
IN MATLAB, C++, AND EXCEL

10

J U S T I N  L O N D O N  

MODELING 
DERIVATIVES 
APPLICATIONS 

www.ftpress.com | An imprint of Pearson Press

Pub Date: November 2006 • $189.99 • Cloth • ISBN 0-13-196259-0   
National Marketing Campaign   

For further information contact: Amy Fandrei at 
amy.fandrei@pearsoned.com • 317.428.3082 

ADVANCE READER’S COPY—PLEASE DO NOT QUOTE FOR 
PUBLICATION WITHOUT CHECKING AGAINST THE FINISHED BOOK

This is the first book for professionals with prebuilt, fully tested code
you can use to start modeling and pricing complex derivatives. All the
code in the book may be downloaded by the book’s purchasers from
a secure Web site, and is designed for both ease of use and ease 
of adaptation.

UNIQUE FEATURES:

■ Provides ready-to-use derivatives pricing tools that cannot be found in any other book
■ Includes models for the fastest-growing areas, including weather, energy, and power 

derivatives, CDOs, and credit derivatives 
■ Monte Carlo simulation, copula methodologies, and finite differences are covered in detail 

The derivatives industry is growing at breakneck speed: hundreds of financial institutions

now market complex derivatives; thousands of financial and technical professionals need to

model them accurately and effectively. Now, for the first time, one book brings together

proven, tested real-time models created for each of today’s leading modeling platforms:

C++, MATLAB, and Microsoft Excel. Using this book’s models, professionals can save

months of development time, while improving the accuracy and reliability of the models

they create. The book shows how to implement pricing algorithms for a wide variety of complex

derivatives, including rapidly emerging instruments covered in no other book. Utilizing actual

Bloomberg data, the book covers credit derivatives, CDOs, mortgage-backed securities,

asset-backed securities, fixed-income securities, and today’s increasingly important weather,

power, and energy derivatives. Along the way, the book presents underlying theory and math

in the context of practical implementation, covering everything from Monte Carlo simulation

to copula methods and finite differences.

JUSTIN LONDON has developed fixed-income and equity models for trading companies and

his own quantitative consulting firm. He has analyzed and managed bank corporate loan

portfolios using credit derivatives in the Asset Portfolio Group of a large bank in Chicago,

Illinois, as well as advised several banks in their implementation of derivative trading systems.

London is the founder of a global online trading and financial technology company. A graduate

of the University of Michigan, London holds a  BA in economics and mathematics, an 

MA in applied economics, and an MS in financial engineering, computer science, and 

mathematics, respectively.

M
O

DELIN
G DERIVATIVES APPLICATIO

N
S

LON
DON



Project1  9/11/06  3:29 PM  Page 1



“London” — 2006/9/8 — 19:21 — page i — #1

Modeling Derivatives Applications
in Matlab, C++, and Excel



FT_Statement_7x9_25.qxd  7/13/06  12:49 PM  Page 1



“London” — 2006/9/8 — 19:21 — page iii — #3

Modeling Derivatives Applications
in Matlab, C++, and Excel

Justin London



“London” — 2006/9/8 — 19:21 — page iv — #4

Vice President, Editor-in-Chief: Tim Moore

Executive Editor: Jim Boyd

Editorial Assistant: Susie Abraham

Development Editor: Russ Hall

Associate Editor-in-Chief and Director of Marketing: Amy Neidlinger

Cover Designer: Chuti Prasertsith

Managing Editor: Gina Kanouse

Senior Project Editor: Lori Lyons

Copy Editor: Water Crest Publishing

Indexer: Christine Karpeles

Compositor: Lori Hughes

ManufacturingBuyer: Dan Uhrig

© 2007 by Pearson Education, Inc.

Publishing as Wharton School Publishing

Upper Saddle River, New Jersey 07458

FT Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more informa-

tion, please contact U.S. Corporate and Government Sales, 1-800- 382-3419, corpsalespearsontechgroup.com. For sales outside

the U.S., please contact International Sales at internationalpearsoned.com.

Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the

publisher.

Printed in the United States of America

First Printing October, 2006

ISBN: 0-13-196259-0

Pearson Education LTD.

Pearson Education Australia PTY, Limited.

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia, Ltd.

Pearson Education Canada, Ltd.

Pearson Educatiòn de Mexico, S.A. de C.V.

Pearson Education—Japan

Pearson Education Malaysia, Pte. Ltd.

Library of Congress Cataloging-in-PublicationData

London, Justin, 1968-

Modeling Derivatives Applications in Matlab, C++, and Excel / Justin London.

p. cm.

ISBN 0-13-196259-0 (hardback : alk. paper)

1. Modeling Credit Derivatives. 2. Pricing Models in Matlab, C++, and Excel. I. Title.

HF5548.4.L692E452006

005.5’7–dc22

2006023492



“London” — 2006/9/8 — 19:21 — page v — #5

v

To the memory of my grandparents, Milton and Evelyn London;
my parents, Leon and Leslie; and my sister, Joanna.



“London” — 2006/9/8 — 19:21 — page vi — #6



“London” — 2006/9/8 — 19:21 — page vii — #7

CONTENTS

Preface xv

Acknowledgments xix

About the Author xxi

1 SWAPS AND FIXED INCOME INSTRUMENTS 1

1.1 Eurodollar Futures 2

1.2 Treasury Bills and Bonds 3

Hedging with T-bill Futures 6

Long Futures Hedge: Hedging Synthetic Futures on 182-Day T-Bill 7

1.3 Computing Treasury Bill Prices and Yields in Matlab 10

1.4 Hedging Debt Positions 11

Hedging a Future 91-Day T-Bill Investment with T-Bill Call 11

Short Hedge: Managing the Maturity Gap 12

Maturity Gap and the Carrying Cost Model 14

Managing the Maturity Gap with Eurodollar Put 14

Short Hedge: Hedging a Variable-Rate Loan 15

1.5 Bond and Swap Duration, Modified Duration, and DV01 18

Hedging Bond Portfolios 20

1.6 Term Structure of Rates 24

1.7 Bootstrap Method 25

1.8 Bootstrapping in Matlab 28

1.9 Bootstrapping in Excel 30

1.10 General Swap Pricing in Matlab 33

Description 43

1.11 Swap Pricing in Matlab Using Term Structure Analysis 45

1.12 Swap Valuation in C++ 50

1.13 Bermudan Swaption Pricing in Matlab 62

Endnotes 66
vii



“London” — 2006/9/8 — 19:21 — page viii — #8

viii

2 MONTE CARLO AND NUMERICAL METHODS 69

2.1 The Monte Carlo Method 70

2.2 Generating Sample Paths and Normal Deviates 72

2.3 Generating Correlated Normal Random Variables 73

2.4 Importance Sampling 81

2.5 Importance Sampling Example in Matlab 84

2.6 Quasi-Random Sequences 88

2.7 Variance Reduction Techniques 98

2.8 Monte Carlo Antithetic Example in Matlab 99

2.9 Monte Carlo Implementation in C++ 101

2.10 Fast Fourier Transform 108

2.11 FFT Implementation in Matlab 111

2.12 Path-Dependent Valuation 114

2.13 Monte Carlo Pricing of Asian Currency Option in Matlab 121

2.14 Finite Difference Methods 122

2.15 Explicit Difference Methods 122

2.16 Explicit Finite Difference Implementation in C++ 126

2.17 Implicit Difference Method 129

2.18 LU Decomposition Method 132

2.19 LU Decomposition Example in Matlab 134

2.20 Implicit Difference Example in Matlab 136

2.21 Crank-Nicolson Scheme 140

2.22 Asian Option Pricing Using Crank-Nicolson in Matlab 142

Endnotes 144

3 COPULA FUNCTIONS 147

3.1 Definition and Basic Properties of Copula Functions 147

3.2 Classes of Copula Functions 149

Multivariate Gaussian Copula 149

Multivariate Student’s T Copula 151

3.3 Archimedean Copulae 153

3.4 Calibrating Copulae 154

Exact Maximum Likelihood Method (EML) 154

The Inference Functions for Margins Method (IFM) 156

The Canonical Maximum Likelihood Method (CML) 156

3.5 Numerical Results for Calibrating Real-Market Data 157

Bouyè, Durrelman, Nikeghbali, Riboulet, and Roncalli Method 157

Mashal and Zeevi Method 162



“London” — 2006/9/8 — 19:21 — page ix — #9

ix

3.6 Using Copulas in Excel 166

Endnotes 167

4 MORTGAGE-BACKED SECURITIES 171

4.1 Prepayment Models 173

4.2 Numerical Example of Prepayment Model 175

4.3 MBS Pricing and Quoting 178

4.4 Prepayment Risk and Average Life of MBS 180

4.5 MBS Pricing Using Monte Carlo in C++ 191

4.6 Matlab Fixed-Income Toolkit for MBS Valuation 207

4.7 Collateralized Mortgage Obligations (CMOs) 212

4.8 CMO Implementation in C++ 219

4.9 Planned Amortization Classes (PACS) 228

4.10 Principal- and Interest-Only Strips 231

4.11 Interest Rate Risk 233

4.12 Dynamic Hedging of MBS 233

The Multivariable Density Estimation Method 236

Endnotes 242

5 COLLATERALIZED DEBT OBLIGATIONS 245
5.1 Structure of CDOs 246

Cash Flow CDOs 247

Market Value CDOs 248

Balance Sheet Cash Flows CDOs 248

Arbitrage CDOs 248

Arbitrage Market Value CDOs 248

Arbitrage Cash Flow CDOs 249

Credit Enhancement in Cash Flow Transactions 249

Credit Enhancement in Market Value Transactions: Advance Rates
and the Over-Collateralization Test 249

Minimum Net Worth Test 250

Transaction Characteristics 255

5.2 Synthetic CDOs 255

Fully Funded Synthetic CDOs 261

Partially and Unfunded Funded Synthetic CDOs 263

5.3 Balance Sheet Management with CDS 265

5.4 The Distribution of Default Losses on a Portfolio 265

5.5 CDO Equity Tranche 270

CDO Equity Tranche Performance 270



“London” — 2006/9/8 — 19:21 — page x — #10

x

The CDO Embedded Option 271

The Price of Equity 272

Using Moody’s Binomial Expansion Technique to Structure Synthetic
CDOs 273

Correlation Risk of CDO Tranches 277

5.6 CDO Tranche Pricing 280

5.7 Pricing Equation 281

5.8 Simulation Algorithm 281

5.9 CDO Pricing in Matlab 283

5.10 CDO Pricing in C++ 292

5.11 CDO2 Pricing 300

5.12 Fast Loss Calculation for CDOs and CDO2s 301

Fast Algorithm for Computing CDO Tranche Loss in Matlab 303

Endnotes 304

6 CREDIT DERIVATIVES 307
6.1 Credit Default Swaps 308

6.2 CDS Day Counting Conventions 310

6.3 General Valuation of Credit Default Swaps 310

6.4 Hazard Rate Function 312

6.5 Poisson and Cox Processes 313

6.6 Valuation Using a Deterministic Intensity Model 316

6.7 Hazard Rate Function Calibration 319

6.8 Credit Curve Construction and Calibration 331

6.9 Credit Basket Default Swaps Pricing 332

Generation of Correlated Default Stopping Times 333

Sampling from Elliptical Copulae 333

The Distribution of Default Arrival Times 336

Basket CDS Pricing Algorithm 336

6.10 Credit Basket Pricing in Matlab 338

6.11 Credit Basket Pricing in C++ 348

6.12 Credit Linked Notes (CLNs) 381

CLNs with Collateralized Loan or Bond Obligations (CLOs or CBOs) 385

Pricing Tranched Credit Linked Notes 385

Regulatory Capital 386

Endnotes 386

7 INTEREST RATE TREE MODELING 389

7.1 Building Binomial BDT Short Trees 390



“London” — 2006/9/8 — 19:21 — page xi — #11

xi

Determining U(i) and σ(i) 392

7.2 Building the BDT Tree Calibrated to the Yield Curve 392

7.3 Building the BDT Tree Calibrated to the Yield and Volatility Curve 397

7.4 BDT Modeling in Matlab 401

7.5 Building a BDT Tree in C++ 405

7.6 Building a Hull-White Tree Calibrated to the Yield Curve 408

7.7 Hull-White Trees in Matlab 417

7.8 Building a Lognormal Hull-White (Black-Karasinski) Tree 417

7.9 Building Hull-White Trees Fitted to Yield and Volatility Curves 423

7.10 Pricing Fixed Income Derivatives with the Models 430

Endnotes 441

8 THE HJM MODEL AND BUSHY TREES 443
8.1 The Heath-Jarrow-Morton (HJM) Model 444

8.2 Pricing Discount Bond Options with Gaussian HJM 448

8.3 Pricing Discount Bond Options in General HJM 449

8.4 Single-Factor HJM Discrete-State Model 450

8.5 HJM Pricing in Matlab 456

Description 458

Syntax 458

Arguments 460

Examples 460

Creating an HJM Volatility and Pricing Model 460

8.6 Arbitrage-Free Restrictions in a Single-Factor Model 462

8.7 Computation of Arbitrage-Free Term Structure Evolutions 466

8.8 Single-Factor HJM Implementation in C++ 468

8.9 Matlab Excel Link Example 475

8.10 Two-Factor HJM Model 478

8.11 Two-Factor HJM Model Implementation in C++ 481

Two-Factor HJM in Matlab 485

8.12 The Ritchken and Sankarasubramanian (RS) Model 485

8.13 The RS Spot Rate Process 487

8.14 The Li, Ritchken, and Sankarasubramanian (LRS) Model 488

8.15 Implementing an LRS Trinomial Tree 489

Endnotes 491

9 WEATHER DERIVATIVES 493
9.1 Weather Derivatives Market 494

9.2 Weather Contracts 497



“London” — 2006/9/8 — 19:21 — page xii — #12

xii

CME Weather Futures 497

9.3 Modeling Temperature 500

Noise Process 502

Mean-Reversion 503

9.4 Parameter Estimation 504

9.5 Volatility Estimation 504

9.6 Mean-Reversion Parameter Estimation 505

9.7 Pricing Weather Derivatives 506

Model Framework 506

Pricing a Heating Degree Day Option 507

9.8 Historical Burn Analysis 510

9.9 Time-Series Weather Forecasting 512

9.10 Pricing Weather Options in C++ 522

Endnotes 525

10 ENERGY AND POWER DERIVATIVES 527

10.1 Electricity Markets 528

10.2 Electricity Pricing Models 530

Modeling the Price Process 530

One-Factor Model 531

Estimating the Deterministic Component 534

Estimation of the Stochastic Process for the One-Factor Models 535

Two-Factor Model 536

10.3 Swing Options 538

10.4 The Longstaff-Schwartz Algorithm for American and Bermudan Options 539

The LSM Algorithm 540

10.5 Extension of Longstaff-Schwartz to Swing Options 542

10.6 General Case: Upswings, Downswings, and Penalty Functions 545

10.7 Swing Option Pricing in Matlab 546

10.8 LSM Simulation Results 546

Upper and Lower Boundaries 548

Exercise Strategies 550

The Threshold of Early Exercise 552

Interplay Between Early Exercise and Option Value 554

10.9 Pricing of Energy Commodity Derivatives 556

Cross-Commodity Spread Options 556

Model 1 558

Model 2 559



“London” — 2006/9/8 — 19:21 — page xiii — #13

xiii

Model 3 560

10.10 Jump Diffusion Pricing Models 562

Model 1a: Affine Mean-Reverting Jump-Diffusion Process 562

Model 1b 563

Model 2a: Time-Varying Drift Component 564

Model 2b: Time-Varying Version of Model 1b 566

10.11 Stochastic Volatility Pricing Models 566

Model 3a: Two-Factor Jump-Diffusion Affine Process with Stochastic
Volatility 566

10.12 Model Parameter Estimation 567

ML-CCF Estimators 569

ML-MCCF Estimators 570

Spectral GMM Estimators 573

Simulation 577

10.13 Parameter Estimation in Matlab 579

10.14 Energy Commodity Models 579

10.15 Natural Gas 581

Natural Gas Markets 581

Natural Gas Spot Prices 583

10.16 Gas Pricing Models 584

One-Factor Model 584

Two-Factor Model 585

Calibration 587

One-Factor Model Calibration 587

Two-Factor Model Calibration 588

10.17 Natural Gas Pricing in Matlab 592

10.18 Natural Gas and Electricity Swaps 592

Generator 594

End User 595

Endnotes 596

11 PRICING POWER DERIVATIVES: THEORY AND MATLAB
IMPLEMENTATION 601
11.1 Introduction 601

11.2 Power Markets 603

11.3 Traditional Valuation Approaches Are Problematic for Power 604

11.4 Fundamentals-Based Models 607

11.5 The PJ Model—Overview 609

11.6 Model Calibration 613



“London” — 2006/9/8 — 19:21 — page xiv — #14

xiv

11.7 Using the Calibrated Model to Price Options 617

Daily Strike Options 617

Monthly Strike Options 617

Spark Spread Options 618

11.8 Option Valuation Methodology 618

Splitting the (Finite) Difference: Daily Strike and Monthly Strike
Options 618

Matlab Implementation for a Monthly Strike Option 620

Spark Spread Options 628

Matlab Implementation of Spark Spread Option Valuation 628

11.9 Results 633

11.10 Summary 637

Endnotes 637

References 639

12 COMMERCIAL REAL ESTATE ASSET-BACKED SECURITIES 641
12.1 Introduction 641

12.2 Motivations for Asset-Backed Securitization 643

12.3 Concepts of Securitizing Real Estate Cash Flows 644

12.4 Commercial Real Estate-Backed Securitization (CREBS)—Singapore’s
Experience 646

12.5 Structure of a Typical CREBS 650

A CREBS Case by Visor Limited 651

12.6 Pricing of CREBS 653

Swaps and Swaptions 653

The Cash Flow Swap Structure for CREBS 654

12.7 Valuation of CREBS Using a Swap Framework 655

Basic Swap Valuation Framework 655

Pricing of Credit Risks for CREBS Using the Proposed Swap Model 655

Modeling Default Risks in the CREBS Swap 656

12.8 Numerical Analysis of Default Risks for a Typical CREBS 658

Monte Carlo Simulation Process 658

Input Parameters 659

Analysis of Results 660

12.9 Matlab Code for the Numerical Analysis 660

12.10 Summary 664

Endnotes 664

A CHAPTER 10 CODE 667



“London” — 2006/9/8 — 19:21 — page xv — #15

PREFACE

Given the explosive growth in new financial derivatives such as credit derivatives, hun-
dreds of financial institutionsnow market these complex instruments and employ thousands
of financial and technical professionals needed to model them accurately and effectively.
Moreover, the implementation of these models in C++ and Matlab (two widely used lan-
guages for implementing and building derivatives models) has made programming skills
in these languages important for practitioners to have. In addition, the use of Excel is also
important as many trading desks use Excel as a front-end trading application.

Modeling Derivatives Applications in Matlab, C++, and Excel is the first book to cover
in detail important derivatives pricing models for credit derivatives (for example, credit
default swaps and credit-linked notes), collateralized-debt obligations (CDOs), mortgage-
backed securities (MBSs), asset-backed securities (ABSs), swaps, fixed income securities,
and increasingly important weather, power, and energy derivatives using Matlab, C++, and
Excel. Readers will benefit from both the mathematical derivations of the models, the the-
ory underlying the models, as well as the code implementations.

Throughout this book, numerous examples are given using Matlab, C++, and Excel.
Examples using actual real-time Bloomberg data show how these models work in practice.
The purpose of the book is to teach readers how to properly develop and implement deriva-
tives applications so that they can adapt the code for their own use as they develop their
own applications. The best way to learn is to follow the examples and run the code. The
chapters cover the following topics:

• Chapter 1: Swaps and fixed income securities

• Chapter 2: Monte Carlo and numerical techniques

• Chapter 3: Copulas and copula methodologies

• Chapter 4: Mortgage-backed securities

• Chapter 5: Collateralized-debt obligations

• Chapter 6: Credit derivatives

• Chapter 7: Single-factor interest rate models

• Chapter 8: The Heath-Jarrow-Morton (HJM) interest rate model

• Chapter 9: Weather derivatives

• Chapter 10: Energy and power derivatives
xv



“London” — 2006/9/8 — 19:21 — page xvi — #16

xvi Preface

• Chapter 11: Also covers energy derivatives model implementation using MATLAB,
but is written and based on the proprietary work of its author, Craig Pirrong, professor
of finance and director of the Global Energy Management Institute at the University
of Houston.

• Chapter 12: Commercial real-estate based securities (a type of asset-backed secu-
rity), which is written and is based on the proprietary work of its author, Tien-Foo
Sing, professor in the Department of Real Estate Finance at the National University
of Singapore.

In order to provide different perspectives to readers and provide as much useful infor-
mation as possible, the work and models developed and written by various leading practi-
tioners and experts for certain topics are provided and incorporated throughout the book.
Thus, not only does this book cover complex derivatives models and provide all of the
code (which can be downloaded using a secure ID code from the companion Web site at
www.URL??????????????????.com), but it also incorporates important work contribu-
tions from leading practitioners in the industry. For instance, the work of Galiani (2003) is
discussed in the chapter on copulas and credit derivatives. The work of Picone (2004) is
discussed in the chapter on collateralized-debt obligations. The work of Johnson (2004) is
discussed in the chapters on fixed-income instruments and mortgage-backed securities. The
valuable work for energy derivatives of Doerr (2002), Xiang (2004), and Xu (2004) is given.
In Chapter 11, Craig Pirrong discusses the Pirrong-Jermayakan model, a two-dimensional
alternating implicit difference (ADI) finite difference scheme for pricing energy deriva-
tives. In Chapter 12, Tien-Foo Sing discusses using Monte Carlo to price asset-based se-
curities. Moreover, numerous individuals named in the acknowledgments supplied useful
code throughout the book.

The book emphasizes how to implement and code complex models for pricing, trading,
and hedging using C++, Matlab, and Excel. The book does not focus on design patters or
best coding practices (these issues may be discussed in subsequent editions of the book.)
However, the book does provide some discussions and helpful tips for building efficient
models. For instance, memory allocation for data structures is always an issue when devel-
oping a model that requires use and storage of multi-dimensional data. Use of a predefined
two-dimensional array, for instance, is in not the most efficient way to allocate memory
since it is fixed in size. A lot of memory may be unutilized and wasted if you do not know
how large the structure needs to be to store the actual data. On the other hand, the predefined
array sizes may turn out not to be large enough.

Although two-dimensional arrays are easy to define, use of array template classes (that
can handle multiple dimensions) and vectors (of vectors) in the Standard Template Library
in C++ are more efficient because they are dynamic and only use as much memory as
is needed. Such structures are used in the book, although some two-dimensional arrays
are used as well. Matlab, a matrix manipulation language, provides automatic memory
allocation of memory as data is used if no array sizes are predefined. All data in Matlab are
treated as matrix objects; e.g., a single number is treated as a 1 x 1 array. Data can be added
or removed from an object and the object will dynamically expand or reduce the amount of
memory space as needed.



“London” — 2006/9/8 — 19:21 — page xvii — #17

Preface xvii

Hopefully, this book will give readers the foundation to develop, build, and test their
own models while saving readers a great deal of development time through use of pre-tested
robust code.



“London” — 2006/9/8 — 19:21 — page xix — #19

ACKNOWLEDGMENTS

Special thanks to the following people for their code and work contributions to this
book:
Ahsan Amin
Jim Carson
Uwe Doerr
Stefano Galiani
Chetan Jain
Stafford Johnson
Jochen Meyer
Dominic Picone
Craig Pirrong
Tien Foo Sing
Jan Vecer
Liuren Wu
Lei Xiong
James Xu

xix



“London” — 2006/9/8 — 19:21 — page xx — #20



“London” — 2006/9/8 — 19:21 — page xxi — #21

ABOUT THE AUTHOR

Justin London has developed fixed-income and equity models for trading companies
and his own quantitative consulting firm. He has analyzed and managed bank corporate
loan portfolios using credit derivatives in the Asset Portfolio Group of a large bank in
Chicago, Illinois, as well as advised several banks in their implementation of derivative
trading systems. London is the founder of a global online trading and financial technology
company. A graduate of the University of Michigan, London holds a BA in economics and
mathematics, an MA in applied economics, and an MS in financial engineering, computer
science, and mathematics, respectively.

xxi



“London” — 2006/9/8 — 19:21 — page xxii — #22



“London” — 2006/8/23 — 22:09 — page 1 — #3

C H A P T E R 1

SWAPS AND FIXED INCOME

INSTRUMENTS

SECTIONS
1.1 Eurodollar Futures

1.2 Treasury Bills and Bonds

1.3 Computing Treasury Bill Prices and Yields in Matlab

1.4 Hedging Debt Positions

1.5 Bond and Swap Duration, Modified Duration, and DV01

1.6 Term Structure of Rates

1.7 Bootstrap Method

1.8 Bootstrapping in Matlab

1.9 Bootstrapping in Excel

1.10 General Swap Pricing in Matlab

1.11 Swap Pricing in Matlab Using Term Structure Analysis

1.12 Swap Valuation in C++

1.13 Bermudan Swaption Pricing in Matlab

Endnotes

Swaps are often used to hedge interest rate risk exposure to balance sheets as well as for
bond and loan portfolios. By matching the durations of balance sheet fixed income assets
and liabilities (e.g., bond or loan instruments), swaps can immunize the balance sheet from
interest rate risk. Ideally, the hedge should match both the duration and timing of cash flows
of the fixed income portfolio with that of the swap as closely as possible. For instance, if
a bank has a portfolio of floating-rate loans that have a duration of five years, the bank
can enter a swap with a duration of five years (the duration of the swap is the difference
between the fixed- and floating-leg durations of the swap) to receive the fixed rate and to
pay floating (effectively changing the characterization of the loan from floating to fixed
and thereby locking in a fixed rate of return.) Although in general, basis risk exists because
there is not an exact match between the cash flows—e.g., interest rate payments on the
loans and those of the swap do not match—the bank has reduced its exposure to shifts
in the yield curve. Moreover, institutional money managers can also use a combination

1



“London” — 2006/8/23 — 22:09 — page 2 — #4

2 Swaps and Fixed Income Instruments Chapter 1

of Chicago Board of Trade (CBOT) Treasury note futures and swap futures to structure
hedges to protect a portfolio of corporate and Treasury securities from a rise in interest
rates. Due to the liquidity and standardization of swap futures, swap futures are becoming
a cheaper and more efficient way to hedge a fixed income portfolio than entering a swap.1

This chapter discusses the details of hedging interest rate risk and bond portfolios using
swaps and fixed income instruments (e.g., futures).

