are more concerned about the difference
between their input and output prices than about the level of prices. Refiners’ profits are tied
directly to the spread, or difference, between the price of crude oil and the prices of refined
products. Because refiners can reliably predict their costs other than crude oil, the spread
is their major uncertainty. Crack spread options in crude oil markets, as well as the spark
spread and locational spread options in electricity markets, are good examples of cross-
commodity derivatives, which play a crucial role in risk management. Spark spread options
are derivatives on electricity and the fossil fuels used to generate electricity. Such options
are essential in asset valuation for fossil fuel electricity generation plants.33 A European
spark spread call (SSC) option pays a positive part of the difference between the electricity
spot price and the generating fuel cost at the time of maturity. Its payoff function is

SSC(Se
T , Sg

T , H, T ) = max (Se
T − H · Sg

T , 0) (7.58)

where Se
T and Sg

T are the prices of electricity and the generating fuel, respectively; the
constant H is the strike heat price, which represents the number of units of generating fuel
contracted to generate one unit of electricity.

A locational spread option pays off the positive part of the price difference between the
prices of the underlying commodity at two different delivery points. In the context of elec-
tricity markets, locational spread options serve the purposes of hedging the transmission
risk and can also be used to value transmission expansion projects34 (see Deng, Johnson,
and Songomonia [1998]). The payoff of a European locational spread call option (LSC) is

LSC(SA
T , SB

T , L, T ) = max
(
SB

T − L · SA
T , 0

)
(7.59)

where Sa
T and Sb

T are the commodity prices at locations A and B. The constant L is “a loss
factor reflecting the transportation/transmission losses or costs associated with shipping
one unit of the commodity from location A to B.”35
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A general cross-commodity spread call option (CSC) is an option with the following
payoff at maturity time T :

CSC(S1
T , S2

T , K, T ) = max
(
S1

T − K · S2
T , 0

)
(7.60)

where Si
T is the spot price of commodity i (i = 1, 2) and K is a scaling constant associated

with the spot price of the second commodity. The interpretation of K is different depending
on the type of cross-commodity option. For instance, K represents the strike heat rate H
in a spark spread option, and it represents the loss factor L in a locational spread option.

The prices of European-type contingent claims on the underlying energy commodity,
under various proposed models (discussed later), can be obtained through the inversion of
the characteristic transform functions. Suppose Xt is a state vector in �n and u ∈ Cn. The
generalized characteristic transform function is defined as:

ϕ(u, Xt, t, T ) = EQ
[
e−r(T−t) exp(u · XT )|�t

]
= exp[A(t, u) + B(t, u)Xt]

Let G(v, Xt, t, T ; a, b) denote the time t price of a contingent claim with payoff
exp(a ·XT ) when b ·XT ≤ v is true at time T , where a, b are vectors in �n and v ∈ �1.
Then we have:

G(v, Xt, t, T ; a, b) = EQ�e−r(T−t) exp (a · Xt)1b·XT≤v|�t�

=
ϕ(a, Xt, t, T )

2
− 1

π

∞∫
0

Im
{
ϕ(a + iwb, Xt, t, T )e−iwv

}
w

dw

For properly chosen v, a, and b, G(v, Xt, t, T ; a, b) serves as building blocks in pricing
contingent claims such as forwards/futures, call/put options, and cross-commodity spread
options.

The value of a European cross-commodity spread call option on two commodities can
be found by taking the Fourier transform of (7.58). It can be shown that the price is given
by

CSC(S1
t , S2

t , K, t) = EQ�e−r(T−t) max(S1
T − K · S2

T , 0)|�t�
= EQ�e−r(T−t) exp(X1

T )1S1
T −K·S2

T ≥0|�t� −
K · EQ�e−r(T−t) exp(X2

T )1S1
T −K·S2

T ≥0|�t�
= G1 − K · G2

where

G1 = G(0, lnS1
t , ln(K · S2

t ), t, T ; [1, 0, · · · , 0]′; [−1, 1, 0, · · · , 0]′) (7.61)

G2 = G(0, lnS1
t , ln(K · S2

t ), t, T ; [0, 1, · · · , 0]′; [−1, 1, 0, · · · , 0]′)

and

G(v, Xt, t, T ; a, b) =
ϕ(a, Xt, t, T )

2
− 1

π

∞∫
0

Im
{
ϕ(a + iwb, Xt, t, T )e−iwv

}
w

dw



“London” — 2006/11/26 — 12:10 — page 364 — #386
�

�

�

�

�

�

�

�

364 Energy and Power Derivatives Chapter 7

is the price of the contingent claim at time t and

ϕ(u, Xt, Yt, t, T ) = EQ�e−r(T−t) exp (u1XT + u2YT ) |�t�

is the generalized transform function where a and b are vectors in Rn and v ∈ R1 (see
Duffie, Pan, and Singleton [1998] for derivation).

To price energy traded commodity derivatives, Deng (1999) considers three general
models: regime-switching, deterministic volatility jump-diffusion, and stochastic volatility
jump-diffusion. In each model, the parameters are assumed to be constant, and the jumps
appear in the primary commodity price and the volatility processes (Model 3) only. More-
over, the jump sizes are distributed as independent exponential random variables in �n,
thus having the following transform function:

φj
J(c, t) =

n∏
k=1

1
1 − µk

j ck
(7.62)

where c is a vector of complex numbers.

Model 1

The jumps are in the logarithm of the primary commodity spot price, Xt. The sizes of
type-j jumps (j = 1, 2) are exponentially distributed with mean µj

J . The transform function
of the jump size distribution is φj

J(c1, c2, t) = 1
1−µj

Jc1
for j = 1, 2.

d

(
Xt

Yt

)
=
(

κ1(θ1 − Xt)
κ2(θ2 − Yt)

)
dt +

(
σ1 0
ρ1σ2

√
1 − ρ2

1σ2

)
dWt +

2∑
i=1

∆Zi
t

(7.63)

The closed-form solution of the transform function can be written out explicitly for this
model as:

ϕ1(u, Xt, Yt, t, T ) = exp (α(τ ) + β1(τ )Xt + β2(τ )Yt)

where τ = T − t. It can be shown that36

β1(τ, u1) = u1e
−κ1τ

β2(τ, u1) = u2e
−κ2τ

α(τ, u) = −rτ −
2∑

j=1

λj
J

κ1
ln

u1u
j
J − 1

u1u
j
Je−κ1τ − 1

+
a1σ

2
1u

2
1

4κ1
+

a2σ
2
2u

2
2

4κ2

+ u1θ1(1 − e−κ1τ ) + u2θ2(1 − e−κ2τ)

+
u1u2ρ1σ1σ2(1 − e−(κ1+κ2)τ )

κ1 + κ2

with a1 = 1 − e−2κ1τ and a2 = 1 − e−2κ2τ .
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Model 2

Model 2 is a regime-switching model with the regime-jumps appearing only in the
primary commodity price process. In the electricity markets, this is suitable for modeling
the occasional price spikes in the electricity spot prices caused by forced outages of the
major power generation plants or line contingency in transmission networks. The model
can be used as a joint specification of electricity and the generating fuel price processes
under the risk-neutral measure Q. For simplicity, Deng (1999) assumes that there are no
jumps within each regime:

d

(
Xt

Yt

)
=
(

κ1(θ1 − Xt)
κ2(θ2 − Yt)

)
dt +(

σ1 0
ρ1σ2

√
1− ρ2

1σ2

)
dWt + v(Ut−)dMt

(7.64)

Ut is the regime state process defined as a continuous-time two-state Markov process:

dUt = 1Ut=0 · δ(Ut)dN0
t + 1Ut=1 · δ(Ut)dN1

t (7.65)

where N i
t is a Poisson process with arrival intensity λi, i = 0, 1, and δ(0) = −δ(1) = 1.

Mt is defined as a continuous-time Markov chain:

dMt = −λ(Ut)δ(Ut)dt + dUt (7.66)

and Wt is a standard Brownian motion. {v(i) = (v1(i), v2(i))′, i = 0, 1} denotes the sizes
of the random jumps in state variables when regime-switching occurs.

φv(i)(c1, c2, t) =
∫

2

exp(c · z)dvv(i)(z) is the transform function of the regime-jump

size distribution v(i), i = 1, 2. Zj , ∆Zj , and φj
J are similarly defined as those in Model 1.

The transform function for the model cannot be solved completely in closed-form. We
have

ϕ0
2(x, y, t) = exp (α0(t) + β1(t)x + β2(t)y)

ϕ1
2(x, y, t) = exp (α0(t) + β1(t)x + β2(t)y)

where β(t) = β(t, u) = (β1(t, u), β2(t, u))′ has the closed-form solution of

β1(τ, u1) = u1 exp(−κ1τ )
β2(τ, u1) = u1 exp(−κ2τ ).

α(t) = α(t, u) = (α0(t, u), α1(t, u))′ needs to be numerically computed from

d

dt

(
α0(t)
α1(t)

)
= −

 A1(β(t), t) + λ0
[

e(α1(t)−α0(t))

1−µ0β1(t,u1)
− 1

]
A1(β(t), t) + λ1

[
e(α1(t)−α1(t))

1−µ1β1(t,u1)
− 1

] 
(

α0(0, u)
α1(0, u)

)
=
(

0
0

)
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with

A1(β(t), t) = −r +
2∑

i=1

[
κiθiβi +

1
2
σ2

i β2
i

]
− ρ1σ1σ2β1β2.

