APPENDIX F

Practice for Chapter 16: Analyzing Existing Subnets

Practice Problems

This appendix lists practice problems related to Chapter 16, "Analyzing Existing Subnets." Each problem asks you to find a variety of information about the subnet in which an IP address resides. Each problem supplies an IP address and a subnet mask, from which you should find the following information:

- Subnet number
- Subnet broadcast address
- Range of valid IP addresses in this network

To find these facts, you can use any of the processes explained in Chapter 16.

In addition, these same problems can be used to review the concepts in Chapter 15, "Analyzing Subnet Masks." To use these same problems for practice related to Chapter 15, simply find the following information for each of the problems:

- Size of the network part of the address
- Size of the subnet part of the address
- Size of the host part of the address
- Number of hosts per subnet
- Number of subnets in this network

Feel free to either ignore or use the opportunity for more practice related to analyzing subnet masks.

Solve for the following problems:

- **1.** 10.180.10.18, mask 255.192.0.0
- **2.** 10.200.10.18, mask 255.224.0.0
- **3.** 10.100.18.18, mask 255.240.0.0
- 4. 10.100.18.18, mask 255.248.0.0
- 5. 10.150.200.200, mask 255.252.0.0
- **6.** 10.150.200.200, mask 255.254.0.0
- 7. 10.220.100.18, mask 255.255.0.0
- 8. 10.220.100.18, mask 255.255.128.0
- 9. 172.31.100.100, mask 255.255.192.0

- **10.** 172.31.100.100, mask 255.255.224.0
- **11.** 172.31.200.10, mask 255.255.240.0
- **12.** 172.31.200.10, mask 255.255.248.0
- **13.** 172.31.50.50, mask 255.255.252.0
- **14.** 172.31.50.50, mask 255.255.254.0
- **15.** 172.31.140.14, mask 255.255.255.0
- 16. 172.31.140.14, mask 255.255.255.128
- **17.** 192.168.15.150, mask 255.255.255.192
- **18.** 192.168.15.150, mask 255.255.255.224
- **19.** 192.168.100.100, mask 255.255.255.240
- **20.** 192.168.100.100, mask 255.255.255.248
- **21.** 192.168.15.230, mask 255.255.255.252
- **22.** 10.1.1.1, mask 255.248.0.0
- **23.** 172.16.1.200, mask 255.255.240.0
- **24.** 172.16.0.200, mask 255.255.255.192
- **25.** 10.1.1.1, mask 255.0.0.0

Answers

This section includes the answers to the 25 problems listed in this appendix. The answer section for each problem explains how to use the process outlined in Chapter 16 to find the answers. Also, refer to Chapter 15 for details on how to find information about analyzing the subnet mask.

Answer to Problem 1

The answers begin with the analysis of the three parts of the address, the number of hosts per subnet, and the number of subnets of this network using the stated mask, as outlined in Table F-1. The binary math for subnet and broadcast address calculation follows. The answer finishes with the easier mental calculations for the range of IP addresses in the subnet.

Table F-1	Question 1: Size of Network, Subnet, Host, Number of Subnets, and Number
of Hosts	

Item	Example	Rules to Remember
Address	10.180.10.18	
Mask	255.192.0.0	
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	22	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2number-of-subnet-bits
Number of hosts	$2^{22} - 2 = 4,194,302$	2 ^{number-of-host-bits} – 2

Table F-2 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.180.10.18	00001010 10 110100 00001010 00010010
Mask	255.192.0.0	11111111 11000000 0000000 00000000
AND result (subnet number)	10.128.0.0	00001010 1000000 0000000 00000000
Change host to 1s (broadcast address)	10.191.255.255	00001010 10111111 11111111 11111111

Table F-2 Question 1: Binary Calculation of Subnet and Broadcast Addresses

To get the first valid IP address, just add 1 to the subnet number; to get the last valid IP address, just subtract 1 from the broadcast address. In this case:

10.128.0.1 through 10.191.255.254 10.128.0.0 + 1 = 10.128.0.1 10.191.255.255 - 1 = 10.191.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. The key parts of the process are as follows:

- The interesting octet is the octet for which the mask's value is not a decimal 0 or 255.
- The magic number is calculated as the value of the IP address's interesting octet, subtracted from 256.
- The subnet number can be found by copying the IP address octets to the left of the interesting octet, by writing down 0s for octets to the right of the interesting octet, and by finding the multiple of the magic number closest to, but not larger than, the IP address's value in that same octet.
- The broadcast address can be similarly found by copying the subnet number's octets to the left of the interesting octet, by writing 255s for octets to the right of the interesting octet, and by taking the subnet number's value in the interesting octet, adding the magic number, and subtracting 1.

