Answers to the “Do I Know This Already?” Quizzes

Chapter 1

1. D and F. Of the remaining answers, Ethernet defines both physical and data link protocols, PPP is a data link protocol, IP is a network layer protocol, and SMTP and HTTP are application layer protocols.

2. A and G. Of the remaining answers, IP is a network layer protocol, TCP and UDP are transport layer protocols, and SMTP and HTTP are application layer protocols.

3. B. Adjacent-layer interaction occurs on one computer, with two adjacent layers in the model. The higher layer requests services from the next lower layer, and the lower layer provides the services to the next higher layer.

4. B. Same-layer interaction occurs on multiple computers. The functions defined by that layer typically need to be accomplished by multiple computers—for example, the sender setting a sequence number for a segment and the receiver acknowledging receipt of that segment. A single layer defines that process, but the implementation of that layer on multiple devices is required to accomplish the function.

5. A. Encapsulation is defined as the process of adding a header in front of data supplied by a higher layer (and possibly adding a trailer as well).

6. D. By convention, the term frame refers to the part of a network message that includes the data link header and trailer, with encapsulated data. The term packet omits the data link header and trailer, leaving the network layer header with its encapsulated data. The term segment omits the network layer header, leaving the transport layer header and its encapsulated data.

7. C. The network layer concerns itself with delivery of data over the complete end-to-end path. That requires a way to identify each device, using addresses, and the addresses must be logical addresses that are therefore not tied to the physical details of the network.

8. A. The OSI physical layer includes all standards that specify the shape of connectors, wiring in cabling, electrical details, and encoding that the electrical signals use to encode bits over a cable.
Chapter 2

1. A. The IEEE defines Ethernet LAN standards, with standard names that begin with 802.3, all of which happen to use cabling. The IEEE also defines wireless LAN standards, with standard names that begin with 802.11, which are separate standards from Ethernet.

2. C. The number before the word BASE defines the speed, in megabits per second (Mbps). 1000 Mbps equals 1 gigabit per second (1 Gbps). The T in the suffix implies twisted-pair or UTP cabling, so 1000BASE-T is the UTP-based Gigabit Ethernet standard name.

3. B. Crossover cables cross the wire at one node’s transmit pin pair to the different pins used as the receive pins on the other device. For 10- and 100-Mbps Ethernet, the specific crossover cable wiring connects the pair at pins 1 and 2 on each end of the cable to pins 3 and 6 on the other end of the cable, respectively.

4. B, D, and E. Routers, wireless access point Ethernet ports, and PC NICs all send using pins 1 and 2, whereas hubs and LAN switches transmit on pins 3 and 6. Straight-through cables connect devices that use opposite pin pairs for sending, because the cable does not need to cross the pairs.

5. B. NICs (and switch ports) use the carrier sense multiple access with collision detection (CSMA/CD) algorithm to implement half-duplex logic. CSMA/CD attempts to avoid collisions, but it also notices when collisions do occur, with rules about how the Ethernet nodes should stop sending, wait, and try again later.

6. C. The 4-byte Ethernet FCS field, found in the Ethernet trailer, allows the receiving node to see what the sending node computed with a math formula that is a key part of the error-detection process. Note that Ethernet defines the process of detecting errors (error detection), but not error recovery.

7. B, C, and E. The pre-assigned universal MAC address, given to each Ethernet port when manufactured, breaks the address into two 3-byte halves. The first half is called the organizationally unique identifier (OUI), which the IEEE assigns to the company that builds the product as a unique hex number to be used only by that company.

8. C and D. Ethernet supports unicast addresses, which identify a single Ethernet node, and group addresses, which can be used to send one frame to multiple Ethernet nodes. The two types of group addresses are the broadcast address and multicast address.

Chapter 3

1. B. The four-wire circuit cable supplied by the telco connects to the device acting as the CSU/DSU. That can be an external CSU/DSU or a CSU/DSU integrated into a router serial interface card. LAN switches do not have serial interfaces, and router serial interfaces do not have transceivers.

2. C. Leased lines can run at various preset speeds. These include multiples of 64 kbps, up through 24 times 64 kbps. The speeds can also be multiples of T1 speed (1.544 Mbps), up to 28 times that speed.
3. B. The standard HDLC header does not include a Type field, which identifies the type of packet encapsulated inside the HDLC frame.

4. B and D. The physical installation uses a model in which each router uses a physical Ethernet link to connect to some SP device in an SP facility called a point of presence (PoP). The Ethernet link does not span from each customer device to the other. From a data-link perspective, both routers use the same Ethernet standard header and trailer used on LANs; HDLC does not matter on these Ethernet WAN links.

5. B and C. Leased lines transmit data at the same speed in both directions, making them a symmetric service. DSL and cable Internet offer asymmetric speeds, with a faster downstream speed. BGP is a routing protocol and not an Internet access technology.

6. C. With DSL, the requirements on the phone’s wiring are unchanged. The phone can connect to any working telephone jack, as if the DSL modem and router did not exist.

Chapter 4

1. A and C. The network layer defines logical addressing, in contrast to physical addressing. The logical address structure allows easy grouping of addresses, which makes routing more efficient. Path selection refers to the process of choosing the best routes to use in the network. Physical addressing and arbitration typically are data link layer functions, and error recovery typically is a transport layer function.

2. B. 224.1.1.1 is a Class D address.

3. D. The first octet of Class A addresses ranges from 1 to 126, inclusive; Class B, 128 to 191, inclusive; and Class C, 192 to 223 inclusive. 127 is technically in the Class A range, but it is a reserved address used as a loopback.

4. D and F. Without any subnetting in use, all addresses in the same network as 10.1.1.1—all addresses in Class A network 10.0.0.0—must be on the same LAN. Addresses separated from that network by some router cannot be in network 10.0.0.0. So, the two correct answers are the only two answers that list a valid unicast IP address that is not in network 10.0.0.0.

5. A. PC1 will send an Ethernet frame to Router 1, with PC1’s MAC address as the source address and Router 1’s MAC address as the destination address. Router 1 will remove the encapsulated IP packet from that Ethernet frame, discarding the frame header and trailer. Router 1 will forward the IP packet by first encapsulating it inside an HDLC frame, but Router 1 will not encapsulate the Ethernet frame in the HDLC frame but rather the IP packet. Router 2 will de-encapsulate the IP packet from the HDLC frame and forward it onto the Ethernet LAN, adding a new Ethernet header and trailer, but this header will differ. It will list Router 2’s MAC address as the source address and PC2’s MAC address as the destination address.

6. C. Routers compare the packet’s destination IP address to the router’s IP routing table, making a match and using the forwarding instructions in the matched route to forward the IP packet.
7. B and C. IPv4 hosts generally use basic two-branch logic. To send an IP packet to another host on the same IP network or subnet that is on the same LAN, the sender sends the IP packet directly to that host. Otherwise, the sender sends the packet to its default router (also called the default gateway).

8. A and C. Routers do all the actions listed in all four answers; however, the routing protocol does the functions in the two listed answers. Independent of the routing protocol, a router learns routes for IP subnets and IP networks directly connected to its interfaces. Routers also forward (route) IP packets, but that process is called IP routing, or IP forwarding, and is an independent process compared to the work of a routing protocol.

9. C. Address Resolution Protocol (ARP) does allow PC1 to learn information, but the information is not stored on a server. The ping command does let the user at PC1 learn whether packets can flow in the network, but it again does not use a server. With the Domain Name System (DNS), PC1 acts as a DNS client, relying on a DNS server to respond with information about the IP addresses that match a given hostname.

Chapter 5

1. D and E. Many headers include a field that identifies the next header that follows inside a message. Ethernet uses the Ethernet Type field, and the IP header uses the Protocol field. The TCP and UDP headers identify the application that should receive the data that follows the TCP or UDP header by using the port number field in the TCP and UDP headers, respectively.

2. A, B, C, and F. IP, not TCP, defines routing. Many other protocols define encryption, but TCP does not. The correct answers simply list various TCP features.

3. C. TCP, not UDP, performs windowing, error recovery, and ordered data transfer. Neither performs routing or encryption.