Model 3

Model 3 is a stochastic volatility model in which the type-1 jumps are simultaneous
jumps in the commodity spot price and volatility processes, and the type-2 jumps are in the
commodity spot price only. All parameters are constants.

d

 Xt

Vt

Yt

 =

 κ1(θ1 − Xt)
κV (θV − Vt)
κ2(θ2 − Yt)

 dt +

 √
Vt 0 0

ρ1σ2

√
Vt

√
(1 − ρ2

1)Vtσ2 0
ρ2σ3

√
Vt 0 σ3

 dWt +
2∑

i=1

∆Zi
t

(7.67)

where Wt is a standard Brownian motion in �3. Zi, i = 1, 2, is a compound Poisson
process in �3. The Poisson arrival intensity functions are λ1(Xt, Vt, Yt, t) = λ1 and
λ2(Xt, Vt, Yt, t) = λ2Vt. The transform functions of the jump-size distributions are

φ1
J(c1, c2, c3, t) =

1
(1 − µ1

1c1)(1 − µ2
1c2)

where µk
J is the mean size of the type-J (J = 1, 2) jump in factor k, k = 1, 2. It can be

shown that the transform function is of the form (see Deng [1999]):

ϕ3(u, Xt, Vt, Yt, t, T ) = exp (α(t, u) + β1(t, u)XT + β2(t, u)VT + β3(t, u)YT )

Deng uses these models to price a spark spread call option with a strike heat rate of
H = 9.5 MMBtu/Mwh for the previous three models, as well as the geometric Brownian
motion (GBM) model. The spark spread call option value converges to the current spot
price under the GBM price model. However, under the mean-reversion jump-diffusion price
models, it converges to a long-term value, as shown in Figure 7.13, which is most likely to
be depending on fundamental characteristics of supply and demand.

Deng uses the model parameter estimates shown in Table 7.4. To estimate the param-
eters, Deng (1999) derives the moment conditions from the transform function of the un-
conditional distribution of the underlying price return. Deng assumes that the risk premium
associated with the factor X is proportional to X—i.e., the risk premium is of the form
ξX · X. For simplicity, Deng assumes the risk premia associated with the jumps are zero.
Deng then uses the electricity and natural gas spot and futures price series to get the esti-
mates for the model parameters under the true measure and the risk premia by matching
moment conditions as well as the futures prices.37
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Figure 7.13 Source: Deng (1999).

Table 7.4
  Model 1a Model 2a Model 3a
 �1 1.70 1.37 2.17
 �2 1.80 1.80 3.50
 �3 N/A N/A 1.80
 �1 3.40 3.30 3.20
 �2 .087 0.87 0.85
 �3 N/A N/A 0.87
 �1 0.74 0.80 N/A
 �2 0.34 0.34 0.80
 �3 N/A N/A 0.54
 �1 0.20 0.20 0.25
 �2 N/A N/A 0.20
 �1 6.08 6.42 6.43
 �11 6.19 0.26 0.23
 �12 N/A N/A 0.22
 �2 7.00 8.20 5.00
 �21 -0.11 -0.20 -0.14

Source: Deng (1999).
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7.10 JUMP DIFFUSION PRICING MODELS

Various stochastic models have been proposed to capture the mean-reversion and spikes
present in electricity prices. The affine jump-diffusion process is a popular choice because
they are “flexible enough to capture certain properties such as multiple jumps, time-varying
long-term mean, and stochastic volatility in various forms, which occur in many financial
time series without sacrificing computational tractability.”38 Following the work of Xiong
(2004), we have the models in the next sections.

Model 1a: Affine Mean-Reverting Jump-Diffusion Process

The diffusion part is represented by an Ornstein-Uhlenbeck process, and the jump com-
ponent has exponentially distributed absolute value of jump size, with the sign of the jump
determined by a Bernoulli variable. This is formulated as

dXt = κ(α − Xt)dt + σdWt + JtdPt (7.68)

where the tuple θ = [κ, α, σ2, ω, ψ, λ] are the unknown parameters. In particular, κ is
the mean-reversion rate, α is the long-term mean, Wt is a standard Brownian motion
with dWt N(0, dt) for an infinitesimal time interval dt, and Pt is a discontinuous, one-
dimensional standard Poisson process with arrival rate ω. During dt, dPt = 1 if there is
a jump, and dPt = 0 otherwise. The jump amplitude Jt is exponentially distributed with
mean λ, and the sign of the jump Jt is distributed as a Bernoulli random variable with
parameter ψ. It is assumed that the Brownian motion, Poisson process, and random jump
amplitude are all Markov and pairwise independent.

The conditional characteristic function (CCF) of XT , given Xt, φ(s, θ, XT )|Xt), takes
the form

ϕ(s, θ, XT |Xt) = E[exp(isXT )|Xt]
= exp(A(s, t, T, θ) + B(s, t, T, θ)Xt) (7.69)

where A(·) and B(·) satisfy the following system of complex-valued ordinary differential
equations (ODEs)

∂A(s, t, T, θ)
∂t

= −καB(s, t, T, θ)

− 1
2
σ2(s, t, T, θ) − ω(ϕ(B(s, t, T, θ)) − 1), (7.70)

∂B(s, t, T, θ)
∂t

= κB(s, t, T, θ)

with boundary conditions

A(s, T, T, θ) = 0, B(s, T, T, θ) = is. (7.71)
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Here, the “jump transform” ϕ(B(s, t, T, θ) is given by:

ϕ(B(s, t, T, θ)) = ψ

∞∫
0

exp (B(s, t, T, θ)z)
1
γ

exp
(
−z

γ

)
dz

+ (1 − ψ)

∞∫
0

exp (−B(s, t, T, θ)z)
1
γ

exp
(
−z

γ

)
dz

=
ψ

1 − B(s, t, T, θ)γ
+

1 − ψ

1 + B(s, t, T, θ)γ
(7.72)

Solving (7.69) for A(·) and B(·) and applying the corresponding boundary conditions
yields the following:

A(s, t, T, θ) = iαs(1 − e−κ(T−t)) − σ2s2

4κ

(
1 − e−2κ(T−t)

)
+

iω(1 − 2ψ)
κ

(
arctan(γse−κ(T−t)) − arctan(γs)

)
(7.73)

+
�

2κ
ln
(

1 + γ2s2e−2κ(T−t)

1 + γ2s2

)
B(s, t, T, θ) = ise−κ(T−t)

Model 1b

This model allows for asymmetric upward and downward jumps (see Deng [1999],
discussed previously), each with exponentially distributed jump magnitudes. The logarithm
of the spot price Xt satisfies the SDE

dXt = κ(α − Xt)dt + σdWt + Ju
t dP u

t (ω) + Jd
t dP d

t (ω) (7.74)

where κ is the mean-reversion rate, α is the long-term mean, and Wt is a standard Brow-
nian motion with dWt N(0, dt). The jump behavior of Xt is governed by two types of
jumps: upward jumps and downward jumps. The upward jumps Ju

t are exponentially dis-
tributed with positive mean γu and jump arrival rate ωu. The downward jumps Jd

t are also
exponentially distributed with negative mean γd and jump arrival rate ωd. Again, P u

t and
P d

t are two independent discontinuous, one-dimensional standard Poisson processes with
arrival rate ωu and ωd, respectively.

The transform CCF can be written out as

ϕ(s, θ, XT |Xt) = E[exp(isXT )|Xt]
= exp(A(s, t, T, θ) + B(s, t, T, θ)Xt),
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where A(·) and B(·) satisfy the complex-valued system of ODEs:

∂A(s, t, T, θ)
∂t

= −καB(s, t, T, θ) − 1
2
σ2(s, t, T, θ) − ωu(ϕu(B(s, t, T, θ)) − 1)

− ωd(ϕd(B(s, t, T, θ)) − 1) (7.75)

∂B(s, t, T, θ)
∂t

= κB(s, t, T, θ),

with boundary conditions:

A(s, T, T, θ) = 0, B(s, T, T, θ) = is.

Here, the “jump transform” for the upward jump is given by:

ϕu(B(s, t, T, θ)) =

∞∫
0

exp (B(s, t, T, θ)z)
[

1
γu

exp
(
− z

γu

)]
dz

=
1

1 − B(s, t, T, θ)γu

Similarly, the “jump transform” for the downward jump is given by:

ϕd(B(s, t, T, θ)) =
1

1 − B(s, t, T, θ)γd

After some computations, one can solve for A(·) and B(·), applying the boundary
conditions:

A(s, t, T, θ) = iαs(1 − e−κ(T−t)) − σ2s2

4κ

(
1 − e−2κ(T−t)

)
+

ωu

κ
ln
(

1 − isγue−κ(T−t)

1 − isγu

)
+

ωd

κ
ln
(

1 − isγue−κ(T−t)

1 − isγd

)
(7.76)

B(s, t, T, θ) = ise−κ(T−t).