Table F-3 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 16 for the detailed processes.

F

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	192	0	0	
Address	10	180	10	18	
Subnet Number	10	128	0	0	Magic number = 256 – 192 = 64
First Address	10	128	0	1	Add 1 to last octet of subnet
Last Address	10	191	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	191	255	255	128 + 64 - 1 = 191

Table F-3	Question 1: Subn	et, Broadcast	, and First an	d Last Address	es Calculated	Using
the Subnet	Chart					

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 180 but not higher than 180. So, the second octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 64 - 1 = 191.

Answer to Problem 2

Table F-4	Question 2: Size of Network, Subnet, Host, Number of Subnets, and Number
of Hosts	

Item	Example	Rules to Remember
Address	10.200.10.18	
Mask	255.224.0.0	—
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	21	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{21} - 2 = 2,097,150$	2 ^{number-of-host-bits} – 2

Table F-5 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.200.10.18	00001010 110 01000 00001010 00010010
Mask	255.224.0.0	11111111 11100000 0000000 00000000
AND result (subnet number)	10.192.0.0	00001010 11000000 00000000 00000000
Change host to 1s (broadcast address)	10.223.255.255	00001010 110 11111 1111111 11111111

Table F-5 Question 2: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.192.0.1 through 10.223.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-6 shows the work for this problem, with some explanation of the work following the table.

Table F-6	Question 2: Subnet,	Broadcast,	and First	and Last	Addresses	Calculated
Using the S	ubnet Chart					

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	224	0	0	
Address	10	200	10	18	
Subnet Number	10	192	0	0	Magic number = 256 – 224 = 32
First Address	10	192	0	1	Add 1 to last octet of subnet
Last Address	10	223	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	223	255	255	192 + 32 - 1 = 223

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 192 is the multiple of 32 that is closest to 200 but not higher than 200. So, the second octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 192 + 32 - 1 = 223.

Answer to Problem 3

Table F-7 Question 3: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.100.18.18	—
Mask	255.240.0.0	—
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	20	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{20} - 2 = 1,048,574$	2 ^{number-of-host-bits} – 2

Table F-8 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-8	Question 3: B	inary Calculation of	of Subnet ar	nd Broadc	ast Addresses	

Address	10.100.18.18	00001010 0110 0100 00010010 00010010
Mask	255.240.0.0	11111111 11110000 0000000 00000000
AND result (subnet number)	10.96.0.0	00001010 01100000 0000000 00000000
Change host to 1s (broadcast address)	10.111.255.255	00001010 0110 1111 1111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.96.0.1 through 10.111.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-9 shows the work for this problem, with some explanation of the work following the table.

Table F-9	Question 3: Subnet,	Broadcast,	and First	and Last	Addresses	Calculated
Using the S	ubnet Chart					

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	240	0	0	—
Address	10	100	18	18	
Subnet Number	10	96	0	0	Magic number = 256 – 240 = 16
First Address	10	96	0	1	Add 1 to last octet of subnet
Last Address	10	111	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	111	255	255	96 + 16 - 1 = 111

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 16 - 1 = 111.

Answer to Problem 4

Item	Example	Rules to Remember
Address	10.100.18.18	—
Mask	255.248.0.0	—
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	19	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^{19} - 2 = 524,286$	2 ^{number-of-host-bits} – 2

 Table F-10
 Question 4: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Table F-11 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

	,				
Address	10.100.18.18	00001010	01100 100	00010010	00010010
Mask	255.248.0.0	11111111	11111000	00000000	00000000
AND result (subnet number)	10.96.0.0	00001010	01100 000	00000000	00000000
Change host to 1s (broadcast	10.103.255.255	00001010	01100 111	11111111	11111111