In §1.1, we discuss using Eurodollar futures to compute LIBOR swap rates. In §1.2, we
discuss Treasury bills and Treasury bonds, including how they are quoted and priced. In
§1.3, we discuss bootstrapping the yield curve to compute discount swap rates. In §1.4, we
discuss hedging debt positions and interest rate movements using fixed income instruments.
In §1.5, we discuss bond duration, modified duration, and DV01 (dollar value of a one-
basis-point move) calculations, which are necessary for computing swap durations and
modified durations because a fixed-for-floating interest rate swap is composed of two legs
that are equivalent to a fixed-rate bond and a floating-rate bond. In §1.6, we discuss term
structure of rates, and in §1.7, we discuss how to numerically bootstrap the yield curve. In
§1.8, we discuss bootstrapping in Matlab and provide examples, while in §1.9, we discuss
bootstrapping using Excel. In §1.10, we discuss general swap pricing in Matlab using the
Black-Derman-Toy (BDT) and Heath-Jarrow-Morton (HJM) interest rate models, while in
§1.11, we discuss swap pricing using term structures like the forward curve built from zero-
coupon and coupon-bearing bond cash flows. In §1.12, we implement and price fixed-for-
floating swaps, including calculations for duration and risk measures, using C++. Finally,
in §1.13, a Bermudan swaption pricing implementation in Matlab is provided.

1.1 EURODOLLAR FUTURES

Eurodollar futures2 contracts maturing in March, June, September, and December are
sometimes used to calculate the LIBOR swap zero rates for swap maturities greater than
one year. The Eurodollar futures interest rate can be used to compute forward rates for
long-dated maturities. In the United States, spot LIBOR rates are usually used to define the
LIBOR zero curve for maturities up to one year. Eurodollar futures are typically then used
for maturities between one and two years and sometimes for maturities up to five, seven,
and ten years. In addition, swap rates, which define par yield bonds, are used to calculate
the zero curve for maturities longer than a year. Using a combination of spot LIBOR rates,
Eurodollar futures, and swap rates, the LIBOR/swap zero curve can be generated using a
bootstrap method procedure.

Typically, a convexity adjustment is made to convert Eurodollar futures rates into for-
ward interest rates. For short maturities (up to one year), the Eurodollar futures interest rate
can be assumed to be the same as the corresponding forward interest rate. But for longer
maturities, the difference between futures and forward contracts becomes important when
interest rates vary unpredictably.3

Suppose the quoted Eurodollar futures price is P ; then the cash contract price is

10000 (100 − 0.25(100− P )) (1.1)

which is equivalent to 10,000 times the cash futures price of 100−0.25(100−P ). Suppose
P = 96.7; then the contract price is



“London” — 2006/8/23 — 22:09 — page 3 — #5

Section 1.2 Treasury Bills and Bonds 3

10000 (100− 0.25(100− 96.7)) = $991, 750

A Eurodollar contract is like a Treasury bill contract, but with some important differ-
ences. Both the Eurodollar and T-bill contracts have an underlying face value amount of
$1 million. However, for a T-bill, the contract price converges at maturity to the price of a
91-day $1 million face-value Treasury bill, and if the contract held to maturity, this is the
instrument delivered.4 A Eurodollar futures contract is cash settled on the second London
business day before the third Wednesday of the month.5 The final marking to market sets
the contract price equal to

f0 = ($1, 000, 000)
(

100− 0.25R

100

)
= 10, 000(100− 0.25R)

where R is the quoted LIBOR Eurodollar rate at that time.6 This quoted Eurodollar rate
is the actual 90-day rate on Eurodollar deposits with quarterly compounding.7 It is not a
discount rate. As Hull states, “the Eurodollar futures contract is therefore a futures contract
on an interest rate, whereas the Treasury bill futures contract is a futures contract on the
price of a Treasury bill or a discount rate.”8

1.2 TREASURY BILLS AND BONDS

Treasury bills are short-term discount securities issued by the U.S. Treasury. At the time
of sale, a percentage discount is applied to the face value. Treasury bill prices are quotes
as a discount rate on a face value of $100. At maturity, the holder redeems the bill for full
face value. The basis (or day counting convention) for the interest accrual is actual/360 so
that interest accrues on the actual number of elapsed days between purchase and maturity,
assuming each year has 360 days. The Treasury price quote is the annualized dollar return
provided by the Treasury bill in 360 days expressed as a percentage of the face value

360
n

(100 − P ) (1.2)

where P is the cash price of a Treasury bill that has a face value of $100 and n days to
maturity.9 The discount rate is not the rate of return earned on the Treasury bill. If the cash
price of a 90-day Treasury bill is 99, the quoted price would be 1.00. The rate of return
would be 1/99, or 1.01%, per 90 days. This is translates to

1
99

× 360
90

= 0.0404

or 4.04% per annum on an actual/360 basis. Alternatively, it is

1
99

× 365
90

= 0.04096

or approximately 4.10% per annum on an actual/365 basis. Both of these rates are ex-
pressed with a quarterly compounding period of 90 days. In order to directly compare
Treasury yields with yields quoted on Treasury bonds, often semiannual compounding (a



“London” — 2006/8/23 — 22:09 — page 4 — #6

4 Swaps and Fixed Income Instruments Chapter 1

compounding period of 180 days) is used on an actual/365 basis. The computed rate is
known as the bond equivalent yield. In this case, the bond equivalent yield is

1
99

× 365
180

= 0.02048.

For short-term Treasury bills (fewer than 182 days to maturity), the money-market yield
can be computed as 360/365 of the bond equivalent yield. In this example, it is 2.02%.

T-bill futures call for the delivery or purchase of a T-bill with a maturity of 91 days and
a face value of $1,000,000. They are used for speculating and hedging short-term rates.
Prices of T-bill futures are quoted in terms of the interbank money market (IMM) index or
discount yield Rd :

IMM = 100 − Rd

Theoretical T-bill pricing is done with a carrying cost model

f0 = SM
0 (1 + Rf)T (1.3)

where

f0 = price of T-bill futures.

T = time to expiration on futures.

SM
0 = price on spot T-bill with maturity of M = 91 + T.

Rf = risk-free or repo rate.

Following Johnson (2004),10 suppose the rate on a 161-day spot T-bill is 5.7% and the
repo rate (or risk-free rate) for 70 days is 6.38%; then the price on a T-bill futures contract
with an expiration of 70 days would be

f0 = (97.5844)(1.0638)70/365 = 98.7487

where

S161
0 =

100
(1.057)161/365

= 97.5844.

The future price is governed by arbitrage considerations. If the futures market price
is above f∗, arbitrageurs would short the futures contract and go long the spot T-bill. For
example, suppose the futures market price is fM=70/365 = 99. An arbitrageur would go
short in the futures, agreeing to sell a 91-day T-bill at 99, 70 days later, and would go long
the spot, borrowing 97.5844 at 6.38% for 70 days to finance the purchase of the 161-day
T-bill that is trading at 97.5844. Seventy days later at expiration, the arbitrageur would sell
the T-bill (which would now have a maturity of 91 days) on the futures for fM=70/365 = 99
and pay off his financing debt of f∗ = 98.74875, realizing a cash flow (CFT ) of $2,513:

CFT = fM
0 − f∗

0

= fM
0 − SM

0 (1 + Rf)T

= 99 − 97.5844(1.0638)70/365

= 99 − 98.7487 = 0.2513



“London” — 2006/8/23 — 22:09 — page 5 — #7

Section 1.2 Treasury Bills and Bonds 5

so that the cash flow or profit is

CFT = ($1, 000, 000)
(

0.2513
100

)
= $2, 513.

Note that if fM = 99, a money market manager planning to invest for 70 days in T-bills
at 6.38% could earn a greater return by buying a 161-day bill and going short the 70-day
T-bill futures to lock in the selling price. For example, using the preceding numbers, if a
money manager was planning to invest 97.5844 for 70 days, she could buy a 161-day bill
for that amount and go short in the futures at 99. Her return would be 7.8%, compared to
only 6.38% from the 70-day T-bill:

R =
(

99
97.5844

)365/70

− 1 = 0.078

If the market price is below f∗, then arbitrageurs would go long in the futures and short
in the spot. Suppose fM = 98. An arbitrageur would go long in the futures, agreeing to
buy a 91-day T-bill for 98 seventy days later and would go short in the spot, borrowing
the 161-day T-Bill, selling it for 97.5844 and investing the proceeds at 6.38% for 70 days.
Seventy days later (expiration), the arbitrageur would buy the bill (which now would have
a maturity of 91 days) on the futures for 98 (fm), use the bill to close his short position, and
collect 98.74875 (f∗) from his investment, realizing a cash flow of $7487.

CFT = f∗
0 − fM

0

= SM
0 (1 + Rf)T − fM

0

= 97.5844(1.0638)70/365 − 98
= 98.7487− 98 = 0.2513 = 0.7487

so that the cash flow or profit is

CFT = ($1, 000, 000)
(

0.7487
100

)
= $7, 487

If the carrying-cost model holds, then the spot rate on a 70-day bill (repo rate) will be
equal to the synthetic rate (implied repo rate) formed by buying the 161-day bill and going
short in the 70-day futures:

Buy 161-day T-bill S161
0 = 97.5844.

Short position in T-bill futures at fM
0 = f∗

0 = 98.74875.

R =
(

98.74875
97.5844

)365/70

− 1 = 0.0638.

Furthermore, if the carrying-model holds, then the yield-to-maturity, YTM, of the fu-
tures will be equal to the implied forward rate F . Locking in the 91-day investment to be
made 70 days from now, as follows:



“London” — 2006/8/23 — 22:09 — page 6 — #8

6 Swaps and Fixed Income Instruments Chapter 1

1. Short 70-day T-bill at S70
0 = 98.821.

2. Buy n = S70
0

S161
0

= 98.821
97.5844

= 1.01267 of 161-day bill at 97.5844.

3. End of 70 days, cover short bill for 100.

4. 90 days later, collect on the investment in the original 161-day bill: 1.01267(100) =
101.267.

R =
(

101.267
100

)365/91

− 1 = 0.0518 = F91,70

which is equal to

YTMf =
(

100
98.74875

)365/91

− 1 = 0.0518.

Hedging with T-bill Futures

T-bill futures are often used for hedging by money managers. Suppose a money man-
ager is expecting a $5 million cash flow in June, which she plans to invest in a 91-day
T-bill. With June T-bill futures trading at IMM of 91 (June IMM = 91 or RD = 9%), the
manager could lock in a 9.56% rate by going long 5.115 June T-bill contracts:

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500

YTMf =
(

$1, 000, 000
$977, 500

)365/91

− 1 = 0.0956

nf =
CFT

f0
=

$5, 000, 000
$977, 500

= 5.115 long contracts

Suppose in June, the spot 91-day T-bill rate is at 8%. The manager would find T-bill
prices higher at $980,995, but would realize a profit of $17,877 from closing the futures
position. Combining the profit with the $5 million cash flow, the manager would be able to
buy 5.115 T-bills11 and earn a rate off the $5 million investment of 9.56%:

At June contract maturity, rate on T-bill = 8%.

spot rate = S91
T =

$1, 000, 000
(1.08)91/365

= $980, 995.

profit = πf = [$980, 995− $997, 500](5.115) = $17, 877.

hedge ratio = nTB =
CF + πf

S91
T

=
($5, 000, 000+ $17, 877)

$980, 995
= 5.115.

contract price = fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500.

rate of return = R =
[
($1, 000, 000)(5.115)

$5, 000, 000

]365/91

− 1 = 0.956 = 9.56%.



“London” — 2006/8/23 — 22:09 — page 7 — #9

Section 1.2 Treasury Bills and Bonds 7

Suppose instead that in June, the spot 91-day T-bill rate is at 10%. The manager would
find T-bill prices lower at $976,518, but would realize a loss of $5,025 from closing the
futures position. After paying the clearing house $5,025, the manager would still be able
to 5.115 T-bills given the lower T-bill prices, earning a rate of return from the $5 million
investment at 9.56%:

At June contract maturity, rate on T-bill = 10%.

S91
T =

$1, 000, 000
(1.10)91/365

= $976, 518.

πf = [$976, 518− $997, 500](5.115) = −$5, 025.

nTB =
CF + πf

S91
T

=
($5, 000, 000− $5, 025)

$976, 518
= 5.115.

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500.

R =
[
($1, 000, 000)(5.115)

$5, 000, 000

]365/91

− 1 = 0.956 = 9.56%.

Note that at any rate, the money market manager earns a rate of return of 9.56%.

Long Futures Hedge: Hedging Synthetic Futures on 182-Day T-Bill

Suppose a money market manager is expecting a $5 million cash flow in June, which
she plans to invest in a 182-day T-bill. Because the T-bill underlying a futures contract has
a maturity of 91 days, the manager would need to go long in both June T-bill futures and a
September T-bill futures (note that there are approximately 91 days between the contract)
in order to lock in a return on a 182-day T-bill instrument. If June T-bill futures were trading
at IMM of 91 and September futures were trading at IMM of 91.4, then the manager could
lock in a 9.3% rate on an instrument in 182-day T-bills by going long in 5.115 June T-bill
futures and 5.11 September contracts:

June IMM = 91 or RD = 9%
Sept IMM = 91.4 or RD = 8.6%

fJune
0 = ($1, 000, 000)

(
100− (9)(0.25)

100

)
= $977, 500

fSept
0 = ($1, 000, 000)

(
100− (8.6)(0.25)

100

)
= $978, 500

YTMJune
f =

[
$1, 000, 000
$977, 500

]365/91

− 1 = 0.0956

YTMSept
f =

[
$1, 000, 000
$978, 500

]365/91

− 1 = 0.091

nJune
f =

CFT

f0
=

$5, 000, 000
$977, 500

= 5.115 long contracts



“London” — 2006/8/23 — 22:09 — page 8 — #10

8 Swaps and Fixed Income Instruments Chapter 1

nSept
f =

CFT

f0
=

$5, 000, 000
$978, 500

= 5.112 long contracts

so that the return is

YTM182
f =

[
(1.0956)91/35(1.091)91/365

]365/182

− 1 = 0.093.

Suppose in June, the 91-day T-bill rate is at 8% and the spot 182-day T-bill rate is at
8.25%. At these rates, the price on the 91-day spot T-bill would be

S91
T =

$1, 000, 000
(1.08)91/365

= $980, 995

and the price on the 182-day spot T-bill would be

S182
T =

$1, 000, 000
(1.08)182/365

= $961, 245.

If the carrying-cost model holds, then the price on the September futures at the June
date is

fSept
0 = S182

0 (1 + Rf)T = $961, 245(1.08)91/365 = $979, 865.

At these prices, the manager would be able to earn futures profits of

June πf = [$980, 995− $977, 500]5.115 = $17, 877
Sept π = [$979, 865− $978, 500]5.11 = $6, 975

for a total profit of $24,852 from closing both futures contract (which offsets the higher
T-bill futures prices) and would be able to buy

nTB =
$5, 000, 000+ $24, 852

$961, 245
= 5.227

182-day T-bills, yielding a rate of return of

R =
[
(5.227)($1, 000, 000)

$5, 000, 000

]365/182

− 1 = 0.093

or 9.3% from a $5 million investment. Readers can verify for themselves that the rate of
return will still be 9.3% if the 91-day and 182-day T-bill spot rates rise. Thus, Treasury
bond futures contracts call for the delivery or purchase of a T-bond with a face value of
$100,000. The contract allows for the delivery of a number of T-bonds; there is a conversion
factor used to determine the actual price of the futures given the bond that is delivered. In
actuality, the cheapest-to-deliver T-bond is delivered. T-bond futures are quoted in terms of
a T-bond with an 8% coupon, semiannual payments, maturity of 15 years, and face value
of $100.

In Matlab, one can make Treasury bills directly comparable to Treasury notes and bonds
by restating U.S. Treasury bill market parameters in U.S. Treasury bond form as zero-
coupon bonds via the following function:



“London” — 2006/8/23 — 22:09 — page 9 — #11

Section 1.2 Treasury Bills and Bonds 9

[TBondMatrix, Settle] = tbl2bond(TBillMatrix)

TBillMatrix are the Treasury bill parameters. An N -by-5 matrix is where each row
describes a Treasury bill. N is the number of Treasury bills. Columns are [Maturity
DaysMaturity Bid Asked AskYield], as described in Table 1.1.

Table 1.1
Maturity Maturity date, as a serial date number. Use datenum to convert date strings

to serial date numbers.

DaysMaturity Days to maturity, as an integer. Days to maturity is quoted on a skip-day basis;

the actual number of days from settlement to maturity is DaysMaturity

+ 1.

Bid Bid bank-discount rate: the percentage discount from face value at which

the bill could be bought, annualized on a simple-interest basis. A decimal

fraction.

Asked Asked bank-discount rate, as a decimal fraction.

AskYield Asked yield: the bond-equivalent yield from holding the bill to maturity, an-

nualized on a simple-interest basis and assuming a 365-day year. A decimal

fraction.

The output consists of the Treasury bond parameters given in TBondMatrix, an N -
by-5 matrix where each row describes an equivalent Treasury (zero-coupon) bond. Columns
are [CouponRate Maturity Bid Asked AskYield], as described in Table 1.2

Table 1.2
CouponRate Coupon rate, which is always 0.

Maturity Maturity date, as a serial date number. This date is the same as the Treasury

bill Maturity date.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity: the effective return from holding the bond to matu-

rity, annualized on a compound-interest basis.

Example 1

Given published Treasury bill market parameters for December 22, 1997:

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530
datenum('feb 05 1998') 44 0.0537 0.0533 0.0544
datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];



“London” — 2006/8/23 — 22:09 — page 10 — #12

10 Swaps and Fixed Income Instruments Chapter 1

Execute the function:

TBond = tbl2bond(TBill)

TBond =
0 729760 99.854 99.855 0.053
0 729790 99.344 99.349 0.0544
0 729820 98.942 98.946 0.054

1.3 COMPUTING TREASURY BILL PRICES AND YIELDS
IN MATLAB

In Matlab, you can specify T-bills yield as money-market or bond-equivalent yield.
Matlab Treasury bill functions all assume a face value of $100 for each Treasury bill.

The price of a T-bill can be computed using the function

Price = prtbill(Settle, Maturity, Face, Discount)

where the arguments are as listed in Table 1.3:

Table 1.3
Settle Enter as serial date number or date string. Settle must be earlier than or

equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.

Example 2

Settle = '2/10/2005';
Maturity = '8/7/2005';
Face = 1000;
Discount = 0.0379;
Price = prtbill(Settle, Maturity, Face, Discount);

Price =
981.2606

The yield to maturity of the T-bill can be calculated using the yldtbill function:

Yield = yldtbill(Settle, Maturity, Face, Price)

The yield of the T-bill in this example is:

Yield = 0.0386



“London” — 2006/8/23 — 22:09 — page 11 — #13

Section 1.4 Hedging Debt Positions 11

The bond equivalent yield of the T-bill is

BEYield = beytbill(Settle, Maturity, Discount)

where Discount is the discount rate of the T-bill, which can be computed from the
discrate function:

Discount = discrate(Settle, Maturity, Face, Price, Basis)

In this example, Basis = 2 (Actual/360 day-count convention) so that

Discount = 0.0379

as expected (as initially given) so that the bond equivalent yield is as follows:

BEYield = 0.0392

1.4 HEDGING DEBT POSITIONS

Hedging a Future 91-Day T-Bill Investment with T-Bill Call

Following Johnson (2004), suppose a treasurer expects higher short-term rates in June
but is still concerned about the possibility of lower rates. To be able to gain from the higher
rates and yet still hedge against lower rates, the treasurer could buy a June call option on
a spot T-bill or a June option on a T-bill futures. For example, suppose there was a June
T-bill futures option with an exercise price of 90 (strike price X = 975, 000), price of 1.25
(C = $3, 125), and June expiration (on both underlying futures and option) occurring at
the same time a $5,000,000 cash inflow is to be received. To hedge the 91-day investment
with this call, the treasurer would need to buy 5.128205 calls (assume divisibility) at a cost
of $16,025.64:

nc =
CFT

X
=

$5, 000, 000
$975, 000

= 5.128205 contracts

Cost = (5.128205)($3, 125) = $16, 025.64
πc = 5.1282085[Max(ST − $975, 000, 0)− $3, 125]

If T-bill rates were lower at the June expiration, then the treasurer would profit from the
calls that she would be able to use to defray part of the cost of the higher priced T-bills. As
shown in Table 1.4, if the spot discount rate on T-bills is 10% or less, the treasurer would
be able to buy 5.112 91-day spot T-bills with the $5 million cash inflow and profit from the
calls, locking in a YTM of 9.3% on the $5 million investment. On the other hand, if T-bill
rates were higher, then the treasurer would benefit from lower spot prices, while the losses
on the call would be limited to just the $16,025.64 cost of the calls. In this case, for spot
discount rates above 10%, the treasurer would be able to buy more T-bills the higher the
rates, resulting in higher yields as rates increase. Thus, for the cost of the call options, the
treasurer is able to lock in a minimum YTM on the $5 million June investment of 9.3%,
with the chance to earn a higher rate if short-term rates increase.



“London” — 2006/8/23 — 22:09 — page 12 — #14

12 Swaps and Fixed Income Instruments Chapter 1

Table 1.4 Hedging $5M CF in June with June T-Bill Futures Call

Source: Johnson, S. (2004)

Note that if the treasurer wanted to hedge a 182-day investment instead of 91-days with
calls, then similar to the futures hedge, she would need to buy both June and September
T-bill futures calls. At the June expiration, the manager would then close both positions and
invest the $5,000,000 inflow plus (minus) the call profits (losses) in 182-day spot T-bills.

Short Hedge: Managing the Maturity Gap

Short hedges are used when corporations, municipal governments, financial institu-
tions, dealers, and underwriters are planning to sell bonds or borrow funds at some future
date and want to lock in the rate. The converse of the preceding example would be a money
market manager who, instead of buying T-bills, was planning to sell her holdings of T-bills
in June when the current bills would have maturities of 91 days or 182 days. To lock in a
given revenue, the manager would go short in June T-bill futures (if she plans to sell 91-day
bills) or June and September futures (if she planned to sell 182-day bills). If short-term rates
increase (decrease), causing T-bill prices to decrease (increase), the money manager would
receive less (more) revenue from selling the bills, but would gain (lose) when she closed
the T-bill futures contracts by going long in the expiring June (and September) contract.

Another important use of short hedges is in locking in the rates on future debt positions.
As an example, consider the case of a small bank with a maturity gap problem in which
its short-term loan portfolio has an average maturity greater than the maturity of the CDs
that it is using to finance the loans. Specifically, suppose in June, the bank makes loans of
$1 million, all with maturities of 180 days. To finance the loan, though, suppose the bank’s
customers prefer 90-day CDs to 180-day, and as a result, the bank has to sell $1 million
worth of 90-day CDs at a rate equal to the current LIBOR of 8.258%. Ninety days later (in
September) the bank would owe $1, 019, 758 = ($1, 000, 000)(1.08258)90/365; to finance
this debt, the bank would have to sell $1,019,758 worth of 90-day CDs at the LIBOR at



“London” — 2006/8/23 — 22:09 — page 13 — #15

Section 1.4 Hedging Debt Positions 13

that time. In the absence of a hedge, the bank would be subject to market risk. If short-term
rates increase, the bank would have to pay higher interest on its planned September CD
sale, lowering the interest spread it earns (the rate from $1 million 180-day loans minus
interest paid on CDs to finance them); if rates decrease, the bank would increase its spread.

Suppose the bank is fearful of higher rates in September and decides to minimize its
exposure to market risk by hedging its $1,019,758 CD sale in September with a September
Eurodollar futures contract trading at IMM = 92.1. To hedge the liability, the bank would
need to go short in 1.03951 September Eurodollar futures (assume perfect divisibility):

fSept
0 =

100 − (7.9)(0.25)
100

($1, 000, 000) = $981, 000

nf =
$1, 019, 758
$981, 000

= 1.03951 Short Eurodollar Contracts

At a futures price of $981,000, the bank would be able to lock in a rate on its September
CDs of 8.1%.

YTMSept
f =

(
$1, 000, 000
$981, 000

)365/91

− 1 = 0.081

YTM182 =
[
(1.0825)90/365(1.081)90/36

]365/180

− 1 = 0.0817.