Model 2a: Time-Varying Drift Component

Model 1 (7.68) is extended by adding a time-varying component in the drift by re-
placing the long-term mean α with a deterministic function α(t). The logarithm of the
electricity spot price is defined by:

dXt = κ(α(t) − Xt)dt + σdWt + JtdPt(ω) (7.77)

The model incorporates on-peak and off-peak effects into the price process by consid-
ering the following form for α(t):

α(t) = α1peakt + α2offpeakt (7.78)
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where

peakt =
{

1 if in on-peak periods
0 otherwise

(7.79)

offpeakt =
{

1 if in off-peak periods
0 otherwise

This is also an affine process. By the same methods, the transform CFF is given by

ϕ(s, θ, XT |Xt) = E[exp(isXT )|Xt]
= exp(A(s, t, T, θ) + B(s, t, T, θ)Xt),

where A(·) and B(·) satisfy the following system of complex-valued ordinary differential
equations (ODEs):

∂A(s, t, T, θ)
∂t

= −καB(s, t, T, θ) − 1
2
σ2(s, t, T, θ) − ω(ϕ(B(s, t, T, θ)) − 1),

(7.80)

∂B(s, t, T, θ)
∂t

= κB(s, t, T, θ),

without boundary conditions:

A(s, T, T, θ) = 0, B(s, T, T, θ) = is.

Solving (7.80) for A(·) and B(·) and applying the corresponding boundary conditions
yields:

A(s, t, T, θ) = iαs(1 − e−κ(T−t)) − σ2s2

4κ

(
1 − e−2κ(T−t)

)
+

iω(1 − 2ψ)
κ

(
arctan(γse−κ(T−t)) − arctan(γs)

)
(7.81)

+
�

2κ
ln
(

1 + γ2s2e−2κ(T−t)

1 + γ2s2

)
B(s, t, T, θ) = ise−κ(T−t)

Here, let t = t0 < t1 < · · · < tN = T ; then we have

L(s, t, T, θ) =

T∫
t

κα(t)ise−κ(T−t)dt

= is

N∑
j=1

αe−κ(T−tj)(1 − e−κ(tj−tj−1)), (7.82)

where

α =
{

α1 α1 if [tj−1, tj] is in on-peak periods
α2 otherwise

(7.83)
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Model 2b: Time-Varying Version of Model 1b

Consider the time-varying extension to Model 1b (7.77), where

dXt = κ(α(t) − Xt)dt + σdWt + Ju
t dP u

t (ω) + Jd
t dP d

t (ω) (7.84)

where α(t) is defined in (7.78).
Similar to the previous models, the transform CCF is of the form

ϕ(s, θ, XT |Xt) = E[exp(isXT )|Xt]
= exp(A(s, t, T, θ) + B(s, t, T, θ)Xt),

where

A(s, t, T, θ) = iαs(1 − e−κ(T−t)) − σ2s2

4κ

(
1 − e−2κ(T−t)

)
+

ωu

κ
ln
(

1 − isγue−κ(T−t)

1 − isγu

)
+

ωd

κ
ln
(

1 − isγue−κ(T−t)

1 − isγd

)
(7.85)

B(s, t, T, θ) = ise−κ(T−t).

with L(s, t, T, θ) defined in equation (7.82).

7.11 STOCHASTIC VOLATILITY PRICING MODELS

Jumps alone are inadequate to replicate the level of skewness present in electricity
prices. Kaminski (1997) and Deng (1999) emphasize the need to incorporate stochastic
volatility in the modeling of electricity spot prices. Volatility in electric prices varies over
time and is likely mean-reverting itself (see Goto and Karolyi [2003]). To capture stochas-
tic volatility, various two-factor stochastic volatility models have been proposed by Deng
(1999), Xiong (2004), and Villaplana (2002). We consider the two-factor affine process to
model electricity spot prices.

Model 3a: Two-Factor Jump-Diffusion Affine Process with
Stochastic Volatility

Let Xt be the logarithm of the spot price of electricity and Vt be the volatility of the
price process, which evolves stochastically over time.

d

[
Xt

Vt

]
=
[

κ(α − Xt)
κv(αv − Vt)

]
dt

+
[ √

(1 − ρ2)Vt ρ
√

Vt

0 σv

√
Vt

][
dWt

dWv

]
+
[

JtdPt(ω)
0

] (7.86)

where κ is the mean-reversion rate, α is the long-term mean of the log prices, Pt is a dis-
continuous, one-dimensional standard Poisson process with arrival rate ω, the amplitude of
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Jt is exponentially distributed with mean γ, and the sign of Jt is distributed as a Bernoulli
random variable with parameter ψ. The two random variables Wt and Wv are two standard
Brownian motions with correlation ρ. Also, κv is the mean-reversion rate of the volatility
Vt, αv is the long-term mean of Vt, and σv is the volatility of Vt.

Suppose that the jump component in the logarithm of the spot price is defined as in
Model 1a and Model 2a. Then, the “jump transform” is given by:

ϕ

([
A(·)
B(·)

])
=

∞∫
0

(ψ exp(A(·)z) + (1 − ψ) exp(−A(·)z)
1
γ

exp
(
−z

γ

)
dz

=
ψ

1 − A(·)γ +
1 − ψ

1 + A(·)γ (7.87)

The CCF is of the form

ϕ(sx, sv, θ, XT , VT |Xt, Vt)

= Eθ[exp(isxXT + isvVT )|Xt, Vt]
= exp(A(sx, sv, t, T, θ)Xt + B(sx, sv, t, T, θ)Vt + C(sx, sv, t, T, θ)),

where A(·), B(·), and C(·) satisfy the following complex-valued Riccati equations:

∂A(·)
∂t = κA(·),

∂B(·)
∂t = κvB(·)

−1
2A(·)(A(·) + ρσvB(·)) − 1

2B(·)(A(·)ρσv + B(·)σ2
v)

∂C(·)
∂t = −καA(·) − κvαvB(·) − ω(ϕ

([
A(·)
B(·)

]
− 1

) (7.88)

with boundary conditions:

A(sx, sv, T, T, θ) = isx, B(sx, sv, T, T, θ) = isv C(sx, sv, T, T, θ) = 0.

We can solve the first equation for A(·) and apply the initial conditions to obtain:

A(·) = isxe−κ(T−t)

However, because there are not closed-form solutions for B(·) and C(·), we need to
solve them numerically.

7.12 MODEL PARAMETER ESTIMATION

Following the work of Xiong (2004),39 we discuss how to estimate the parameters of
the models. Affine processes are flexible enough to allow us to capture the special charac-
teristics of electricity prices, such as mean-reversion, seasonality, and “spikes.” Moreover,
under suitable regularity conditions, one can explore the information from the CCF of
discretely sampled observations to develop computationally tractable and asymptotically
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efficient estimators of the parameters of affine processes. Moreover, the CCF is unique
and contains the same information as the conditional density function through the Fourier
transform. We can use it to recover the conditional density function via the Fourier trans-
form and implement a usual maximum likelihood (ML) estimation. This is the approach
of ML-CCF estimation. If the N -dimensional state variables are all observable, ML-CCF
estimation can be implemented, and so obtained ML-CCF estimators are asymptotically
efficient (see Singleton [2001]).

The estimation, however, can be costly in higher dimensions (N ≥ 2) because we
need to compute the multivariate Fourier inversions repeatedly and accurately in order to
maximize the likelihood function. According to Singleton (2001), considerable compu-
tational saving can be achieved by using limited-information ML-CCF (LML-CFF) esti-
mation (see Singleton [2001]). Suppose {Xt, t = 1, 2, ...} is a set of discretely sampled
observations of an N -dimensional state variable with a joint CCF φ(s, θ, Xt+1|Xt). Let
ηj denote an N -dimensional selection vector where the jth entry is 1 and zeros elsewhere.
Define Xj

t+1 = ηj · Xt+1; then the conditional density of Xj
t+1 conditioned on Xt is the

inverse Fourier transform of φ(ξηj , θ, Xt+1|Xt) with some scalar ξ:

fj(X
j
t+1, θ|Xt) =

1
2π

∫



φ(ξηj , θ, Xt+1|Xt)e−iξη′
jXt+1ds (7.89)

The basic idea behind this is to exploit the information in fj(X
j
t+1, θ|Xt) instead of

information in the joint conditional density function:

f(Xt+1 , θ|Xt) =
1

(2π)N

∫

N

φ(s, θ, Xt+1|Xt)e−is′Xt+1ds (7.90)

Thus, the estimation involves at most N one-dimensional integrations instead of do-
ing a N -dimensional integration. The estimators obtained are called LML-CCF estimators.
Although the LML-CCF estimators do not exploit any information about the joint condi-
tional density function, they are typically more efficient than the quasi-maximum likelihood
(QML) estimators for affine diffusions (see Singleton [2001]).