 Table F-11
 Question 4: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
10.96.0.1 through 10.103.255.254
```

address)

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-12 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	248	0	0	—
Address	10	100	18	18	—
Subnet Number	10	96	0	0	Magic number = 256 – 248 = 8
First Address	10	96	0	1	Add 1 to last octet of subnet
Last Address	10	103	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	103	255	255	96 + 8 - 1 = 103

Table F-12Question 4: Subnet, Broadcast, and First and Last Addresses CalculatedUsing the Subnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 8 - 1 = 103.

Answer to Problem 5

Table F-13	Question 5: Size of Network, Subnet, Host, Number of Subnets, and Number
of Hosts	

Item	Example	Rules to Remember
Address	10.150.200.200	
Mask	255.252.0.0	
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	18	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{18} - 2 = 262,142$	2 ^{number-of-host-bits} – 2

Table F-14 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.150.200.200	00001010 100101 10 11001000 11001000
Mask	255.252.0.0	11111111 11111100 00000000 00000000
AND result (subnet number)	10.148.0.0	00001010 10010100 0000000 00000000
Change host to 1s (broadcast address)	10.151.255.255	00001010 100101 11 11111111 11111111

Table F-14 Question 5: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.148.0.1 through 10.151.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-15 shows the work for this problem, with some explanation of the work following the table.

Table F-15	Question 5: Subnet, Broadcast, a	, and First and Last Addresses Calculated
Using the Su	ubnet Chart	

	Octet 1	Octet 2	Octet 3	Octet 4	Comments
Mask	255	252	0	0	—
Address	10	150	200	200	—
Subnet Number	10	148	0	0	Magic number = 256 – 252 = 4
First Address	10	148	0	1	Add 1 to last octet of subnet
Last Address	10	151	255	254	Subtract 1 from last octet of broadcast
Broadcast	10	151	255	255	148 + 4 - 1 = 151

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 252 = 4 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 148 is the multiple of 4 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 148.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 148 + 4 - 1 = 151.

Answer to Problem 6

 Table F-16
 Question 6: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.150.200.200	
Mask	255.254.0.0	—
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	17	Always defined as number of binary 0s in mask
Number of subnet bits	7	32 – (network size + host size)
Number of subnets	$2^7 = 128$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{17} - 2 = 131,070$	2 ^{number-of-host-bits} – 2

Table F-17 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.150.200.200	00001010 10010110 11001000 11001000
Mask	255.254.0.0	11111111 1111110 0000000 0000000
AND result (subnet number)	10.150.0.0	00001010 10010110 0000000 00000000
Change host to 1s (broadcast address)	10.151.255.255	00001010 10010111 1111111 11111111

Table F-17 Question 6: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.150.0.1 through 10.151.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-18 shows the work for this problem, with some explanation of the work following the table.

Table F-18	Question 6: Subn	et, Broadcast	, and First and	l Last Address	es Calculated
Using the Su	bnet Chart				

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	254	0	0
Address	10	150	200	200
Subnet Number	10	150	0	0
First Valid Address	10	150	0	1
Last Valid Address	10	151	255	254
Broadcast	10	151	255	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 254 = 2 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 150 is the multiple of 2 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 150.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 150 + 2 - 1 = 151.

Answer to Problem 7

Item	Example	Rules to Remember
Address	10.220.100.18	—
Mask	255.255.0.0	—
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	16	Always defined as number of binary 0s in mask
Number of subnet bits	8	32 – (network size + host size)
Number of subnets	$2^8 = 256$	2number-of-subnet-bits
Number of hosts	$2^{16} - 2 = 65,534$	2 ^{number-of-host-bits} – 2

 Table F-19
 Question 7: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Table F-20 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

 Table F-20
 Question 7: Binary Calculation of Subnet and Broadcast Addresses

Address	10.220.100.18	00001010 11011100 01100100 00010010
Mask	255.255.0.0	11111111 1111111 0000000 0000000
AND result (subnet number)	10.220.0.0	00001010 11011100 00000000 00000000
Change host to 1s (broadcast address)	10.220.255.255	00001010 11011100 11111111 1111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
10.220.0.1 through 10.220.255.254
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-21 shows the work for this problem.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	0	0
Address	10	220	100	18
Subnet Number	10	220	0	0
First Valid Address	10	220	0	1
Last Valid Address	10	220	255	254
Broadcast	10	220	255	255

Table F-21 Question 7: Subnet, Broadcast, and First and Last Addresses Calculated Using the Subnet Chart Subnet Chart

This subnetting scheme uses an easy mask because all the octets are a 0 or a 255. No math tricks are needed.

Answer to Problem 8

 Table F-22
 Question 8: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	10.220.100.18	
Mask	255.255.128.0	
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	15	Always defined as number of binary 0s in mask
Number of subnet bits	9	32 – (network size + host size)
Number of subnets	$2^9 = 512$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{15} - 2 = 32,766$	2 ^{number-of-host-bits} – 2