4. C and F. The terms packet and L3PDU refer to the header plus data encapsulated by Layer 3. Frame and L2PDU refer to the header (and trailer), plus the data encapsulated by Layer 2. Segment and L4PDU refer to the header and data encapsulated by the transport layer protocol.

5. B. Note that the hostname is all the text between the // and the /. The text before the // identifies the application layer protocol, and the text after the / represents the name of the web page.

6. C and D. Web traffic uses TCP as the transport protocol, with HTTP as the application protocol. As a result, the web server typically uses well-known TCP port 80, which is the well-known port for HTTP traffic. Messages flowing to the web server would have a destination TCP port of 80, and messages flowing from the server would have a source TCP port of 80.

Chapter 6

1. A and B. The command in the question is an EXEC command that happens to require only user mode access. As such, you can use this command in both user mode and enable mode. As an EXEC command, you cannot use the command (as shown in the question) in configuration mode.
Note that you can put the word do in front of the EXEC command while in configuration mode (for example, do show mac address-table) to issue the command from inside any configuration mode.

2. B. The command referenced in the question, the reload command, is an EXEC command that happens to require privileged mode, also known as enable mode. This command is not available in user mode.

Note that you can put the word do in front of the EXEC command while in configuration mode (for example, do reload) to issue the command from inside any configuration mode.

3. B. SSH provides a secure remote login option, encrypting all data flows, including password exchanges. Telnet sends all data (including passwords) as clear text.

4. A. Switches (and routers) keep the currently used configuration in RAM, using NVRAM to store the configuration file that is loaded when the switch (or router) next loads the IOS.

5. F. The startup-config file is in NVRAM, and the running-config file is in RAM.

6. B and C. The exit command moves the user one config mode backward, toward global configuration mode, or if already in global configuration mode, it moves the user back to enable mode. From console mode, it moves the user back to global configuration mode. The end command and the Ctrl+Z key sequence both move the user back to enable mode regardless of the current configuration submode.

Chapter 7

1. A. A switch compares the destination MAC address to the MAC address table. If a matching entry is found, the switch forwards the frame out the appropriate interface. If no matching entry is found, the switch floods the frame.

2. C. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table).

3. A. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table).

4. B. Switches need to learn the location of each MAC address used in the LAN relative to that local switch. When a switch receives a frame, the source MAC identifies the sender. The interface in which the frame arrives identifies the local switch interface closest to that node in the LAN topology.

5. C. The show interfaces status command lists one line of output per interface. Cisco Catalyst switches name the type of interface based on the fastest speed of the interface, so 10/100 interfaces would be Fast Ethernet. With a working connection, ports from FastEthernet 0/1 through 0/10 would be listed in a connected state, while the rest would be listed in a notconnected state.

6. D. For the correct answer, each entry lists the learned MAC address. By definition, dynamically learned MAC addresses are learned by looking at the source MAC address of received frames. (That fact rules out one of the incorrect answers as well.)
The `show mac address-table dynamic` command lists the current list of MAC table entries, with three known entries at the point at which the command output was gathered. The counter in the last line of output lists the number of current entries, not the total number of learned MAC addresses since the last reboot. For instance, the switch could have learned other MAC addresses whose entries timed out from the MAC address table.

Finally, the answer that claims that port Gi0/2 connects directly to a device with a particular MAC address may or may not be true. That port could connect to another switch, and another, and so on, with one of those switches connecting to the device that uses the listed MAC address.

Chapter 8

1. B. If both commands are configured, IOS accepts only the password as configured in the `enable secret` command.

2. A. To answer this question, it might be best to first think of the complete configuration, and then find any answers that match the configuration. The commands, in vty line configuration mode, would be `password password` and `login`. Only one answer lists a vty subcommand that is one of these two commands.

 Of note in the incorrect answers:

 One answer mentions console subcommands. The console does not define what happens when remote users log in; those details sit in the vty line configuration.

 One answer mentions the `login local` command; this command means that the switch should use the local list of configured usernames/passwords. The question stated that the engineer wanted to use passwords only, with no usernames.

 One answer mentions the `transport input ssh` command, which, by omitting the `telnet` keyword, disables Telnet. While that command can be useful, SSH does not work when using passwords only; SSH requires both a username and a password. So, by disabling Telnet (and allowing SSH only), the configuration would allow no one to remotely log in to the switch.

3. B and C. SSH requires the use of usernames in addition to a password. Using the `username` global command would be one way to define usernames (and matching passwords) to support SSH. The vty lines would also need to be configured to require the use of usernames, with the `login local` vty subcommand being one such option.

 The `transport input ssh` command could be part of a meaningful configuration, but it is not a global configuration command (as claimed in one wrong answer). Likewise, one answer refers to the `username` command as a command in vty config mode, which is also the wrong mode.

4. A, D, and F. To allow access through Telnet, the switch must have password security enabled, at a minimum using the `password` vty line configuration subcommand. In addition, the switch needs an IP address (configured under one VLAN interface) and a default gateway when the switch needs to communicate with hosts in a different subnet.
5. B and C. To all SSH or Telnet access, a switch must have a correct IP configuration. That includes the configuration of a correct IP address and mask on a VLAN interface. That VLAN interface then must have a path out of the switch via ports assigned to that VLAN. In this case, with all ports assigned to VLAN 2, the switch must use interface VLAN 2 (using the `interface vlan 2` configuration command).

To meet the requirement to support login from hosts outside the local subnet, the switch must configure a correct default gateway setting with the `ip default-gateway 172.16.2.254` global command in this case.

6. A. The `logging synchronous` line subcommand synchronizes log message display with other command output so the log message does not interrupt a `show` command’s output. The `no ip domain-lookup` command is not a line subcommand. The other two incorrect answers are line subcommands but do not configure the function listed in the question.

Chapter 9

1. F. Cisco switches do not have a command to disable autonegotiation of speed and duplex. Instead, a switch port that has both `speed` and `duplex` configured disables autonegotiation.

2. E. Cisco switches can be configured for speed (with the `speed` command) and duplex (with the `duplex` command) in interface configuration mode.

3. A and D. The IEEE autonegotiation rules dictate that if a device attempts autonegotiation but the other side does not participate, use the slowest speed it supports. However, Cisco switches override that logic, instead sampling the electrical signal to detect the speed used by the connected device, so the switch will operate at 1000 Mbps. The switch uses the IEEE default setting for duplex based on the speed, and the IEEE default for duplex when using 1000 Mbps is to use full duplex. So in this case, the switch will match both the speed and the duplex setting made on the PC.

4. B. The setting for the maximum number of MAC addresses has a default of 1, so the `switchport port-security maximum` command does not have to be configured. With sticky learning, you do not need to predefined the specific MAC addresses either. However, you must enable port security, which requires the `switchport port-security` interface subcommand.

5. B and C. First, about the two incorrect answers: In restrict mode, the arrival of a frame that violates the port security policy does not cause the switch to put the interface into err-disabled state. It does cause the switch to discard any frames that violate the policy, but it leaves the interface up, and does not discard frames that do not violate the security policy, like the second frame that arrives.

Regarding the two correct answers, a port in port security restrict does cause the switch to issue log messages for a violating frame, send SNMP traps about that same event (if SNMP is configured), and increment the counter of violating frames.
6. B and D. First, about the sticky parameter... this command causes the switch to learn
the source MAC, and to add it to a switchport port-security mac-address address
interface subcommand. However, port security adds that command to the running-
config file; the network engineer must also issue a copy running-config startup-
config EXEC command to save that configuration.

About the other correct answer, users can connect a switch to the end of the cable,
with multiple devices connected to that switch. That happens in real networks when
users decide they need more ports at their desk. However, the default setting of
switchport port-security maximum 1 means that a frame from the second unique
source MAC address would cause a violation, and with the default violation action, to
err-disable the port.

For the other incorrect answer, the configuration does not prevent unknown MAC
addresses from accessing the port, because the configuration does not predefine any
MAC address.

Chapter 10

1. A. A collision domain contains all devices whose frames could collide with frames
sent by all the other devices in the domain. Bridges, switches, and routers separate or
segment a LAN into multiple collision domains, whereas hubs and repeaters do not.