But for those multi-factor models with unobservable (latent) state variables such as
stochastic volatility models, the ML-CCF or LML-CCF estimators cannot be obtained.
However, several papers discuss the methodologies related to CCF-based estimators of
stochastic volatility models. Singleton (1999) proposed a Simulated Method of Moments
(SMM-CCF) estimator; Jiang and Knight (1999) explored the Moment of System of Mo-
ments (MSM) estimators; Chacko and Viceira (2001) considered the so-called Spectral
Generalized Method of Moments (SGMM). SGMM is more computationally tractable than
the others (see Singleton [2001]). To deal with stochastic volatility models, Chacko and
Viceira (2001) derive stationary (unconditional) characteristic function40 from the CCF of
the volatility, and utilized this CCF to obtain a so-called marginal CCF. An ML type esti-
mation based on the so-called marginal CCF (ML-MCCF) to estimate stochastic volatility
models is applied. Furthermore, SGMM estimators based on the so-called marginal CCF
to estimate stochastic volatility models are introduced.
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ML-CCF Estimators

ML estimation is the most common method of estimating the parameters of stochastic
processes if the probability density has an analytical form. It provides a consistent approach
to parameter estimation problems, and ML estimators become minimum variance unbiased
estimators as the sample size increases. Suppose that X is an N -dimensional continuous
random variable with probability density function f(X, θ) where θ = {θ1, ..., θk} are k
unknown constant parameters that need to be estimated. Given a sequence of observations
{Xt} sampled at t = 1, 2, ..., n, the log likelihood function at the sample is given by:

L(X1, ..., Xn, θ) =
n∑

t=1

lnf(Xt, θ) (7.91)

The maximum likelihood based estimators of θ are obtained by maximizing L(·)

θ̂ml = arg max
θ

L(X1, . . . , Xn, θ) = arg max
θ

n∑
t=1

ln(f(Xt, θ)). (7.92)

For models we adopt, the CCF, φ(s, θ, Xt+1|Xt), of the sample is known, often in
closed-form, as an exponential of an affine function of Xt. Thus, the conditional density
function of Xt+1 given Xt can be obtained by the Fourier transform of the CCF:

f(Xt+1 , θ|Xt) =
1

(2π)N

∫

N

φ(s, θ, Xt+1|Xt)e−is′Xt+1ds (7.93)

We can use the standard ML estimation based on this conditional density function to
obtain ML-CCF estimators of the sample as:

θ̂CCF = arg max
θ

n∑
t=1

ln(f(Xt+1 , θ|Xt)) (7.94)

Take Model 1a (7.65) as an example. The conditional density function of Xt+1 given
Xt of the sample is of the form:

f(Xt+1 , θ|Xt) =
1
2π

∞∫
−∞

φ(s, θ, Xt+1|Xt)e−isXt+1ds (7.95)

=
1
2π

∞∫
−∞

e−isYth(θ, s)ds,

where

Yt = (Xt+1 − α) − e−κ(Xt − α), (7.96)
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and

h(θ, s) = exp
(
−σ2s2

4κ
(1 − e−2κ) +

iω(1 − 2ψ)
κ

(arctan(γse−κ) − arctan(λs)
)

+
ω

2κ
ln
(

1 + γ2s2e−2κ

1 + γ2s2

)
(7.97)

To assist in computing this integral (7.95), we define:

F (Yt, θ) = f(Xt+1 , θ|Xt) =
1
2π

lim
R→∞

R∫
−R

e−isYth(θ, s)ds. (7.98)

Notice that |h(θ, s)| is continuous in s and |h(θ, s)| ≤ −σ2s2

4κ
(1− e−2κ). Thus, we can

truncate the integral to finite interval [−R, R] outside of which the function h(θ, s) to be
integrated is negligibly small. Then, for this choice of R,

F (Yt, θ) ≈
1
2π

R∫
−R

e−isYth(θ, s)ds. (7.99)

Also, we can discretize Yt into M subintervals such that41

Yn = n∆Yt = n

(
Yt

M

)
,

sk = k∆s = k

(
R

M

)
,

F (Yt, θ) ≈
1
2π

R

M

M−1′∑
n=−M

(e−ink
RYt
M h(θ,

nR

M
)). (7.100)

If we arrange RYt

M = 2π, then we have

F (Yt, θ) ≈
1
2π

R

M

M−1′∑
n=−M

(e−ink 2π
M h(θ,

nR

M
)). (7.101)

We can approximate F (Yt, θ) by the discrete Fourier transform (DFT) of h(θ, nR
M

),
and the integral in equation (7.95) can be estimated on a suitable grid of s values by a Fast
Fourier transform (FFT) algorithm.

ML-MCCF Estimators

ML-CCF estimators are asymptotically efficient if all of the state variables are observ-
able. But for those multi-factor models with unobservable state variables such as Model
3a and Model 3b, ML-CCF estimators cannot be obtained directly. If option prices are
available, implied volatilities can be calculated from option prices observed in the market.
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Various numerical methods have been proposed for estimating implied volatility functions
from option prices (see Dupire [1994], Coleman, Li, and Verma [1999], and Hamida and
Cont [2004]). Then one can use those values as the data of volatilities and implement ML-
CCF estimation.

But in our case, option prices are not available. Following Chacko and Viceira (2001),
we can integrate the unobservable variable (volatility) from the joint CCF of the log price
and the volatility, and set sv = 0, but also need to utilize the volatility information (not
workable in our case). Singleton’s SMM method integrates out the unobservable variables
in the CCF by simulation. This requires a huge number of simulated paths of the volatil-
ity and can be quite time-consuming. Furthermore, this induces an estimation bias due
to the discretization used in the simulation (see Chacko and Viceira [2001]). Meanwhile,
compared to the SGMM method that will be introduced, ML-MCCF estimation avoids the
so-called ad-hoc moment conditions selection problem and is easier to implement ease of
stochastic volatility models.

Take Model 3a as an example. Recall that the volatility follows a square-root process
such as

dVt = κv(αv − Vt)dt + σv

√
VtdWv. (7.102)

The infinitesimal generator of the square-root process is

Lf(v) =
σ2

vv

2
∂2f

∂v2
+ κv(αv − v)

∂f

∂v
. (7.103)

Let µt be the distribution function of and then it solves the forward Kolmogorov equa-
tion (7.103):

µt(Lf) =
d

dt
µt(f) (7.104)

with µt(f) =
∫

f(v)dµt .
In particular, let µ be the stationary characteristic function of the volatility. In this case,

with f(v) = eiuv and µ̂(u) = µ(eiuv) we have

Leiuv = −σ2
vv

2
u2eiuv + iκv(αv − v)ueiuv (7.105)

= (iv(
iσ2

vu2

2
− κvu) + iκvαvu)eiuv

and

µ(Leiuv) = (
iσ2

vu2

2
− κvu)

∫
iveivudu + iκvαvu

∫
eiuvdu (7.106)

=
(

iσ2
vu2

2
− κvu

)
dµ̂(u)

du
+ iκvαvuµ̂(u)

Because dµ(·)
dt = 0, we have(

iσ2
vu2

2
− κvu

)
dµ̂(u)

du
+ iκvαvµ̂(u) = 0 (7.107)
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with µ̂(0) = 1. Then the solution for (7.107) has the form

µ̂ =
(

1 − iuσ2
v

sκv

)−2κvαv/σ2
v

. (7.108)

Recall that the joint CCF of the log price and volatility in this model is defined as

φ(sx, sv, θ, XT , VT |Xt, Vt)
= exp (A(sx, sv, t, T, θ)Xt + B(sx, sv, t, T, θ)Vt + C(sx, sv, t, T, θ))

where A(·), B(·), and C(·) are the solutions of system (equation (7.88)). As the stochas-
tic volatility Vt is unobservable, we cannot estimate the parameters of stochastic models
directly from the joint CCF of the log price and volatility. Let’s define the marginal CCF as

φ(sx, θ, XT |Xt)

=

∞∫
0

φ(sx, 0, θ, XT , VT |Xt, Vt)dµ (7.109)

= eA(sx,0,t,T,θ)Xt+C(sx,0,t,T,θ)

∞∫
0

eB(sx,0,t,T,θ)Vtdµ

= eA(sx,0,t,T,θ)Xt+C(sx,0,t,T,θ)µ̂(−iB(sx , 0, t, T, θ))

Applying equation (7.108), we obtain the marginal CCF of the form

φ(sx, θ, XT |Xt) = eA(sx,0,t,T,θ)Xt+C(sx,0,t,T,θ) ·

(1 − B(sx, 0, t, T, θ)σ2
v

2κv
)−2κvαv/σ2

v .
(7.110)

Through the Fourier transform, the marginal conditional density function is given by

f(Xt+1 , θ|Xt) =
1
2π

∫



φ(sx, θ, Xt+1|Xt)e−isxXt+1ds. (7.111)

Then, given a sample {Xt, t = 1, ..., n}, one can implement the maximum likelihood
estimation based on this marginal distribution of the observed variables (electricity prices),
and obtain ML-MCCF estimators as

θMCCF = arg max
θ

n−1∑
t=1

ln f(Xt+1 , θ|Xt). (7.112)

Note that because we only rely on the level of the electricity prices in the previous
period, we lose efficiency. And the point estimates (including the SGMM estimators to be
discussed), as pointed out by Chacko and Viceira (2001), are biased and inconsistent. In
addition, the theoretical value for the bias is hard to calculate as we don’t have closed forms
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for B(·) and C(·). Following Chacko and Viceira (2001), we try to correct the bias by a
bootstrap method. In particular, we simulate 500 paths with a given parameter θ0. For each
path, there are 19,704 hourly observations (same length as the actual data). The estimates θ̂,
i = 1, ..., n, obtained from the simulated paths, result in a distribution for each parameter.
We will regard the difference between the mean of those estimates and the given parameter
as the bias—i.e.,

bias = θ0 − 1
n

n∑
i=1

θ̂i, (7.113)

with n = 500 in our setting.42

Spectral GMM Estimators

We describe the SGMM estimators constructed by Chacko and Viceira (2001). This
method is essentially GMM in a complex variable setting. GMM estimation is one of the
most fundamental estimation methods in statistics and econometrics (see Hansen [1982]).
Unlike ML estimation, which requires the complete specification of the model and its prob-
ability distribution, full knowledge of the specification and strong distributional assump-
tions are not required for GMM estimation. GMM estimators are best suited to study mod-
els that are only partially specified, and they are attractive alternatives to likelihood-type
estimators.
Definition 1: Suppose that we have a set of random variables {xt, t = 1, 2, ...}. Let θ =
θ1, ..., θk be an unknown tuple with true value θ0 to be estimated; θ0, θ in some parameter
space Θ. Then, the q-dimensional vector of functions m(xt, θ) is called an (unconditional)
moment function if the following moment conditions hold:

E[m(xt, θ0)] = 0. (7.114)

Notice that θ is a k-tuple vector and E[m(xt, θ0)] = 0 consists of q equations. If we
have as many moment conditions as parameters to be estimated (q = k), we can simply
solve the k equations in k unknowns to obtain the estimates. If we have fewer moment
conditions than unknowns (q < k) , then we cannot identify θ. In this case, we can “create”
more moment conditions by the so-called weighting functions (often termed “instruments”
in the GMM literature; see Matyas [1999]). If we have more functions than unknowns
(q > k), then this is an over-identified problem. Such cases of over-identification can
easily arise, and the moment estimator is not well-defined. Different choices of moment
conditions may lead to different estimates. GMM is a method to solve this kind of over-
identification problem.