Table F-23 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-23	Question 8: Binary	Calculation of Subnet	and Broadcast Addresses
------------	--------------------	-----------------------	-------------------------

Address	10.220.100.18	00001010 11011100 01100100 00010010
Mask	255.255.128.0	11111111 1111111 10000000 00000000
AND result (subnet number)	10.220.0.0	00001010 11011100 00000000 00000000
Change host to 1s (broadcast address)	10.220.127.255	00001010 11011100 0 1111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.220.0.1 through 10.220.127.254

Table F-24 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 16 for the detailed processes.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	128	0
Address	10	220	100	18
Subnet Number	10	220	0	0
First Address	10	220	0	1
Last Address	10	220	127	254
Broadcast	10	220	127	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 128 = 128 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 128 - 1 = 127.

This example tends to confuse people, because a mask with 128 in it gives you subnet numbers that just do not seem to look right. Table F-25 gives you the answers for the first several subnets, just to make sure that you are clear about the subnets when using this mask with a Class A network.

	Zero Subnet	2nd Subnet	3rd Subnet	4th Subnet
Subnet	10.0.0.0	10.0.128.0	10.1.0.0	10.1.128.0
First Address	10.0.0.1	10.0.128.1	10.1.0.1	10.1.128.1
Last Address	10.0.127.254	10.0.255.254	10.1.127.254	10.1.255.254
Broadcast	10.0.127.255	10.0.255.255	10.1.127.255	10.1.255.255

Table F-25 Question 8: First Four Subnets

Answer to Problem 9

 Table F-26
 Question 9: Size of Network, Subnet, Host, Number of Subnets, and Number of Hosts

Item	Example	Rules to Remember
Address	172.31.100.100	—
Mask	255.255.192.0	—
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	14	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{14} - 2 = 16,382$	2 ^{number-of-host-bits} – 2

Table F-27 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.100.100	10101100 00011111 01 100100 01100100
Mask	255.255.192.0	11111111 1111111 11000000 00000000
AND result (subnet number)	172.31.64.0	10101100 00011111 01000000 00000000
Change host to 1s (broadcast address)	172.31.127.255	10101100 00011111 01 111111 11111111

Table F-27 Question 9: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.64.1 through 172.31.127.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-28 shows the work for this problem, with some explanation of the work following the table.

Table F-28	Question 9: Subnet, E	Broadcast, a	and First and	Last Addresses	Calculated
Using the Su	ıbnet Chart				

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	192	0
Address	172	31	100	100
Subnet Number	172	31	64	0
First Valid Address	172	31	64	1
Last Valid Address	172	31	127	254
Broadcast	172	31	127	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 64 is the multiple of 64 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 64.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 64 + 64 - 1 = 127.

Answer to Problem 10

Item	Example	Rules to Remember
Address	172.31.100.100	_
Mask	255.255.224.0	
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	13	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2number-of-subnet-bits
Number of hosts	$2^{13} - 2 = 8190$	2 ^{number-of-host-bits} – 2

Table F-29Question 10: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Table F-30 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

 Table F-30
 Question 10: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.100.100	10101100 00011111 011 00100 01100100
Mask	255.255.224.0	11111111 1111111 11100000 00000000
AND result (subnet number)	172.31.96.0	10101100 00011111 01100000 00000000
Change host to 1s (broadcast address)	172.31.127.255	10101100 00011111 011 11111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
172.31.96.1 through 172.31.127.254
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-31 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	224	0
Address	172	31	100	100
Subnet Number	172	31	96	0
First Valid Address	172	31	96	1
Last Valid Address	172	31	127	254
Broadcast	172	31	127	255

Table F-31	Question	10: Subnet,	Broadcast,	and Fire	st and	Last	Addresses	Calcula	ited
Using the Sul	bnet Chart								

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 32 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky parts, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 32 - 1 = 127.

Answer to Problem 11

 Table F-32
 Question 11: Size of Network, Subnet, Host, Number of Subnets, and

 Number of Hosts
 Image: Subnets of Hosts

Item	Example	Rules to Remember
Address	172.31.200.10	—
Mask	255.255.240.0	—
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	12	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{12} - 2 = 4094$	2 ^{number-of-host-bits} – 2

Table F-33 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.200.10	10101100	00011111	1100 1000	00001010
Mask	255.255.240.0	11111111	11111111	11110000	00000000
AND result (subnet number)	172.31.192.0	10101100	00011111	11000000	00000000
Change host to 1s (broadcast	172.31.207.255	10101100	00011111	1100 1111	11111111

Table F-33 Question 11: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.192.1 through 172.31.207.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-34 shows the work for this problem, with some explanation of the work following the table.

Table F-34	Question	11: Subnet,	Broadcast,	and F	First and	Last A	Addresses	Calcula	ated
Using the Su	bnet Chart	t							

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	240	0