With this rate and the 8.25% rate it pays on its first CDs, the bank would pays 8.17%
on its CDs over the 180-day period: That is, when the first CDs mature in September, the
bank will issue new 90-day CDs at the prevailing LIBOR to finance the $1,019,758 first CD
debt plus (minus) any loss (profit) from closing its September Eurodollar futures position.
If the LIBOR in September has increased, the bank will have to pay a greater interest on
the new CD, but it will realize a profit from its futures that, in turn, will lower the amount
of funds it needs to finance at the higher rate. On the other hand, if the LIBOR is lower, the
bank will have lower interest payments on its new CDs, but it will also incur a loss on its
futures position and therefore will have more funds that need to be financed at the lower
rates. The impact that rates have on the amount of funds needed to be financed and the rate
paid on them will exactly offset each other, leaving the bank with a fixed debt amount when
the September CDs mature in December. As Table 1.5 shows, where the bank’s December

Table 1.5
Sept LIBOR (R) 0.075 0.085

(2) SCD
T = f Sept

T = $1M/(1+ R)90/365 $982,236 $979,640

(3) πt = [981,000 − fT ]1.0391 -$1,378 $1,413

(4) Debt on June CD $1,019,758 $1,019,758

(5) Total Funds to finance for next 90 days: Row (4) − Row (3) $1,021,136 $1,018,345

(6) Debt at end of next 90 days: Row (5) ( 1 + R)90/365 $1,039,509 $1,039,509

(7) Rate for 180-day period:

R180
CD = [$1,039,509/$1,000,000]365/180 − 1 8.17% 8.17%

Source: Johnson, R.S.



“London” — 2006/8/23 — 22:09 — page 14 — #16

14 Swaps and Fixed Income Instruments Chapter 1

liability (the liability at the end of the initial 180-day period) is shown to be $1,039,509
given September LIBOR rate scenarios of 7.5% and 8.7% (this will be true at any rate).

Note that the debt at the end of 180 days of $1,039,509 equates to a September 90-day
rate of 8.1% and a 180-day rate for the period of 8.17%:

YTMSept
f =

[
$1, 039, 509
$1, 019, 758

]365/90

− 1 = 0.081

RCD180 =
[
$1, 039, 509
$1, 000, 000

]365/180

− 1 = 0.0817

Maturity Gap and the Carrying Cost Model

In the preceding example, we assumed the bank’s maturity gap was created as a result
of the bank’s borrowers wanting 180-day loans and its investors/depositor wanting 90-day
CDs. Suppose, though, that the bank does not have a maturity gap problem; that is, it can
easily sell 180-day CDs to finance its 180-day loan assets and 90-day CD to finance its
90-day loans. However, suppose that the September Eurodollar futures price was above
its carrying cost value. In this case, the bank would find that instead of financing with a
180-day spot CD, it would be cheaper if it financed its 180-day June loans with synthetic
180-day CDs formed by selling 90-day June CDs rolled over three months later with 90-day
September CDs, with the September CD rate locked in with a short position in the Septem-
ber Eurodollar futures contract. For example, if the June spot 180-day CD were trading 96
to yield 8.63%, then the carrying cost value on the September Eurodollar contract would
be 97.897 (97.897 = 96(1.08258)90/365). If the September futures price were 98.1, then
the bank would find it cheaper to finance the 180-day loans with synthetic 180-days CDs
with an implied futures rate of 8.17% than with a 180-day spot CD at a rate of 8.63%. On
the other hand, if the futures price is less than the carrying cost value, then the rate on the
synthetic 180-day CDs would exceed the spot 180-day CD rate, and the bank would obtain
a lower financing rate with the spot CD. Finally, if the carrying cost model governing Eu-
rodollar futures prices holds, then the rate of the synthetic will be equal to rate on the spot;
in this case, the bank would be indifferent to its choice of financing.

Managing the Maturity Gap with Eurodollar Put

Instead of hedging its future CD sale with Eurodollar futures, the bank could alterna-
tively buy put options on either a Eurodollar or T-bill or put options on a Eurodollar futures
or T-bill futures. In the preceding case, suppose the bank decides to hedge its September
CD sale by buying a September T-bill futures put with an expiration coinciding with the
maturity of its June CD, an exercise price of 90 (X = $975, 000), and a premium of.5
(C = $1, 250). With the September debt from the June CD of $1,019,758, the bank would
need to buy 1.046 September T-bill futures puts at a total cost of $1,307 to hedge the rate it
pays on its September CD:

np =
CFT

X
=

$1, 019, 758
$975, 000

= 1.0459056 puts

Cost = (1.046)($1, 250) = $1, 307



“London” — 2006/8/23 — 22:09 — page 15 — #17

Section 1.4 Hedging Debt Positions 15

If rates at the September expiration are higher such that the discount rate on T-bills is
greater than 10%, then the bank will profit from the puts. This profit would serve to reduce
part of the $1,019,750 funds it would need to finance the maturing June CD that, in turn,
would help to negate the higher rate it would have to pay on its September CD. As shown
in Table 1.6, if the T-bill discount yield is 10% or higher and the bank’s 90-day CD rate
is 0.25% more than the yield on T-bills, then the bank would be able to lock in a debt
obligation 90 days later of $1,047,500, for an effective 180-day rate of 9.876%.

On the other hand, if rates decrease such that the discount rate on a spot T-bill is less
than 10%, then the bank would be able to finance its $1,047,500 debt at lower rates, while
its losses on its T-bill futures puts would be limited to the premium of $1,307. As a result,
for lower rates, the bank would realize a lower debt obligation 90 days later and therefore a
lower rate paid over the 180-day period. Thus, for the cost of the puts, hedging the maturity
gap with puts allows the bank to lock in a maximum rate paid on debt obligations with the
possibility of paying lower rates if interest rates decrease.

Table 1.6

Source: Johnson, R.S.

Short Hedge: Hedging a Variable-Rate Loan

As a second example of a short naive hedge, consider the case of a corporation obtaining
a one-year, $1 million variable-rate loan from a bank. In the loan agreement, suppose the
loan starts on date 9/20 at a rate of 9.5% and then is reset on 12/20, 3/20, and 6/20 to equal
the spot LIBOR (annual) plus 150 basis points (.015 or 1.5%) divided by four: (LIBOR +
.015)/4.

To the bank, this loan represents a variable-rate asset, which it can hedge against in-
terest rate changes by issuing 90-day CDs each quarter that are tied to the LIBOR. To the



“London” — 2006/8/23 — 22:09 — page 16 — #18

16 Swaps and Fixed Income Instruments Chapter 1

corporation, though, the loan subjects them to interest rate risk (unless they are using the
loan to finance a variable-rate asset). To hedge this variable-rate loan, though, the corpo-
ration could go short in a series of Eurodollar futures contracts—Eurodollar strip. For this
case, suppose the company goes short in contracts expiring at 12/20, 3/20, and 6/20 and
trading at the prices shown in Table 1.7.

Table 1.7
T 12/20 3/20 6/20

IMM Index 91.5 91.75 92

f0(per $100 Par) 97.875 97.9375 98

The locked-in rates obtained using Eurodollar futures contracts are equal to 100 minus
the IMM index plus the basis points on the loans:

Locked-in Rate = [100− IMM] + [BP/100]
12/20 : R12/20 = [100− 91.5] + 1.5% = 10%

3/20 : R3/20 = [100− 91.75] + 1.5% = 9.75%
6/20 : R6/20 = [100− 92] + 1.5% = 9.5%

For example, suppose on date 12/20, the assumed spot LIBOR is 9%, yielding a settle-
ment IMM index price of 91 and a closing futures price of 97.75 per $100 face value. At
that rate, the corporation would realize a profit of $1,250 from having it short position on
the 12/20 futures contract. That is:

f0 =
(100 − (100 − 91.5))(0.25)

100
($1, 000, 000) = $978, 750

fT =
(100 − (100 − 91))(0.25)

100
($1, 000, 000) = $977, 500

Profit on 12/20 contract = $978, 750− $977, 500 = $1, 250

At the 12/20 date, though, the new interest that the corporation would have to pay for
the next quarter would be set at $26,250:

12/20 Interest = [(LIBOR + .015)/4]($1, 000, 000)
12/20 Interest = [(.09 + .015)/4]($1, 000, 000)
12/20 Interest = $26, 250

Subtracting the futures profit from the $26,250 interest payment (and ignoring the time
value factor), the corporation’s hedged interest payment for the next quarter is $25,000. On
an annualized basis, this equates to a 10% interest on a $1 million loan, the same rate as
the locked-in rate:

Hedged Rate = RA =
4($25, 000)
$1, 000, 000

= 0.10



“London” — 2006/8/23 — 22:09 — page 17 — #19

Section 1.4 Hedging Debt Positions 17

On the other hand, if the 12/20 LIBOR were 8%, then the quarterly interest payment
would be only $23, 750((.08 + .015)/4)($1, 000, 000) = $23, 750). This gain to the cor-
poration, though, would be offset by a $1,250 loss on the futures contract (i.e., at 8%, fT =
$980, 000, therefore, profit on the 12/20 contract is $978, 750 − $980, 000 = −$1, 250).
As a result, the total quarterly debt of the company again would be $25, 000($23, 750 +
$1, 250). Ignoring the time value factor, the annualized hedged rate the company pays
would again be 10%. Thus, the corporation’s short position in the 12/20 Eurodollar futures
contract at 91.5 enables it to lock-in a quarterly debt obligation of $25,000 and 10% annu-
alized borrowing rate. If the LIBOR is at 9% on date 12/20, the company will have to pay
$26,250 on its loan the next quarter, but it will also have a profit on its 12/20 Eurodollar
futures of $1,250, which it can use to defray part of the interest expenses, yielding an ef-
fective hedged rate of 10%. The interest payments, futures profits, and effective interests
are summarized:

12/20 : LIBOR = 9%
Futures:

Settlementprice: ST = 100 − LIBOR

ST = 100 − 9(.25) = 97.75

πf =
97.875− 97.75

100
($1M) = $1, 250

Interest =
LIBOR + 150BP

4
($1M)

=
.09 + .015

4
($1M) = $26, 250

EffectiveInterest = $26, 250− $1, 250 = $25, 000

EffectiveRate = RA =
4($25, 000)

$1M
= .10

If the LIBOR is at 6% on date 12/20, the company will have to pay only $18,750 on its
loan the next quarter, but it will also have to cover a loss on its 12/20 Eurodollar futures of
$6,250. The payment of interest and the loss on the futures yields an effective hedged rate
of 10%:

12/20 : LIBOR = 6%
Futures:

Settlementprice : ST = 100− LIBOR

ST = 100− 6(.25) = 98.5

πf =
97.875− 98.5

100
($1M) = −$6, 250

Interest =
LIBOR + 150BP

4
($1M)

=
.06 + .015

4
($1M) = $18, 750



“London” — 2006/8/23 — 22:09 — page 18 — #20

18 Swaps and Fixed Income Instruments Chapter 1

EffectiveInterest = $18, 750 + $6, 250 = $25, 000

EffectiveRate = RA =
4($25, 000)

$1M
= .10

Given the other locked-in rates, the one-year fixed rate for the corporation on its variable-
rate loan hedged with the Eurodollar futures contracts would therefore be 9.6873%:

Loan Rate =
[
(1.095).25(1.10).25(1.0975).25(1.095).25

]1 − 1 = .096873.

Note, in practice, the corporation could have obtained a one-year fixed-rate loan. With
futures contracts, though, the company now has a choice of taking either a fixed-rate loan
or a synthetic fixed-rate loan formed with a variable-rate loan and short position in a Eu-
rodollar futures contract, whichever is cheaper. Also, note that the corporation could have
used a series of Eurodollar puts or futures puts to hedge its variable-rate loan. With a put
hedge, each quarter the company would be able to lock in a maximum rate on its loan with
the possibility of a lower rate if interest rates decrease.

1.5 BOND AND SWAP DURATION, MODIFIED DURATION,
AND DV01

Duration (also known as Macauley’s duration) is the present-value-weighted average
time (in years) to maturity of the cash flow payments of a fixed income security. If ci is the
total cash flow payment at time ti, then duration is computed as

Duration =

n∑
i=1

tici

(1+yi)ti

B
(1.4)

where n = number of cash flows, t = time to cash flow (in years), yi is the simple-

compound discount yield at time ti, and B =
n∑

i=1

ci

(1+yi)ti
is the bond price.12 At maturity,

the cash flow includes both the principal face value and coupon payment. Yield modified
duration13 divides the duration number by (1 + 1/YTM) , where YTM is the yield to
maturity of the bond. However, the YTM used to calculate the yield modified duration of
a swap is the par swap rate (e.g., the swap rate that makes the present value of the swap
zero).

To calculate the duration (modified duration) of a swap, one computes the modified
duration of the long leg minus the modified duration of the short leg. Duration for the fixed
leg is the present-value-weighted average maturity of the cash flows, whereas duration of
the floating leg is the time to the next reset for the floating leg. The duration calculations
(for both sides) divided by 1/(1+YTM) is the modified duration for each side. The modified
duration of an interest rate swap leg can be calculated like a bond

MD =
Leg DV01

Leg PV
∗ 10, 000 (1.5)

where DV01 (sometimes denoted PV01 in the literature) is the dollar value of a basis point
change of the leg14 and PV is the present value of the leg. This calculation should always



“London” — 2006/8/23 — 22:09 — page 19 — #21

Section 1.5 Bond and Swap Duration, Modified Duration, and DV01 19

be positive. An alternative, but equivalent, calculation to compute modified duration for
each leg is to compute

MD =
Leg DV01

(Notional Value + Market Value)
∗ 10, 000 (1.6)

where the Market Value is the leg PV. This alternative computation is appropriate if the leg
PV does not include the final exchange of principal. However, the leg DV01 must include
the notional exchange to give a bond-like duration, so the leg DV01 must also include
notional.

The difference between the modified durations of both legs, the net PV, is then taken to
compute the modified duration of the swap:

Swap MD = MD of Receive Leg − MD of Pay Leg (1.7)

Note that if the market value (leg PV) of the swap is zero, then duration is computed.
Thus, for a par swap where the market value is zero, the duration (referred to as deal risk
in Bloomberg) is equal to the modified duration.

For forward-starting swaps—e.g., a 10-year swap that starts in 7 years—typically a
discounted swap modified duration is computed by adjusting equation (1.7) by a factor that
is very close to the discount factor for the start date of the swap. An excellent approximation
for this discount factor is provided by the NPV of the floating leg (including the final
notional exchange), divided by the notional of the trade:

Discounted Swap MD = Swap MD × Floating Leg PV/Notional (1.8)

Note that quantitative differences arise between the yield modified duration (which
assumes a flat discount rate) and the DV01 formulation in (1.5) or (1.6), based on various
factors such as a sloping yield curve, instrument valuations away from par, instruments with
long tenors, and forward-starting instruments. With an upward-sloping discount curve, the
PV of the largest cash flow (at maturity) affects duration the most. Because the yield is
lower than the discount rate at maturity, the value of the yield MD is higher than the value
of the DV01 MD. The effect of the upward-sloping curve is amplified with a longer tenor,
because the largest cash flow at maturity is even more different when discounted using the
curve for DV01 MD and using the yield for yield MD; thus, the yield MD is greater than
the DV01 MD. A downward-sloping discount curve has the opposite affect because the
yield is higher than the discount rate at maturity.

Large NPVs during a tenor with an upward-sloping yield curve result from a coupon
much different from the discount rate. The present value of the coupon cash flows have
a larger weight in the bond price (PV). For DV01 MD, the PV of coupons in the long
end decreases more when the curve is shifted by 1 basis point, compared to yield MD
where coupons at the end are discounted at a lower rate (the yield) and are less sensitive
to interest rate changes. Also, the DV01 MD is calculated by dividing by a higher value of
bond PV so that the yield MD is greater than the DV01 MD. For a forward starting swap
with an upward-sloping yield curve, yield MD is calculated as the sum of the yield MDs
of two bonds with opposite signs—a long position in a bond starting today and maturing
in T2 years, and a short position in bond starting today and maturity in T1 years, where



“London” — 2006/8/23 — 22:09 — page 20 — #22

20 Swaps and Fixed Income Instruments Chapter 1

0 < T1 < T2. The cash flows affecting yield are those between T1 +1 and T2 years, which
are discounted at a yield lower than the discount rates at the long end of the curve. As a
result, yield MD is higher than the DV01 MD.

Hedging Bond Portfolios

Consider the following bond portfolio example shown in Table 1.8.15

Of the Treasury bonds in the portfolio, the 5% of August 2011 was the current on-the-
run 10-year, while the 6.5% of February 2010 became the cheapest-to-deliver (CTD) for
the CBOT 10-year Treasury note futures when the data was recorded. The 5.625% of May
08 had recently been CTD. The coupons of the 11 corporate bonds in Table 1.8 range from
a high of 9.375% to a low of 6.15% and have maturities from August 2007 to August 2011.
With the exception of American Standard, all of these issues are investment grade credits
where the credit ratings range from the S&P AA- of the Transamerica issue to the BBB-
of the News America Holdings and Litton Industries issue. American Standard is a BB+
credit.

Table 1.8 shows weighted average durations for the two sectors and for the portfolio
as a whole. The Treasury sector shows that this $262.34 million holding has a duration of
6.56 years. The $436.25 million corporate sector holding has a duration of 5.39 years, and
the $698.59 million portfolio has a duration of 5.83 years.

Fixed income securities with different coupons and maturities respond differently to
yield changes. This price sensitivity to yield change can be captured in terms of the dollar
value of a basis point (DV01) for a given security. To find the DV01 for an individual fixed
income security, given a modified duration and a full price, solve the following:

Table 1.8
 Modified Par Full S&P
 Duration DV01 Amount Price Credit
Issuer Coupon Maturity YTM (years) ($) ($ millions) ($000s) Rating
Treasury 6.5 2/15/10 4.55 6.56 0.0748 67 76,387 
Treasury 5.625 5/15/08 4.64 5.48 0.0588 92 98,762 
Treasury 5 8/15/11 4.57 7.77 0.0807 84 87,192 
Treasury Sector    6.56   262,341 
Time Warner Enterprises 8.18 8/15/07 5.47 4.72 0.0540 82 93,710 BBB+
Texas Utilities 6.375 1/1/08 6.19 5.06 0.0517 30 30,678 BBB
Rockwell International 6.15 1/15/08 6.14 5.13 0.0521 52 52,837 A
Transamerica Corporation 9.375 3/1/08 6.34 4.93 0.0573 15 17,445 AA-
Coastal Corporation 6.5 6/1/08 6.76 5.25 0.0528 30 30,153 BBB
United Airlines 6.831 9/1/08 5.99 5.51 0.0579 38 39,949 A-
Burlington Northern Santa Fe 7.34 9/24/08 5.67 5.36 0.0606 3 3,390 A+
News America Holdings 7.375 10/17/08 6.56 5.34 0.0575 30 32,292 BBB-
Litton Industries 8 10/15/09 5.70 5.81 0.0647 63 66,834 BBB-
American Standard Inc. 7.625 2/15/10 7.59 6.10 0.0615 41 41,332 BB+
Caterpillar Inc. 9.375 8/15/11 6.01 6.79 0.0853 22 27,628 A+
Corporate Sector    5.39   436,248 

Portfolio    5.83   698,589 

Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001. All Rights
Reserved.



“London” — 2006/8/23 — 22:09 — page 21 — #23

Section 1.5 Bond and Swap Duration, Modified Duration, and DV01 21

DV 01 =
(Duration/100) ∗ Full Price

100

For instance, using this formula with the price and duration date in Table 1.8, one sees
that a $98,762,000 position in the Treasury 5.625% of May 08, with its 5.48 duration, has
a DV01 of $54,122, while an $87,192,000 position in the Treasury 5% of August 11, with
its 7.77 duration, has a $67,748 DV01. These DV01’s predict that 1 basis point rise in yield
would drive the value of the 5.625% of May 08 down $54,122, while the same yield change
would drive the value of the smaller holding in the 5% of August 11 down $67,748. Clearly,
the 5% of August 11 is more sensitive to yield changes than the 5.625% of May 08 is.

The portfolio is subject to inflation, interest rate, and credit risk that could sharply
erode the value of the holdings and make it difficult to liquidate them at acceptable prices.
The structuring of hedge positions then requires that the futures position be ratioed to the
positions, and then requires that the futures position be ratioed to the position in the security
being hedged in order that the two positions will respond equally to a given yield change.
Given that the DV01 of the 10-year Treasury note futures contract was $72.50 on the day
these dates were recorded (the 10-year swap futures has a $77.00 DV01), one can solve for
the optimal hedge ratio to see that it would take 747 contracts to hedge the 5.625% of May
08 and 934 contracts to hedge the 5% of August 11:

5.625% of May 08 DV01
futures DV01

=
54, 122
72.50

= 747 contracts

5% of August 11 DV01
futures DV01

=
67, 748
72.50

= 934 contracts

To structure a portfolio hedge, one can use a weighted average duration for the Treasury
sector, the corporate sector, or the entire holding, and then use the total full price of the
relevant sectors to find DV01s. Table 1.9 shows that, based on the data in Table 1.8, the
Treasury sector has a $172,096 DV01, the corporate segment has a $235,138 DV01, and

Table 1.9
   DV01 ($)
Treasury Sector  172,096
Corporate Sector  235,138
Portfolio   402,277
  
10-year Treasury Futures  72.50
10-year Swap Futures  77.00
  
Hedge Ratios  
 To Hedge  Hedge Ratio
 1 Full portfolio with 10-yr. T-note futures  5,618
 2 Full portfolio with swap futures  5,289
 3 Treasury sector with 10-yr. T-note futures 2,374
 4 Corporate sector with swap futures  3,054

Reprinted by permission of the Board of Trade of the City of
Chicago, Inc., © 2001. All Rights Reserved.



“London” — 2006/8/23 — 22:09 — page 22 — #24

22 Swaps and Fixed Income Instruments Chapter 1

the entire portfolio has a $407,277 DV01 (note that the portfolio DV01 does not equal the
sum of the two sector DV01s due to rounding error).

Plugging in these DV01s into the hedge ratio formulas yields the optimal hedge ra-
tios. Hedging the entire portfolio with Treasury futures requires a short position in 5,618
contracts:

Portfolio DV01 407, 277
10-year Treasury Futures DV01 72.50

= 5, 618 contracts

Similarly, hedging the entire portfolio with swap futures requires a short position of
5,289 10-year swap futures contracts:

Portfolio DV01 407, 277
10-year Swap Futures DV01 77.00

= 5, 289 contracts

Finally, an optimal hedging strategy where the Treasury sector is hedged with Treasury
futures and the corporate sector is hedged with swap futures requires a short position in
2,375 10-year Treasury futures contracts and a short position in 3,054 10-year swap futures
contracts:

Treasury Sector DV01 172, 096
10-year Treasury Futures DV01 72.50

= 2, 375 contracts

Corporate Sector DV01 235, 138
10-year Swap Futures DV01 72.50

= 3, 054 contracts

It is important to note that these hedges are static in nature—they only apply at a given
point in time based on current market data. Because Treasury, corporate yields, and swap
rate cause shifts in the DV01s, these hedges should be monitored constantly and rebalanced
based on the changes in interest rates and thus amount of risk exposure.

Hedging and portfolio performance can be measured by scenario and prediction anal-
ysis of yield shifts. During the summer of 2001, the 10-year Treasury-swap rate credit
spread increased 40 basis points. Corporate yields generally followed the direction of the
swap rate. Should that occur again where the swap rate and corporate yields rise 60 bps
while Treasury yields rise only 20 bps, the underlying portfolio will incur an approximate
$17.55 million loss. Table 1.10 shows that the sector DV01s predict that $3,441,920 of the
loss will come from the Treasury sector and $14,108,280 of it will come from the corporate
sector. The Treasury futures hedge (according to the prediction of $72.50 DV01) will re-
spond to the 20 bp change in the Treasury yield and generate an $8,146,000 gain (see Table
1.10, Scenario 1). Based on this scenario, a hedge mismatch loss of $9,404,100 is incurred
as a result of the fact that the Treasury futures hedge can be expected to offset less than half
the portfolio loss.

Alternatively, swap futures can be used to hedge the entire portfolio. This strategy has
the advantage of responding to the larger change in the swap rate and corporate yields.
However, as Table 1.10 Scenario 2 shows, the relevant DV01s predict that this hedge will
generate a futures gain much larger than the loss the underlying portfolio will incur. As Ta-
ble 1.10, Scenario 3 shows, the relevant DV01s predict that these two hedge positions will
generate a total futures gain of $17,551,780. Thus, Scenario 3 appears far more promising



“London” — 2006/8/23 — 22:09 — page 23 — #25

Section 1.5 Bond and Swap Duration, Modified Duration, and DV01 23

Table 1.10
Underlying Portfolio Result
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 Treasury 172,096 20  -3,441,920
 Corporate 235,138 60  -14,108,280
 Portfolio    -17,550,200
Scenario 1 - Hedge Entire Portfolio with Treasury Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year T-note 72.50 20 5,618 8,146,100
 Portfolio    -17,550,200
 Hedge Mistatch    -9,404,100
Scenario 2 - Hedge Entire Portfolio with Swap Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year swap 77.00 60 5,289 24,435,180
 Portfolio    -17,550,200
 Hedge Mistatch    6,884,980
Scenario 3 - Hedge Treasury Sector with Treasury Futures, Hedge Corporate Sector with Swap Futures
     
   Yield Number of 
 Sector DV01 ($) Change (bps) Contracts Gain/Loss ($)
 10-year T-note 72.50 20 2,374 3,442,300
 10-year swap 77.00 60 3,054 14,109,480
 Total Hedge Result    17,550,780
 Portfolio    -17,550,200
 Portfolio Mismatch    1,380
 Treasury to 10-year T-note Mismatch   380
 Corporate to Swap Mismatch   1,200

Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001. All Rights
Reserved.

than either of the first two hedges given the minimal hedge mismatch of $1,580 (which
represents less than a basis point and is far less than normal bid-ask spreads, and so for
practical purposes represents a good offset). It highlights the importance of using exact or
like (highly correlated) sector hedges to hedge underlying sectors: hedge the Treasury sec-
tor with 10-year Treasury note futures and the corporate sector with 10-year swap futures.