2. A, B, and C. A broadcast domain contains all devices whose sent broadcast frames
should be delivered to all the other devices in the domain. Hubs, repeaters, bridges,
and switches do not separate or segment a LAN into multiple broadcast domains,
whereas routers do.

3. B and D. The access layer switches play the role of connecting to the endpoint devices,
whether they are end-user devices or servers. Then, from the access to the distribution
layer, each access layer connects to two distribution switches typically, but with no
direct connections between access layer switches, creating a mesh (but a partial mesh).
A two-tier design, also called a collapsed core, does not use core switches at all.

4. A and C. The access layer switches, not the distribution layer switches, play the role
of connecting to the endpoint devices, whether they are end-user devices or servers.
Then, from the access to the distribution layer, each access layer connects to two
distribution switches typically, but with no direct connections between access layer
switches, creating a mesh (but a partial mesh). A three-tier design, also called a core
design, does use core switches, with a partial mesh of links between the distribution
and core switches. Basically, each distribution switch connects to multiple core
switches, but often does not connect directly to other distribution switches.

5. D. The access layer uses access switches, which connect to endpoint devices. A single
access switch with its endpoint devices looks like a star topology. The distribution
layer creates a partial mesh of links between the distribution switches and access
switches, so it is neither a full mesh nor a hybrid.

6. B and D. The IEEE Ethernet standards support 100-meter links when using UTP
cabling. Most standards that use fiber-optic cabling, like the standards in the two cor-
rect answers, use lengths longer than 100 meters.
Chapter 11

1. B. A VLAN is a set of devices in the same Layer 2 broadcast domain. A subnet often includes the exact same set of devices, but it is a Layer 3 concept. A collision domain refers to a set of Ethernet devices, but with different rules than VLAN rules for determining which devices are in the same collision domain.

2. D. Although a subnet and a VLAN are not equivalent concepts, the devices in one VLAN are typically in the same IP subnet and vice versa.

3. B. 802.1Q defines a 4-byte header, inserted after the original frame’s destination and source MAC address fields. The insertion of this header does not change the original frame’s source or destination address. The header itself holds a 12-bit VLAN ID field, which identifies the VLAN associated with the frame.

4. A and C. The dynamic auto setting means that the switch can negotiate trunking, but it can only respond to negotiation messages, and it cannot initiate the negotiation process. So, the other switch must be configured to trunk or to initiate the negotiation process (based on being configured with the dynamic desirable option).

5. A and B. The configured VTP setting of VTP transparent mode means that the switch can configure VLANs, so the VLAN is configured. In addition, the VLAN configuration details, including the VLAN name, show up as part of the running-config file.

6. B and C. The show interfaces switchport command lists both the administrative and operational status of each port. When a switch considers a port to be trunking, this command lists an operational trunking state of “trunk.” The show interfaces trunk command lists a set of interfaces: the interfaces that are currently operating as trunks. So, both of these commands identify interfaces that are operational trunks.

Chapter 12

1. C and D. This question asks about a topic that, by nature, is subjective. Cisco does not dictate a particular predefined troubleshooting methodology. However, many good practices make good common sense and work in real networks. The incorrect answers to this question were chosen to be a bit obvious just to make the point about what Cisco does mention about troubleshooting methods in the exam topics, because this question takes those exam topics and builds in some common sense as applied to the exam topics.

One incorrect answer says to not slow down to document problems. This is contrary to one of the exam topics, and is certainly against good troubleshooting practices. Do problem isolation and record your findings.

Two answers state what the last step in the troubleshooting process should be, so one must be incorrect, possibly both (that is, only one step could be the last step). Resolving the problem is not the last step. After resolving the problem, the person working the problem should verify whether the problem is indeed solved, and possibly monitor the status for a period of time before considering the problem resolved.

The answer that mentions the escalation process basically defines a good process: If the engineer cannot resolve the problem, he should know how to escalate the problem to another engineer or manager, and he should indeed follow that process.
2. A, B, and D. The disabled state in the `show interfaces status` command is the same as an “administratively down and down” state shown in the `show interfaces` command. The interface must be in a connected state (per the `show interfaces status` command) before the switch can send frames out the interface.

3. A and D. SW2 has effectively disabled IEEE standard autonegotiation by configuring both speed and duplex. However, Cisco switches can detect the speed used by the other device, even with autonegotiation turned off. Also, at 1 Gbps, the IEEE autonegotiation standard says to use full duplex. If the duplex setting cannot be negotiated, both ends use 1 Gbps, full duplex.

4. B and D. The `show interfaces` command lists the actual speed and duplex setting, but it does not imply anything about how the settings were configured or negotiated. The `show interfaces status` command lists a prefix of `a-` in front of the speed and duplex setting to imply that the setting was autonegotiated, leaving off this prefix if the setting was configured.

5. B and C. IOS adds MAC addresses configured by the port security feature as static MAC addresses, so they do not show up in the output of the `show mac address-table dynamic` command. `show mac address-table port-security` is not a valid command.

6. A and C. The `show mac address-table` command lists all entries in the switch’s MAC address table, including dynamically learned and statically defined addresses. From left to right, the output lists the VLAN ID, the MAC address, the type (static or dynamic), and the associated ports (out which frames sent to the listed address will be forwarded by this switch).

7. B. The question states that the port security status is secure-shutdown. This state is used only by the shutdown port security mode, and when used, it means that the interface has been placed into an err-disabled state. Those facts explain why the correct answer is correct and two of the incorrect answers are incorrect. The incorrect answer that mentions the violation counter is incorrect because in shutdown mode, the counter no longer increments once the interface is placed into secure-shutdown mode, and resets to 0 once the interface is reset with the `shutdown` and then `no shutdown` commands.

8. D. The `show interface switchport` command lists a switch’s configured value of the `switchport mode` command as the administrative mode, telling us that SW1 uses the `switchport mode trunk` configuration command. The operation state shows the current working state (trunk). Of the four answers, one incorrect answer claims that SW2’s operational state must also be “trunk”; however, one switch can use trunking while the other does not. Another answer claims that the administrative mode must be “trunk,” which basically means that the `switchport mode trunk` command must be used. However, SW2 has a few other configuration options that would work, like the `switchport mode dynamic desirable` and `switchport mode dynamic auto` commands, with the correct answer referring to one of those commands (the `switchport mode dynamic auto` command).
Chapter 13

1. B and D. The general rule to determine whether two devices’ interfaces should be in the same subnet is whether the two interfaces are separated from each other by a router. To provide a way for hosts in one VLAN to send data to hosts outside that VLAN, a local router must connect its LAN interface to the same VLAN as the hosts, and have an address in the same subnet as the hosts. All the hosts in that same VLAN on the same switch would not be separated from each other by a router, so these hosts would also be in the same subnet. However, another PC, connected to the same switch but in a different VLAN, will require its packets to flow through a router to reach Host A, so Host A’s IP address would need to be in a different subnet compared to this new host.

2. D. By definition, two address values in every IPv4 subnet cannot be used as host IPv4 addresses: the first (lowest) numeric value in the subnet for the subnet ID, and the last (highest) numeric value in the subnet for the subnet broadcast address.

3. B and C. At least 7 subnet bits are needed, because $2^6 = 64$, so 6 subnet bits could not number 100 different subnets. Seven subnet bits could, because $2^7 = 128 \approx 100$. Similarly, 6 host bits is not enough, because $2^6 - 2 = 62$, but 7 host bits is enough, because $2^7 - 2 = 126 \approx 100$.

The number of network, subnet, and host bits must total 32 bits, making one of the answers incorrect. The answer with 8 network bits cannot be correct because the question states that a Class B network is used, so the number of network bits must always be 16. The two correct answers have 16 network bits (required because the question states the use of a Class B network), and at least 7 subnet and host bits each.

4. A and C. The private IPv4 networks, defined by RFC 1918, are Class A network 10.0.0.0, the 16 Class B networks from 172.16.0.0 to 172.31.0.0, and the 256 Class C networks that begin with 192.168.

5. A, D, and E. The private IPv4 networks, defined by RFC 1918, are Class A network 10.0.0.0, the 16 Class B networks from 172.16.0.0 to 172.31.0.0, and the 256 Class C networks that begin with 192.168. The three correct answers are from the public IP network range, and none are reserved values.