Consider the standard linear regression model as an example:

y = x′θ0 + ε. (7.115)

Here y is the response variable, x = [x1, x2, · · · , xk]′ is a k-dimensional vector of
regressors, x′ is its transpose, and θ = [θ1, ...., θk]′ is the unknown vector of parameters
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with true value θ0. We assume that ε has zero expectation and is uncorrelated with x. Using
the law of iterated expectations, we find that

E[xε] = E[E[xε|x]] = E[xE[ε|x]] = 0. (7.116)

Therefore, we can have the moment functions m((x, y), θ) = x(y − x′θ). These mo-
ment functions are well defined, because, by the assumptions

E[m((x, y), θ0)] = E[x(y − x′θ0)] = E[xε] = 0. (7.117)

Suppose n > k observations on the response variable are available—say y1, y2, ..., yn.
Along with each observed response yt, we have a k-dimensional observation vector of
regressors xt. We have exactly as many moment conditions as parameters to be estimated,
because xt is a k-dimensional vector. If we assume that the strong law of large numbers
hold, then we have

1
n

n∑
t=1

m((x, y), θ̂0) → E[m((x, y), θ0] = 0, almost surely.

So the method of moments (MM) estimator for this model is just the solution of

1
n

n∑
t=1

xt(yt − xt
′θ̂n) = 0 (7.118)

which gives

θ̂n =

(
n∑

t=1

xtxt
′
)−1 n∑

t=1

xty = (X′X)−1X′y (7.119)

with X = [x1, ..., xn] and y = [y1, ..., yn]′. Thus, the ordinary least squares (OLS) esti-
mator is a MM estimator.

Notice that we specified relatively little information about the error term ε. For ML
estimation, we would be required to give the distribution of the error term ε, as well as
the autocorrelation and heteroskedasticity, which are also not required in formulating the
moments conditions.

Now instead of assuming that the error term has zero expectation on certain observed
variables, we can specify the moment conditions directly by requiring the error term to
be uncorrelated with certain observed “instruments.” Let’s consider the previous model
again. This time, we do not assume the error term has zero expectation, but that it is still
uncorrelated to the regressors. Suppose we have a q-dimensional observed instrument z,
(q > k) and E[zε] = 0. Thus, we have the moment conditions

E[zε] = E[z(y − x′θ0)] = 0, (7.120)

and the moment functions

m((x, y, z), θ) = z(y − x′θ). (7.121)
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If q = k, then this is also a well-defined problem. Let zt denote the corresponding k-
dimensional observation vector of instrument to yt. We assume that the strong law of large
numbers holds, so that we have

1
n

n∑
t=1

m((xt, y, zt), θ̂0) → E[m((x, y, z)θ0] = 0, almost surely. (7.122)

Therefore, we solve

1
n

n∑
t=1

z(y − x′θ̂t) = 0 (7.123)

which gives

θ̂n =

(
n∑

t=1

ztxt
′
)−1 n∑

t=1

zty = (Z′X)−1Z′y (7.124)

with Z = [z1, ..., zn].
The definition of the CCF of sample implied that

E[exp(is · XT ) − φ(s, θ, XT |Xt)] = 0, s ∈ �n. (7.125)

By taking real and imaginary parts of this function, we get the following pair of moment
conditions:

E[Re(exp(is ·XT ) − φ(s, θ, XT |Xt))] = 0,

E[Im(exp(is ·XT ) − φ(s, θ, XT |Xt))] = 0. (7.126)

Thus, we can define a set of moment functions

m(s, θ, XT , Xt) = εt(s, θ, XT , Xt) =
[

εRe
t (s, θ, XT , Xt)

εIm
t (s, θ, XT , Xt)

]
,

εRe
t (s, θ, XT , Xt) = Re(εt(s, θ, XT , Xt)) = Re(exp(is · XT ) − φ(s, θ, XT |Xt)),

εIm
t (s, θ, XT , Xt) = Im(εt(s, θ, XT , Xt)) = Im(exp(is · XT ) − φ(s, θ, XT |Xt)).

More generally, we can add a set of “instruments” or “weighting functions” to obtain
more restrictions. So we can define the moment function based on the CCF as43

m(s, θ, XT , Xt) = εt(s, θ, XT , Xt) ⊗ p(Xt),

where p(Xt) are “instruments” independent of εt(s, θ, XT , Xt) and ⊗ is the Kronecker
product. The SGMM estimator is of the form:

θ̂SGMM = arg min
θ

[
1
n

n∑
t=1

m(s, θ, XT , Xt)

]′

Wn

[
1
n

n∑
t=1

m(s, θ, XT , Xt)

]
,

θ ∈ Θ.
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Just as for other GMM estimators, the asymptotic variance of the SGMM estimator
is minimized with the optimal weighting matrix Wn = S−1, where S is the covariance
matrix of the moment functions (see Chacko and Viceira [2001]). Under the usual regularity
conditions, according to Chacko and Viceira (2001), the SGMM estimator, θ̂SGMM, inherits
the optimality properties of GMM estimators such as consistency and asymptotic normality
(see Hansen [1982]).

We can now apply SGMM to estimate stochastic volatility models like Model 3a and
Model 3b. Recall that the marginal CCF of the sample is given by

φ(sx, θ, Xt+1|Xt)

= eA(sx,0,t,θ)Xt+C(sx,0,t,θ)(1 − B(sx, 0, t, θ)σ2
v

2κv
)−2κvαv/σ2

v

(7.127)

where A(·), B(·), and C(·) are the solutions of system (7.88) for Model 3a and Model 3b,
respectively. Given a sample {Xt, t = 1, ..., T}, we have moment functions as follows:

m(sx, Xt, θ) = εt(sx, Xt, θ) =
[

εRe
t (sx, Xt, θ)

εIm
t (sx, Xt, θ)

]
, (7.128)

εRe
t (sx, Xt, θ) = (cos(sxXt+1) − Re(φ(sx, 0, Xt+1|Xt))) ⊗ p(Xt),

εIm
t (sx, Xt, θ) = (sin(sxXt+1) − Im(φ(sx, 0, Xt+1|Xt))) ⊗ p(Xt).

with φ(sx, 0, Xt+1|Xt) defined as equation (7.127). Following Chacko and Viceira (2001),
we can compute the n-th conditional moment by simple substitution sx = n into equation
(7.128).

In order to construct the moment functions, Xiong (2004) uses the first six spectral mo-
ments by setting sx = 1, 2, ..., 6 and p(Xt) as a T -dimensional vector of 1s. The estimates
are biased and inconsistent (see Matyas [1999]). Using this methodology, Xiong finds the
parameter estimates for Model 3a, shown in Table 7.5.

Table 7.5

Source: Xiong (2004).
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Simulation

Figure 7.14 shows the peak electricity prices (EP) superimposed by simulation paths
for Model 1b. The plot also includes a sample plot of peak electricity prices, one typical
simulated path, the 95% quantile, and 5% quantile of the simulation.

Figure 7.15 shows the offpeak EP superimposed by simulation paths for Model 1b. The
plot also includes a sample plot of peak electricity prices, one typical simulated path, the
95% quantile, and 5% quantile of the simulation.

Figures 7.16 and 7.17 show a comparison of simulated price processes with Peak EP
(Model 1b) and offpeak EP (Model 1b), respectively Note that the histogram in Figure
7.16 is of the change of the deseasonalized peak EP, and the histogram in Figure 7.17 is of
the change of the deseasonalized offpeak EP. The overlaid black line is the corresponding
distribution of the log returns of one typical simulated path. Note that this model underes-
timates the number of small changes and overestimates the medium-sized changes.
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Figure 7.14 Source: Xiong (2004). Reproduced with permission.
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Figure 7.15 Source: Xiong (2004). Reproduced with permission.
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Figure 7.16 Source: Xiong (2004). Reproduced with permission.
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Figure 7.17 Source: Xiong (2004). Reproduced with permission.

7.13 PARAMETER ESTIMATION IN MATLAB

Refer to Appendix B to see the full listing of the Matlab code, written by Lei Xiong
and Anthony Ware, that estimates the model parameters using the maximum likelihood
methodology from Xiong (2004) given in the previous section. The market data Xiong and
Ware used to calibrate and estimate the model parameters (stored in the array and used in
the functions) is from the Alberta Nordic Pool (but not provided).