The large variation in Scenario 1 and Scenario 2, compared with the small hedge mis-
match in Scenario 3, can be explained by the impact of basis risk that cannot be captured by
single sector hedges of an entire underlying fixed income portfolio with multiple sectors.
A 10-year Treasury futures is not as correlated with the corporate sector as the 10-year
swap futures. In other words, swaps correlate more closely with corporates than Treasuries
do. For example, consider a corporate-swap and corporate-Treasury regression using the
TransAmerica Corp. 9.375% March 2008 corporate bond in Table 1.8. The corporate-swap
correlation regression coefficient R2 is 0.9134, while the corporate-Treasury R2 is 0.7966,
as shown in Figure 1.1.

The 0.9134 R2 of the corporate-swap regression suggests that the variability of the swap
rate accounts for 91.34% of the variability in the corporate yield. In contrast, the 0.7966



“London” — 2006/8/23 — 22:09 — page 24 — #26

24 Swaps and Fixed Income Instruments Chapter 1

Figure 1.1 Reprinted by permission of the Board of Trade of the City of Chicago, Inc., © 2001.
All Rights Reserved.

R2 of the corporate-Treasury regression suggests that the variability of the Treasury yield
accounts for slightly less than 80% of the variability of the yield of the corporate bond.

1.6 TERM STRUCTURE OF RATES

Term structure modeling is essential for valuation of fixed income securities and deriva-
tives as a means for quantifying the relationship between either price or yield among a set
of securities that differ only in the timing of their cash flows or their term until maturity.
Term structure models describe the evolution of interest rates over time. The relationship
expressed by the term structure is traditionally the par-coupon yield relationship, though
in general, the term structure could be the discount function, the spot-yield curve, or some
other price-yield relationship.

The set of securities that define a term structure is known as the reference set, which
may be a set of U.S. Treasuries, agency debentures, off-the-run Treasury issues, interest rate
swaps, or single-A rated corporate bonds, for instance. The n-year zero coupon yield, also
known as the n-year spot rate, is the interest rate on an investment that is earned for a period
of time starting today and lasting for n years. There is widespread usage of the par yield



“London” — 2006/8/23 — 22:09 — page 25 — #27

Section 1.7 Bootstrap Method 25

curve for the Treasury market so that many market sectors are defined from a reference set
derived from the Treasury market;16 for example, “the reference set that defines the agency
debenture market is a set of yield spreads on the on-the-run Treasuries, so that the five-year
debenture issued by an agency may be priced at par to yield 15 basis points more than
the current five-year Treasury issue.”17 Other important yield curves include the forward
rate curve and swap curve. Forward interest rates (future spot rates) are the rates of interest
implied by current spot rates for periods of time in the future. The swap curve shows the
fixed rate that is to be paid for receiving a floating rate such as three-month Libor, for a
given swap maturity.

There are typically three types of term structures. The (coupon) yield curve is the yield-
to-maturity structure of coupon bonds. The zero-coupon yield or spot-rate curve is the
term structure of discount rates of zero-coupon bonds. The forward rate curve is the term
structure of forward rates implicit in zero-coupon discount rates.

1.7 BOOTSTRAP METHOD

To construct the zero-coupon yield curve when spot rates cannot be observed directly,
use the bootstrap method to extract it from observable coupon-bearing bond (cash) prices,
swap rates, and interest rate futures. The bootstrap method, an iterative numerical method
for extracting spot rates from previously computed spot rates and observable bond prices,
can be used to construct the discount rate curve. Denote yn as the yield to maturity of an
n-period bond of maturity and dn as the spot (discount) rate of the n-period maturity bond.
The method is based on the idea that a coupon bond can be decomposed into the sum of
zero-coupon bonds:

Pn =
c/m

1 + yn/2
+

c/m

(1 + yn/2)2
+ . . . +

F + c/m

(1 + yn/2)n

=
c/m

1 + dn/2
+

c/m

(1 + dn/2)2
+ . . . +

F + c/m

(1 + dn/2)n

= Z1 + Z2 + . . . + Zn

The standard procedure for bootstrapping the Treasury yield curve, known as recursive
stripping, is as follows:

1. Obtain the current price of U.S. Treasuries (and/or Eurodollar futures).

2. Solve for the yield on the one-period zero-coupon bond, z1.

3. Solve for z2, given the price of the two-period bond and z1 calculated in step 2.

4. Solve for z3, given the price of the three-period bond and z1 and z2.

5. Continue until all the spot rates have been calculated.

Bootstrapping is a process whereby one starts with known data points and then solves
for unknown data points using an underlying arbitrage theory. Every coupon bond can be
valued as a package of zero-coupon bonds that mimic its cash flow and risk characteristics.



“London” — 2006/8/23 — 22:09 — page 26 — #28

26 Swaps and Fixed Income Instruments Chapter 1

By mapping yields-to-maturity for each theoretical zero-coupon bond, to the dates spanning
the investment horizon, one can create a theoretical zero-rate curve.

The zero spot rates are typically quoted on a bond equivalent basis.
One can use the bootstrap method to extract the zero coupon curve, which can in turn

be used to construct a discount rate curve to discount cash flows. The generation of these
curves typically starts with a series of on-the-run and selected off-the-run issues as input.
All cash flows are used to construct the spot curve, and rates between maturities (for these
coupons) are linearly interpolated.

For each bond maturity, we solve for the current yield that equates the current bond
maturity with the sum of its discounted cash flows based on the determination of the yields
of all the shorter maturity bonds. For instance, to determine the short rate yield on a bond
that matures in n-years, we need to solve for dn, which can only be achieved if all the yields
for bonds maturing at periods i = 1, ..., n − 1 are determined. The method is called the
bootstrap method because it determines yields (and thus the short rate curve) by building
on top or “bootstrapping” from all previously determined yields:

Pn =
n−1∑
i=1

Cn

(1 + di)i
+

Cn + FV

(1 + dn/2)n

For a zero-coupon bond, one can compute the (continuously computed) discount rate
dc from a discount spot rate with compounding n times per annum18 via the following
equation:

dc = n ln
(
1 +

cn

n

)
Consider the Treasury bills and bonds listed in Table 1.11. We assume bond prices that

mature every six months are available out to five years.
When computing the spot rates, on-the-run treasuries are typically used as they are

more liquid and normally trade close to par, thereby mitigating any tax-biases associated
with discount or premium bonds. Unfortunately, on-the-run securities are only available at
0.5-, 1-, 2-, 3-, 5-, and 10-year maturities. Of the methods used to obtain spot rates between

Table 1.11
Bond Price Annual Coupon Semiannual Period Maturity (Years) Period Coupon

102.2969 6.125 1 0.5 3.0625

104.0469 6.25 2 1.0 3.125

104.0000 5.25 3 1.5 2.625

103.5469 4.75 4 2.0 2.375

109.5156 7.25 5 2.5 3.625

111.1719 7.5 6 3.0 3.750

122.4844 10.75 7 3.5 5.375

119.6094 9.375 8 4.0 4.687

111.3281 7.0 9 4.5 3.500

108.7031 6.25 10 5.0 3.125



“London” — 2006/8/23 — 22:09 — page 27 — #29

Section 1.7 Bootstrap Method 27

these values, exponential cubic splines19 is the most common. However, recursive stripping
is also common. We assume the maturity face value is 100.

To bootstrap the curve, we start by computing the discount spot rate that equates the
cash flows to the 0.5-year maturity bond price of 102.27:

102.27 =
(3.0625 + 100)

(1 + d1/2)

or solving for d1:

d1 = (103.0625/102.27− 1) ∗ 2 = 0.014968

We compute the discount sum for semiannual period 1:

DiscountSum1 = 1/(1 + d1) = 1/(1.04968) = 0.9853

We next solve for the one-year spot rate that gives the bond price at semiannual period 2:

104.05 =
3.125

(1 + d1)
+

103.125
(1 + d2/2)2

= 3.125 ∗ DiscountSum1 + 103.125/(1 + d2/2)2

= 2 ∗
((

PeriodCoupon2 + FaceValue
BondPrice2 − PeriodCoupon2 ∗ DiscountSum1

)1/2

− 1

)

so that

d2 = 2.1250%.

We compute the discount sum for semiannual period 2:

DiscountSum2 = DiscountSum1 + 1/(1 + d2)2

= 0.9853 + 1/(1.02125)2

= 1.94407

We next solve for the sport rate that equates the cash flows to the 1.5-year maturity
bond price (third semiannual period):

104 = 2.625 ∗ DiscountSum2 +
102.625

(1 + d3/2)3

or solving

d3 = 2 ∗
((

PeriodCoupon3 + FaceValue
BondPrice3 − PeriodCoupon3 ∗ DiscountSum2

)1/3

− 1

)

= 2.4822%.



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 28 --- #30

28 Swaps and Fixed Income Instruments Chapter 1

So that, in general, the bootstrapped spot rate for semiannual period n is given by

dn = 2 ∗
((

PeriodCoupon(n) + FaceValue
BondPrice(n) − PeriodCoupon(n) ∗ DiscountSum(n − 1)

)1/n

− 1

)

where

DiscountSum(n − 1) = DiscountSum(n − 2) + 1/(1 + d2)n−1.

If we continue the process, we find the discount sums and spot rates shown in Table
1.12, which yield the term structure of rates shown in Figure 1.2.

In practice, bootstrapping requires the input of T-bills, Treasury bond, Treasury note
futures, Eurodollar futures, or coupon-bearing bond prices. One must interpolate the spot
rate yields for specific maturities not available from the available market prices. For in-
stance, some bond tables list net yields for bonds in a sequence of one, three, and five
years. Interpolation would be used to determine the yield for the second and fourth year.
In effect, interpolation is a process of trial and error utilizing a numerical method like the
Newton-Raphson method. What complicates the procedure is that day count conventions
need to be taken into account for computing accrued interest on coupon-bearing bonds.

Table 1.12
Period Discount Sum Spot Rate

1 0.985252547 1.4968%

2 1.944068996 2.1250%

3 2.87315116 2.4822%

4 3.76649457 2.8597%

5 4.623301565 3.1391%

6 5.442647715 3.3766%

7 6.227073953 3.5295%

8 6.975043088 3.6966%

9 7.682592791 3.9187%

10 8.359670683 3.9767%

1.8 BOOTSTRAPPING IN MATLAB

There are three ways to import data into Matlab: (1) loading the data as a “flat file” in
ASCII format and then converting it to a numerical matrix; (2) loading the data first into
Excel and then using ExcelLink to pass numeric matrices to the Matlab workspace; or (3)
using the Matlab Database Toolbox to pull the data from an ODBC-compliant database.

Matlab, via the Financial Toolbox, provides two bootstrapping functions: zbtprice,
which bootstraps the zero curve from coupon-bond data-given prices and zbtyield,
which bootstraps the zero curve from coupon-bond data-given yields. Suppose we want
to bootstrap the yield curve in Matlab using the corporate bond data in Figure 1.1 to get the
zero rates at the maturity rates of the bonds. Assume the settlement date is January 2, 2006.



‘‘London’’ --- 2006/8/29 --- 15:18 --- page 29 --- #31

Section 1.8 Bootstrapping in Matlab 29

Term Structure of Interest Rates

Maturity (in years)

4.5%

0.0%

0 1 2 3 4 5 6

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

S
po

t I
nt

er
es

t R
at

e

Figure 1.2 Term structure of rates

% Bonds = [Maturity CouponRate FaceValue]
Bonds = [datenum('15-Aug-2007') 0.08180 100;

datenum('01-Jan-2008') 0.06375 100;
datenum('15-Jan-2008') 0.06150 100;
datenum('01-Mar-2008') 0.09375 100;
datenum('01-Jun-2008') 0.06500 100;
datenum('01-Sep-2008') 0.06831 100;
datenum('24-Sep-2008') 0.07340 100;
datenum('17-Oct-2008') 0.07375 100;
datenum('15-Oct-2009') 0.08000 100;
datenum('15-Feb-2010') 0.07625 100;
datenum('15-Aug-2011') 0.09375 100];

Yields = [0.0547; 0.0619; 0.0604; 0.0634; 0.0676; 0.0599; 0.0567;
0.0656; 0.0670; 0.0750; 0.0601];

Prices = [114.28; 102.26; 101.61; 116.30; 100.51; 105.13; 113.00;
107.64; 111.39; 100.81; 125.58];

Settle = datenum('02-Jan-2006');

[ZeroRates, CurveDates] = zbtyield(Bonds,Yields,Settle)

ZeroRates =

0.0547
0.0623



“London” — 2006/8/23 — 22:09 — page 30 — #32

30 Swaps and Fixed Income Instruments Chapter 1

0.0607
0.0641
0.0683
0.0600
0.0565
0.0661
0.0676
0.0769
0.0586

datestr(CurveDates) =

15-Aug-2007
01-Jan-2008
15-Jan-2008
01-Mar-2008
01-Jun-2008
01-Sep-2008
24-Sep-2008
17-Oct-2008
15-Oct-2009
15-Feb-2010
15-Aug-2011

We could also bootstrap using the bond prices:

[ZeroRates] = zbtprices(Bonds,Prices,Settle);

ZeroRates =

0.0251
0.0581
0.0582
0.0400
0.0665
0.0554
0.0362
0.0533
0.0548
0.0810
0.0469

It should be noted that these zero rates are not risk-free discount rates because the
coupon bonds are not risk free. To compute risk-free zero-rates, T-bills, Treasury notes,
and Treasury bonds should be used.

1.9 BOOTSTRAPPING IN EXCEL

Consider the Excel spreadsheet (ZC.xls) shown in Figure 1.3 with a worksheet called
“Bootstrap,” which takes zero coupon rates as input and interpolates between maturity
dates. To view the Visual Basic code, click on Tools > Macro > Visual Basic Editor.



‘‘London’’ --- 2006/8/29 --- 15:18 --- page 31 --- #33

Section 1.9 Bootstrapping in Excel 31

Figure 1.3 Interpolating zero coupon rates between maturity dates

Public ZC(1 To 100) As Double // stores zero coupon rates
Public swaprate(1 To 100) As Double // stores swap rates
Public dataswap(1 To 100) As Double

Sub interpolation swap.rtf
Sub interpolation_swap()

ReadRates_over10y 'Load swap rates over 10 years

For i = 1 To 12
Sheets("Bootstrapping").Cells(i + 1, 3) =

Sheets("Bootstrapping").Cells(i + 1, 1)
Sheets("Bootstrapping").Cells(i + 1, 4) =

Sheets("Bootstrapping").Cells(i + 1, 2)
Next i

For i = 1 To 9
Sheets("Bootstrapping").Cells(i + 13, 3) =

Sheets("Bootstrapping").Cells(i + 14, 1)
Sheets("Bootstrapping").Cells(i + 13, 4) =

Sheets("Bootstrapping").Cells(i + 14, 2)

Next i

Sheets("Bootstrapping").Cells(24, 3) = swaprate(12)
Sheets("Bootstrapping").Cells(27, 3) = swaprate(15)
Sheets("Bootstrapping").Cells(32, 3) = swaprate(20)
Sheets("Bootstrapping").Cells(37, 3) = swaprate(25)



‘‘London’’ --- 2006/8/29 --- 15:18 --- page 32 --- #34

32 Swaps and Fixed Income Instruments Chapter 1

Sheets("Bootstrapping").Cells(42, 3) = swaprate(30)

'Start the interpolation procedure for each knot

swaprate(11) = (swaprate(10) + swaprate(12)) * 0.5
Sheets("Bootstrapping").Cells(23, 3) = swaprate(11)

For i = 13 To 14
swaprate(i) = swaprate(12) + ((swaprate(15) - swaprate(12)) *

((i - dataswap(2)) / (dataswap(3)
- dataswap(2))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

For i = 16 To 19
swaprate(i) = swaprate(15) + ((swaprate(20) - swaprate(15)) *

((i - dataswap(3)) / (dataswap(4) - dataswap(3))))
Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)

Next i

For i = 21 To 24
swaprate(i) = swaprate(20) + ((swaprate(25) - swaprate(20)) *

((i - dataswap(4)) / (dataswap(5)
- dataswap(4))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

For i = 26 To 29
swaprate(i) = swaprate(25) + ((swaprate(30) - swaprate(25)) *

((i - dataswap(5)) / (dataswap(6)
- dataswap(5))))

Sheets("Bootstrapping").Cells(i + 12, 3) = swaprate(i)
Next i

End Sub

Sub ReadRates_over10y()

Dim i As Integer
Dim j As Integer
Sheets("Bootstrapping").Select

For i = 1 To 6
dataswap(i) = Sheets("Bootstrapping").Cells(i + 22, 2)
swaprate(dataswap(i)) = Sheets("Bootstrapping").Cells(i + 22, 1)

Next i

End Sub

Sub ZC_Rates()

Rates_Load



“London” — 2006/8/29 — 15:18 — page 33 — #35

Section 1.10 General Swap Pricing in Matlab 33

' Uniform the day-count convention between spot and swap rates
(both 30/360)

For i = 1 To 12

ZC(i) = Sheets("Bootstrapping").Cells(i + 1, 3) * 365 / 360

Next i

For j = 13 To 41

dummy_sum = 0

For i = 1 To j - 12
dummy_sum = dummy_sum + (swaprate(j) / 100) /

((1 + (ZC(11 + i) / 100)) ˆ dataswap(11 + i))
Next i

ZC(j) = ((((1 + (swaprate(j) / 100)) / (1 - dummy_sum)) ˆ
(1 / (dataswap(11 + i)))) - 1) * 100

Next j

For i = 1 To 41
Sheets("Bootstrapping").Cells(i + 1, 5) = ZC(i)

Next i

End Sub

Sub Rates_Load()

Dim i As Integer

For i = 1 To 41
dataswap(i) = Sheets("Bootstrapping").Cells(i + 1, 4)

swaprate(i) = Sheets("Bootstrapping").Cells(i + 1, 3)
Next i

End Sub

1.10 GENERAL SWAP PRICING IN MATLAB

The Matlab Fixed-Income Toolbox20 contains functions that perform swap pricing and
portfolio hedging. The Fixed-Income Toolbox contains the functionliborfloat2fixed,
which computes a fixed-rate par yield that equates the floating-rate side of a swap to the
fixed-rate side. The solver sets the present value of the fixed side to the present value of the
floating side without having to line up and compare fixed and floating periods.

The following assumptions are used for floating-rate input:

• LIBOR rates are quarterly—for example, that of Eurodollar futures.

• Effective date is the first third Wednesday after the settlement date.

• All delivery dates are spaced three months apart.



“London” — 2006/8/23 — 22:09 — page 34 — #36

34 Swaps and Fixed Income Instruments Chapter 1

• All periods start on the third Wednesday of delivery months.

• All periods end on the same dates of delivery months, three months after the start
dates.

• Accrual basis of floating rates is actual/360.

• Applicable forward rates are estimated by interpolation in months when forward-rate
data in not available.

The following assumptions are used for floating-rate output:

• Design allows you to create a bond of any coupon, basis, or frequency, based upon
the floating-rate input.

• The start date is a valuation date—that is, a date when an agreement to enter into a
contract by the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward fixed-rate contract
results.

• Effective date is assumed to be the first third Wednesday after settlement—the same
date as that of the floating rate.

• The end date of the bond is a designated number of years away, on the same day and
month as the effective date.

• Coupon payments occur on anniversary dates. The frequency is determined by the
period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present value as that
of the floating-rate payments is created.

To compute par fixed-rate of swap given three-month LIBOR data, the following function
is used:

[FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis)

The input arguments are shown in Table 1.13.
The output is as follows:

FixedBasis computes forward rates, dates, and the swap fixed rate.
FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate.

• Settle: Start date.

• Maturity: End date.



“London” — 2006/8/23 — 22:09 — page 35 — #37

Section 1.10 General Swap Pricing in Matlab 35

Table 1.13
ThreeMonthRates Three-month Eurodollar futures data or forward rate agreement

data. (A forward rate agreement stipulates that a certain inter-

est rate applies to a certain principal amount for a given future

time period.) An n-by-3 matrix in the form of [month year IM-

MQuote]. The floating rate is assumed to compound quarterly and

to accrue on an actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

StartDate (Optional) Scalar value to denote reference date for valuation of

(forward) swap. This in effect allows forward swap valuation. De-

fault = Settle.

Interpolation (Optional) Interpolation method to determine applicable forward

rate for months when no Eurodollar data is available. Default is

’linear’or 1. Other possible values are ’Nearest’ or 0, and

’Cubic’or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether futures/-

forward convexity adjustment is required. Pertains to forward rate

adjustments when those rates are taken from Eurodollar futures

data.

RateParam (Optional) Short-rate model’s parameters (Hull-White) [a S],

where the short-rate process is:

dr = [θ(t) − ar]dt + Sdz

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the routine

does an automatic convexity adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or frequency of payment on

the fixed side. Also, the reset frequency. Default = 4 (quarterly).

Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed side. 0 = actual/actual,

1 = 30/360 (SIA, default), 2 = actual/360, 3 = actual/365, 4 =

30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European), 7 =

act/365 (Japanese).

• Period: Frequency of payment.

• Basis: Accrual basis.

ForwardDates are dates corresponding to ForwardRates (all third Wednesdays of
the month, spread three months apart). The first element is the third Wednesday immedi-
ately after Settle.

ForwardRates are forward rates corresponding to the forward dates, quarterly com-
pounded, and on the actual/360 basis. To preserve input integrity, tenor is rounded upward
to the closest integer. Currently traded tenors are 2, 5, and 10 years. The function assumes



“London” — 2006/8/23 — 22:09 — page 36 — #38

36 Swaps and Fixed Income Instruments Chapter 1

that floating-rate observations occur quarterly on the third Wednesday of a delivery month.
The first delivery month is the month of the first third Wednesday after Settle. Floating-
side payments occur on the third-month anniversaries of observation dates.

Example 3

Use the supplied EDdata.xls file as input to a liborfloat2fixed computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

[FixedSpec, ForwardDates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor)

FixedSpec =

Coupon: 0.0222
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505 (16-Oct-2002)
731596 (15-Jan-2003)
731687 (16-Apr-2003)
731778 (16-Jul-2003)
731869 (15-Oct-2003)
731967 (21-Jan-2004)
732058 (21-Apr-2004)
732149 (21-Jul-2004)

ForwardRates =

0.0177
0.0166
0.0170
0.0188
0.0214
0.0248
0.0279
0.0305

Table 1.14 shows Eurodollar data on Friday 11, 2002 that we will used for bootstrapping
the yield curve and for computing swap rates in MATLAB.

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates with
the toolbox function liborfloat2fixed. The function requires you to input only Eu-
rodollar data, the settlement date, and tenor of the swap. Matlab then performs the required
computations.

To illustrate how this function works, first load the data contained in the supplied Excel
worksheet, EDdata.xls.



“London” — 2006/8/23 — 22:09 — page 37 — #39

Section 1.10 General Swap Pricing in Matlab 37

Table 1.14
Eurodollar Data on Friday 11, 2002

Month Year Settle Month Year Settle

10 2002 98.21 6 2007 94.88

11 2002 98.26 9 2007 94.74

12 2002 98.3 12 2007 94.595

1 2003 98.3 3 2008 94.48

2 2003 98.31 6 2008 94.375

3 2003 98.275 9 2008 94.28

6 2003 98.12 12 2008 94.185

9 2003 97.87 3 2009 94.1

12 2003 97.575 6 2009 94.005

3 2004 97.26 9 2009 93.925

6 2004 96.98 12 2009 93.865

9 2004 96.745 3 2010 93.82

12 2004 96.515 6 2010 93.755

3 2005 96.33 9 2010 93.7

6 2005 96.135 12 2010 93.645

9 2005 95.955 3 2011 93.61

12 2005 95.78 6 2011 93.56

3 2006 95.63 9 2011 93.515

6 2006 95.465 12 2011 93.47

9 2006 95.315 3 2012 93.445

12 2006 95.16 6 2012 93.41

3 2007 95.025 9 2012 93.39

Source: Matlab

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column. The rate
used as proxy is the arithmetic average of rates on opening and closing.

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,3);
EDFutData = [Month, Year, IMMData];

Next, input the current date.

Settle = datenum('11-Oct-2002');

To compute for the two-year swap rate, set the tenor to 2.

Tenor = 2;



“London” — 2006/8/23 — 22:09 — page 38 — #40

38 Swaps and Fixed Income Instruments Chapter 1

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor)

Matlab returns a par-swap rate of 2.23% using the default setting (quarterly compound-
ing and 30/360 accrual), and forward dates and rates data (quarterly compounded), compa-
rable to 2.17% of Friday’s average broker data in Table H15 of Federal Reserve Statistical
Release (http://www.federalreserve.gov/releases/h15/update/).

FixedSpec =

Coupon: 0.0223
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =

0.0179
0.0170
0.0177
0.0196
0.0222
0.0255
0.0285
0.0311

In the FixedSpec output, note that the swap rate actually goes forward from the third
Wednesday of October 2002 (October 16, 2002), five days after the original Settle input
(October 11, 2002). This, however, is still the best proxy for the swap rate on Settle, as
the assumption merely starts the swap’s effective period and does not affect its valuation
method or its length.

The correction suggested by Hull and White improves the result by turning on convexity
adjustment as part of the input to liborfloat2fixed. (See Hull, J., Options, Futures,
and Other Derivatives, 4th Edition, Prentice Hall, 2000.) For a long swap—e.g., five years
or more—this correction could prove to be substantial.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing an
empty matrix [] as input.



“London” — 2006/8/23 — 22:09 — page 39 — #41

Section 1.10 General Swap Pricing in Matlab 39

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.

• RateParam, which provides the parameters a and S as input to the Hull-White
short-rate process.

• Optional parameters InArrears and Sigma, for which you can use empty matri-
ces [] to accept the Matlab defaults.