6. A and C. An unsubnetted Class A, B, or C network has two parts: the network and host parts.

7. B. An unsubnetted Class A, B, or C network has two parts: the network and host parts. To perform subnetting, the engineer creates a new subnet part by borrowing host bits, shrinking the number of host bits. The subnet part of the address structure exists only after the engineer chooses a nondefault mask. The network part remains a constant size.

Chapter 14

1. B and C. Class A networks have a first octet in the range of 1–126, inclusive, and their network IDs have a 0 in the last three octets. 130.0.0.0 is actually a Class B network (first octet range 128–191, inclusive). All addresses that begin with 127 are reserved, so 127.0.0.0 is not a Class A network.
2. E. All Class B networks begin with values between 128 and 191, inclusive, in their first octets. The network ID has any value in the 128–191 range in the first octet, and any value from 0–255 inclusive in the second octet, with decimal 0s in the final two octets. Two of the answers show a 255 in the second octet, which is acceptable. Two of the answers show a 0 in the second octet, which is also acceptable.

3. B and D. The first octet (172) is in the range of values for Class B addresses (128–191). As a result, the network ID can be formed by copying the first two octets (172.16) and writing 0s for the last two octets (172.16.0.0). The default mask for all Class B networks is 255.255.0.0, and the number of host bits in all unsubnetted Class B networks is 16.

4. A and C. The first octet (192) is in the range of values for Class C addresses (192–223). As a result, the network ID can be formed by copying the first three octets (192.168.6) and writing 0 for the last octet (192.168.6.0). The default mask for all Class C networks is 255.255.255.0, and the number of host bits in all unsubnetted Class C networks is 8.

5. D. To find the network broadcast address, first determine the class, and then determine the number of host octets. At that point, convert the host octets to 255 to create the network broadcast address. In this case, 10.1.255.255 is in a Class A network, with the last three octets as host octets, for a network broadcast address of 10.255.255.255. For 192.168.255.1, it is a Class C address, with the last octet as the host part, for a network broadcast address of 192.168.255.255. Address 224.1.1.255 is a Class D address, so it is not in any unicast IP network and the question does not apply. For 172.30.255.255, it is a Class B address, with the last two octets as host octets, so the network broadcast address is 172.30.255.255.

Chapter 15

1. C. Thinking about the conversion one octet at a time, the first two octets each convert to 8 binary 1s. 254 converts to 8-bit binary 11111110, and decimal 0 converts to 8-bit binary 00000000. So, the total number of binary 1s (which defines the prefix length) is 8 + 8 + 7 + 0 = /23.

2. B. Thinking about the conversion one octet at a time, the first three octets each convert to 8 binary 1s. 240 converts to 8-bit binary 11110000, so the total number of binary 1s (which defines the prefix length) is 8 + 8 + 8 + 4 = /28.

3. B. /30 is the equivalent of the mask that in binary has 30 binary 1s. To convert that to DDN format, write down all the binary 1s (30 in this case), followed by binary 0s for the remainder of the 32-bit mask. Then take 8 bits at a time and convert from binary to decimal (or memorize the nine possible DDN mask octet values and their binary equivalents). Using the /30 mask in this question, the binary mask is 11111111 11111111 11111111 11111100. Each of the first three octets is all binary 1s, so each converts to 255. The last octet, 11111100, converts to 252, for a DDN mask of 255.255.255.252. See Appendix A, “Numeric Reference Tables,” for a decimal/binary conversion table.

4. C. The size of the network part is always either 8, 16, or 24 bits, based on whether it is Class A, B, or C, respectively. As a Class A address, N=8. The mask 255.255.255.0, converted to prefix format, is /24. The number of subnet bits is the difference
between the prefix length (24) and N, so S=16 in this case. The size of the host part is a number that, when added to the prefix length (24), gives you 32, so H=8 in this case.

5. A. The size of the network part is always either 8, 16, or 24 bits, based on whether it is Class A, B, or C, respectively. As a Class C address, N=24. The number of subnet bits is the difference between the prefix length (27) and N, so S=3 in this case. The size of the host part is a number that, when added to the prefix length (27), gives you 32, so H=5 in this case.

6. D. Classless addressing rules define a two-part IP address structure: the prefix and the host part. This logic ignores Class A, B, and C rules, and can be applied to the 32-bit IPv4 addresses from any address class. By ignoring Class A, B, and C rules, classless addressing ignores any distinction as to the network part of an IPv4 address.

7. A and B. The masks in binary define a number of binary 1s, and the number of binary 1s defines the length of the prefix (network + subnet) part. With a Class B network, the network part is 16 bits. To support 100 subnets, the subnet part must be at least 7 bits long. Six subnet bits would supply only $2^6 = 64$ subnets, while 7 subnet bits supply $2^7 = 128$ subnets. The /24 answer supplies 8 subnet bits, and the 255.255.255.252 answer supplies 14 subnet bits.

Chapter 16

1. D. When using classful IP addressing concepts as described in Chapter 15, “Analyzing Subnet Masks,” addresses have three parts: network, subnet, and host. For addresses in a single classful network, the network parts must be identical for the numbers to be in the same network. For addresses in the same subnet, both the network and subnet parts must have identical values. The host part differs when comparing different addresses in the same subnet.

2. B and D. In any subnet, the subnet ID is the smallest number in the range, the subnet broadcast address is the largest number, and the usable IP addresses sit between them. All numbers in a subnet have identical binary values in the prefix part (classless view) and network + subnet part (classful view). To be the lowest number, the subnet ID must have the lowest possible binary value (all 0s) in the host part. To be the largest number, the broadcast address must have the highest possible binary value (all binary 1s) in the host part. The usable addresses do not include the subnet ID and subnet broadcast address, so the addresses in the range of usable IP addresses never have a value of all 0s or 1s in their host parts.

3. C. The mask converts to 255.255.255.0. To find the subnet ID, for each octet of the mask that is 255, you can copy the IP address’s corresponding values. For mask octets of decimal 0, you can record a 0 in that octet of the subnet ID. As such, copy the 10.7.99 and write a 0 for the fourth octet, for a subnet ID of 10.7.99.0.

4. C. First, the resident subnet (the subnet ID of the subnet in which the address resides) must be numerically smaller than the IP address, which rules out one of the answers. The mask converts to 255.255.255.252. As such, you can copy the first three octets of the IP address because of their value of 255. For the fourth octet, the subnet ID value must be a multiple of 4, because $256 - 252$ (mask) = 4. Those multiples include 96 and 100, and the right choice is the multiple closest to the IP address value in that octet (97) without going over. So, the correct subnet ID is 192.168.44.96.
5. C. The resident subnet ID in this case is 172.31.77.192. You can find the subnet broadcast address based on the subnet ID and mask using several methods. Following the decimal process in the book, the mask converts to 255.255.255.224, making the interesting octet be octet 4, with magic number 256 – 224 = 32. For the three octets where the mask = 255, copy the subnet ID (172.31.77). For the interesting octet, take the subnet ID value (192), add magic (32), and subtract 1, for 223. That makes the subnet broadcast address 172.31.77.223.

6. C. To answer this question, you need to find the range of addresses in the subnet, which typically then means you need to calculate the subnet ID and subnet broadcast address. With subnet ID/mask of 10.1.4.0/23, the mask converts to 255.255.254.0. To find the subnet broadcast address, following the decimal process described in this chapter, you can copy the subnet ID’s first two octets because the mask’s value is 255 in each octet. You write a 255 in the fourth octet because the mask has a 0 on the fourth octet. In octet 3, the interesting octet, add the magic number (2) to the subnet ID’s value (4), minus 1, for a value of 2 + 4 − 1 = 5. (The magic number in this case is calculated as 256 − 254 = 2.) That makes the broadcast address 10.1.5.255. The last usable address is 1 less: 10.1.5.254. The range that includes the last 100 addresses is 10.1.5.155 – 10.1.5.254.

Chapter 17

1. B and E. Cisco routers have an on/off switch, but Cisco switches generally do not.

2. A. Both switches and routers configure IP addresses, so the ip address address mask and ip address dhcp commands could be used on both routers and switches. The interface vlan 1 command applies only to switches.