7.14 ENERGY COMMODITY MODELS

A common mean-reverting model used to model energy commodity prices for instru-
ments like the crack spread contract44 is the Schwartz-Ross model:

dSt = α(L − lnSt)Stdt + σStdWt (7.129)

where Wt is a standard Brownian motion, and α, L, and σ are all positive constant numbers.
In this model, St mean reverts to the long-term mean L̂ = eL. Applying Ito’s lemma for
Xt = ln St, we have

dXt = α(L − σ2

2α
− Xt)dt + σdWt (7.130)

which is an Ornstein-Uhlenbeck process. Rather than reversion to the long-term mean of
the logarithm of the price, reversion to the price level itself can be modeled by the Dixit-
Pinkyck model:

dSt = α(L − St)Stdt + σStdWt (7.131)
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where Wt is a standard Brownian motion, and α, L, and σ are all positive constant numbers.
Each of these parameters could be made time-varying and stochastic.

In contrast to other types of commodity prices like sugar and gold, energy commodity
prices show no discernable trends. As shown in Figure 7.18, spot prices for crude oil (West
Texas Intermediate at Cushing, Oklahoma), heating oil (New York Harbor), unleaded gaso-
line (New York Harbor), and natural gas (Henry Hub, LA) appear to fluctuate randomly.

Heating oil and gasoline prices tend to move with the crude oil prices, while spot mar-
kets of natural gas (discussed in the next section) peak periodically with no obvious warn-
ing. In general, energy commodities also have higher volatility than other types of com-
modities. Electricity commodities have the highest volatility, while financial commodities
have the lowest, as shown in Figure 7.19, which displays the average annual historical spot
market price volatility for various commodities from 1992 to 2001.

We can use these volatility estimates for σ in models (7.129) to (7.131).
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Figure 7.18 Source: Commodity Futures Trading Commission (see Energy Information Adminis-
tration/Derivatives and Risk Management in Energy Industries, U.S. Dept. of Energy, (2002), pg. 10).
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Commodity Market Period
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Figure 7.19 Source: Energy Information Administration/Derivatives and Risk Management in the
Energy Industries, U.S. Dept. of Energy (2002).

7.15 NATURAL GAS

Natural Gas Markets

Natural gas is an important energy resource that consumers often demand and use as a
cheaper alternative to other energy resources like electricity. The main use of natural gas45

is in heating, power generation, as a household fuel, and as a chemical feedstock. Natural
gas accounts for about a quarter of total energy consumption in North America. The dereg-
ulation of the natural gas industry in North America with the enactment of the American
Natural Gas Policy Act of 1978 has led to a dynamic, highly competitive market with fluc-
tuating prices. Before price deregulation, the market for domestic oil and gas derivatives
was limited. Under price regulation, the U.S. Department of Energy (DOE), the Federal
Energy Regulatory Commission (FERC), and the State public utility commissions (PUCs)
directly or indirectly controlled the prices of domestic crude oil, petroleum products, well-
head natural gas, pipeline transmission, and retail gas service.
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As a result of this deregulated environment, market participants like natural gas pro-
ducers found themselves exposed to volatile price movements and to counterparty per-
formance risk, which led to a substantial increase in the need for risk management. This
in turn, led to the development of spot and forward markets in natural gas. As a result,
the New York Mercantile Exchange (NYMEX) launched the world’s first natural gas fu-
tures contract in April 1990. Since then, gas futures contracts have been widely used to
hedge against price fluctuations in this volatile market. The standardization of contract
terms, relatively small contract size, fungibility, lack of requirement of physical delivery,
and rigorous performance requirements attracted many market participants like natural gas
producers, marketers, processors, utilities, and end users, as well as speculators. Volume
and open interest have grown rapidly establishing the gas contract as the fastest-growing
instrument in NYMEX history. In 2002, the daily average volume of NYMEX market ex-
ceeded 97,000 contracts, which involves several times the average daily consumption of
gas in North America. Figure 7.20 shows the major pricing points (hubs) for natural gas in
the U.S. The Henry Hub in Louisiana is one the major hubs.

World trade in natural gas is divided among major regional markets dominated by
pipeline infrastructures that provide the means of transporting the gas from producers to
consumers and a single worldwide market for liquefied natural gas (LNG). The United
States is the largest pipeline gas market. In 2000, the United States produced 19.3 trillion
cubic feet of natural gas and consumed 23 trillion cubic feet. The supply gap was covered

Figure 7.20 Source: Energy Information Administration/ Derivatives and Risk Management in
Energy Industries, U.S. Department of Energy (2002), pg. 19.
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by 3.2 trillion cubic feet of imports from Canada and 0.5 trillion cubic feet of LNG from
the world market. The European countries produced 10.5 trillion cubic feet and consumed
16.2 trillion cubic feet, with the supply gap covered by Russian imports and small amounts
of imported LNG. Russia was the world’s largest producer of natural gas in 2000 at 20.3
trillion cubic feet, followed by the United States and Canada. Major exporters of LNG are
Indonesia, Malaysia, Australia, Qatar, Oman, Nigeria, and Trinidad. Japan is the largest
importer of LNG.

Natural gas, like electricity, is a network industry in the sense that all suppliers and
users are linked by the physical distribution system for the commodity. Pipelines have
no effective competition for moving gas within the United States. Figure 7.20 shows the
general locations served by major pipelines and several of the spot markets (pricing points)
that have emerged at major trans-shipment points (hubs).

Location arbitrage does not work as well for natural gas and electricity as it does for
crude oil. Because gas pipelines and power lines have essentially no competitors, frustrated
customers cannot buy supplies “off system.” In addition, it is difficult to achieve compet-
itive transmission pricing. Consequently, transmission charges are set in noncompetitive
markets, with the result that arbitrary price differences between and across markets, not
based on marginal costs, can persist in more or less independent, local markets.

Natural Gas Spot Prices

There are a number of fundamental factors that drive complex gas price behavior, in-
cluding extraction, storage, transport, weather, policies, technological advances, and so on.
Figure 7.21 illustrates the plot of daily gas spot prices, which are measured in dollars per
million British thermal units (MMBTU), at the Henry Hub in Louisiana, one of the largest
hubs in the U.S., from January 2, 1992 to December 30, 1999.

There are several important properties associated with the behavior of gas spot prices.
Like electricity prices, gas prices exhibit mean-reversion. In addition, while prices move up
and down frequently, they actually oscillate around an equilibrium level from the point of
long-term view, which is the effect of mean-reversion.46 The mean-reversion in natural gas
appears to be correlated with the reaction of the market to events such as floods, summer
heat waves, and other news-making events, which can create new and unexpected supply-
and-demand imbalances in the market. A correction to either the supply side, to match the
demand side, or the actual dissipation of the event, such as the temperatures reverting to
their average seasonal levels, tends to cause the natural gas prices to come back to their
average levels.47 The speed of mean-reversion depends on how quickly it takes for supply
and demand to return to a balanced state or for the events to dissipate. The long-term mean
around which the prices oscillate is determined by the cost of production and the normal
level of demand.48

Seasonality is also an important property of gas prices. Seasonality results primarily
from regular demand fluctuations, which are driven by recurring weather-related factors.
As we know, natural gas is a primary residential and commercial space heating fuel and
is used increasingly as a fuel for electricity generation. The cold winter weather results in
above-average consumption of natural gas, while in some hot summers, demand increases
for power generation to run air conditioning and other cooling devices.49 On the other hand,
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Figure 7.21 Source: Xu (2004). Reproduced with permission.

“the difficulty of storage and the limitation of transmission capacity make the supply side
not elastic enough to match the suddenly increased demand side very quickly.”50

7.16 GAS PRICING MODELS

We can model gas prices similar to electricity prices. Consider gas spot prices as the
sum of a seasonal term f(t) and an unseasonalized state term Xt, where Xt follows a one-
factor mean reverting process with constant long-term mean and time-dependent volatility.

One-Factor Model

Following Xu (2004), let

St = f(t) + Xt (7.132)

where

f(t) = bt +
N∑

i=1

βi cos
(

2πit

365

)
+ νi sin

(
2πit

365

)
(7.133)

and

dXt = α(L − Xt)dt + σ(t)Xr
t dWt (7.134)
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where

σ(t) = exp

c +
K∑

j=1

λj cos
(

2πit

365

)
+ ωj sin

(
2πjt

365

)
where Wt is a Brownian motion, r = 0, 1

2 , or 1, and b, β′
is, v′is, α, L, c, λ′

js, and ω′
is are

all constant. The volatility term σ(t) is of an exponential form in order to ensure that it is
positive. The linear term bt in f(t) contributes to capture the tendency of the prices. The
sine and cosine function in f(t) and σ(t) make them move up and down periodically as
seasons change. Furthermore, the trigonometric functions corresponding to N = 1 and
K = 1 capture the annual seasonality, because the period of these functions is 365, the
number of days in the year; the trigonometric functions corresponding to N = 2 and
K = 2 capture the semiannual seasonality, because the period of these functions is half a
year.

Using Henry Hub prices from January 2, 1992 to December 30, 1999, Xu (2004) esti-
mates the parameters of the one-factor model without seasonality using maximum likeli-
hood estimation, as shown in Table 7.6.

Table 7.6
Model 1 Model 2

r = 0 r = 1/2

α 0.0181 0.0139

L 2.1441 2.1526

σ 0.0870 0.0549

Source: Xu (2004).