• FixedCompound, with which you can facilitate comparison with values cited in
Table H15 of Federal Reserve Statistical Release by turning the default quarterly
compounding into semiannual compounding, with the (default) basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, Interpolation,
ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the two-year swap rate, quite close to the reported swap rate for that
date. Analogously, Table 1.15 summarizes the solutions for 1-, 3-, 5-, 7-, and 10-year swap
rates (convexity-adjusted and unadjusted).

Table 1.15
Calculated and Market Average Data of Swap Rates on Friday, October 11, 2002

Swap Length (Years) Unadjusted Adjusted Table H15 Adjusted Error (Basis Points)

1 1.80% 1.79% 1.80% -1

2 2.24% 2.21% 2.22% -1

3 2.70% 2.66% 2.66% 0

4 3.12% 3.03% 3.04% -1

5 3.50% 3.37% 3.36% +1

7 4.16% 3.92% 3.89% +3

10 4.87% 4.42% 4.39% +3

Source: Matlab

To compute the duration of a LIBOR-based interest rate swap, we use the
liborduration function:

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor,
Settle)



“London” — 2006/8/23 — 22:09 — page 40 — #42

40 Swaps and Fixed Income Instruments Chapter 1

The input arguments are shown in Table 1.16.

Table 1.16
SwapFixRate Scalar or column vector of swap fixed rates in decimal.

Tenor Scalar or column vector indicating life of the swap in years. Fractional

numbers are rounded upward.

Settle Scalar or column vector of settlement dates.

The output arguments are as follows:

• PayFixDuration is the modified duration, in years, realized when entering pay-
fix side of the swap.

• GetFixDuration is the modified duration, in years, realized when entering receive-
fix side of the swap.

Example 4

Given the following data

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

compute the swap durations.

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...
Tenor, Settle)

PayFixDuration =

-4.7567

GetFixDuration =

4.7567

A swap can be valued in Matlab using a Black-Derman-Toy (BDT) tree or an HJM tree.
The syntax is as follows:

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

The input arguments are shown Table 1.17.
The outputs are as follows:

• Price is number of instruments (NINST)-by-1 expected prices of the swap at
time 0.

• PriceTree is the tree structure with a vector of the swap values at each node.



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 41 --- #43

Section 1.10 General Swap Pricing in Matlab 41

Table 1.17
BDTTree Interest rate tree structure created by bdttree.

LegRate Number of instruments (NINST)-by-2 matrix, with each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the number of basis

points over the reference rate. The first column represents the receiving leg,

while the second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date numbers or date strings.

Settle must be earlier than or equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing the maturity date

for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset frequency per year for

each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used when annualizing

the input forward rate tree. Default = 0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default

= 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each

column indicates if the corresponding leg is fixed (1) or floating (0). This

matrix defines the interpretation of the values entered in LegRate. Default

is [1 0]for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

• CFTree is the tree structure with a vector of the swap cash flows at each node.

• SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the
swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices
when the rate specified for the fixed leg in LegRate is NaN. SwapRate is padded
with NaN for those instruments in which CouponRate is not set to NaN.

Example 5

To price an interest rate swap with a fixed receiving leg and a floating paying leg,
payments are made once a year, and the notional principal amount is $1,000,000. The
values for the remaining parameters are as follows:

• Coupon rate for fixed leg: 0.15 (15%)

• Spread for floating leg: 10 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the preceding information, set the required parameters and build theLegRate,
LegType, and LegReset matrices.



“London” — 2006/8/23 — 22:09 — page 42 — #44

42 Swaps and Fixed Income Instruments Chapter 1

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 1000000;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

We price the swap using the BDTTree included in the MAT-file deriv.mat.
BDTTree contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbybdt to compute the price of the swap.

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price = 73032

Example 6

Using the previous data, calculate the swap rate, the coupon rate for the fixed leg such that
the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

-2.8422e-014

PriceTree =

FinObj: 'BDTPriceTree'
tObs: [0 1 2 3 4]
PTree: {1x5 cell}

CFTree =

FinObj: 'BDTCFTree'
tObs: [0 1 2 3 4]
CFTree: {1x5 cell}

SwapRate =
0.1210

A swap can also be valued using an HJM tree.

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)



“London” — 2006/8/23 — 22:09 — page 43 — #45

Section 1.10 General Swap Pricing in Matlab 43

Table 1.18
HJMTree Forward rate tree structure created by hjmtree.

LegRate Number of instruments (NINST)-by-2 matrix, with each row defined as:

[CouponRate Spread] or [Spread CouponRate]

CouponRate is the decimal annual rate. Spread is the number of basis

points over the reference rate. The first column represents the receiving leg,

while the second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date numbers or date strings.

Settle must be earlier than or equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing the maturity date

for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset frequency per year for

each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used when annualizing

the input forward rate tree. Default = 0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default

= 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each

column indicates if the corresponding leg is fixed (1) or floating (0). This

matrix defines the interpretation of the values entered in LegRate. Default

is [1 0] for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

The arguments of the swapbyhjm function are shown in Table 1.18.
The Settle date for every swap is set to the ValuationDate of the HJM tree. The

swap argument Settle is ignored.
This function also calculates the SwapRate (fixed rate) so that the value of the swap

is initially zero. To do this, enter CouponRate as NaN.

Description

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,
LegRate, Settle, Maturity, LegReset, Basis, Principal,
LegType) computes the price of a swap instrument from an HJM interest rate tree.

Price is the number of instruments (NINST)-by-1 expected prices of the swap at
time 0.

PriceTree is the tree structure with a vector of the swap values at each node.
CFTree is the tree structure with a vector of the swap cash flows at each node.
SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the

swaps’ values are zero at time 0. This rate is used in calculating the swaps’ prices when the
rate specified for the fixed leg in LegRate is NaN. SwapRate is padded with NaN for
those instruments in which CouponRate is not set to NaN.



“London” — 2006/8/23 — 22:09 — page 44 — #46

44 Swaps and Fixed Income Instruments Chapter 1

Example 7

Price an interest rate swap with a fixed receiving leg and a floating paying leg. Payments are
made once a year, and the notional principal amount is $100. The values for the remaining
parameters are as follows:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the preceding information, set the required parameters and build the LegRate,
LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Price the swap using the HJMTree included in the MAT-file deriv.mat. HJMTree
contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbyhjm to compute the price of the swap.

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

3.6923

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]

PBush: {1x5 cell}

CFTree =

FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 45 --- #47

Section 1.11 Swap Pricing in Matlab Using Term Structure Analysis 45

1.11 SWAP PRICING IN MATLAB USING
TERM STRUCTURE ANALYSIS

This example illustrates some of the term structure analysis functions found in the
Financial Toolbox. Specifically, it illustrates how to derive implied zero (spot) and forward
curves from the observed market prices of coupon-bearing bonds. The zero and forward
curves implied from the market data are then used to price an interest rate swap agreement.
In an interest rate swap, two parties agree to a periodic exchange of cash flows. One of the
cash flows is based on a fixed interest rate held constant throughout the life of the swap.
The other cash flow stream is tied to some variable index rate. Pricing a swap at inception
amounts to finding the fixed rate of the swap agreement. This fixed rate, appropriately
scaled by the notional principle of the swap agreement, determines the periodic sequence of
fixed cash flows. In general, interest rate swaps are priced from the forward curve such that
the variable cash flows implied from the series of forward rates and the periodic sequence
of fixed-rate cash flows have the same present value. Thus, interest rate swap pricing and
term structure analysis are closely related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates, and market
prices for 10 U.S. Treasury bonds. This data allows us to price a five-year swap with net
cash flow payments exchanged every six months. For simplicity, accept default values for
the end-of-month payment rule (rule in effect) and day-count basis (actual/actual). To avoid
issues of accrued interest, assume that all Treasury bonds pay semiannual coupons and that
settlement occurs on a coupon payment date.

Settle = datenum('15-Jan-1999');

BondData = {'15-Jul-1999' 0.06000 99.93
'15-Jan-2000' 0.06125 99.72
'15-Jul-2000' 0.06375 99.70
'15-Jan-2001' 0.06500 99.40
'15-Jul-2001' 0.06875 99.73
'15-Jan-2002' 0.07000 99.42
'15-Jul-2002' 0.07250 99.32
'15-Jan-2003' 0.07375 98.45
'15-Jul-2003' 0.07500 97.71
'15-Jan-2004' 0.08000 98.15};

BondData is an instance of a Matlab cell array, indicated by the curly braces ({}).
Next assign the date stored in the cell array toMaturity,CouponRate, and Prices

vectors for further processing.

Maturity = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semiannual coupons

Step 2. Now that the data has been specified, use the term structure functionzbtprice
to bootstrap the zero curve implied from the prices of the coupon-bearing bonds. This im-
plied zero curve represents the series of zero-coupon Treasury rates consistent with the
prices of the coupon-bearing bonds such that arbitrage opportunities will not exist.



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 46 --- #48

46 Swaps and Fixed Income Instruments Chapter 1

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);

The zero curve, stored in ZeroRates, is quoted on a semiannual bond basis (the
periodic, six-month, interest rate is simply doubled to annualize). The first element of
ZeroRates is the annualized rate over the next six months, the second element is the
annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied forward
rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semiannual bond
basis. The first element of ForwardRates is the annualized rate applied to the interval
between settlement and six months after settlement, the second element is the annualized
rate applied to the interval from six months to 12 months after settlement, and so on. This
implied forward curve is also consistent with the observed market prices such that arbitrage
activities will be unprofitable. Because the first forward rate is also a zero rate, the first
element of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of discount
factors with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5. From the discount factors, compute the present value of the variable cash flows
derived from the implied forward rates. For plain interest rate swaps, the notional principle
remains constant for each payment date and cancels out of each side of the present value
equation. The next line assumes unit notional principle.

PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6. Compute the swap’s price (the fixed rate) by equating the present value of the
fixed cash flows with the present value of the cash flows derived from the implied forward
rates. Again, because the notional principle cancels out of each side of the equation, it is
simply assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The output would be as follows:

Zero Rates Forward Rates
0.0614 0.0614
0.0642 0.0670
0.0660 0.0695
0.0684 0.0758
0.0702 0.0774
0.0726 0.0846
0.0754 0.0925
0.0795 0.1077
0.0827 0.1089



“London” — 2006/8/23 — 22:09 — page 47 — #49

Section 1.11 Swap Pricing in Matlab Using Term Structure Analysis 47

0.0868 0.1239

Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the midpoint
between a market-maker’s bid/ask quotes.

Example 8

Consider a nine-year fixed for floating swap with a notional of $3.3 million and fixed
coupon rate of 3.969%, a floating rate based on three-month T-bill, with a start date of
March 28, 2004, effective date of March 29, 2004, and a maturity of March 28, 2013. As-
sume the fixed side is on a 30/360 day count while the floating leg is on an actual/360 day
count with quarterly resets. Figure 1.4 displays the Bloomberg screen with the swap data
terms.

Figures 1.5–1.7 show the swap cash flow payments and payment schedule. Figures 1.8
provides the swap curve. Figure 1.9, shows the risk measures, DV01 and duration, for both
the pay and receive legs.

<HELP> for explanation, <MENU> for similar functions.                                         P198 Corp    SWPM 
 
 Options     New Deal                    Copy Deal                View                                SWAP MANAGER 

 
Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL 

Receive Fixed                                        DETAIL 

Ticker // GIC     Series   

Notional 3300000  

Curr USD  

Effective 03/29/04  

Maturity 03/28/13  

FirstPmt 09/28/04 

NxtLastPmt 09/28/12 

DiscountCrv 23   Bid  

Pay Float                                                                                        DETAIL 

Ticker // GIC     Series 0001   

Notional 3300000  

Curr USD  

Effective 03/29/04  

Maturity 03/28/13  

FirstPmt 06/28/04 

NxtLastPmt 12/28/12 

DiscountCrv 23   Bid USD Swaps(30/360, S/A) 

ForwardCrv 23   Bid USD Swaps (30/360, S/A) 

  

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410 
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 16:05:22  
 

 

 Leg# SL6J0C2U 

 Cpn 3.96900     % 

 Calc Basis Money Mkt 

 Pay Freq SemiAnnual 

 Day Cnt 30   /   360 

 

 

 

 Leg# SL6J0C2V 

            Index  US0003M 

 Latest Index 4.00000 

 Spread 0.00    bp 

 Reset Freq Quarterly 

 Pay Freq Quarterly 

DayCnt ACT  /  360 

 

 

 

USD Swaps(30/360, S/A) 

Valuation         Curve 10/12/05    Valuation 10/14/05 All Values in USD 

Market Value     3,129,343.55  DV01 1,985.39 

Accrued                               5,821.20 

Market Value        -3,305,321.54                 DV01  -68.28 

Accrued        -5,866.67 

Net Principal   

 Accrued   

 Market Value     

-175,932.53

-45.47

-175,977.99

 Calculate  Premium   

 Premium  -5.33129    

     

 Par Cpn   

 DV01   

     

4.82681

1,917,11

Refresh

Main Curves Cashflow Risk Horizon 

Figure 1.4



“London” — 2006/8/23 — 22:09 — page 48 — #50

48 Swaps and Fixed Income Instruments Chapter 1

<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:08:34 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo  Currency  USD       EXPORT TO EXCEL

12/28/2005

03/28/2006

06/28/2006

09/28/2006

12/28/2006

03/28/2007

06/28/2007

09/28/2007

12/28/2007

03/28/2008

06/30/2008

09/29/2008

12/29/2008

TOTAL

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65852.32

0.00

-33366.67

-36550.57

-38758.48

-39287.93

-38326.13

-38039.88

-39213.28

-39523.30

-39297.44

-39531.82

-41091.95

-39999.08

-39094.19

-33366.67

28937.93

-38758.48

26200.57

-38326.13

27448.62

-39213.28

25965.20

-39297.44

25956.68

-41091.95

25853.25

-39094.19

0.991587

0.980724

0.969339

0.957935

0.946937

0.936146

0.925152

0.914203

0.903445

0.892750

0.881770

0.871210

0.861010

-33085.94

28380.12

-37570.12

25098.43

-36292.42

25695.90

-36278.26

23737.47

-35503.06

23172.83

-36233.66

22523.61

-33660.49

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.5

<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:09:10 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo Currency USD       EXPORT TO EXCEL

12/29/2008

03/30/2009

06/29/2009

09/28/2009

12/28/2009

03/29/2010

06/28/2010

09/28/2010

12/28/2010

03/28/2011

06/28/2011

09/28/2011

12/28/2011

TOTAL

0.00

65852.32

0.00

64760.85

0.00

65852.32

0.00

65124.68

0.00

65488.50

0.00

65488.50

0.00

-39094.19

-38911.34

-38927.60

-38938.01

-39881.18

-40177.71

-40274.03

-40807.77

-40583.21

-40243.83

-41217.01

-41282.22

-40707.37

-39094.19

26940.99

-38927.60

25822.84

-39881.18

25674.62

-40274.03

24316.91

-40583.21

25244.67

-41217.01

24206.28

-40707.37

0.861010

0.850976

0.841055

0.831247

0.821321

0.811441

0.801658

0.791866

0.782245

0.772821

0.763287

0.753857

0.744671

-33660.49

22926.13

-32740.24

21465.15

-32755.23

20833.45

-32285.99

19255.72

-31746.04

19509.61

-31460.42

18248.07

-30313.59

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.6



“London” — 2006/8/23 — 22:09 — page 49 — #51

Section 1.11 Swap Pricing in Matlab Using Term Structure Analysis 49

<HELP> for explanation.                                            P235 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 18-Nov-05 15:09:39 

Main Curves Cashflow Risk Horizon

REC FIXED  Coupon 3.96900   Frequency          S Curr  USD   Notional  3300000
PAY FLOAT  Latest Index 4.00000 + 0.00 bp  Reset/Pmnt FreqQ/Q Curr  USD   Notional  3300000
 
Net                         Cashflo Currency USD       EXPORT TO EXCEL

03/29/2010

06/28/2010

09/28/2010

12/28/2010

03/28/2011

06/28/2011

09/28/2011

12/28/2011

03/28/2012

06/28/2012

09/28/2012

12/28/2012

03/28/2013

TOTAL

65852.32

0.00

65124.68

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

65488.50

0.00

3365488.50

-40177.71

-40274.03

-40807.77

-40583.21

-40243.83

-41217.01

-41282.22

-40707.37

-40705.47

-41183.89

-41205.10

-41725.89

-3341534.93

25674.62

-40274.03

24316.91

-40583.21

25244.67

-41217.01

24206.28

-40707.37

24783.03

-41183.89

24283.40

-41725.89

23953.57

0.811441

0.801658

0.791866

0.782245

0.772821

0.763287

0.753857

0.744671

0.735597

0.726530

0.717570

0.708611

0.699803

20833.45

-32285.99

19255.72

-31746.04

19509.61

-31460.42

18248.07

-30313.59

18230.33

-29921.34

17425.05

-29567.41

16762.77

-176149.58

Payment Dates Payments(Rcv) Payments(Pay) Net Payments Discount Net PV

Figure 1.7

<HELP> for explanation.                                            P198 Corp    SWPM

 Options     New Deal                    Copy Deal                View                                SWAP MANAGER

Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 15:48:54 

Main Curves Cashflow Risk Horizon

Curve      #23                  USD Swaps (30/360,S/A)

Current Market

# Mty/Term Rate # Mty/Term Rate # Mty/Term Rate # Mty/Term Rate

6 Month –50bp 6 Month +0bp 6 Month +50bp

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.50000
3.80000
3.81688
3.82000
3.86000
3.94563
4.02563
4.14000
4.20000
4.26000
4.32875
4.37025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.00000
3.30000
3.31688
3.32000
3.36000
3.44563
3.52563
3.64000
3.70000
3.76000
3.82875
3.87025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

3.50000
3.80000
3.81688
3.82000
3.86000
3.94563
4.02563
4.14000
4.20000
4.26000
4.32875
4.37025

1
2
3
4
5
6
7
8
9

10
11
12

1 DY
2 DY
1 WK
2 WK
3 WK
1 MO
2 MO
3 MO
4 MO
5 MO
6 MO
7 MO

4.00000
4.30000
4.31688
4.32000
4.36000
4.44563
4.52563
4.64000
4.70000
4.46000
4.82875
4.87025

Horizon Curve Date 10/12/05
Horizon Settle Date 10/14/05

GLOBAL CHANGE FIELDS -----    
Pay Leg PV -3,305,321.54
Receive Leg PV 3,128,009.55
Net PV -177,311.99

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,331,694.62
Receive Leg PV 3,239,101.26
Net PV -72,593.36

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,308,454.83
Receive Leg PV 3,143,640.16
Net PV -164,814.67

Horizon Curve Date 04/12/06
Horizon Settle Date 04/18/06

From    1               To    34               Shift    0.00
Pay Leg PV -3,305,221.38
Receive Leg PV 3,051,445.05
Net PV -253,776.32

Figure 1.8



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 50 --- #52

50 Swaps and Fixed Income Instruments Chapter 1

<HELP> for explanation.                                             P198 Corp    SWPM 
 
 Options     New Deal                    Copy Deal                View                                SWAP MANAGER 

 
Deal        Counterparty        T6qyNWPA12        Ticker  / GIC   Series        0001        Deal# SL6J0C2T                       DETAIL 

Risk                                         

 

Key Rate Risk                                                                                        

 

Australia 61 2 9777 8600   Brazil 5511 3048 4500  Europe 44 20 7330 7500                                        Germany 49 69 920410 
Hong Kong 852 2977 6000                Japan 81 3 3201 8900                Singapore 65 6212 1000                U.S. 1 212 318 2000                                     Copyright 2005 Bloomberg L.P. 
                                                                                                                                                                                                                                         G566-178-0 12-Oct-05 15:48:11  
 

 
Valuation Curve 10/12/05 Valuation  10/14/05 All Values in USD 

Market Value     3,128,009.55  DV01    1,984.83 

Accrued                               5,821.20 

Market Value     -3,305,321.54  DV01  -68.28 

Accrued                                 -5,866.67 

Net Principal   

 Accrued   

 Market Value     

-177,766.53

-45.47

-177,311.99

 Calculate  Premium   

 Premium  -5.33129    

     

 Par Cpn   

 DV01   

     

4.83338

1,916.55

Refresh

Main Curves Cashflow Risk Horizon 

Conventional        Receive side         Pay side                Net Mty/Term               Receive side                Pay side                       Net

 

Risk 

DV01 

Modified Duration 

 

6.01 

1984.83 

6.36 

 

-0.21 

-68.28 

-0.22 

 

5.81 

1916.55 

6.14 

 

1 DY 

2 DY 

1 WK 

2 WK 

3 WK 

1 MO 

2 MO 

3 MO 

4 MO 

5 MO 

Total 

 

-0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.70 

1985.56 

 

-0.00 

-0.00 

0.00 

0.00 

0.00 

0.00 

-40.17 

-28.12 

0.00 

-0.00 

-68.28 

 

-0.00 

-0.00 

0.00 

0.00 

0.00 

0.00 

-40.17 

-28.12 

0.00 

1.70 

1917.28 

 

 

Figure 1.9

1.12 SWAP VALUATION IN C++
To price a vanilla fixed-for-floating swap in C++, we define a Swap class. The Swap

class is composed of two legs—a FloatingLeg class, floatLeg, and a FixedLeg class, fixed-
Leg, which represent the two sides of the swap. Because the calculation of payment dates
based on the start date, effective date, and maturity date is required, the Swap class uti-
lizes a Date class21 that contains methods for computing date operations. The Date class
is defined in the “datecl.h” file and will be used throughout this book to compute payment
dates.

The Swap class contains the following Date data members:

Date maturity_; // swap maturity date
Date fixedAccruedDate_; // fixed interest accrual date
Date floatAccruedDate_; // floating interest accrual date
Date effectiveDate_; // effective date
Date settlementDate_; // settlement date
Date valuationDate_; // valuation date

The Date methods are defined in the “datecl.cpp” source file. The Swap class is defined
with various inline methods to add in the computation of the swap payments, netting, and
pricing:

double getNotional() // return notional amount
double calcDV01() // compute swap DV01
void netPayments() // net fixed and floating payments
void calcPayDates(Date tradeDate, Date endDate, Date valuation)



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 51 --- #53

Section 1.12 Swap Valuation in C++ 51

// calculate pay dates
void setDiscountRates(std::map<double,double> rate) // set discount rates

The Swap class utilizes the floatLeg and fixedLeg data class members to perform many
of the operations in these methods. The Swap class contains overloaded constructors to re-
ceive and store important data for pricing: the maturity date, effective date, settlement date,
valuation date, floating (libor) rates, discount rates, the fixed swap rate, and the valuation
type (receive fixed-pay floating or receive floating-pay fixed). The Swap class definition is:

SWAP.h
#ifndef _SWAP_H__
#define _SWAP_H__

#include "TNT\TNT.h"
#include "datecl.h"
#include <string>
#include <vector>
#include <map>
#define NUM_DATES 100
#define THIRTY 30
#define THREE_SIXTY 360
#define THREE_SIXTY_FIVE 365
#define NOTIONAL 1000000

static std::vector<Date> payDates_;

static double interpolate(double rate1, double rate2, double t1, double t2,
double x) {
double dy = rate2 - rate1;
double dt = t2 - t1;
double slope = dy/dt;

return rate1 + slope*x;
}

class FloatingLeg
{
public:

FloatingLeg(std::map<double,double> floatLegRate, double floatLegBasis,
int payFrequency)

: floatLegRate_(floatLegRate),floatLegBasis_(floatLegBasis),
payFrequency_(payFrequency) {}

FloatingLeg() {}
virtual ˜FloatingLeg() {}
inline double calcDuration() {

double duration = 0.0;
duration = (double) (payDates_[0] - valuationDate_ + 1)/
THREE_SIXTY_FIVE; //(maturityDate_ - valuationDate_ + 1);
//(paysum/val;

return duration;
}
inline void setEffectiveDate(Date date) { startDate_ = date; }
inline void setValuationDate(Date date) { valuationDate_ = date; }
inline void setNotional(double notional) { notional_ = notional; }



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 52 --- #54

52 Swaps and Fixed Income Instruments Chapter 1

inline Date getEffectiveDate() { return startDate_; }
inline void setFrequency(int frequency) { payFrequency_ = frequency; }
inline void setMaturityDate(Date mat) { maturityDate_ = mat; }
inline std::vector<double> getPayFloat() { return floatRates; }
inline void setFloatValue(double value) { value_ = value; }
inline double getFloatValue() {

return value_;
}
inline void setFloatRate(std::map<double,double> rate) {

floatLegRate_ = rate;
}
inline double calcDV01() {

double duration = calcDuration();
double val = getFloatValue();
double DV = 0.0;

DV = -(duration*notional_)*((double)1/10000);
cout << "float DV01 = " << DV << endl;

return -DV;
}
inline double calcModifiedDuration() {

double val = calcDV01();
double marketValue = getFloatValue();
double MD = (val/(notional_ + marketValue))*10000;

cout << "float modified duration = " << MD << endl;

return MD;
}
inline void calcPayFloat() {

std::vector<Date>::iterator iter;
double val = 0;
double diff = 0.0;
int diff1 = 0.0;
int d = 0.0;
int d1 = 0.0;
Date dateDiff;
int cnt = 0;
double floatVal = 0.0;

for (iter = payDates_.begin(); iter != payDates_.end(); iter++)
{

d = payDates_[cnt+1] - payDates_[0] + 1;
d1 = payDates_[cnt+1] - payDates_[cnt] + 1;

diff = payDates_[cnt+1] - payDates_[0]+1;
diff = (double) diff/THREE_SIXTY_FIVE;
floatVal = interpolate(floatLegRate_[floor(diff)],

floatLegRate_[ceil(diff)],floor(diff),
ceil(diff),diff);

if (payFrequency_ == 1)
val = notional_*(THIRTY/THREE_SIXTY)*floatVal;