3. B and D. To route packets, a router interface must have an IP address assigned and be in an “up and up” interface state. For a serial link created in a lab, without using CSU/DSUs, one router must be configured with a clock rate command to the speed of the link. The bandwidth and description commands are not required to make a link operational.

4. C. If the first of the two status codes is “down,” it typically means that a Layer 1 problem exists (for example, the physical cable is not connected to the interface).

5. C and E. The show ip interface brief command lists all the interface IPv4 addresses but none of the masks. The show version command lists none of the IP addresses and none of the masks. The other three commands list both the address and mask.

6. B. A router has one IPv4 address for each interface in use, whereas a LAN switch has a single IPv4 address that is just used for accessing the switch. The rest of the answers list configuration settings that use the same conventions on both routers and switches.

Chapter 18

1. B. PCs use two-option logic: send local packets (destined for hosts in the same subnet) directly, and send remote packets (destined for hosts in other subnets) to the default gateway/router. In this case, the PC’s own IP address is 192.168.4.77, with mask 255.255.255.224, so it is in subnet 192.168.4.64/27. This subnet has a range of addresses from 192.168.4.64 to 192.168.4.95, including the subnet and broadcast...
addresses. As a result, the PC sends the packet to its default gateway. As for the other incorrect answers, if the ping command had used a hostname, it would have first asked a DNS server to resolve the name. Also, the PC already has an IP address, so DHCP would not be needed.

2. A and C. The route defines the group of addresses represented by the route using the subnet ID and mask. The router can use those numbers to find the range of addresses that should be matched by this route. The other two answers list facts useful when forwarding packets that happen to match the route.

3. A and F. Of all the commands listed, only the two correct answers are syntactically correct router configuration commands. The command to enable 802.1Q trunking is `encapsulation dot1q vlan_id`.

4. C. The configuration of the Layer 3 switch’s routing feature uses VLAN interfaces, with the interface number matching the VLAN ID. The matching connected routes, like all connected IP routes, will list the interfaces but not a next-hop IP address. The three connected routes will list the VLAN interfaces 1, 2, and 3, respectively.

5. C. The `ip route` command can refer to the IP address of the next-hop router or to the local router's interface. It also refers to the subnet ID and matching subnet mask, defining the range of addresses matched by the route.

6. A. The correct syntax lists a subnet number, then a subnet mask in dotted-decimal form, and then either an outgoing interface or a next-hop IP address.

7. B. The `ip route` command can reference an outgoing interface or a next-hop IP address, which rules out one answer. The command does use the correct syntax, ruling out another answer. There is no requirement for a router to have any particular interface IP addresses in relation to the configuration of an `ip route` command, ruling out yet another answer.

The checks that IOS uses when looking at a new `ip route` command include whether the outgoing interface is up/up, whether the next-hop address is reachable, and, if there is a competing route from another source, whether the other route has a better administrative distance.

Chapter 19

1. A and D. RIPv2 includes many internal features, including using hop-count as the metric and split horizon as one of the loop prevention mechanisms. RIPv2 sends its updates to multicast address 224.0.0.9. It also sends periodic full routing updates all the time, even if the network is stable.

2. B. The RIP hop-count metric refers to routers as hops. (That fact rules out three of the answers.) From the perspective of a router that has a RIP route, the hop count includes 1 for each router between the local router and the destination subnet, but does not include 1 for the router itself. For instance, imagine a route on R1 for some subnet, and that route has a metric 2. That could occur if the end-to-end path from R1 to that subnet ran from R1, through R2, then through R3, and then on to the link where the subnet resides.
3. A, C, and E. The RIPv2 network commands refer to the classful network (the Class A, B, or C) network in which an interface address resides, rather than the subnet number or interface address. So, the two network commands that refer to Class A networks 10.0.0.0 and 11.0.0.0 are correct. Also, RIP uses the router rip global command, with no other parameter, to move the user into RIP configuration mode so that the network commands can be configured.

4. A. The RIPv2 network commands refer to the classful network (the Class A, B, or C) network in which an interface address resides, rather than the subnet number or interface address. The network 10.0.0.0 command enables RIP on all interfaces on the local router that happen to have addresses in network 10.0.0.0.

5. B and C. The answers refer to several numbers listed in the line of output. The two numbers in brackets, 120 and 1, refer to the administrative distance (120) and the metric (1). The reference to 13 seconds, per the counter of 00:00:13, refers to the counter that shows how long it has been since this router last heard about this route from the neighboring RIP router. However, the route may have been added a much longer time ago; the timer shows how long since the most recent update, not how long since the route was first added to the local router’s routing table.

6. C and D. The output reveals the following configuration: router rip, maximum-paths 5, passive-interface gigabitethernet0/1, network 192.168.1.0, network 192.168.5.0, and no auto-summary.

7. A. Of the four answers, the one incorrect answer is the one case in which routing information is exchanged in one direction only. In this case, R2, as a passive router, does not advertise to R1, so R1 does not learn routes. R2 still learns routes. Two wrong answers mention problems that would stop both routers from learning routes from each other. The answer that lists IP addresses that are in different subnets causes both routers to ignore each other’s RIP updates. The answer about R1’s missing network command means that R1 would neither send nor process any received updates on its G0/0 interface, so neither R1 nor R2 would learn from each other. Finally, the answer that mentions the no auto-summary command would not prevent a router from learning routes; it would only change what routes a router would advertise.

Chapter 20

1. B and D. The client sends a Discover message, with the server returning an Offer message. The client then sends a Request, with the server sending back the IP address in the Acknowledgment message.

2. E. Of the commands in the answers, three list syntactically correct commands but one does not: ip dhcp-server 10.1.10.1. The answer with this command is incorrect. The ip helper-address 10.1.10.1 command is indeed needed as an interface subcommand, but only on remote routers like the Boston router. This command is not needed for the DNS server, so while the ip helper-address 10.1.10.2 command would be accepted, it does not help DNS or DHCP work. Finally, the ip name-server 10.1.10.2 command on the Atlanta router works, but it simply lets users of the Atlanta router CLI make use of the DNS server; it has no effect on user DNS traffic.
The Boston router would need an \texttt{ip helper-address 10.1.10.1} command, so that the Boston router could forward DHCP requests to the DHCP server in Atlanta.

3. B. The configuration puts the per-client settings in a DHCP pool: client IP address, mask, default router, and DNS server IP addresses. The pool also lists the length of time for which the client can keep the lease for the address. Only the exclude list (\texttt{ip dhcp exclude-address}) sits outside the DHCP pool.

4. B. If a host does not yet have an IPv4 address assigned to it, the first action should be to try to lease an address with DHCP. The question begins as if that process had completed, but also that nothing else had happened on the network. That statement is meant to say that no ARPs had flows, no DNS messages had flowed, and certainly no user messages.

When the user types www.ciscopress.com into his browser window, PC1 needs to resolve the name into its IPv4 address. However, the DNS, 10.9.9.9, is on a different subnet than PC1. PC1 does not learn an ARP entry for the default router during the DHCP process. (Remember, all those DHCP messages sent by the DHCP client are not sent to the router’s MAC address.) So, although PC1’s next primary action is to resolve the name www.ciscopress.com to learn its IP address, the literal next message sent by PC1 is an ARP request. As a result, PC1 learns R1’s MAC address, and can then forward the DNS request to R1.

Of the incorrect answers, after the ARP request to find the default router’s MAC address, PC1 will send a DNS request, and then send an IP packet to the server’s IP address. And if the server just happens to be in the same subnet as PC1, PC1 would also ARP to find the web server’s IP address.

5. C. By definition, a subnet broadcast (a packet sent to a subnet broadcast address), also called a directed broadcast, is routed like any other packet until it arrives at a router connected to that subnet. For that last forwarding step, the router encapsulates the IP packet in an Ethernet broadcast frame (destination MAC address FFFF.FFFF.FFFF), so that all hosts in the destination subnet receive a copy.

A unicast packet would not be forwarded as a data link broadcast at the last step.

A network broadcast would be replicated by different routers as needed so that it was delivered to all subnets in the classful network.