Address	172	31	200	10
Subnet Number	172	31	192	0
First Valid Address	172	31	192	1
Last Valid Address	172	31	207	254
Broadcast	172	31	207	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 192 is the multiple of 16 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 192 + 16 - 1 = 207.

Answer to Problem 12

Table F-35Question 12: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	172.31.200.10	
Mask	255.255.248.0	
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	11	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^{11} - 2 = 2046$	2 ^{number-of-host-bits} – 2

Table F-36 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.200.10	10101100 00011111 11001000 00001010
Mask	255.255.248.0	11111111 1111111 11111000 00000000
AND result (subnet number)	172.31.200.0	10101100 00011111 11001000 00000000
Change host to 1s (broadcast	172.31.207.255	10101100 00011111 11001 111 11111111
address)		

 Table F-36
 Question 12: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.200.1 through 172.31.207.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-37 shows the work for this problem, with some explanation of the work following the table.

Table F-37	Question	12: Subnet,	Broadcast,	and F	irst and	Last A	ddresses	Calculate	эd
Using the Su	bnet Chart								

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	248	0
Address	172	31	200	10
Subnet Number	172	31	200	0
First Valid Address	172	31	200	1
Last Valid Address	172	31	207	254
Broadcast	172	31	207	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 200 is the multiple of 8 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 200.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 200 + 8 - 1 = 207.

Answer to Problem 13

Item	Example	Rules to Remember
Address	172.31.50.50	_
Mask	255.255.252.0	—
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	10	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2number-of-subnet-bits
Number of hosts	$2^{10} - 2 = 1022$	2 ^{number-of-host-bits} – 2

Table F-38Question 13: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Table F-39 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

 Table F-39
 Question 13: Binary Calculation of Subnet and Broadcast Addresses

Address	172.31.50.50	10101100 00011111 001100 10 00110010
Mask	255.255.252.0	11111111 1111111 11111100 0000000
AND result (subnet number)	172.31.48.0	10101100 00011111 00110000 00000000
Change host to 1s (broadcast address)	172.31.51.255	10101100 00011111 001100 11 1111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
172.31.48.1 through 172.31.51.254
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-40 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	252	0
Address	172	31	50	50
Subnet Number	172	31	48	0
First Valid Address	172	31	48	1
Last Valid Address	172	31	51	254
Broadcast	172	31	51	255

Table F-40	Question	13: Subnet,	Broadcast,	and First	and Last	Addresses	Calculated
Using the Su	bnet Chart						

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 252 = 4 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 48 is the multiple of 4 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 48.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 48 + 4 - 1 = 51.

Answer to Problem 14

Table F-41Question 14: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	172.31.50.50	
Mask	255.255.254.0	—
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	9	Always defined as number of binary 0s in mask
Number of subnet bits	7	32 – (network size + host size)
Number of subnets	2 ⁷ = 128	2 ^{number-of-subnet-bits}
Number of hosts	$2^9 - 2 = 510$	$2^{\text{number-of-host-bits}} - 2$

Table F-42 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.50.50	10101100	00011111	0011001 0	00110010
Mask	255.255.254.0	11111111	11111111	11111110	00000000
AND result (subnet number)	172.31.50.0	10101100	00011111	0011001 0	00000000
Change host to 1s (broadcast address)	172.31.51.255	10101100	00011111	0011001 1	11111111

Table F-42 Question 14: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.50.1 through 172.31.51.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-43 shows the work for this problem, with some explanation of the work following the table.

Table F-43	Question	14: Subnet,	Broadcast,	and F	irst and	Last A	ddresses	Calcula	ted
Using the Su	bnet Chart	t							

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	254	0
Address	172	31	50	50
Subnet Number	172	31	50	0
First Valid Address	172	31	50	1
Last Valid Address	172	31	51	254
Broadcast	172	31	51	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 254 = 2 in this case (256 -mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 50 is the multiple of 2 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 50.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 50 + 2 - 1 = 51.

Answer to Problem 15

Table F-44Question 15: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	172.31.140.14	
Mask	255.255.255.0	
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	8	Always defined as number of binary 0s in mask
Number of subnet bits	8	32 – (network size + host size)
Number of subnets	$2^8 = 256$	2number-of-subnet-bits
Number of hosts	$2^8 - 2 = 254$	2 ^{number-of-host-bits} – 2

Table F-45 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.140.14	10101100 00011111 10001100 00001110
Mask	255.255.255.0	11111111 1111111 11111111 00000000
AND result (subnet number)	172.31.140.0	10101100 00011111 10001100 00000000
Change host to 1s (broadcast	172.31.140.255	10101100 00011111 10001100 11111111
address)		

 Table F-45
 Question 15: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-46 shows the work for this problem.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	0