Two-Factor Model

Consider a system of SDEs describing these models:{
dSt = α(Lt − St)dt + σSr

t dW 1
t

dLt = µ(γ − Lt)dt + τLr
tdW 2

t
(7.135)

where α, σ, µ, γ, and τ are constant and r = 0, 1
2 , or 1. We assume that the Wiener

processes dW 1
t and dW 2

t are uncorrelated. In this two-factor model, the natural gas spot
price long-term mean is a random variable that follows its own mean-reverting process
rather than geometric Brownian motion. Seasonality can be incorporated into this model.
The gas spot price can be viewed as the sum of a seasonal term f(t) and an unseasonalized
state term Xt, which follows a two-factor mean-reverting process.

Mathematically, let

St = f(t) + Xt

where

f(t) = bt +
N∑

i=1

βi cos
(

2πit

365

)
+ ηi sin

(
2πit

365

)
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and Xt follows a mean-reverting process described by{
dSt = α(Lt − St)dt + σ(t)Sr

t dW 1
t

dLt = µ(γ − Lt)dt + τLr
t dW 2

t

where

σ(t) = exp

c +
K∑

j=1

λj cos
(

2πit

365

)
+ ωj sin

(
2πjt

365

) .

In the preceding equations, W i
t ’s are Wiener processes, r = 0, 1

2
, or 1, and b, βi’s, ηi’s,

α, µ, γ, τ , c, λj’s, and ωj ’s are all constant, while N and K are positive integers.
To price futures contracts on natural gas, we take the expectation of (7.135) under the

risk-neutral measure:{
dSt = α̃(Lt − St)dt + σ

√
StdW 1

t

dLt = µ̃(γ − Lt)dt + τ
√

LtdW 2
t

where α̃, µ̃, and γ̃ are the risk-neutral parameters, and we assume a square root process
(r = 1/2). We then find that{

dS̄t = α̃(L̄t − S̄t)dt
dL̄t = µ̃(γ̃ − L̄t)dt

(7.136)

where S̄t and L̄t are the expectation values of St and Lt at time t respectively. Solving the
second ODE for L̄t with boundary condition that at t = t0, L̄t = Lt0 , we obtain:

L̄t = (Lt0 − γ̃)e�µ(t0−t) + γ̃ (7.137)

Plugging in (7.136) into the first ODE in (7.135) for S̄, with the boundary condition
that at t = t0, S̄t = St0 , we obtain that

S̄t = St0e
�α(t0−t) +

α̃

α̃ − µ̃
(Lt0 − γ̃)(e�µ(t0−t) − e�α(t0−t)) − γ̃(1 − e�α(t0−t))

= e�α(t−T )St0 +
α̃

α̃ − µ̃
(e�µ(t0−t) − e�α(t0−t))Lt0 +

µ̃γ̃

α̃ − µ̃
(e�µ(t0−t) − 1) −

µ̃γ̃

α̃ − µ̃
(e�µ(t0−t) − 1).

Because F
�θ(t, T, St) = S̄t, and at initial time t0 = t, S̄t0 = St, and L̄t0 = Lt0 , the gas

futures price under the risk-neutral measure is

F
�θ(t, T, St)

e�α(t−T )St +
α̃

α̃ − µ̃
(e�µ(t−T ) − eα̃(t − T )Lt +

µ̃γ̃

α̃ − µ̃
(e�µ(t−T ) − 1) − µ̃γ̃

α̃ − µ̃
(e�µ(t−T ) − 1). (7.138)
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If seasonality is included, then the futures price is

F
�θ(t, T, St) = f(T ) + e�α(t−T )(St − f(t)) +

α̃

α̃ − µ̃
(e�µ(t−T ) − eα̃(t − T )Lt +

µ̃γ̃

α̃ − µ̃
(e�µ(t−T ) − 1) − µ̃γ̃

α̃ − µ̃
(e�µ(t−T ) − 1). (7.139)

Calibration

To calibrate and estimate the parameters of the model, maximum likelihood estimation
can be used. Calibration is essentially a process of matching the information observed from
the market so that the better the information matched, the more accurate the calibration.
Seasonality can be inferred from the natural gas spot prices and futures prices. To reveal
the seasonal term f(t), a natural idea is to exploit the information in both spot and futures
prices.

One-Factor Model Calibration

Denote the historical spot prices by {St}n
t=1, and the futures prices by {Ft,Tii|t =

1, 2, ..., n; i = 1, 2, ..., m}, where Tti is the ith delivery after t, and m is the number of
futures prices that we can observe at time t. These are the data we can obtain from the
real market. On the other hand, under the assumption that the spot price follows the pro-
cess described by equations (7.132)–(7.134), we have the theoretical futures price function
F
�θ(t, T, St) for a one-factor model with seasonality given by

F
�θ(t, T, St) = e�α(t−T )(St − L̃ − f(t)) + L̃ + f(T ) (7.140)

where t is the observing time, T is the delivery time, and θ̃ is the set of active parameters—
i.e., [b, β1, β2, ..., βN, η1, η2, ..., ηN, α̃, L̃].

To match the real market data to the model, we need to find some appropriate param-
eters to make the theoretical futures prices and the actual futures prices as close as possi-
ble. If the distance between two vectors is defined in Euclidean space, then the estimation
of θ̃ can be obtained by minimizing the sum of the squares of the differences between
F
�Q(t, Tti, St) and Ft,Tii, for t = 1, 2, ..., n; i = 1, 2, ..., m. In particular, we need to solve:

θ̃ = arg min�θ
n∑

t=1

n∑
i=1

(F �θ(t, Tti, St) − Ft,Tti)
2 (7.141)

Xu (2004) estimates the risk-neutral parameters for the one-factor mean-reverting model
with seasonality (r = 0) by minimizing (7.141) using artificial and real data (Henry Hub
prices from January 2, 1992 to December 30, 1999), shown in Table 7.7.

The estimated seasonality parameters for model (7.133) (for r = 0, 1/2, and 1) are
given in Table 7.851 where 0 is used to denote values for some value less than 1e − 10.



“London” — 2006/11/26 — 12:10 — page 394 — #416
�

�

�

�

�

�

�

�

394 Energy and Power Derivatives Chapter 7

Table 7.7

Source: Xu (2004).

Table 7.8

Source: Xu (2004).

Two-Factor Model Calibration

Calibration in a two-factor model is an extension of calibration for a one-factor model.
First, we “excavate” the hidden things, including the seasonal term f(t) and the long-term
mean-reversion factor Lt by matching the actual futures prices with the theoretical futures
prices.52 In this process, we can obtain Xt, parameters for f(t) and some risk-neutralized
parameters. Second, with the known Xt and Lt’s values, we get parameters in these two
stochastic processes by the maximum likelihood (ML) method.53

To find the hidden factor Lt and seasonal term f(t) from futures prices, let

Ai = f(Tii) + e�α(t−Tii)(St − f(t)) +
µ̃γ̃

α̃ − µ̃
(e�µ(t−Tii) − 1)

and

Bi =
α̃

α̃ − µ̃
(e�µ(t−Tii) − e�α(t−Tii).

Then by equation (7.138), we have the futures price function F
�θ(t, Tii, St) = Ai +

BiLt. Notice that the futures price function involves not only [α̃, µ̃, γ̃] and Lt, but also
f(t); hence, we can get all of them by matching futures prices.

Here, we let θ̃ = [α̃, µ̃, γ̃, b, β1, . . . , βN , η1, . . . , ηN ] In the same way as before, Lt

can be defined as a function of θ̃:

Lt(θ̃) =

m∑
i=1

(BiFt,Tii − AiBi)

m∑
i=1

B2
i

(7.142)
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Then we free θ̃ to obtain the optimal one by

θ̃ = arg min�θ∈
n0

n∑
t=1

m∑
i=1

(F �θ(t, Tti, St, Lt(θ̃)) − Ft,Tti)
2 (7.143)

where n0 is the vector length of θ̃. With the obtained θ̃, {Lt}n
t=1, {f(t)}n

t=1, and hence
{Xt}n

t=1 are all easily computed.
Table 7.9 shows the estimation of risk-neutral parameters of (7.138) for artificial and

real data of Henry Hub prices.
Figure 7.22 shows the real and estimated seasonal term based on minimizing the sum

of squares of the differences of the two-factor model is (7.143) for Henry Hub actual price
data.

Figure 7.23 shows the estimated spot price Xt and long-term mean-reversion parameter
Lt of the model using real data.

Xu (2004) estimates the parameters of the model in (7.134) for both artificial and real
data using Henry Hub prices from January 2, 1992 to December 30, 1999. When r = 0 in
equation (7.134), the parameters are given in Table 7.10.

When r = 1/2, the parameters are given in Table 7.11.
The parameters of the seasonal factor for all three models (e.g.,r = 0, 1/2, and 1) are

shown in Table 7.12.
Figure 7.24 shows the fit of gas futures matching (by optimizing (7.143) between actual

and estimated futures prices using a two-factor model with seasonality.
In the middle plot, the bold curve is the real futures curve. The thinner curve is the

graph of the futures function given by (7.138). In the lower plot, the bold curve is the real
futures curve. The thinner curve is the values of 250 paths of St simulated by equation
(7.134), where the risk-neutral parameters shown in Table 7.5 are plugged in, and r = 1.
For comparison, the upper plot shows the seasonal term f(t) (solid curve), and the seasonal
volatility function σ(t) (dashed curve).