A multicast packet would be delivered to a subset of subnets, depending on which subnets had hosts that had formerly asked to receive packets sent to that particular multicast address.

6. D. By definition, a multicast IP packet (a packet sent to a Class D IP multicast address) is copied as necessary by routers to make extra copies and forwarded to multiple routers as needed, but not all. The logic revolves around prior knowledge of a host registration process by which hosts declare their interest in receiving packets sent to a particular multicast IP address. Routers exchange this information, so that when a new multicast packet arrives, the routers know where to send copies of that particular multicast packet and where to not bother to send the packet (because no hosts in that part of the network registered to receive a copy).
A unicast packet would not be forwarded as a data link broadcast at the last step.
A network broadcast would be replicated by different routers as needed so that it was
delivered to all subnets in the classful network.
A subnet broadcast would be routed as a single packet to the final router in the path.
That router would then forward the IP packet as a LAN broadcast so that all hosts in
that subnet would receive a copy.

Chapter 21

1. A. With 50 percent growth, the mask needs to define enough subnet bits to create
150 subnets. As a result, the mask needs at least 8 subnet bits (7 subnet bits supply
2^7, or 128, subnets, and 8 subnet bits supply 2^8, or 256, subnets). Similarly, the need
for 50 percent growth in the size for the largest subnet means that the host part needs
enough bits to number 750 hosts/subnet. Nine host bits are not enough (2^9 – 2 = 510),
but 10 host bits supply 1022 hosts/subnet (2^10 – 2 = 1022). With 16 network bits
existing because of the choice to use a Class B network, the design needs a total of 34
bits (at least) in the mask (16 network, 8 subnet, 10 host), but only 32 bits exist—so
no single mask meets the requirements.

2. B. With a growth of 20 percent, the design needs to support 240 subnets. To meet
that need, 7 subnet bits do not meet the need (2^7 = 128), but 8 subnet bits do meet
the need (2^8 = 256). Similarly, the minimum number of host bits is also 8, because the
need, after the 20 percent growth, would be 144 hosts/subnet. That number requires
8 host bits (2^8 – 2 = 254). These numbers are minimum numbers of subnet and host
bits.
The right answer, 10.0.0.0/22, has 8 network bits because the network class is Class
A, 14 subnet bits (/22 – 8 = 14), and 10 host bits (32 – 22 = 10). This mask supplies at
least 8 subnet bits and at least 8 host bits. The masks in the other answers either do
not supply at least 8 host bits or do not supply at least 8 subnet bits.

3. B. To support 1000 subnets, 10 subnet bits (2^10 = 1024) are needed. The design uses a
Class B network, which means that 16 network bits exist as well. So, the shortest mask
that meets the requirements is 255.255.255.192, or /26, comprised of 16 network plus
10 subnet bits. The /28 answer also supplies enough subnets to meet the need, but
compared to /26, /28 supplies fewer host bits and so fewer hosts/subnet.

4. C and D. The mask converts to 255.255.252.0, so the difference from subnet ID to
subnet ID (called the magic number in this chapter) is 256 – 252 = 4. So, the subnet
IDs start with 172.30.0.0, then 172.30.4.0, then 172.30.8.0, and so on, adding 4 to
the third octet. The mask, used with a Class B network, implies 6 subnet bits, for 64
total subnet IDs. The last of these, 172.30.252.0, can be recognized in part because
the third octet, where the subnet bits sit, has the same value as the mask in that third
octet.

5. A. The first (numerically lowest) subnet ID is the same number as the classful network
number, or 192.168.9.0. The remaining subnet IDs are each 8 larger than the previous
subnet ID, in sequence, or 192.168.9.8, 192.168.9.16, 192.168.9.24, 192.168.9.32, and
so on, through 192.168.9.248.
6. D. Using mask /24 (255.255.255.0), the subnet IDs increment by 1 in the third octet. The reasoning is that with a Class B network, 16 network bits exist, and with mask /24, the next 8 bits are subnet bits, so the entire third octet contains subnet bits. All the subnet IDs will have a 0 as the last octet, because the entire fourth octet consists of host bits. Note that 172.19.0.0 (the zero subnet) and 172.19.255.0 (the broadcast subnet) might look odd but are valid subnet IDs.

Chapter 22

1. B, C, and D. Classless routing protocols, by definition, support VLSM because classless routing protocols transmit the subnet mask in their routing updates. Of the listed answers, only RIP version 1 (RIPv1) is not a classless routing protocol.

2. A. Note that sometimes VLSM stands for variable-length subnet masking, which refers to the process of using different masks in the same classful network, whereas variable-length subnet mask refers to the subnet masks themselves.

3. A. Subnet 10.5.0.0 255.255.240.0 implies range 10.5.0.0 – 10.5.15.255, which does not overlap. 10.4.0.0 255.255.254.0 implies range 10.4.0.0 – 10.5.255.255, which does overlap. 10.5.32.0 255.255.224.0 implies range 10.5.32.0 – 10.5.63.255, which does overlap. 10.5.0.0 255.255.128.0 implies range 10.5.0.0 – 10.5.127.255, which does overlap.

4. D. The four answers imply the following ranges: 172.16.0.0/21: 172.16.0.0 – 172.16.7.255. 172.16.6.0/23: 172.16.6.0 – 172.16.7.255. 172.16.16.0/20: 172.16.16.0 – 172.16.31.255. 172.16.11.0/25: 172.16.11.0 – 172.16.11.127. The subnet in the question, 172.16.8.0/22, implies a range of 172.16.8.0 – 172.16.11.127, which includes the range of numbers in subnet 172.16.11.0/25.

5. C. The question lists three existing subnets, which together consume part of Class C network 192.168.1.0. Just listing the last octet values, these subnets consume 0–63, 128–131, and 160–167. The new subnet, with a /28 mask, needs 16 consecutive numbers, and the subnet numbers will all be a multiple of 16 in the last octet (0, 16, 32, and so on). Looking at the consumed numbers again, the first opening starts at 64 and runs up through 127, so it has more than enough space for 16 addresses. So the numerically lowest subnet number is 192.168.1.64/28, with range 192.168.1.64 – 192.168.1.79.

Chapter 25

1. A and C. Standard ACLs check the source IP address. The address range 10.1.1.1 – 10.1.1.4 can be matched by an ACL, but it requires multiple access-list commands. Matching all hosts in Barney’s subnet can be accomplished with the access-list 1 permit 10.1.1.0 0.0.0.255 command.

3. D. 0.0.0.255 matches all packets that have the same first three octets. This is useful when you want to match a subnet in which the subnet part comprises the first three octets, as in this case.
4. E. 0.0.15.255 matches all packets with the same first 20 bits. This is useful when you want to match a subnet in which the subnet part comprises the first 20 bits, as in this case.

5. A. The router always searches the ACL statements in order, and stops trying to match ACL statements after a statement is matched. In other words, it uses first-match logic. A packet with source IP address 1.1.1.1 would match any of the three explicitly configured commands described in the question. As a result, the first statement will be used.

6. B. One wrong answer, with wildcard mask 0.0.255.0, matches all packets that begin with 172.16, with a 5 in the last octet. One wrong answer matches only specific IP address 172.16.5.0. One wrong answer uses a wildcard mask of 0.0.0.128, which has only one wildcard bit (in binary) and happens to only match addresses 172.16.5.0 and 172.16.5.128. The correct answer matches the range of addresses 172.16.4.0 – 172.16.5.255.

Chapter 26

1. E and F. Extended ACLs can look at the Layer 3 (IP) and Layer 4 (TCP, UDP) headers and a few others, but not any application layer information. Named extended ACLs can look for the same fields as numbered extended ACLs.

2. A and E. The correct range of ACL numbers for extended IP access lists is 100 to 199 and 2000 to 2699. The answers that list the eq www parameter after 10.1.1.1 match the source port number, and the packets are going toward the web server, not away from it.

3. E. Because the packet is going toward any web client, you need to check for the web server’s port number as a source port. The client IP address range is not specified in the question but the servers are, so the source address beginning with 172.16.5 is the correct answer.

4. A and C. Before IOS 12.3, numbered ACLs must be removed and then reconfigured to remove a line from the ACL. As of IOS 12.3, you can also use ACL configuration mode and sequence numbers to delete one ACL line at a time.