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 53 --- #55

Section 1.12 Swap Valuation in C++ 53

else
val = notional_*((double)d1/THREE_SIXTY_FIVE)*floatVal;

floatRates.push_back(val);

cnt++;
}

}
private:

double floatLegBasis_;
std::vector<double> floatRates;
std::map<double,double> floatLegRate_;
std::map<double,double> payfloatLeg_;
Date startDate_;
Date maturityDate_;
Date valuationDate_;
double value_;
double spread_;
double notional_;
double duration_;
double accrual_;
int payFrequency_;

};

class FixedLeg
{

public:
FixedLeg(double payfixedLeg, double fixedLegRate,

double fixedLegBasis, int payFrequency)
: payfixedLeg_(payfixedLeg), fixedLegRate_(fixedLegRate),

fixedLegBasis_(fixedLegBasis),
payFrequency_(payFrequency) { }

FixedLeg() {}
virtual ˜FixedLeg() {}
inline double calcDV01() {

double duration = calcDuration();
double val = getFixedValue();
double DV = 0.0;

DV = (duration*notional_)*((double)1/10000);
cout << "fixed DV01 = " << DV << endl;

return DV;
}
inline void setEffectiveDate(Date date) { effectiveDate_ = date; }
inline double calcDuration() {

double sum = 0;
double val = getFixedValue();
double duration = 0.0;
double dis = 0.0;

for (int i = 0; i < payfixedLeg_.size(); i++)
sum = sum + payfixedLeg_[i]*((double)(payDates_[i+1] -

valuationDate_ + 1)/
(maturityDate_ - valuationDate_ + 1));



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 54 --- #56

54 Swaps and Fixed Income Instruments Chapter 1

sum = sum + notional_;
duration = sum/val;
cout << "fixed duration = " << duration << endl;

return duration;
}
inline double calcModifiedDuration() {

double val = calcDV01();
double marketValue = getFixedValue();
double MD = (val/(notional_ + marketValue))*10000;

//cout << "fixed modified duration = " << MD << endl;

return MD;
}
inline void setFixedValue(double val) { value_ = val; }
inline void setValuationDate(Date date) { valuationDate_ = date; }
inline double getFixedValue() {

return value_;
}
inline void setNotional(double notional) { notional_ = notional; }
inline void setFrequency(int frequency) { payFrequency_

= frequency; }
inline void setFixedRate(double rate) { fixedLegRate_ = rate; }
inline void setMaturityDate(Date mat) { maturityDate_ = mat; }
std::vector<double> getPayFixed() { return payfixedLeg_; }
inline void calcPayFixed()
{

std::vector<Date>::iterator iter;
double val = 0;
int diff = 0;
Date dateDiff;
int cnt = 0;

for (iter = payDates_.begin(); iter != payDates_.end(); iter++)
{

if (payFrequency_ == 1)
{

if (cnt <= payDates_.size())
{

if (cnt + payFrequency_ < payDates_.size())
diff = payDates_[cnt+payFrequency_] -

payDates_[cnt]+1;
else

diff = 0;

if ((cnt != 0) && (cnt % payFrequency_ == 0))
val = notional_*(THIRTY/THREE_SIXTY)*

fixedLegRate_;
else

val = 0;
}
else

val = notional_*(THIRTY/THREE_SIXTY)*fixedLegRate_;
}



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 55 --- #57

Section 1.12 Swap Valuation in C++ 55

else
{

if (cnt <= payDates_.size())
{

if (cnt + payFrequency_ <= payDates_.size())
{

// subtract five because there are 5 less days in a
// 360 day year

diff = (payDates_[cnt+payFrequency_] -
payDates_[cnt] + 1) - 5;

//cout << "diff = " << diff << endl;
}
else

diff = 0;

if ((cnt > 0) && ((cnt-1) % payFrequency_ == 0))
val = notional_*((double)diff/THREE_SIXTY)*

fixedLegRate_;
else

val = 0;
}
else
{

//diff = (maturityDate_ - payDates_[cnt] + 1) - 5;
//val = notional_*((double)diff/THREE_SIXTY)*

fixedLegRate_;
val = 0;

}
//cout << "fixed val = " << val << "cnt = " << cnt << endl;

}
cnt++;
payfixedLeg_.push_back(val);

} // for
}

private:
std::vector<double> payfixedLeg_;
double fixedLegRate_;
double fixedLegBasis_;
double duration_;
double value_;
double accrual_;
double notional_;
double basis_;
int payFrequency_;
Date effectiveDate_;
Date maturityDate_;
Date valuationDate_;

};

class Swap
{

public:
Swap() : notional_(NOTIONAL), maturity_("12/31/2010"),

swapType(0) {}
Swap(double notional, Date maturity, Date effectiveDate,

Date settlementDate, Date valuation,
std::map<double,double> liborRate, std::map<double,double> disc,



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 56 --- #58

56 Swaps and Fixed Income Instruments Chapter 1

double fixedRate, int type)
: notional_(notional), maturity_(maturity),

effectiveDate_(effectiveDate), settlementDate_(settlementDate),
valuationDate_(valuation), floatRates_(liborRate),
fixedRate_(fixedRate), swapType(type)

{
getNotional();
calcPayDates(effectiveDate_,maturity_,valuationDate_);
fixedLeg.setNotional(notional_);
fixedLeg.setValuationDate(valuationDate_);
fixedLeg.setFrequency(2);
fixedLeg.setFixedRate(fixedRate);
fixedLeg.setMaturityDate(maturity);
fixedLeg.calcPayFixed();
fixedLeg.setEffectiveDate(effectiveDate_);
floatLeg.setMaturityDate(maturity);
floatLeg.setFrequency(4);
floatLeg.setNotional(notional_);
floatLeg.setFloatRate(liborRate);
floatLeg.setValuationDate(valuationDate_);
setDiscountRates(disc);
floatLeg.calcPayFloat();
netPayments();
//fixedLeg.calcModifiedDuration();
//floatLeg.calcModifiedDuration();
calcDV01(); }
virtual ˜Swap() {}
inline double getNotional() {

return notional_;
}
inline void setDiscountRates(std::map<double,double> rate) {

discRates_ = rate;
}
inline double calcDV01() {

double val = 0;

if (swapType == 0)
val = fixedLeg.calcDV01() - floatLeg.calcDV01();

else
val = floatLeg.calcDV01() - fixedLeg.calcDV01();

cout << "Swap DV01 = " << val << endl << endl;

return val;
}
inline void calcPayDates(Date tradeDate, Date endDate,

Date valuation)
{

effectiveDate_ = tradeDate-1;

if (effectiveDate_ == Date::SATURDAY)
effectiveDate_ = effectiveDate_ + 2;

else if (effectiveDate_ == Date::SUNDAY)
effectiveDate_ = effectiveDate_ + 1;

Date currDate = effectiveDate_;



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 57 --- #59

Section 1.12 Swap Valuation in C++ 57

int cnt = 0;

while (currDate <= endDate)
{

currDate.AddMonths(3);
while (currDate.day > effectiveDate_.day)

currDate = currDate - 1;

if (currDate <= valuation)
{

if (currDate.day_of_week == Date::SATURDAY)
currDate = currDate + 2;

else if (currDate.day_of_week == Date::SUNDAY)
currDate = currDate + 1;

else if (currDate ==
currDate.ChristmasDay(currDate.year))
currDate = currDate + 1;

fixedAccruedDate_ = currDate;
}
if ((currDate <= endDate) && (currDate >= valuation))
{

if (currDate.day_of_week == Date::SATURDAY)
currDate = currDate + 2;

else if (currDate.day_of_week == Date::SUNDAY)
currDate = currDate + 1;

else if (currDate ==
currDate.ChristmasDay(currDate.year))
currDate = currDate + 1;

payDates_.push_back(currDate);

//cout << "payDate = " << payDates_[cnt] << endl;
cnt++;

}
}

}
inline void netPayments()
{

double val = 0.0;
double y = 0.0;
std::vector<double> fixed = fixedLeg.getPayFixed();
std::vector<double> fl = floatLeg.getPayFloat();
double x = 0;
double sum = 0.0;
double sumfix = 0.0;
double sumfloat = 0.0;

if (swapType == 0)
{

fixedAccrued_ = notional_*fixedRate_*((valuationDate_ -
fixedAccruedDate_))/THREE_SIXTY;

floatAccrued_ = -notional_*floatRates_[0]*
((valuationDate_ -
fixedAccruedDate_))/THREE_SIXTY_FIVE;

}
else



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 58 --- #60

58 Swaps and Fixed Income Instruments Chapter 1

{
fixedAccrued_ = -notional_*fixedRate_*((valuationDate_ -

fixedAccruedDate_))/THREE_SIXTY;
floatAccrued_ = notional_*floatRates_[0]*

((valuationDate_ -
fixedAccruedDate_))/THREE_SIXTY_FIVE;

}

int cnt = 0;
for (int i = 0; i < payDates_.size(); i++)
{

x = (double) (payDates_[i+1] - payDates_[0] + 1)/
THREE_SIXTY_FIVE;

//if (x > 1)
y = interpolate(discRates_[floor(x)],discRates_[ceil(x)],

floor(x),ceil(x),x);
//else
// y = interpolate(discRates_[floor(x)],

discRates_[ceil(x)-0.5],floor(x),
ceil(x)-0.5,x);

//cout << "y = " << y << endl;

if (swapType == 0)
{

val = (fixed[i] - fl[i])*y;
sumfix = sumfix + fixed[i]*y;
sumfloat = sumfloat - fl[i]*y;

}
else
{

val = (fl[i] - fixed[i])*y;
sumfix = sumfix - fixed[i]*y;
sumfloat = sumfloat + fl[i]*y;

}
sum = sum + val;

//cout << "payDates = " << payDates_[i] << " " <<
"net PV = " << val << endl;

}
fixedLeg.setFixedValue(sumfix);
floatLeg.setFloatValue(sumfloat);

cout << "Fixed Accrued = " << fixedAccrued_ << endl;
cout << "Float Accrued = " << floatAccrued_ << endl;
cout << "Accrued = " << fixedAccrued_

+ floatAccrued_ << endl;
cout << "Principal = " << sum << endl;
cout << "Market Value = " << sum + (fixedAccrued_ +

floatAccrued_) << endl;
}

private:
int swapType;
double notional_;
double fixedAccrued_;
double floatAccrued_;
double fixedRate_;
FloatingLeg floatLeg;



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 59 --- #61

Section 1.12 Swap Valuation in C++ 59

FixedLeg fixedLeg;
Date maturity_;
Date fixedAccruedDate_;
Date floatAccruedDate_;
Date effectiveDate_;
Date settlementDate_;
Date valuationDate_;
std::string index;
std::map<double,double> discRates_;
std::map<double,double> floatRates_;
double value;

};

#endif _SWAP_H__

Consider the preceding swap with the following characteristics:

Notional = $3,300,000
Maturity = March 28, 2013
Effective Date = March 29, 2004
Valuation Date = October 14, 2005
Swap Rate = 3.969%
Floating Rate = 3 Mo. T-Bill
Basis Spread = 0.00

We read the following (Table 1.19) in the 3-Mo T-Bill data from a file (taken from
Bloomberg).

Table 1.19
Maturity 3-Mo T-Bill Discount Maturity 3-Mo T-Bill Discount

1 DY 0.0400000 0.999708 9 MO 0.0445188 0.967342

2 DY 0000 0.0380000 0.999708 10 MO 0.0448525 0.963507

1 WK 0.0381688 0.999258 11 MO 0.0451725 0.959660

2 WK 0.0382000 0.999258 1 YR 0.0454563 0.955712

3 WK 0.0386000 0.998517 2 YR 0.0463900 0.912185

1 MO 0.0394583 0.996614 3 YR 0.0471200 0.869450

2 MO 0.0402583 0.993225 4 YR 0.0472200 0.829536

3 MO 0.0414000 0.989193 5 YR 0.0475900 0.790131

4 MO 0.0420000 0.985853 6 YR 0.0479100 0.752230

5 MO 0.0426000 0.982445 7 YR 0.0481800 0.715816

6 MO 0.0432875 0.978239 8 YR 0.0486000 0.679864

7 MO 0.0437025 0.974794 9 YR 0.0487000 0.647234

8 MO 0.0441225 0.971079 10 YR 0.0490200 0.614542

To discount the cash flows on the scheduled payment dates, the floating (3-Mo T-Bill)
and discount rates are linearly interpolated using the following globally defined function:

static double interpolate(double rate1, double rate2, double t1, double
t2, double x)
{



‘‘London’’ --- 2006/8/29 --- 15:18 --- page 60 --- #62

60 Swaps and Fixed Income Instruments Chapter 1

double dy = rate2 - rate1;
double dt = t2 - t1;
double slope = dy/dt;

return rate1 + slope*x;

}

We interpolate using the floor and ceil built-in math routines of the rate we want to
interpolate. For instance, in the FloatLeg function calcPayFloat, we call

floatVal = interpolate(floatLegRate_[floor(diff)],floatLegRate_[ceil(diff)],
floor(diff),ceil(diff),diff);

It is important to note that this is a simple form of interpolation. In actual practice to
get more accurate interpolated values, we would want to bootstrap the yield curve using
liquid instruments like T-bill futures and Eurodollar futures or use a numerical technique
like cubic splines.

The main function is

MAIN ch01.cpp
#include <strstrea.h>
#include <fstream.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <math.h>
#include <map>
#include "Swap.h"
#define SIZE_X 100

void main()
{

cout.setf(ios::showpoint);
cout.precision(8);

cout << "Swap Pricing Pay Fixed " << endl << endl;
Date start = "3/29/2004";
cout << "Start date = " << start << endl;
Date maturity = "3/28/2013";
cout << "Maturity = " << maturity << endl;
Date valuation = "10/14/2005"; //today";
cout << "Valuation = " << valuation << endl;
Date effectiveDate = "today";
double notional = 3300000;
cout << "Notional = " << notional << endl;
double swapRate = 0.03969;
cout << "Swap Rate = " << swapRate << endl;

std::vector<double> mat;
std::map<double,double> libor;
std::map<double,double> discRate;



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 61 --- #63

Section 1.12 Swap Valuation in C++ 61

char buffer[SIZE_X];
char dataBuffer[SIZE_X];
char* str = NULL;
double yr = 0.0;
double rate = 0.0;
int swapType = 1; // receive fixed-pay float ; 1 = pay fixed-receive

// float

const char* file = "c:\\swapData.txt";
ifstream fin; // input file stream
fin.clear();
fin.open(file);

if (fin.good())
{

while (!fin.eof())
{

fin.getline(buffer,sizeof(buffer)/sizeof(buffer[0]));
//cout << buffer << endl;
istrstream str(buffer);
// Get data
str >> dataBuffer;
yr = atof(dataBuffer);

str >> dataBuffer;
if (strcmp(dataBuffer,"MO") == 0)

yr = (double) yr/12;
else if (strcmp(dataBuffer,"WK") == 0)

yr = (double) yr/52;
else if (strcmp(dataBuffer,"DY") == 0)

yr = (double) yr/365;
mat.push_back(yr);

str >> dataBuffer;
rate = atof(dataBuffer);
libor[yr] = rate;

str >> dataBuffer;
rate = atof(dataBuffer);
discRate[yr] = rate;

}
}
else

cout << "File not good!" << "\n";

fin.close();

Swap s(notional,maturity,start,start+1,valuation,libor,discRate,
swapRate,swapType);

}

We get the following results:

Fixed Accrued = 5821.2000
Float Accrued = -5867.3096



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 62 --- #64

62 Swaps and Fixed Income Instruments Chapter 1

Accrued = -46.109589
Principal = -176178.34
Market Value = -176224.45

The risk measures are as follows:

fixed duration = 5.8713815
fixed DV01 = 1937.5559
float duration = 0.20821918
float DV01 = -68.712329
Swap DV01 = 1868.8436

1.13 BERMUDAN SWAPTION PRICING IN MATLAB

Interest rate swaps have the characteristics of futures contracts. As such, they are used
to lock in future interest rate positions, usually for longer periods than can be obtained with
exchange-traded futures. Financial managers, though, who want downside protection for
their position with the potential for gains if conditions become favorable, can also take a
position in swaptions or options on swaps. Swaptions give the holder the right, but not the
obligation, to enter into a swap at maturity: for example, a fixed-rate payer’s position (or
a floating-rate payer’s position), with the exercise price set by the fixed rate on the swap.
Bermudan swaptions, however, give the holder the right to enter on discrete prespecified
dates throughout the life of the swaption. The following Matlab implementation values a
Bermudan swaption:

bermudan swaption.m
function []=bermudan_swaption()

%This program can work for arbitrary no. of factors. You have to specify no.
%of factors as well as volatility structure for each factor. The volatility
%structure can be obtained from principal component analysis of correlation
%matrix and adjusting to calibrated volatilities as done in excellent paper
%by Rebonato. See my web page for the references
%(http://www.geocities.com/anan2999). It does not take correlation
%structure as input. You can also specify CEV constant alpha for skew.
%Remember changing this constant changes effective volatility.

%randn('state',[1541045451;4027226640]) % add a good random number seed
%here if you wish.
%if you don't matlab will choose its own seed.

delta=.25; %Tenor spacing. usually .25 or .5

P=5000; % No. of paths, do not try more than 5000 paths unless you are
% very patient

T_e1=6.0; %maturity of underlying swap in years(must be an
%exact multiple of delta)

T_x1=5.75; %last exercise date of the swaption (must be an
%exact multiple of delta)

T_s1=3.0; %lockout date (must be an exact multiple of delta)



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 63 --- #65

Section 1.13 Bermudan Swaption Pricing in Matlab 63

T_e=T_e1/delta+1;
T_x=T_x1/delta+1;
T_s=T_s1/delta+1;
N=T_e;

F=2; % number of factors. If you change this line also change volatility
% structure appropriately

alpha=1.0;%CEV constant alpha for skew.Remember changing this value changes
%effective volatility

%It is 1.0 for lognormal model.
k=.1; % strike, fixed coupon
pr_flag=+1; %payer receiver flag; assumes value of +1 for a payer swaption
%and a value of -1 for a receiver swaption.

n_spot=2;
L=repmat(.10,[P,T_e+1]);
vol=repmat(0,[T_e,F]);
for n=1:N,

for f=1:F,
if(f==1)

vol(n,f)=.15; %volatility of first factor
end
if(f==2)

vol(n,f)= (.15-(.009*(n)*.25).ˆ.5); %volatility of second factor
end

end
end
%You can add more vaolatility factors in the above line but please also
%change F accordingly
%drift=repmat(0,[P,F]);
money_market=repmat(1,[T_x,P]);
swap=repmat(0,[T_x,P]);
B=repmat(1,[P,T_e]);

money_market(2,:)=money_market(1,:).*(1+delta*L(:,1))';
increment=repmat(0,[P,1]);
drift=repmat(0,[P,F]);

for t= 2 : T_x,

t

normal_matrix=randn([P,F]);
drift(:,:)=0;
for n= t : T_e,

increment(:,1)=0;

% n
for f=1:F,

drift(:,f)=drift(:,f)+ delta*vol(n-n_spot+1,f).*
((L(:,n).ˆalpha)./(1+delta.*L(:,n))); %



‘‘London’’ --- 2006/8/23 --- 22:09 --- page 64 --- #66

64 Swaps and Fixed Income Instruments Chapter 1

increment(:,1)=increment(:,1)+vol(n-n_spot+1,f).*
(L(:,n).ˆalpha)./L(:,n)...

.*(normal_matrix(:,f).*sqrt(delta)-.5.*vol(n-n_spot+1,f).*
(L(:,n).ˆalpha)./L(:,n)...

.*delta+drift(:,f).*delta);
end

L(:,n)=L(:,n).*exp(increment(:,1));
L(L(:,n)<.00001,n)=.00001;

end

B(:,t)=1.0;
for n=t+1:T_e,

B(:,n)=B(:,n-1)./(1+delta.*L(:,n-1));
end

money_market(t+1,:)=money_market(t,:).*(1+delta*L(:,n_spot))';

if((t>= T_s) & (t <=T_x))
for n=t:(T_e-1), %//the swap leg is determined one date before

%//the end

swap(t,:)=swap(t,:)+ (B(:,n+1).*
(L(:,n)-k).*pr_flag*delta)' ;

end
end
n_spot=n_spot+1;

end

value=repmat(0,[P,1]);
stop_rule=repmat(T_x,[P,1]);

value(swap(T_x,:)>0,1) = (swap(T_x,swap(T_x,:)>0))';
coeff=repmat(0,[T_x,6]);

for t=(T_x-1):-1:T_s,
i=0;
a=0;
y=0;
for p=1:P,

if (swap(t,p)> 0.0)
i=i+1;
a(i,1)=1;
a(i,2)=swap(t,p);
a(i,3)=swap(t,p)*swap(t,p);
a(i,4)=money_market(t,p);
a(i,5)=money_market(t,p)*money_market(t,p);
a(i,6)=money_market(t,p)*swap(t,p);

y(i,1)= money_market(t,p)/money_market(stop_rule(p,1),p) *
value(p,1);



“London” — 2006/8/23 — 22:09 — page 65 — #67

Section 1.13 Bermudan Swaption Pricing in Matlab 65

end

end

temp=inv(a'*a)*(a'*y);
coeff(t,:)=temp';

expec_cont_value=repmat(0,[P,1]);
exer_value=repmat(0,[P,1]);

expec_cont_value(:,1)=(coeff(t,1)+coeff(t,2).*swap(t,:)+
coeff(t,3).*swap(t,:)...

.*swap(t,:)+coeff(t,4).*money_market(t,:)+
coeff(t,5).*money_market(t,:)...

.*money_market(t,:)+coeff(t,6).*money_market(t,:).*swap(t,:))';

exer_value(swap(t,:)>0,1)=(swap(t,swap(t,:)>0))';

value((exer_value(:,1)>expec_cont_value(:,1))&(swap(t,:)>0)',1)...
=exer_value((exer_value(:,1)> expec_cont_value(:,1))&(swap(t,:)>0)',1);

stop_rule((exer_value(:,1)>expec_cont_value(:,1))&(swap(t,:)>0)',1)=t;

end

price=0;
for p=1:P,

price=price+ (value(p,1)/(money_market(stop_rule(p,1),p)))/P;

end

price



“London” — 2006/8/23 — 22:09 — page 66 — #68

66 Swaps and Fixed Income Instruments Chapter 1

ENDNOTES

1 This is the case for a plain vanilla fixed-for-floating. A hedge on a bond portfolio
with an amortization of the principal or a hedge on the total return on bond portfolio would
require use of constant maturity swaps (or index amortization swaps) and total return swaps,
which do not have swap futures equivalents (as of today).

2 A Eurodollar is a dollar deposited in a U.S. or foreign bank outside the United
States. The Eurodollar interest rate is the rate of interest earned on Eurodollars deposited
by one bank with another bank.

3 It can be shown that if an underlying asset of a long futures contract is strongly
positively correlated with interest rates, futures prices will be higher than forward prices
because futures are settled daily, and the gain can be invested at a higher-than-average
rate of interest since the positive correlation will make it more likely rates will increase.
Similarly, when the underlying asset is strongly negatively correlated with interest rates,
the futures position will incur an immediate loss, and this loss will tend to be financed at a
lower-than-average rate of interest. An investor with a long position in a forward contract
rather than a futures contract is not affected in this way by rate movements.

4 Hull, J. (1997), 99.
5 Id. 99.
6 Id. 100.
7 Id. 100.
8 Id. 100.
9 Hull, J. (1997), 97.
10 See http://www.academ.xu.edu/johnson/.
11 In actuality, the manager would only be able to purchase five contracts because

one can only purchase an integer multiple of contracts. Thus, she would be underhedged
by 0.115 T-bill units, but if she bought six contracts, she would be overhedged by 0.985
T-bill units.

12 We can also compute the duration using a continuously compounded yield, yi ,
1 ≤ i ≤ n, as

D =
n∑

i=1

ti

[
cie

−yiti

B

]

where B =
n∑

i=1

cie
−yiti .

13 The term “yield modified duration” refers to the traditional analytic formulation
for modified duration using a flat discount rate.

14 To compute DV01, shift the yield curve up by 1 basis point, recompute the duration
using yield + 1bp, and then subtract the initial duration before the 1 basis point shift.

15 Reproduced with permission from “Hedging a Fixed-Income Portfolio with Swap
Futures,” CBOT Interest Rate Swap Complex White Paper.

16 Audley, D., Chin, R, and Ramamuthy, S., “Term Structure Modeling” in Interest
Rate, Term Structure, and Valuation Modeling, edited by Fabozzi, F., Wiley (2002)., pg. 95.

17 Ibid., pg. 95.
18 Typically, n = 2 as most bonds use semiannual compounding.



“London” — 2006/8/23 — 22:09 — page 67 — #69

Section 1.13 Bermudan Swaption Pricing in Matlab 67

19 A cubic “spline” is a piecewise polynomial function, made up of individual poly-
nomial sections or segments that are joined together at (user-selected) points known as knot
points. A cubic spline is a function of order three, and a piecewise cubic polynomial that is
twice differentiable at each knot point. At each knot point, the slope and curvature of the
curve on either side must match. An exponential cubic function would fit an exponential
curve through the discount points. Thus, cubic and exponential splines are used to fit a
smooth curve to bond prices (yields) given the term discount factors.