For analysis of the long-run behavior and forecasting of natural gas prices (as well as
oil and coal) using stochastic dynamics of the price evolution, see Pindyk (1998). Pinkyk
(1998) estimates various models using Kalman filter methods. Pindyk shows that under
a theory of depletable resource production and pricing using the actual behavior of real
prices over the past century, nonstructural models should incorporate mean-reversion to
a stochastically fluctuating trend line that reflects long-run (total) marginal cost, which is
unobservable.54

Table 7.9

Source: Xu (2004). Reproduced with permission.
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Figure 7.22 Source: Xu (2004). Reproduced with permission.
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Figure 7.23 Source: Xu (2004). Reproduced with permission.
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Table 7.10

Source: Xu (2004).

Table 7.11

Std. of Est.Mean of Est.
For artificial data

Given
0.0220

-3.0000
0.3800
0.0750

-0.1800
-0.0300
0.0050
0.0230
2.3000

α
c
λ
λ
ω
ω
µ
τ
γ

1

2

1

2

0.0230
-3.0030
0.3787
0.0743

-0.1828
-0.0333
0.0075
0.0228
2.2866

0.0221
-2.9894
0.3791
0.0748

-0.1826
-0.0317
0.0050
0.0230
2.2793

0.0048
0.0169
0.0212
0.0198
0.0229
0.0224
0.0037
0.0004
0.1419

For real data
Est.

Source: Xu (2004).

Table 7.12

Source: Xu (2004).
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Futures curve from formula vs. the real forward curve
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Figure 7.24 Source: Xu (2004). Reproduced with permission.

7.17 NATURAL GAS PRICING IN MATLAB

Refer to Appendix B to see the full listing of the key Matlab code, written by James Xu
(2004), for pricing of natural gas futures using real-time gas data.

7.18 NATURAL GAS AND ELECTRICITY SWAPS

When one or both parties in a market face a spot market price that differs from the
price in a reference market, basis risk may emerge. To manage this risk, forwards and
futures contracts cannot be used because they work only for price certainty in a unified
market. Instead, other derivative contract instruments like a basis contract may be needed
to manage the resulting basis risk. Basis swaps, which are common in natural gas markets,
are used to manage this risk. A basis swap allows an individual to lock in a fixed price
at a location other than the delivery point of the futures contract. This can be done either
as a physical or a financial deal. The most widely used natural gas futures market calls
for delivery at the Henry Hub price in Louisiana. Basis contracts are available in the OTC
markets to hedge locational, product, and even temporal differences between exchange-
traded standard contracts and the particular circumstances of contract users. For example,
suppose a local distribution company (LDC) in Tennessee can enter into a swap contract
with a natural gas producer, using the Henry Hub prices as the reference price; however,
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the LDC would lose price certainty if the local spot market price differed from the Henry
Hub price, as shown in Figure 7.25.

In this example, when the Henry Hub price is higher than the Tennessee price by more
than it was at the initiation of the swap contract, the LDC gains, because its payment from
the producer will exceed the amount it pays to buy gas in its local market.55 Effectively,
the LDC will pay less per thousand cubic feet than the fixed amount the LDC pays the
producer. Conversely, if the Tennessee price is lower, the producer’s payment will not cover
the LDC’s gas bill in its local market. In a natural gas basis swap, the OTC trader would
pay the LDC the difference between the Tennessee price and the Henry Hub price (for
the nominal amount of gas) in exchange for a fixed payment. The variety of contractual
provisions is unlimited. For example, the flexible payment could be defined as a “daily or
monthly average (weighted or unaveraged) price difference; it could be capped; or it could
required the LDC to share the costs when the contract’s ceiling price is exceeded.”56 What
this OTC contract does is to close the gap between the Henry Hub price and the price on
the LDC’s local spot market, allowing the LDC to achieve price certainty.

The traders supplying basis contracts can survive only “if the basis difference they
pay—averaged over time and adjusted for both financing charges and the time value of
money—is less than the fixed payment from the LDC.”57 Competition among OTC traders
can only reduce the premium for supplying basis protection. Reducing the underlying cause
of volatile price differences would “require more pipeline capacity, more storage capacity,
cost-based transmission pricing, and other physical and economic changes to the delivery
system itself.”58

Similarly, in the electricity futures markets, most firms have price exposure at delivery
points such as COB, Palo Verde, as well as the PJM Interconnect and other locations.
Thus, a firm that uses the NYMEX futures contract to manage price risk at other locations
is exposed to basis risk—price differences at different locations. Traders and firms can
use basis swaps and contracts to hedge their risk. Basis markets have evolved, allowing
firms to hedge risks at most major trading points in the United States and Canada. These
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Figure 7.25 Source: Energy Information Administration/ Derivatives and Risk Management in
Energy Industries, U.S. Department of Energy (2002).
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basis markets are quite liquid, with narrow bid offer spreads (typically less than $0.02, but
can be wider during volatile periods) and the ability to trade substantial volumes. Basis
markets have also begun to develop in the electricity markets in the Western U.S. (e.g.,
COB, Palo Verde, and Mid-Columbia). Basis markets need not be physically connected by
transmission wire or pipeline. For example, there is a Sumas natural gas basis market, even
though it would be extremely hard to move gas from this point to the Henry Hub. Following
Stoft, Belden, Goldman, and Pickle (1998), we illustrate financial transactions for different
users to show the mechanics of these basis swaps.

Generator

To lock in an electricity price in Denver, a generator could sell a futures contract (or a
price swap) and a basis swap (see Figure 7.26). Assume that the generator sells a futures
contract for $18/MWh for delivery in six months and sells a basis swap agreeing to pay the
Denver spot price in exchange for the COB price plus a premium. In six months, the gener-
ator sells electricity in Denver and receives the Denver spot price (B), pays the Denver spot
price (B) to the basis counterparty, receives the COB spot price (A) plus a fixed premium
from the counterparty, and buys a futures contract for the COB spot price (A). All of these
transactions cancel out, and the generator should expect to receive the fixed price for the
original futures contract, $18/MWh, in addition to the premium received from the basis
counterparty. The preceding example represents a financial transaction. Physical transac-
tions are also possible, where the generator provides power to the basis swap counterparty
in return for the COB spot price plus a premium.

One risk associated with these transactions is that the generator may be unable to buy
a futures contract at COB for the futures price used in the basis swap transaction. One way
to avoid this risk is to use price swaps rather than futures contracts.The generator then pays
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Figure 7.26 Source: Stoft, S., Belden, T., Goldman, C., and Pickle, S. (1998), 35.
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the price swap counterparty the average of the Dow Jones COB Index, which would cancel
out the average of the Dow Jones COB Index from the basis counterparty.59

End User

To lock in a fixed price for electricity in Denver, an end user would buy a futures con-
tract (or price swap) and a basis swap (see Figure 7.27). Assume that the end user buys
a futures contract for $18/MWh and agrees to pay the COB spot price plus a premium in
return for the variable spot market price in Denver. The end user can execute this agree-
ment physically or financially. In either case, the end user locks in an electricity price of
$18/MWh plus the premium. The end user can also buy a price swap, rather than a futures
contract, to lock in the price in Denver or other locations.

In a price swap, the buyer of the swap agrees to pay a fixed price, which is negoti-
ated at the time of the transaction, and receive a price equal to the simple average of a
given month’s nonfirm, on-peak, COB index price published in the Wall Street Journal.60

Although swaps can trade in any size, they are typically traded in increments of 25 MW
on-peak. Because peak hours in the western United States include 16 hours per day (6 AM

to 10 PM), six days a week (Monday through Saturday), the total notional volume equals
the number of MWs multiplied by the number of days in the month (excluding Sundays
and holidays), multiplied by 16. Just like the buyer of a future, the buyer of a swap profits
when prices increase and loses when prices decrease relative to the fixed payment level.
When the average of the on-peak Dow Jones COB prices exceeds the fixed price, the buyer
of the swap (the fixed price payor) receives a positive cash flow from the transaction. When
the average of the on-peak Dow Jones COB prices is below the fixed price, the seller of the
swap receives a positive cash flow from the transaction. Swaps can be used to hedge or to
speculate.

For example, to lock in an electricity price for July 1998, an end user would buy a
price swap (see Figure 7.28). Assume that the end user agrees to pay $25/MWh and to
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Figure 7.27 Source: Stoft, S., Belden, T., Goldman, C., and Pickle, S. (1998), 35.
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Figure 7.28 Source: Stoft, S., Belden, T., Goldman, C., and Pickle, S. (1998), pg. 35.

receive the average Dow Jones COB price. If the spot price at COB in July 2006 av-
eraged $20/MWh, the end user would buy electricity in the spot market for $20/MWh,
would receive $20/MWh from the swap counterparty, and would pay the swap counter-
party $25/MWh. Using the price swap, the end user has a guaranteed electricity price of
$25/MWh, but would be unable to take advantage of the lower-priced electricity if the price
were to fall below $25/MWh.

Marketers can also execute these transactions on behalf of generators and end users
in order to guarantee them a fixed price at a location other than the COB or Palo Verde.
Marketers can also act as basis counterparties for generators and end users in these types
of transactions. Generators and end users might work through marketers if they are uncom-
fortable using the financial tools associated with executing these transactions properly.

For a discussion of hedging and speculating in electricity and commodities using swaps
and futures, see Stoft, Belden, Goldman, and Pickle (1998) and Schwartz (1997).
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