5. B and C. A router bypasses the ACL logic for its own outbound ACLs for packets created by that router. Routers do not make any kind of exception for inbound packets. As a result, ACL B creates more risk than ACL A, because B is enabled as an inbound ACL.

The ping 1.1.1.1 command in two answers is a self-ping of a router’s Ethernet interface. As a result, the router would bypass any outbound ACL logic on that interface but consider any inbound ACL logic. So Router R1 would bypass the logic of ACL A, which would be enabled as an outbound ACL on R1’s G0/1 interface.

6. C and D. The show ip access-lists and show access-lists commands both display the configuration of IPv4 access lists, including ACL line numbers. Neither the show running-config nor show startup-config commands list the ACL line numbers; in this case, the startup-config file would not contain the ACL configuration at all.
Chapter 27

1. D. CIDR’s original intent was to allow the summarization of multiple Class A, B, and C networks to reduce the size of Internet routing tables. Of the answers, only 200.1.0.0 255.255.0.0 summarizes multiple networks.

2. B and E. RFC 1918 identifies private network numbers. It includes Class A network 10.0.0.0, Class B networks 172.16.0.0 through 172.31.0.0, and Class C networks 192.168.0.0 through 192.168.255.0.

3. C. With static NAT, the entries are statically configured. Because the question mentions translation for inside addresses, the inside keyword is needed in the command.

4. A. With dynamic NAT, the entries are created as a result of the first packet flow from the inside network.

5. A. The list 1 parameter references an IP ACL, which matches packets, identifying the inside local addresses.

6. A and C. The configuration is missing the overload keyword in the ip nat inside source command and in the ip nat outside interface subcommand on the serial interface.

7. B. The last line mentions that the pool has seven addresses, with all seven allocated, with the misses counter close to 1000—meaning that close to 1000 new flows were rejected because of insufficient space in the NAT pool.

Chapter 28

1. C. NAT, specifically the PAT feature that allows many hosts to use private IPv4 addresses while being supported by a single public IPv4 address, was one short-term solution to the IPv4 address exhaustion problem. IP version 5 existed briefly as an experimental protocol and had nothing to do with IPv4 address exhaustion. IPv6 directly addresses the IPv4 address exhaustion problem, but it is a long-term solution. ARP has no impact on the number of IPv4 addresses used.

2. A. Routers use the same process steps when routing IPv6 packets as they do when routing IPv4 packets. Routers route IPv6 packets based on the IPv6 addresses, listed inside the IPv6 header in the IPv6 packets, by comparing the destination IPv6 address to the router's IPv6 routing table. As a result, the router discards the incoming frame’s data-link header and trailer, leaving an IPv6 packet. The router compares the destination (not source) IPv6 address in the header to the router’s IPv6 (not IPv4) routing table and then forwards the packet based on the matched route.

3. D. If following the steps in the book, the first step removes up to three leading 0s in each quartet, leaving FE80:0:0:100:0:0:0:123. This leaves two strings of consecutive all-0 quartets; by changing the longest string of all 0s to ::, the address is FE80:0:0:100::123.

4. B. This question has many quartets that make it easy to make a common mistake: removing trailing 0s in a quartet of hex digits. To abbreviate IPv6 addresses, only leading 0s in a quartet should be removed. Many of the quartets have trailing 0s (0s on the right side of the quartet), so make sure to not remove those 0s.
5. A. The unabbreviated version of an IPv6 address must have 32 digits, and only one answer has 32 hex digits. In this case, the original number shows four quartets and a ::. So, the :: was replaced with four quartets of 0000, making the number have eight quartets. Then, for each quartet with fewer than four digits, leading 0s were added so that each quartet has four hex digits.

6. C. The /64 prefix length means that the last 64 bits, or last 16 digits, of the address should be changed to all 0s. That process leaves the unabbreviated prefix as 2000:0000:0000:0005:0000:0000:0000:0000. The last four quartets are all 0s, making that string of all 0s be the longest and best string of 0s to replace with ::. After removing the leading 0s in other quartets, the answer is 2000:0:0:5::/64.

Chapter 29
1. C. Unique local addresses begin with FD in the first two digits.
2. A. Global unicast addresses can begin with many different initial values, but most commonly they begin with either a hex 2 or 3.
3. D. The global routing prefix is the address block, represented as a prefix value and prefix length, given to an organization by some numbering authority. All IPv6 addresses inside the company have the same value in these initial bits of their IPv6 addresses. Similarly, when a company uses a public IPv4 address block, all the addresses have the same value in the network part.
4. B. Subnetting a global unicast address block, using a single prefix length for all subnets, breaks the addresses into three parts. The parts are the global routing prefix, subnet, and interface ID.
5. D. Unique local addresses begin with a 2-hex-digit prefix of FD, followed by the 10-hex-digit global ID.

Chapter 30
1. A. The one correct answer lists the exact same IPv6 address listed in the question, with a /64 prefix length and no spaces in the syntax of the answer. Another (incorrect) answer is identical, except it leaves a space between the address and prefix length, which is incorrect syntax. The two answers that list the eui-64 parameter list an address and not a prefix; they should list a prefix to be correct, although neither would have resulted in the IPv6 address listed in the question.
2. B. With the eui-64 parameter, the router will calculate the interface ID portion of the IPv6 address based on its MAC address. Beginning with 5055.4444.3333, the router injects FF FE in the middle (5055.44FF.FE44.3333). Then the router inverts the seventh bit in the first byte. Mentally, this converts hex 50 to binary 01010000, changing bit 7 so that the string is 0101 0010, and converting back to hex 52. The final interface ID value is 5255:44FF:FE44:3333. The wrong answers simply list a different value.
3. A and C. Of the four answers, the two correct answers show the minimal required configuration to support IPv6 on a Cisco router: enabling IPv6 routing (ipv6 unicast-routing) and enabling IPv6 on each interface, typically by adding a unicast address to each interface (ipv6 address...). The two incorrect answers list nonexistent commands.
4. A. With an **ipv6 address** command configured for a global unicast address, but without a link-local address configured with an **ipv6 address** command, the router calculates its link-local address on the interface based on its MAC address and EUI-64 rules. The first half of the link-local address begins FE80:0000:0000:0000. The router then calculates the second half of the link-local address value by taking the MAC address (0200.0001.000A), injecting FF FE in the middle (0200.00FF.FE01.000A), and flipping the seventh bit (0000.00FF.FE01.000A).

5. B. FF02::1 is used by all IPv6 hosts on the link, FF02::5 is used by all OSPFv3 routers, and FF02::A is used by all EIGRPv6 routers. FF02::2 is used to send packets to all IPv6 routers on a link.

Chapter 31

1. B. PC1 needs to discover PC2’s MAC address. Unlike IPv4, IPv6 does not use ARP, instead using NDP. Specifically, PC1 uses the NDP Neighbor Solicitation (NS) message to request that PC2 send back an NDP Neighbor Advertisement (NA). SLAAC relates to address assignment, and not to discovering a neighbor’s MAC address.

2. D. Hosts can ask for (solicit) all routers to identify themselves by sending an NDP Router Solicitation (RS) message, with the routers sending back an NDP Router Advertisement (RA) message. PC1 can also use NDP Neighbor Solicitation (NS), but not for the purpose of learning its default router IPv6 address. DAD is a function that happens to use NDP NS and NA messages, but its function does not include the discovery of the default router address. Finally, EUI-64 does not define a protocol or message.

3. A and C. The NDP RA lists the router IPv6 address, the IPv6 prefixes known on the link, and the matching prefix lengths. When using DHCPv6, the host learns the IPv6 address of the DNS server through DHCPv6 messages. For MAC addresses of on-link neighbors, hosts use NDP NS and NA messages.

4. D. SLAAC gives the host a means to choose its unicast address. The host also uses NDP to learn its prefix length, plus the address(es) of any default routers. It then uses stateless DHCP to learn the addresses of the DNS server(s).

5. B and D. With SLAAC, the host learns the prefix from a router using NDP RS/RA messages, and then the host builds the rest of the address (the interface ID). The host can use EUI-64 rules or use a defined process to randomly generate the interface ID value. The host does not learn the interface ID from any other device, which helps make the process stateless because no other device needs to assign the host its full address.