See James and Webber (2000), Interest Rate Modeling, Wiley, pp. 430-432; Waggoner,
D. (1997); Pienaar, R. and Choudhry., M. article in Fabozzi (2002), “Fitting the Term
Structure of Interest Rates Using the Cubic Spline Methodology,” pg. 157-185; O. De la
Grandville (2001), Bond Pricing and Portfolio Analysis, MIT Press, pp. 248-252; Vasicek,
O. and Fong, H. (1982), “Term Structure Modeling Using Exponential Splines,” Journal of
Finance 37, 1982, pp. 339-361.

20 See MATLAB Fixed-Income Toolkit User’s Guide (2002), The MathWorks.
21 The Date class is an open source library written by James M. Curran (1994).



“London” — 2006/8/23 — 22:09 — page 68 — #70



“London” — 2006/9/8 — 19:21 — page 69 — #91

C H A P T E R 2

MONTE CARLO AND NUMERICAL

METHODS

SECTIONS
2.1 The Monte Carlo Method

2.2 Generating Sample Paths and Normal Deviates

2.3 Generating Correlated Normal Random Variables

2.4 Importance Sampling

2.5 Importance Sampling Example in Matlab

2.6 Quasi-Random Sequences

2.7 Variance Reduction Techniques

2.8 Monte Carlo Antithetic Example in Matlab

2.9 Monte Carlo Implementation in C++

2.10 Fast Fourier Transform

2.11 FFT Implementation in Matlab

2.12 Path-Dependent Valuation

2.13 Monte Carlo Pricing of Asian Currency Option in Matlab

2.14 Finite Difference Methods

2.15 Explicit Difference Methods

2.16 Explicit Finite Difference Implementation in C++

2.17 Implicit Difference Method

2.18 LU Decomposition Method

2.19 LU Decomposition Example in Matlab

2.20 Implicit Difference Example in Matlab

2.21 Crank-Nicolson Scheme

2.22 Asian Option Pricing Using Crank-Nicolson in Matlab

Endnotes

In this chapter, we discuss Monte Carlo simulation, a technique for pricing many types
of derivatives when closed-form analytical solutions are not available, as well as for pricing
(complex) path-dependent derivatives and for simulating multi-factor stochastic diffusion

69



“London” — 2006/9/8 — 19:21 — page 70 — #92

70 Monte Carlo and Numerical Methods Chapter 2

processes. The technique was first used by Boyle (1977). In its basic form, Monte Carlo
simulation is computationally inefficient. A large number of simulations—i.e., 100,000—
generally are required to achieve a high degree of pricing accuracy. However, its effi-
ciency can be improved using control variates and quasi-random numbers (deterministic
sequences).

In §2.1, we describe the general Monte Carlo framework. In §2.2, we discuss simulat-
ing sample paths and how to generate normal deviates to simulate Brownian motion. In
§2.3, correlated deviates and how to generate them is discussed. In §2.4, quasi-random se-
quences are reviewed as an improvement over pseudo-random number generators. In §2.4,
we discuss importance sampling as an efficient method to reduce variance of Monte Carlo
estimates. In §2.5, a Monte Carlo using important sampling implementation in Matlab is
provided. In §2.6, we discuss quasi-random sequences to reduce variance of Monte Carlo
estimates. In §2.7, we review variance reduction techniques. In §2.8, a Monte Carlo vari-
ance reduction technique using antithetics in Matlab is provided. In §2.9, a Monte Carlo
implementation in C++ is given. In §2.10, we discuss the Fast Fourier Transform (FFT)
method to value derivatives like spread options. In §2.11, an implementation of the FFT
method is given in Matlab. In §2.12, we discuss Monte Carlo simulation for valuation of
path-dependent securities such as Asian options. In §2.13, a Monte Carlo implementation
in Matlab to price Asian currency options is given. In §2.14 and §2.15, we discuss explicit
finite difference methods where the value at any time instant can be explicitly determined
from its previous values in different states (up, down, middle) at the previous time in-
stant. In §2.16, an explicit difference method implementation in C++ is given. In §2.17, the
implicit difference method is discussed, where the derivative value at any time instant is
determined implicitly from its values in different states (up, down, middle) at the next time
instant. In §2.18, the LU decomposition is discussed for use in solving linear systems of
implicit difference equations. In §2.19, an LU decomposition to solve implicit difference
equations in Matlab is provided. In §2.20, an implicit difference scheme is given in Matlab
to price a European call or put. In §2.21, the Crank-Nicolson scheme, a scheme that com-
bines both explicit and implicit scheme features, is discussed. In §2.22, an implementation
for pricing an Asian option in Matlab using the Crank-Nicolson scheme is given.

2.1 THE MONTE CARLO METHOD

Suppose we wish to simulate a sample path of geometric Brownian motion process for
the stock price. We divide the time interval T − t into N equal time steps ∆t = T−t

N and
simulate a path {S(ti), i = 0, 1, . . . , N} starting at the known state (initial price) S0 at
time t0. Over a time step ∆t the stock price changes according to:

Si+1 = Si exp
{(

m − σ2

2

)
∆t + σ

√
∆tεi+1

}
(2.1)

= Si+1 = Si exp
{

µ∆t + σ
√

∆tεi+1

}
where εi+1 is a standard normal deviate and µ = m − q − σ2/2. Note that the term in
the drift coefficient, σ2τ/2, came from the square of the Wiener increment, σ2

2 ∆tε2
i+1. We

know that the variance of this random variable is of the second order in ∆t, and we can



“London” — 2006/9/8 — 19:21 — page 71 — #93

Section 2.1 The Monte Carlo Method 71

assume that it is a deterministic quantity equal to its mean. If the stock pays a dividend,
then the discretization becomes

Si+1 = Si exp
{(

m− q − σ2

2

)
∆t + σ

√
∆tεi+1

}
(2.2)

where q is the dividend yield.
It is important to note that we cannot use equation (2.2) directly because m is unob-

servable in the real world as it depends on the risk-preferences of investors. Thus, we let
m = r, the risk-free rate, so that µ = r − q − σ2/2, and we are now pricing in the risk-
neutral world. Equation (2.1) holds if we assume the log of the stock price follows arith-
metic Brownian motion. This is an exact approximation to the continuous-time process.
This approximation matches the mean and variance of the lognormal distribution exactly.
Indeed,

E[Si+1|Si] = E[Si exp(µτ + σ
√

τεi+1)]

= Sie
µ∆tE[eσεi+1

√
∆t]

The term inside the expectation operator is the moment-generating function of the stan-
dard normal. Thus,

E [Si+1|Si] = Sie
µ∆te

σ2∆t
2 = Sie

(r−σ2
2 )∆t+σ2∆t

2

= Sie
r∆t (2.3)

which is the same mean as the lognormal distribution in continuous time. The same holds
true for the variance. (The exercise is left to the reader.) The only problem with the ex-
act solution is that there is some computational overhead because one needs to call the
exponential function every time. Note that

E
[
eσεi+1

√
∆t
]

=
1√
2π

∞∫
−∞

eσx
√

∆t−x2/2dx = e
σ2∆t

2

In many cases, an exact solution to an SDE cannot be found, and a first or second order
Euler approximation can be used. If we expand (2.1) into a Taylor series and keep only the
terms of the first order in ∆t, we have:

Si+1 = Si

(
1 + r∆t + σ

√
∆tεi+1

)
(2.4)

The differences between using the exact simulation in (2.1) and the first order approxima-
tion in (2.4) is O(∆t2).

We could also use a higher order approximation scheme for SDEs, such as a Milshtein
approximation. For simplicity, assume that the drift and the diffusion coefficients depend
on the state variable only and not on time—i.e., dxi = µ(xi)dt + σ(xi)dzt. The Milshtein
approximation is given by

xi+1 = xi +
[
µ(xi) −

1
2
σ(xi)σ′(xi)

]
∆t + σ(xi)

√
∆tεi+1

+
1
2
σ(xi)σ′(xi)ε2

i+1∆t + v(xi)εi+1(∆t)
3
2 + η(xi)(∆t)2

(2.5)



“London” — 2006/9/8 — 19:21 — page 72 — #94

72 Monte Carlo and Numerical Methods Chapter 2

where v(xi) = 1
2µ(x)σ′(x) + 1

2µ′(x)σ(x) + 1
4σ(x)2σ′′(x) and η(x) = 1

2µ(x)µ′(x) +
1
4
µ′′(x)σ(x)2.

2.2 GENERATING SAMPLE PATHS AND
NORMAL DEVIATES

To generate sample paths, you need to generate a sequence of standard normal deviates
{ε1, ε2, . . . , εN}. First, it is necessary to generate uniform random numbers from 0 to 1,
{ξ1, ξ2, . . . , ξN} and then transform them into standard normal deviates. The following
graph shows a plot of some simulated asset price paths using Monte Carlo. The paths are
computed by (2.1) and are driven by the random standard normal deviates.1

No deterministic random number generators built into computer compilers are capable
of producing true random numbers. These algorithms produce pseudo-random numbers
usually generated from the internal computer clock. The algorithms are based on huge de-
terministic sequences of numbers, although you provide a seed to tell the algorithm where
in the sequence to start.

There are two serious problems that can occur with pseudo-random number generators:
(1) the number of trials in simulation performed is larger than the size of the sequence or cy-
cle of the random number generator and (2) serial correlation between the numbers exists.
Thus, in practice, pseudo-random number generators are not good enough for simulations
for many runs because they have cycles not long enough and/or may produce “random”
numbers with serial correlation.

To solve this problem and generate uniform random numbers, we will use the random
number generator, ran1, found in Press et al. (1992). The function uses a Box-Muller trans-
formation to ensure that a randomly generated number, using the ran1 function, will lie in
a unit circle. gasdev generates a Gaussian (normal) deviate from the uniform random num-
ber generated in ran1. gasdev takes a pointer to a long data type that is the address of an
arbitrary seed number.

In the early days of simulation, one approach to generating a standard normal, N(0, 1),
deviate was to use the central limit theorem. Note that

n∑
i=1

Ui − (n/2)√
n/12

→ N(0, 1) as n → ∞,

provided U1, . . . , Un are independent uniform (0,1) random variables. Setting n = 12
yields

n∑
i=1

Ui − 6 D−→ N(0, 1)

This convolution method is quite fast, but is not exact.
The most commonly used exact algorithms for generating normal random variables is to

generate them in pairs. The reason is that the bivariate normal density for two independent
normal random variables having mean zero and unit variance



“London” — 2006/9/8 — 19:21 — page 73 — #95

Section 2.3 Generating Correlated Normal Random Variables 73

N(a, b) =

a∫
−∞

b∫
−∞

1
2π

exp
(
−1

2
(
x2 + y2

))
dxdy

has a particularly nice structure in polar coordinates. Specifically, suppose (N1, N2) is
such a pair of normal random variables. Then, (N1, N2) can be expressed in polar coordi-
nates as

(N1, N2) = (R cos θ, R sin θ)

where θ(0 ≤ θ ≤ 2π) is the angular component (in radians) and R is the radial component.
Due to the spherical symmetry of such a bivariate normal density, θ is normally distributed
on [0, 2π] and independent of R. Furthermore,

R =
√

N2
1 + N2

2 =
√

χ2(2)

where χ2(2) is a chi-square random variable with two degrees of freedom. Because a χ2(2)
random variable has the same distribution as 2X, where X is exponential with parameter
1—i.e., X ∼ e−(x−1)—we can utilize the following algorithm, known as the Box-Muller
algorithm:

1. Generate two independent uniform (0,1) random variates, U1 and U2.

2. Set N1 =
√−2 log U1 cos(2πU2) and N2 =

√−2 logU2 sin(2πU1).

This can be a bit slow, because of the cosine and sine calculations that need to be performed.
A variant (that is typically fast) is the polar rejection (transformation) method. This method
also involves an acceptance-rejection procedure. Generate two independent uniform (0,1)
random variates U1 and U2:

1. Set V1 = 2U1 − 1 and V2 = 2U2 − 1.

2. Compute W = V 2
1 + V 2

2 .

3. If W > 1, return to step 1. Otherwise, set:

N1 =

√
(−2 log W )

W
V1 and N2 =

√
(−2 log W )

W
V2.

These algorithms generate pairs of independent N(0,1) random variates. To generate N(µ, σ2)
random variates, use the following relationship:

N
(
µ, σ2

)
∼ µ + σN(0, 1)

2.3 GENERATING CORRELATED NORMAL RANDOM
VARIABLES

In many Monte Carlo simulations, especially in simulations of multivariate (multifac-
tor) diffusion processes and multidimensional stochastic simulations—i.e., spread option



“London” — 2006/9/8 — 19:21 — page 74 — #96

74 Monte Carlo and Numerical Methods Chapter 2

models—correlation between the variates exists and must be considered because the un-
derlying factors themselves are correlated. For example, in a stochastic volatility model,
the underlying asset and its stochastic volatility are correlated, and this correlation must be
captured in the correlation between variates driving the diffusion process of the underly-
ing asset and the diffusion process of its volatility. In general, any model with multivariate
normal random variables has a correlation/covariance matrix that exists. Such correlation/-
covariance matrix can be used to generate the joint probability distributions between the
random variables.

Suppose that we want to generate a random variable X that is multivariate normal
with mean vector µ and covariance Σ. Suppose, furthermore, that X is a two-dimensional
vector, with mean vector and covariance matrix:

µ =
(

µ1

µ2

)
and Σ =

(
σ11 σ12

σ21 σ22

)
=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(2.6)

Here, µi = E(Xi), σ2
i = Var(Xi), and ρ̃ is the correlation between X1 and X2. We

will now describe a means of generating X1 and X2 from a pair of independent N(0,1)
random variables N1 and N2. Note that we may express X1 in terms of N1, as follows:

X1 = µ1 + σ1N1

For X2, we will try to write it in the following form:

X2 = µ2 + aN1 + bN2

Recall that because N1 is independent of N2,

Var(X2) = E(X2 − µ2)2] = a2 + b2 = σ2
2 .

Also,

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = aσ1 = ρσ1σ2.

Solving these two equations, we get

a = ρσ2 and b =
√

(1 − ρ2)σ2.

In other words,(
X1

X2

)
=
(

µ1

µ2

)
+

(
σ1 0

ρσ2

√
1 − ρ2σ2

)(
N1

N2

)
(2.7)

or in matrix notation, X = µ + LN where L is lower triangular. Thus, by generating a
pair of independent N(0,1) random variables, we can obtain X via the preceding affine
transformation. The previous methodology works in general (for X having more than two
components). In general, X can be written in the form

X = µ + LN (2.8)



“London” — 2006/9/8 — 19:21 — page 75 — #97

Section 2.3 Generating Correlated Normal Random Variables 75

where N has the same number of components as does X—i.e., same vector size—and
consists of N(0,1) random variables. To connect the matrix L to Σ observe that

Σ = E[(X− µ)(X − µ)′] = E[(LN)(LN)′] = E[(LN)(N′L′)].

Because N consists of N(0, 1) random variables, E[NN′] = I, the identity matrix,2 and
we can write Σ as follows:

Σ = E[(LL′)] (2.9)

Let L = Σ1/2 so that L is a “square root” of Σ. Furthermore, because Σ is symmetric and
positive semi-definite, L can always be chosen to be a lower triangular matrix with real
entries. Writing

Σ = LL′ (2.10)

is called the Cholesky factorization3 of Σ. Clearly, the key to generating X is the compu-
tation of the Cholesky factor L. Thus, to produce correlated variables from uncorrelated
(independent) ones, we need to find an L that solves the matrix equation (2.10).

We can use a Cholesky decomposition for n = 3 deviates. Suppose z1, z2, and z3 are
random samples from three independent normal distributions with the following correlation
structure:

ρ̃ =




1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1




where ρy = ρji because ρ̃ is symmetric. Random deviates with this correlation structure
are

x1 = z1

x1 = ρ12z1 +
√

1 − ρ2
12z2 (2.11)

x3 = α1z1 + α2z2 + α3z3

where

α1 = ρ13

α2 =
ρ23 − ρ12ρ13√

1 − ρ2
12

α3 =
√

1 − α2
1 + α2

2

so that

L =




1 0 0

ρ12

√
1 − ρ2

12 0

ρ13
ρ23−ρ12ρ13√

1−ρ2
12

√
1 − ρ2

13 − (ρ23−ρ12ρ13)2

1−ρ2
12


 (2.12)



“London” — 2006/9/8 — 19:21 — page 76 — #98

76 Monte Carlo and Numerical Methods Chapter 2

The following code generates a Cholesky decomposition in C++:

#include <vector>
#include "tnt.h"
#include "jama_cholesky.h"
#include "jama_eig.h"
using namespace TNT;
using namespace JAMA;
using namespace std;

MatrixUtil genCholesky1
inline vector<double> genCholesky4(TNT::Array2D<double> R)
{

int m = R.dim1();
std::vector<double> normaldev;
std::vector<double> defaultTime;
TNT::Array2D<double> lb(m,m); // lower-banded (lb) matrix
TNT::Array1D<double> dw(m);
TNT::Array1D<double> z(m);
double deviate = 0.0;
double sum = 0.0;
double dt = 0.25;
double normdeviate = 0.0;
int i, j;

JAMA::Cholesky<double> ch(R);
lb = ch.getL();

// generate uncorrelated deviates
for (i = 0; i < m; i++)
{

normdeviate = mrng.genrand();
deviate = normsinv(normdeviate);

dw[i] = deviate;
}

// generate correlated deviates
for (i = 0; i < m; i++)
{

sum = 0;
for (j = 0; j < m; j++)
{

sum = sum + lb[i][j]*dw[j];
}
z[i] = sum;
normaldev.push_back(normalCalc(z[i]));

}

return normaldev;
}



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 77 --- #99

Section 2.3 Generating Correlated Normal Random Variables 77

An alternative approach to generating n correlated deviates, zi, i = 1, . . . , n, that are
jointly normally distributed with mean zero and variance one with infinitesimal increments
dzi, is to use principal component analysis4 to write their correlation/covariance matrix, Σ,
as

Σ = ΓΛΓ′

where Γ is the matrix of n eigenvectors vi’s, i = 1, . . . , n, and Λ is the matrix of n
associated eigenvectors λi’s, Γ:

Γ =




v11 v12 . . . v1n

v21 v22 . . . v2n

. . . . . . . . . . . .

vn1 vn2 . . . vnn


 and Λ =




λ1 0 0 0
0 λ2 0 0
0 0 . . . 0
0 0 0 λn




This is the eigensystem representation of the covariance matrix of the correlated vari-
ables. Because the eigenvectors are linear combinations of the correlated variables that give
independent variables, we can invert this relationship to obtain the linear combinations of
independent variables, which reproduce the original covariance matrix. Because the trans-
pose of Γ is equal to its inverse (the eigenvectors of Γ are orthogonal to each other), the
rows of Γ represent the proportions of a set of n independent Brownian motions dwi,
i = 1, . . . , n, which when linearly combined, reproduce the original correlated Brownian
motions. The eigenvalues represent the variances of the independent Brownian motions.
Thus, we can reproduce the correlated Brownian motions dzi from the linear combination
of the independent Brownian motions dwi, as follows:

dz1 = v11

√
λ1dw1 + v12

√
λ2dw2 + . . . + v1n

√
λndwn

dz2 = v21

√
λ2dw1 + v22

√
λ2dw2 + . . . + v2n

√
λndwn

. . .

dzn = vn1

√
λ2dw1 + vn2

√
λ2dw2 + . . . + vnn

√
λndwn

This method is used extensively when pricing multivariate diffusion processes, such
as a (stochastic volatility) spread option (see §2.13) where correlated deviates must be
generated.

The following is the code that generates the previous eigenvalue-eigenvector decompo-
sition for MAX SIZE-defined correlated deviates:

MatrixUtil genEigenValue.h
inline TNT::Array1D<double> genEigenValue(TNT::Array2D<double>& R)
{

int m = R.dim1();

TNT::Array2D<double> lb(m,m); // lower-banded (lb) matrix
double deviate = 0.0;
double normdeviate = 0.0;
unsigned long seed = 0.0;



“London” — 2006/9/8 — 19:21 — page 78 — #100

78 Monte Carlo and Numerical Methods Chapter 2

double sum = 0.0;
double dt = 0.25;
TNT::Array1D<double> dw(m);
TNT::Array1D<double> z(m);
TNT::Array1D<double> D(m);
TNT::Array2D<double> V(m,m);
vector<double> dz;
vector<double> eigenValue;
vector<double> eigenVector[MAX_SIZE];
vector<double>::iterator eigenVecIter;

int i, j;
JAMA::Eigenvalue<double> eig(R);
// get eignvalues
D = eig.getRealEigenvalues();
// get eigenvectors
V = eig.getV();
// store eigenvalues
for (i = 0; i < m; i++)

eigenValue.push_back(D[i]);

// stores rows of eigenvectors so that we can compute
// dz[i] = v[i][1]*sqrt(eigenvalue[1])*dw1+ v[i][2]*
// sqrt(eigenvalue[2])*dw2 + ...
for (i = 0; i < m; i++)

for (j = 0; j < m; j++)
eigenVector[i].push_back(V[i][j]);

// generate uncorrelated deviates
for (i = 0; i < m; i++)
{

normdeviate = mrng.genrand();
deviate = normsinv(normdeviate);

dw[i] = deviate; //sqrt(dt);
}
// generate correlated deviates
for (i = 0; i < m; i++)
{

sum = 0;
eigenVecIter = eigenVector[i].begin();
for (j = 0; j < m; j++)
{

sum += (*eigenVecIter)*sqrt(eigenValue[j])*dw[j];
eigenVecIter++;

}
z[i] = sum;

}
return z;

}

The code makes use of the Template Numerical Toolkit (TNT) matrix library.5 The
matrix library contains many matrix manipulation and computational routines, such as for
the computation of the eigenvectors and eigenvalues from a given (symmetric) matrix like
the covariance/correlation matrix Σ. However, such a covariance/correlation matrix that
is passed into the method genEigenValue needs to be known a priori. One can make



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 79 --- #101

Section 2.3 Generating Correlated Normal Random Variables 79

assumptions about what these will be or try to estimate them from historical data. For
example, if one wants to estimate the correlation between the deviates of a stock and its
volatility, one could use the estimated historical correlation. However, because correlation
estimates are time-varying and unstable, we must use caution when inputting a specified
correlation matrix at different times.

It is also important to note that we do not use the computer’s built-in random number
generator rand() for generating standard normal deviates because research has shown that
a long series of (random) numbers generated from the computer’s built-in clock contains
serial correlation. In other words, the numbers are not truly random—they are pseudo-
random. To resolve this problem, we use a Mersenne Twister random number generator,6

which can generate a much longer series of random numbers with no serial correlation. This
is particularly important in pricing credit baskets and CDO tranches because generating
a long series of random default times is required over possibly millions of simulations
(see Chapter 6, “Credit Derivatives”). The following code is a Mersenne Twister random
number class in C++.

Random.h
#include "Random.h"

CRandomMT::CRandomMT() : left(-1)
{

SeedMT(DEFAULT_SEED);
}

CRandomMT::CRandomMT(ULONG _seed) : left(-1), seedValue(_seed)
{

SeedMT(seedValue);
}

void CRandomMT::SeedMT(ULONG seed)
{

//
// We initialize state[0..(N-1)] via the generator
//
// x_new = (69069 * x_old) mod 2ˆ32
//
// from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
// _The Art of Computer Programming_, Volume 2, 3rd ed.
//
// Notes (SJC): I do not know what the initial state requirements of
// the Mersenne Twister are, but it seems this seeding generator could
// be better. It achieves the maximum period for its modulus (2ˆ30)
// if x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if x_initial
// can be even, you have sequences like 0, 0, 0, ...; 2ˆ31, 2ˆ31,
// 2ˆ31, ...; 2ˆ30, 2ˆ30, 2ˆ30, ...; 2ˆ29, 2ˆ29 + 2ˆ31, 2ˆ29, 2ˆ29 +
// 2ˆ31, ..., etc. so I force seed to be odd below.
//
// Even if x_initial is odd, if x_initial is 1 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 0,
// the 2nd-from-lowest bit of x alternates



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 80 --- #102

80 Monte Carlo and Numerical Methods Chapter 2

// ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles
// ... 0 1 1 0 0 1 1 0 ... ,
// the 4th-from-lowest bit of x has the 8-cycle
// ... 0 0 0 1 1 1 1 0 ... ,
// ...
//
// and if x_initial is 3 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 1,
// the 2nd-from-lowest bit of x alternates
// ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles
// ... 0 0 1 1 0 0 1 1 ... ,
// the 4th-from-lowest bit of x has the 8-cycle
// ... 0 0 1 1 1 1 0 0 ... ,
// ...
//
// The generator's potency (min. s>=0 with (69069-1)ˆs = 0 mod 2ˆ32) is
// 16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth. It
// also does well in the dimension 2..5 spectral tests, but it could be
// better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
//
// Note that the random number user does not see the values generated
// here directly since reloadMT() will always munge them first, so
// maybe none of all of this matters. In fact, the seed values made
// here could even be extra-special desirable if the Mersenne Twister
// theory says so-- that's why the only change I made is to restrict to
// odd seeds.
//

register ULONG x = (seed | 1U) & 0xFFFFFFFFU, *s = state;
register int j;

for(left=0, *s++=x, j=N; --j;
*s++ = (x*=69069U) & 0xFFFFFFFFU);
seedValue = seed; // Save the seed value used - DHL

}

ULONG CRandomMT::ReloadMT(void)
{

register ULONG *p0=state, *p2=state+2, *pM=state+M, s0, s1;
register int j;

if(left < -1)
SeedMT(seedValue); // Changed to make use of our

// seed value - DHL

left=N-1, next=state+1;

for(s0=state[0], s1=state[1], j=N-M+1; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ˆ (mixBits(s0, s1) >> 1) ˆ (loBit(s1) ? K : 0U);

for(pM=state, j=M; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ˆ (mixBits(s0, s1) >> 1) ˆ (loBit(s1) ? K : 0U);



“London” — 2006/9/8 — 19:21 — page 81 — #103

Section 2.4 Importance Sampling 81

s1=state[0], *p0 = *pM ˆ (mixBits(s0, s1) >> 1) ˆ (loBit(s1) ? K : 0U);
s1 ˆ= (s1 >> 11);
s1 ˆ= (s1 << 7) & 0x9D2C5680U;
s1 ˆ= (s1 << 15) & 0xEFC60000U;
return(s1 ˆ (s1 >> 18));

}

It is also important to note that before the random number generator routine is called
genrand(), sgenrand(seed) must be called once (for instance, in the class constructor)
where seed is any 32-bit integer except for 0.