Address	172	31	140	14
Subnet Number	172	31	140	0
First Valid Address	172	31	140	1
Last Valid Address	172	31	140	254
Broadcast	172	31	140	255

This subnetting scheme uses an easy mask because all the octets are a 0 or a 255. No math tricks are needed.

Answer to Problem 16

Table F-47Question 16: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	172.31.140.14	—
Mask	255.255.255.128	—
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	7	Always defined as number of binary 0s in mask
Number of subnet bits	9	32 – (network size + host size)
Number of subnets	$2^9 = 512$	2 ^{number-of-subnet-bits}
Number of hosts	$2^7 - 2 = 126$	2 ^{number-of-host-bits} – 2

Table F-48 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.31.140.14	10101100 00011111 10001100 0 0001110
Mask	255.255.255.128	11111111 1111111 11111111 10000000
AND result (subnet number)	172.31.140.0	10101100 00011111 10001100 0 0000000
Change host to 1s (broadcast address)	172.31.140.127	10101100 00011111 10001100 0 111111

 Table F-48
 Question 16: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.126

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-49 shows the work for this problem, with some explanation of the work following the table.

Table F-49Question 16: Subnet, Broadcast, and First and Last Addresses CalculatedUsing the Subnet Chart

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	128
Address	172	31	140	14
Subnet Number	172	31	140	0
First Valid Address	172	31	140	1
Last Valid Address	172	31	140	126
Broadcast	172	31	140	127

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 128 = 128 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 14 but not higher than 14. So, the fourth octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 128 - 1 = 127.

Answer to Problem 17

Item	Example	Rules to Remember
Address	192.168.15.150	_
Mask	255.255.255.192	
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	6	Always defined as number of binary 0s in mask
Number of subnet bits	2	32 – (network size + host size)
Number of subnets	$2^2 = 4$	2 ^{number-of-subnet-bits}
Number of hosts	$2^6 - 2 = 62$	2 ^{number-of-host-bits} – 2

Table F-50Question 17: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Table F-51 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	192.168.15.150	11000000	10101000	00001111	10010110
Mask	255.255.255.192	11111111	11111111	11111111	11000000
AND result (subnet number)	192.168.15.128	11000000	10101000	00001111	1000000
Change host to 1s (broadcast	192.168.15.191	11000000	10101000	00001111	10 111111
address)					

 Table F-51
 Question 17: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
192.168.15.129 through 192.168.15.190
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-52 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	192
Address	192	168	15	150
Subnet Number	192	168	15	128
First Valid Address	192	168	15	129
Last Valid Address	192	168	15	190
Broadcast	192	168	15	191

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 64 - 1 = 191.

Answer to Problem 18

Table F-53Question 18: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	192.168.15.150	
Mask	255.255.255.224	
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	5	Always defined as number of binary 0s in mask
Number of subnet bits	3	32 – (network size + host size)
Number of subnets	$2^3 = 8$	2 ^{number-of-subnet-bits}
Number of hosts	$2^5 - 2 = 30$	2 ^{number-of-host-bits} – 2

Table F-54 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	192.168.15.150	11000000	10101000	00001111	100 10110
Mask	255.255.255.224	11111111	11111111	11111111	11100000
AND result (subnet number)	192.168.15.128	11000000	10101000	00001111	1000000
Change host to 1s (broadcast address)	192.168.15.159	11000000	10101000	00001111	100 11111

Table F-54 Question 18: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.129 through 192.168.15.158

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-55 shows the work for this problem, with some explanation of the work following the table.

Table F-55	Question	18: Subnet,	Broadcast,	and First	and Las	t Addresses	Calculated
Using the Su	bnet Chart	:					

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	224
Address	192	168	15	150
Subnet Number	192	168	15	128
First Valid Address	192	168	15	129
Last Valid Address	192	168	15	158
Broadcast	192	168	15	159

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 224 = 32 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 128 is the multiple of 32 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 128 + 32 - 1 = 159.

Answer to Problem 19

Table F-56Question 19: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	192.168.100.100	—
Mask	255.255.255.240	—
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	4	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 ^{number-of-subnet-bits}
Number of hosts	$2^4 - 2 = 14$	2 ^{number-of-host-bits} – 2

Table F-57 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table F-57 Question 19: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.100.100	11000000 10101000 01100100 0110 0100
Mask	255.255.255.240	11111111 1111111 11111111 11110000
AND result (subnet number)	192.168.100.96	11000000 10101000 01100100 0110 0000
Change host to 1s (broadcast address)	192.168.100.111	11000000 10101000 01100100 0110 1111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.110

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-58 shows the work for this problem, with some explanation of the work following the table.

Table F-58	Question	19: Subnet,	Broadcast,	and	First and	Last A	Addresses	Calculated
Using the Su	bnet Chart	t						