6. A. The **show ipv6 neighbors** command lists all IPv6 addresses of neighbors (both routers and hosts), plus their matching MAC addresses. It does not note which are routers, leaving that information for the **show ipv6 routers** command.

Chapter 32

1. A and C. With an IPv6 address on a working interface, the router adds a connected route for the prefix (subnet) implied by the **ipv6 address** command. It also adds a local host route (with a /128 prefix length) based on the unicast address. The router does not add a route based on the link-local address.
2. A and C. The two correct answers show the correct subnet ID (prefix) and prefix length for the two connected subnets: 3111:1:1:1::/64 and 3222:2:2:2::/64. The answer with the /128 prefix length is shown in a local route, but those routes are not displayed by the `show ipv6 route connected` command. The other incorrect answer lists the entire IPv6 address with a /64 prefix length, and the entire address would not be displayed as a prefix when using a /64 prefix.

3. A. All four answers show examples of commands that use an outgoing interface. The two commands that begin with `ip route` define only IPv4 routes; the commands would be rejected because of the IPv6 prefixes listed in the commands. The two commands that begin with `ipv6 route` are syntactically correct, but the command should list the local router’s interface (an interface on the router on which the command is being configured). R5 needs to use its local S0/1/1 interface as the outgoing interface.

4. B. All four answers show examples of commands that use a next-hop router IPv6 address. Two of the answers list R5’s own IPv6 address (unicast or link-local), which is incorrect; the answer should be an address on the neighboring router, R6 in this case. For the two answers that list addresses on Router R6, the one that lists R6’s global unicast address is correct. The one that lists R6’s link-local address would also require R5’s outgoing interface, so the answer that lists FE80::FF:FE00:6 would be rejected as well.

5. C. IOS will add a new static route to the IPv6 routing table if, when using a next-hop global unicast address, the router has a working route to reach that next-hop address and there is no better (lower administrative distance) route for the exact same subnet. So, the correct answer identifies one reason why the route would not appear. The answer that mentions a better route with administrative distance of 110 is a valid reason for the static route to not appear, but the question states that no route for the subnet appears in the routing table, so clearly that competing route does not exist. The other two answers are incorrect about the `ipv6 route` command. This command can use a link-local next-hop address but does not have to do so. Also, when using a global unicast address as next-hop, the command does not also require an outgoing interface parameter.

6. A and B. The output shows two static routes, as noted with the “S” code on the far left. Both were added to the IPv6 routing table because of `ipv6 route` commands. Both have an administrative distance of 1, which is listed as the first number in brackets.

 For the two incorrect answers, note that the `ipv6 address` interface subcommand does cause IOS to add connected IPv6 routes to the routing table, and the phrase “directly connected” with one route might make you think this is a connected route, but the “S” in the far left identifies the source of the route. Likewise, the answer that mentions an IPv6 routing protocol is incorrect because both routes have a code of S, meaning static.

Chapter 33

1. D. By default, all message levels are logged to the console on a Cisco device. To do so, IOS uses logging level 7 (debugging), which causes IOS to send severity level 7, and levels below 7, to the console. All the incorrect answers list levels below level 7.
2. C. The **logging trap 4** command limits those messages sent to a syslog server (configured with the **logging host ip-address** command) to levels 4 and below, thus 0 through 4.

3. A. NTP uses protocol messages between clients and servers so that the clients can adjust their time-of-day clock to match the server. NTP is totally unrelated to serial line clocking. It also does not count CPU cycles, instead relying on messages from the NTP server. Also, the client defines the IP address of the server and does not have to be in the same subnet.

4. B and C. A router acting in client/server mode acts as both a client, synchronizing its own time with another server, and in server mode, supplying time information to other NTP clients. The **ntp server** command enables the client function, pointing at some other server, while the **ntp master** command enables the NTP server function on that local router.

5. E and F. CDP discovers information about neighbors. **show cdp** gives you several options that display more or less information, depending on the parameters used.

6. E and F. The **show lldp neighbors** command lists one line of output per neighbor. However, it does list the platform information of the neighbor, which typically includes the hardware model number. The **show lldp entry Hannah** command lists a group of messages about the neighboring router, including more detail about the hardware model and the IOS version.

Chapter 34

1. B. If both commands are configured, IOS accepts only the password as configured in the **enable secret** command.

2. A. The **service password-encryption** command encrypts passwords on a router or switch that would otherwise be shown in clear text. While a great idea in concept, the algorithm can be easily broken using websites found in the Internet. Cisco long ago provided replacements for commands that store passwords as clear text, instead using hashes—commands like **enable secret** and **username secret**. These commands are preferred in part because they avoid the issues of clear-text passwords and easily decrypted passwords.

3. B. The **enable secret** command stores an MD5 hash of the password. It is unaffected by the **service password-encryption** command. The router does not unhash the value back to the clear-text password. Instead, when the user types her clear-text password, the router also hashes that password and compares that hashed value with the hashed value as listed in the configuration.

4. B. The first nonblank character after the **banner login** phrase is interpreted as the beginning delimiter character. In this case, it's the letter t. So, the second letter t—the first letter in “the”—is interpreted as the ending delimiter. The resulting login banner is the text between these two ts—namely, “his is “.

5. A. The **ip access-class 1 in** command enables ACL 1 for processing inbound Telnet and SSH connections into that router, based on the source IP address of those incoming packets. It has no impact on Telnet or SSH attempts from the router to some other host. It has no impact on a user later reaching enable mode. It also has nothing
to do with filtering packets that would otherwise be routed through the router. Note that the ACL matches all packets whose source IP address is in subnet 172.16.4.0/23, which includes the range of numbers from 172.16.4.0 to 172.16.5.255.

Chapter 35

1. A. The copy command lists the from location first and the to location second, making copy flash tftp incorrect because the question states that the file needs to be copied into the router’s flash. Copying files using SCP does not use the copy command. The ios restore command is not a command in IOS. The copy ftp flash command can be used to copy a file from an FTP server into flash memory on a router.

2. B. The first step in the process of locating a Cisco IOS image is to check the boot field of the configuration register. This value instructs the router whether to load ROMMON or IOS, and if IOS, specifically the steps to take to find the IOS to load. This first step (the boot field) usually instructs the router to use the image file in flash.

3. D. The show version command is a simple way to verify the location and image filename of the operating system that your Cisco router is running. Of the other answers, only show running-config is a valid command.

4. D. The last hexadecimal character in the configuration register is called the boot field. It controls how the router boots. For example, this character can be set on the router to force the device to boot into ROMMON mode.

5. A. As part of the password recovery process, you must reset the configuration register to have the router ignore the existing startup configuration. You can accomplish this by entering ROMMON mode.

6. A. IOS uses RAM to store working items, like the running-config file and working memory for IOS. It uses ROM for permanent storage of the POST and bootstrap code, flash for the IOS and other files, and NVRAM for the startup-config file.

7. D. The copy ftp running-config command copies a file into the running-config file, but it does not replace the running config; the running config might not exactly match the source file after using this command. The copy ftp startup-config command does not change the running-config. There is no archive restore ftp command. The config replace command will copy a file from the archive into running-config, replacing the running-config without reloading the router.

Chapter 36

1. D. The traditional Cisco IOS image model created a different IOS file for each combination of features, even for a single version and single model. In this case, model X, for a single version, would have one IOS image for the Base software, another for Base + Data, another for Base + Voice, another for Base + Security, and even other images for other combinations, like Base + all the extra feature sets.

2. A. The new Cisco IOS image file that provides access to all major features is called the universal image.
3. B. The UDI has two main components: the product ID (PID) and the serial number (SN).

4. D. To enable a purchased license, the customer receives a PAK. At some point in the process, the customer downloads the license key file and then puts that file somewhere from which the router can copy the file using the license install url exec command.

5. A. To enable a right-to-use license, the customer does not need to receive a PAK. Instead, the customer references the specific license by name with the license boot command. Of the two answers that use this command, only one of them uses the correct syntax. Once the configuration is added and saved, the router starts using the license after the next reload.