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	240
Address	192	168	100	100
Subnet Number	192	168	100	96
First Valid Address	192	168	100	97
Last Valid Address	192	168	100	110
Broadcast	192	168	100	111

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 16 - 1 = 111.

Answer to Problem 20

Item	Example	Rules to Remember
Address	192.168.100.100	—
Mask	255.255.255.248	—
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	3	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^3 - 2 = 6$	2 ^{number-of-host-bits} – 2

Table F-59Question 20: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Table F-60 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	192.168.100.100	11000000	10101000	01100100	01100 100
Mask	255.255.255.248	11111111	11111111	11111111	11111000
AND result (subnet number)	192.168.100.96	11000000	10101000	01100100	01100 000
Change host to 1s	192.168.100.103	11000000	10101000	01100100	01100 111
(broadcast address)					

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.102

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-61 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	248
Address	192	168	100	100
Subnet Number	192	168	100	96
First Valid Address	192	168	100	97
Last Valid Address	192	168	100	102
Broadcast	192	168	100	103

Table F-61	Question 20: Subnet, Broadcast,	and First and	Last Addresses	Calculated
Using the Su	ubnet Chart			

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 96 + 8 - 1 = 103.

Answer to Problem 21

Item	Example	Rules to Remember
Address	192.168.15.230	_
Mask	255.255.255.252	—
Number of network bits	24	Always defined by Class A, B, C
Number of host bits	2	Always defined as number of binary 0s in mask
Number of subnet bits	6	32 – (network size + host size)
Number of subnets	$2^6 = 64$	2 ^{number-of-subnet-bits}
Number of hosts	$2^2 - 2 = 2$	2 ^{number-of-host-bits} – 2

Table F-63 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	192.168.15.230	11000000 10101000 00001111 111001 10
Mask	255.255.255.252	11111111 1111111 11111111 11111100
AND result (subnet number)	192.168.15.228	11000000 10101000 00001111 111001 00
Change host to 1s (broadcast address)	192.168.15.231	11000000 10101000 00001111 111001 11

Table F-63 Question 21: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.229 through 192.168.15.230

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-64 shows the work for this problem, with some explanation of the work following the table.

Table F-64	Question 21: Subnet, Broadcas	st, and First and	Last Addresses	Calculated
Using the Su	ıbnet Chart			

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	252
Address	192	168	15	230
Subnet Number	192	168	15	228
First Valid Address	192	168	15	229
Last Valid Address	192	168	15	230
Broadcast	192	168	15	231

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 252 = 4 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 228 is the multiple of 4 that is closest to 230 but not higher than 230. So, the fourth octet of the subnet number is 228.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 228 + 4 - 1 = 231.

Answer to Problem 22

Table F-65Question 22: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	10.1.1.1	_
Mask	255.248.0.0	
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	19	Always defined as number of binary 0s in mask
Number of subnet bits	5	32 – (network size + host size)
Number of subnets	$2^5 = 32$	2number-of-subnet-bits
Number of hosts	$2^{19} - 2 = 524,286$	2 ^{number-of-host-bits} – 2

Table F-66 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.1.1.1	00001010	0000001	0000001	0000001
Mask	255.248.0.0	11111111	11111000	0000000	00000000
AND result (subnet number)	10.0.0.0	00001010	00000000	0000000	00000000
Change host to 1s (broadcast	10.7.255.255	00001010	00000111	11111111	11111111
address)					

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.0.0.1 through 10.7.255.254

Take a closer look at the subnet part of the subnet address, as shown in bold here: 0000 1010 **0000 0**000 0000 0000 0000. The subnet part of the address is all binary 0s, making this subnet a zero subnet.

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-67 shows the work for this problem, with some explanation of the work following the table.

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	248	0	0
Address	10	1	1	1
Subnet Number	10	0	0	0
First Valid Address	10	0	0	1
Last Valid Address	10	7	255	254
Broadcast	10	7	255	255

Table F-67	Question 22: Subnet, Broadcast, and First and Last Addresses Calculated
Using the Su	bnet Chart

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 248 = 8 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 8 that is closest to 1 but not higher than 1. So, the second octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 8 - 1 = 7.

Answer to Problem 23

Table F-68Question 23: Size of Network, Subnet, Host, Number of Subnets, andNumber of Hosts

Item	Example	Rules to Remember
Address	172.16.1.200	—
Mask	255.255.240.0	
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	12	Always defined as number of binary 0s in mask
Number of subnet bits	4	32 – (network size + host size)
Number of subnets	$2^4 = 16$	2 ^{number-of-subnet-bits}
Number of hosts	$2^{12} - 2 = 4094$	2 ^{number-of-host-bits} – 2

Table F-69 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.16.1.200	10101100	00010000	0000001	11001000
Mask	255.255.240.0	11111111	11111111	11110000	00000000
AND result (subnet number)	172.16.0.0	10101100	00010000	00000000	00000000
Change host to 1s (broadcast address)	172.16.15.255	10101100	00010000	00001111	11111111

Table F-69 Question 23: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

```
172.16.0.1 through 172.16.15.254
```

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-70 shows the work for this problem, with some explanation of the work following the table.

Table F-70	Question 23: Subnet,	Broadcast,	and First an	d Last Addresse	s Calculated
Using the Su	bnet Chart				

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	240	0
Address	172	16	1	200
Subnet Number	172	16	0	0
First Valid Address	172	16	0	1
Last Valid Address	172	16	15	254
Broadcast	172	16	15	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 240 = 16 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 0 is the multiple of 16 that is closest to 1 but not higher than 1. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 0 + 16 - 1 = 15.

Answer to Problem 24

 Table F-71
 Question 24: Size of Network, Subnet, Host, Number of Subnets, and

 Number of Hosts
 Provide the state of the s

Item	Example	Rules to Remember
Address	172.16.0.200	_
Mask	255.255.255.192	
Number of network bits	16	Always defined by Class A, B, C
Number of host bits	6	Always defined as number of binary 0s in mask
Number of subnet bits	10	32 – (network size + host size)
Number of subnets	$2^{10} = 1024$	2number-of-subnet-bits
Number of hosts	$2^6 - 2 = 62$	2 ^{number-of-host-bits} – 2

Table F-72 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	172.16.0.200	10101100	00010000	00000000	11 001000
Mask	255.255.255.192	11111111	11111111	11111111	11000000
AND result (subnet number)	172.16.0.192	10101100	00010000	00000000	11000000
Change host to 1s	172.16.0.255	10101100	00010000	00000000	11 111111
(broadcast address)					

 Table F-72
 Question 24: Binary Calculation of Subnet and Broadcast Addresses

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.16.0.193 through 172.16.0.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-73 shows the work for this problem, with some explanation of the work following the table.

Table F-73	Question 24: Subnet,	Broadcast, an	d First and	Last Addresses	Calculated
Using the Su	bnet Chart				

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	255	255	192
Address	172	16	0	200
Subnet Number	172	16	0	192
First Valid Address	172	16	0	193
Last Valid Address	172	16	0	254
Broadcast	172	16	0	255

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is "interesting" in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 - 192 = 64 in this case (256 - mask's value in the interesting octet). The subnet number's value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address's value in the interesting octet. In this case, 192 is the multiple of 64 that is closest to 200 but not higher than 200. So, the fourth octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the "interesting" octet. Take the subnet number's value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address's value in the interesting octet. In this case, it is 192 + 64 - 1 = 255.

You can easily forget that the subnet part of this address, when using this mask, actually covers all the third octet as well as 2 bits of the fourth octet. For example, the valid subnet numbers in order are listed here:

172.16.0.0 (zero subnet) 172.16.0.64 172.16.0.128 172.16.0.192 172.16.1.0 172.16.1.64 172.16.1.128 172.16.1.192 172.16.2.0 172.16.2.64 172.16.2.128 172.16.2.192 172.16.3.0 172.16.3.64 172.16.3.128 172.16.3.192

And so on.

Answer to Problem 25

Congratulations! You made it through the extra practice in this appendix! Here is an easy one to complete your review—one with no subnetting at all.

Item	Example	Rules to Remember
Address	10.1.1.1	
Mask	255.0.0.0	
Number of network bits	8	Always defined by Class A, B, C
Number of host bits	24	Always defined as number of binary 0s in mask
Number of subnet bits	0	32 – (network size + host size)
Number of subnets	0	2 ^{number-of-subnet-bits}
Number of hosts	$2^{24} - 2 = 16,777,214$	2 ^{number-of-host-bits} – 2

Table F-75 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Address	10.1.1.1	00001010	0000001	0000001	0000001
Mask	255.0.0.0	11111111	0000000	0000000	00000000
AND result (subnet number)	10.0.0.0	00001010	0000000	0000000	00000000
Change host to 1s (broadcast address)	10.255.255.255	00001010	11111111	11111111	11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.0.0.1 through 10.255.255.254

Alternatively, you can use the processes that only use decimal math to find the subnet and broadcast address. Table F-76 shows the work for this problem.

Table F-76	Question 25: Subnet,	, Broadcast, and	l First and L	_ast Addresses	Calculated
Using the Su	bnet Chart				

	Octet 1	Octet 2	Octet 3	Octet 4
Mask	255	0	0	0
Address	10	1	1	1
Network Number	10	0	0	0
First Valid Address	10	0	0	1
Last Valid Address	10	255	255	254
Broadcast	10	255	255	255