2.4 IMPORTANCE SAMPLING

Although variance reduction based on importance sampling has not been as widely used
as other variance reduction techniques, it is a very efficient technique. The idea behind im-
portance sampling is to simulate more sample paths on the area that matters.7 For instance,
for a deep out-of-the-money call option, most of the time the payoff from the simulation is
0; simulating more sample paths with positive payoffs should reduce the variance in the es-
timation.8 Mathematically speaking, “the fundamental idea behind importance sampling is
that under certain regularity conditions, expectation under one probability measure can be
expressed an expectation under another probability measure through the Radon-Nikodym
theorem.”9 The appropriate choice of the probability measure will effectively reduce the
variance associated with estimation. A change in probability measure will change the drift
of the simulated process.

To illustrate the importance sampling framework, consider a European call option
C(T ; ω) that expires at time T on an underlying asset S(T ; ω) valued on a sample path
ω with a payoff

C(T ; ω) = Max(S(T ; ω) − X, 0)

Under the risk-neutral (martingale) measure Q, an estimate of the present value of the
option is

Ĉ(T ; ω) = e
−

T�
0

r(t;ω)dt
C(T ; ω)

where the price at time 0 is

C0 = EQ


e

−
T�
0

r(t;ω)dt
C(T ; ω)




A direct estimate for C0 is obtained by simulating the risk-neutral distribution of the un-
derlying asset(s) and taking the sample mean over replications of Ĉ(T ; ω). However, by
the Radon-Nikodym theorem, if measure Q is absolutely continuous with respect to some
other measure P , then

C0 = EP

[
Ĉ(T ; ω)

dQ

dP

]



“London” — 2006/9/8 — 19:21 — page 82 — #104

82 Monte Carlo and Numerical Methods Chapter 2

which gives an alternative estimator for simulation under P

Ĉ(T ; ω)
dQ

dP

where dQ
dP

is the Jacobian of the measure change—i.e., the Radon-Nikodym derivative. It
can be shown that the estimator is asymptotically an unbiased estimator of the option price.
However, the new estimator may have different estimation variance, thus the potential for
variance reduction.

The variance of the new estimator is

EP

[(
Ĉ(T ; ω)

dQ

dP

)2
]
− C2

0 = EP

[(
Ĉ(T ; ω)

)2
(

dQ

dP

)2
]
− C2

0

To minimize the variance of the estimator, one needs to solve a stochastic minimization
optimization

min
θ∈Θ

V (θ)

where

V (θ) = EP

[(
Ĉ(T ; ω)

dQ

dP

)2
]
− C2

0

and the new measure is in the family of probability measures {P (θ; ω) : θ ∈ Θ}, where
θ is the parameter and for any θ ∈ Θ, measure Q is absolutely continuous with respect to
P (θ; ω).

Define an infinitesimal perturbation analysis (IPA) estimator as

Ĉ2(T, ω)
∂f(θ, ω)

∂θ
(2.13)

where

f(θ, ω) =
dQ

dP (θ)

is the change of measure function.
To use the IPA, we need to change the drift in the Brownian motion to compute ∂f(θ,ω)

∂θ .
Suppose the underlying asset price under the risk-neutral measure Q is an Ito process de-
fined by the following stochastic differential equation:

dSt = µ(St, t)dt + σ(St, t)dzt

where z̃t is a standard Brownian motion under Q. Define the family of P (θ) as the equiva-
lent probability measures with respect to Q introduced by changing the drift term of z̃t by
θ. Then, by Girsanov’s theorem, we know under P (θ)

dSt = (µ(St, t) + θσ(St, t)) dt + σ(St, t)dzt



“London” — 2006/9/8 — 19:21 — page 83 — #105

Section 2.4 Importance Sampling 83

where zt is a Brownian motion under P , and

zt = z̃ − θt

The change of measure process is given by

dQ

dP
= exp

(
−θzt −

1
2
θ2T

)

= exp
(
−θz̃t +

1
2
θ2T

)
(2.14)

so

∂f(θ, ω)
∂θ

= (−z̃T + θT ) e(−θ�zT + 1
2 θ2T). (2.15)

If we perform a measure to change to obtain a new IPA estimator under P , we obtain:

Ĉ2(T, ω)(−zT )e(−2θzT−θ2T) (2.16)

which we call the IPA-Q, because it was derived under the Q measure.

Example 1

Suppose the stock price follows a geometric Brownian motion; then

dSt = µStdt + σStdz̃t

where µ is the drift (mean rate of return) and σ is the volatility (standard deviation rate of
return). If we define

λ = µ + θσ

then λ is the mean rate of return of St under the probability measure P . Thus, we can also
use the rate of return λ as the parameter, because it is equivalent to θ. The IPA estimator
given in (2.16) in terms of λ is as follows:

C2(T, ω)
(
− z̃T

σ
+

λ − µ

σ2
T

)
e

�
−λ−µ

σ �zT + 1
2

(λ−µ)2

σ2 T

�
(2.17)

Example 2

Consider Asian options as in Vazquez-Abad and Dufresne (1998), where the underlying
stock follows geometric Brownian motion

dSt = rdt + σdz̃t

where r is the risk-free rate interest rate and σ is the volatility. The payoff function of the
option at maturity T is given by

C(T ) = Max(A(T ) − K, 0)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 84 --- #106

84 Monte Carlo and Numerical Methods Chapter 2

where the average price is defined over the equally spaced discrete time points N0 +
1, . . . , N, i.e.,

A(T ) =
1

N − N0

N∑
i=N0+1

S i
N T .

The IPA estimator (IPA-Q) is given by

e−2rT [Max(A(T ) − K, 0)]2 f2(λ)
(
−zT

σ

)
(2.18)

where

f(λ) = exp
(
−λ − r

σ
zT − (λ − r)2

2σ2
T

)
(2.19)

An alternative IPA estimator (IPA-VA) is given by Vazquez-Abad and Dufresne (1998):

2e−2rT [Max(A(T ) − K, 0)]2 f2(λ)x[
(A(T ) − K)

(
zT

σ
− (λ − r)2

σ2

)
+

1
N − N0

1∑
i=N0+1

iT

N
S iT

N

]
(2.20)

Su and Fu (2000) provide results that show that the IPA-Q estimator leads to smaller
variances than the IPA-VA estimator because the IPA estimator needs only to compute the
derivative of dQ/dP with respect to λ, while the IPA-VA estimator involves computation
of the derivative of dQ/dP and the derivative of the payoff function with respect to λ.

2.5 IMPORTANCE SAMPLING EXAMPLE IN MATLAB

The following Matlab code prices a straddle using importance sampling.

ImportanceSampling.m
%% The following code calculates the price of a straddle with
%% payoff = 30 - S if S <= 30
%% = 0 if 30 <= S <= 70
%% = S - 70 if S >= 70
%%
%% with interest rate r = 2% countinuously compounded
%% volatility = 0.2, S(0) = 50 and time to expiry T = 1

%% Importance sampling has been used here to make MC simulations
%% more effective

clear;
format long;

r = .02;
s0 = 50;
vol = 0.2;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 85 --- #107

Section 2.5 Importance Sampling Example in Matlab 85

T = 1;
dt = 1/120;
M = T/dt; %% Number of time steps
N = 10000; %% Number of Simulations
sum_strad = 0;
sum_sT = 0;
sum_call = 0;
sum_put = 0;

a_30 = 2.55; %% a for put with strike 30
a_70 = -1.68; %% a for call with strike 70

for i = 1:N
e_70 = randn(1);
e_30 = randn(1);
sT(i) = s0*exp(.2*(e_70 - a_70)); %% MC stock prices with imp

%% sampling at time T
sT(i) = max(sT(i), 0); %% Making spurious paths

%% where S(T) < 0 equal to 0

%% Price of a call option with strike 70 calculated through
%% importance sampling
call(i) = exp(-r)*(max(sT(i) - 70, 0)*exp(a_70*e_70 - (a_70ˆ2)/2));

sT(N + i) = 50*exp(.2*(e_30 - a_30)); %% MC stock prices with imp
%% sampling for strike price
%% of 30 at time T = 1

sT(N + i) = max(sT(N+i), 0);

%% Price of a put option with strike 30 calculated through
%% importance sampling
put(i) = exp(-r)*(max(30 - sT(N + i), 0)*exp(a_30*e_30 - (a_30ˆ2)/2));

%% price of a straddle by adding call and put price
strad(i) = call(i) + put(i);

sum_strad = sum_strad + strad(i);
avg_strad(i) = sum_strad/i; %% recording avg price at each

%% iteration for convergence dig.
end

%% Convergence Diagram
figure;
N_vector = [1:1:N];
plot(N_vector, avg_strad);
title('Convergence Diagram for Straddle price');
xlabel('Number of Samples');
ylabel('Monte Carlo Estimates');

straddle = avg_strad(N); %% straddle price with N iterations

%% Standard Error
sumSE = 0;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 86 --- #108

86 Monte Carlo and Numerical Methods Chapter 2

for k = 1:N
sumSE = sumSE + (straddle - strad(k))ˆ2;

end

SE = sqrt(sumSE/(N*(N-1)));

Figure 2.1 shows the convergence for the straddle price for the 10,000 simulation paths.

Convergence Diagram for Straddle Price

M
on

te
 C

ar
lo

 E
st

im
at

es

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 10000900080007000600050004000300020000

Number of Samples

Figure 2.1

In this implementation, both importance sampling and moment matching have been
used to price the straddle:

ImportanceMomentMatching.m
%% The following code calculates the price of a straddle with
%% payoff = 30 - S if S <= 30
%% = 0 if 30 <= S <= 70
%% = S - 70 if S >= 70
%%
%% with interest rate r = 2% countinuously compounded
%% volatility = 0.2, S(0) = 50 and time to expiry T = 1

%% Techinques like Moment Matching and Importance sampling
%% have been used here to make MC simulations more effective

clear;
format long;

r = .02;
s0 = 50;
vol = 0.2;
T = 1;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 87 --- #109

Section 2.5 Importance Sampling Example in Matlab 87

dt = 1/120;
M = T/dt; %% Number of time steps
N = 10000; %% Number of Simulations
sum_strad = 0;
sum_sT = 0;
sum_call = 0;
sum_put = 0;

a_30 = 2.55;
a_70 = -1.68;

e = randn(2*N, 1);
avge = mean(e);
stdev_e = std(e);

%% 1f

for i = 1:N
e_70 = (e(i,1) - avge)/stdev_e; %% generating a random variate and

%% moulding it for importance
%% sampling for strike price of 70

e_30 = (e(N+i, 1) - avge)/stdev_e; %% generating a random variable and
%% moulding it for importance for
%% strike price of 30

sT(i) = s0*exp(.2*(e_70 - a_70)*T); %% MC stock prices with
%% imp sampling at time T

sT(i) = max(sT(i), 0); %% Making spurious paths where
%% S(T) < 0 equal to 0

%% Price of a call option with strike 70 calculated through
%% importance sampling
call(i) = exp(-r*T)*(max(sT(i) - 70, 0)*exp(a_70*e_70 - (a_70ˆ2)/2));

sT(N + i) = 50*exp(.2*(e_30 - a_30)); %% MC stock prices with imp
%% sampling for strike price
%% of 30 at time T = 1

sT(N + i) = max(sT(N+i), 0); %% spurious paths

%% Price of a put option with strike 30 calculated through
%% importance sampling
put(i) = exp(-r)*(max(30 - sT(N + i), 0)*exp(a_30*e_30 - (a_30ˆ2)/2));

%% price of a straddle by adding call and put price
strad(i) = call(i) + put(i);
sum_strad = sum_strad + strad(i);
avg_strad(i) = sum_strad/i; %% recording avg price at each

%% iteration for convergence dig.

end

%% Convergence Diagram
figure;
N_vector = [1:1:N];
plot(N_vector, avg_strad);



“London” — 2006/9/8 — 19:21 — page 88 — #110

88 Monte Carlo and Numerical Methods Chapter 2

title('Convergence Diagram for Straddle price');
xlabel('Number of Samples');
ylabel('Monte Carlo Estimates');

%% Standard Error
sumSE = 0;

for k = 1:N
sumSE = sumSE + (avg_strad(N) - strad(k))ˆ2;

end

SE = sqrt(sumSE/(N*(N-1)));

Figure 2.2 shows the convergence for the straddle price for the 10,000 simulation paths,
using importance sampling and moment matching.

Number of Samples

0 10000900080007000600050004000300020001000

Convergence Diagram for Straddle Price

M
on

te
 C

ar
lo

 E
st

im
at

es

0.5

0.05

0.15

0.25

0

0.1

0.2

0.3

0.35

0.4

0.45

Figure 2.2

2.6 QUASI-RANDOM SEQUENCES

A quasi-random sequence, also called a low-discrepancy sequence, is a deterministic
sequence of representative samples from a probability distribution. Quasi-random number
generators (RNG) differ from pseudo RNGs in that pseudo RNGs try to generate “real-
istic” random numbers, while quasi generators create numbers that are evenly spaced in
an interval—they have a more uniform discrepancy than pseudo RNGs.10 For M simula-
tions, quasi-random sequences have a standard error proportional to 1/M , which is much
smaller for large M than the standard error of pseudo RNGs, which is proportional to
1/

√
M . Moreover, for a discrepancy of n points, Dn, low-discrepancy sequences have

a discrepancy in the order of O((logn)d/n), while a uniform random number sequence



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 89 --- #111

Section 2.6 Quasi-Random Sequences 89

2,000 Pseudo Random Values
1.0

0.0

V
al

ue
s

0.2

0.4

0.6

0.8

1.0

0.0

V
al

ue
s

0.2

0.4

0.6

0.8

2,000 Quasi Random Values

Figure 2.3

has a discrepancy in the order of O(1/
√

n). Thus, quasi RNGs are more efficient than
pseudo-random numbers. Figure 2.3 shows how 2,000 quasi-random values are uniformly
distributed, while the 2,000 pseudo-random values are not. As can be seen, the problem
with pseudo-random numbers is that “clumpiness” occurs, which biases the results. A very
large number of samples are needed to make the bias negligible. On the other hand, quasi-
random numbers or low-discrepancy sequences are designed to appear random but not
clumpy. In fact, a quasi-random sample is not independent from previous samples. It “re-
members” the previous samples and tries to position itself away from all previous samples
so that points are more uniformly distributed, and thus have a low discrepancy. This char-
acteristic of low discrepancy sequences yields fast convergence in Monte Carlo simulation
and is why it is preferred to pseudo-random numbers.

Two well-known low-discrepancy sequences are Sobol (1967) and Faure (1982).11 The
Sobol method uses a set of binary fractions called direction numbers. The jth number is
generated by doing a bitwise exclusive or on all the direction numbers so that the ith bit of
the number is nonzero. The effect is such that the bits toggle on and off at different rates.
The kth bit switches once in 2k−1 steps so that the least-significant bit switches the fastest,
and the most-significant bit switches the slowest.

The following is code to compute a Sobol sequence.12 The methods are the inline part
of the StatUtility class that contains methods for aiding in numerical and statistical compu-
tations.

#define GRAY(n) (n ˆ ( n >> 1 )) // for Sobol sequence
#define MAXDIM 5
#define VMAX 30

struct sobolp {
double sequence[MAXDIM];
int x[MAXDIM];
int v[MAXDIM][VMAX];
double RECIPD;
int _dim; // dimension of the sample space



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 90 --- #112

90 Monte Carlo and Numerical Methods Chapter 2

int _skip;
unsigned long _nextn;
unsigned long cur_seed;

};

class StatUtility {
public:
/*

[in] numSamples Number of samples desired
[in] numDimensions The dimension of the sample spaces
[out] realNum Number actually created (<= numSamples)

*/
/***********************************************************************
subolp generateSamples
Generates a Sobol sequence
[in]: struct sobolp* config : pointer to Sobol structure

double* samples : pointer to sample values
[out]: void

************************************************************************/
inline void sobolp generateSamples( struct sobolp* config, double*
samples)
{

int i;
nextSobol(config, config->cur_seed);
config->cur_seed++;
for(i = 0; i < config->_dim; i++ )

samples[i] = config->sequence[i];
}

/***********************************************************************
nextSobolNoSeed : Generates the next Sobol seed number to generate the
next Sobol value
[in]: struct sobolp* config : pointer to Sobol structure
[out]: void

***********************************************************************/
inline static void nextSobolNoSeed(struct sobolp* config) {

int c = 1;
int i;
int save = config->_nextn;
while((save %2) == 1)
{

c += 1;
save = save /2;

}
for(i=0;i<config->_dim;i++) {

config->x[i] = config->x[i]ˆ(config->v[i][c-1]<< (VMAX-c));
config->sequence[i] = config->x[i]*config->RECIPD;

}
config->_nextn += 1;

}

/***********************************************************************
sobolp init : initializes the Sobol algorithm
[in]: sobolp* config : pointer to Sobol



“London” — 2006/9/8 — 19:21 — page 91 — #113

Section 2.6 Quasi-Random Sequences 91

dim: dimension of the sample spaces
seed: seed for Sobol number generator

[out] : void
************************************************************************/
void sobolp init(struct sobolp* config, int dim, unsigned long seed)
{

int d[MAXDIM], POLY[MAXDIM];
int save;
int m,i,j,k;

config->_dim = dim;
config->_nextn = 0;
config->RECIPD = 1.0 / pow( 2.0, VMAX );
config->cur_seed = seed;

POLY[0] = 3; d[0] = 1; /* x + 1 */
POLY[1] = 7; d[1] = 2; /* xˆ2 + x + 1 */
POLY[2] = 11; d[2] = 3; /* xˆ3 + x + 1 */
POLY[3] = 19; d[3] = 4; /* xˆ4 + x + 1 */
POLY[4] = 37; d[4] = 5; /* xˆ5 + xˆ2 + 1 */

for(i=0; i < config->_dim; i++ )
for(j = 0; j < d[i]; j++ )

config->v[i][j] = 1;

for( i = 0; i < config->_dim; i++ )
for( j = d[i]; j < VMAX; j++ )
{

config->v[i][j] = config->v[i][j-d[i]];
save = POLY[i];
m = pow( 2, d[i] );
for( k = d[i]; k > 0; k-- )

{
config->v[i][j] = config->v[i][j] ˆ m*(save%2)*config->v[i][j-k];
save = save/2;

m = m/2;
}

}

for( i = 0; i < config->_dim; i++ )
config->x[i]=0;

config->_skip = pow( 2, 6 );

for( i = 1; i <= config->_skip; i++ )
nextSobolNoSeed(config);

}
};



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 92 --- #114

92 Monte Carlo and Numerical Methods Chapter 2

A Sobol implementation in MATLAB is provided with the code that accompanies this
book. Here is a Monte Carlo implementation using the Sobol sequence:

MCPricer MonteCarloSobol.cpp
/**************************************************************************
*
MonteCarloSobol : Values a European call option using Faure sequence for

variance reduction
[in]: double S: asset price

double X: strike price
double vol: volatility
double rate: risk-free rate
double div: dividend yield
double T: option maturity

char type: type of option
long N: number of time steps
long M: number of simulations

[out] : callValue
**************************************************************************
*/
vector<double> MCPricer::MonteCarloSobol(double price, double strike,
double vol, double rate, double div, double T, char type, long N, long M)

{
int i, j;
double sum1 = 0.0;
double sum2 = 0.0;
double S1 = price; // stock price for +deviate
double S2 = price; // stock price for -deviate
double lnS1 = log(price); // log of the initial stock

// price for +deviate
double lnS2 = log(price); // log of the initial stock

// price for -deviate
double SD; // standard deviation
double SE; // standard error
long dim = N; // dimension of Sobol sequence
double dt = T/N; // time step
double mu = rate - div - 0.5*vol*vol; // drift
double rands[100];
double val = 0;
int cnt = 0;
vector<double> value;
struct sobolp sp;

srand(unsigned(time(0))); // initialize RNG
long seed = (long) rand() % 100;
// initialize Sobol sequence
util.sobolp_init(&sp,dim,seed);

for (i = 0; i < M; i++)
{

// initalize stock price for the next simulation
lnS1 = log(price);
lnS2 = log(price);

for (j = 0; j < N; j++)



“London” — 2006/9/8 — 19:21 — page 93 — #115

Section 2.6 Quasi-Random Sequences 93

{

// generate Sobol samples
util.sobolp_generateSamples(&sp,rands);
// generate path and antithetic path
lnS1 = lnS1 + mu*dt + vol*sqrt(dt)*rands[cnt];
lnS2 = lnS2 = mu*dt + vol*sqrt(dt)*(-rands[cnt]);

// keep track of Sobol number to use
if ((cnt + 1) % N == 0)

cnt = 0;
else

cnt++;
}

// convert back to lognormal random variables
S1 = exp(lnS1);
S2 = exp(lnS2);

if (type == 'C')
val = 0.5*(max(0, S1 - strike) +

max(0, S2 - strike));
else

val = 0.5*(max(0, strike - S1) +
max(0,strike - S2));

sum1 = sum1 + val;
sum2 = sum2 + val*val;

}

val = exp(-rate*T)*sum1/M;
value.push_back(val);
// compute standard deviation
SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 - (sum1*sum1)/M));
value.push_back(SD);

// compute standard error
SE = SD/sqrt(M);
value.push_back(SE);

return value;
}

The number of time steps to be used along each path should equal the dimension of the
Sobol sequence.

In a Monte Carlo simulation, the number of time steps N is the dimension of a low-
discrepancy sequence—that is, the number of independent quasi-random numbers to be
generated simultaneously. The quasi-random numbers are generated simultaneously so that
the samples and increments along the path are independent and identically distributed. Let
xk, k = 1, . . . , N , be N quasi-random numbers. Then, the Faure sequence of length M
(the number of simulations) is defined by

xk =
m∑

l=0

ak,l

pl+1
(2.21)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 94 --- #116

94 Monte Carlo and Numerical Methods Chapter 2

where m is the number of digits in the p representation of M—i.e.,

m =
∫ [

log(M)
log(p)

]
, a0,l =

∫ [
M%pl+1

p

]
,

ak,l =
m∑

q=l

q!
l!(q − l)!

ak−1,q%p (2.22)

and p is the smallest prime number greater than or equal to N .13 The “int” operator denotes
the integer part of the expression in brackets, and % denotes the modulo operator that is the
remainder after division.

The following is code to implement a Faure sequence. The function generateFaure
is an inline function in the StatUtility class. Other helper inline utility functions are also
provided.

#include "TNT.h"

class StatUtility
{
public:

/*************************************************************************
**

generateFaure: This function generates a Faure sequence of length M
[in] N : number of time steps

M: number of simulations
[out]: vector<double> X: (the Faure sequence)

************************************************************************
***/

inline vector<double> generateFaure(long N, long M)
{

int p = generatePrime(N);
int l, q, k;
long v1, v2, v3;
long value = 0;
Array2D<long> a(N,N);
int m = (int)(log(M)/log(p));
if (m == 0)

m = 1;
long x[] = {0};
unsigned long fact = 0;

for (k = 1; k <= N; k++) // number of time steps
{

for (l = 0; l <= m; l++)
{

value = pow(p,l+1);
a[0][l] = (int)((M % value)/p);

for (q = l; q <= m; q++)
{

v1 = factorial(q);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 95 --- #117

Section 2.6 Quasi-Random Sequences 95

v2 = factorial(q-l);
v3 = factorial(l);

fact = v1/(v2*v3);

value = fact*a[k-1][q] % p;
a[k][l] = a[k][l] + value;

}
x[k] = x[k] + a[k][l]/pow(p,l+1);

}
X.push_back((double)x[k]);

}

return X;
}

/**************************************************************************
***/
factorial This function computes the factorial of a number
[in]: N : number to factorialize
[out]: N!

***************************************************************************
***/
inline long factorial(long N)
{

if ((N == 1) || (N == 0))
return 1;
else

return N*factorial(N-1);
}

/**************************************************************************
***/

generatePrime This function computes the smallest prime greater than or
equal to N

[in]: long N : find prime >= N
[out]: prime >= N

***************************************************************************
***/
inline long generatePrime(long N)
{
long i = N;
bool flag = false;

do
{

// check if number is prime
if ((i % 2 != 0) && (i % 3 != 0) && (i % 4 != 0)

&& (i % 5 != 0) && (i % 7 != 0) && (i % 8 != 0)
&& (i % 9 != 0))

flag = true;
else
i++;

}
while (flag != true);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 96 --- #118

96 Monte Carlo and Numerical Methods Chapter 2

return i;
}

/**************************************************************************
****
Function: polarRejection
This function computes two standard deviates using polar rejection
(transformation) method

Returns the first deviate and stores the second deviate in a vector Y so
that it can be used for another call rather than throwing it away.
[in]: double y : seed value

i: ith standard deviate
[out]: Y[i] // ith standard normal deviate in Y

***************************************************************************
***/
inline double polarRejection(double y, int i)

double w = 0.0;
double x1, x2, z1, z2, c;
double temp = 0.0;
double *idum = &y;

do
{

x1 = gasdev((long*)idum);
x2 = gasdev((long*)idum);

w = x1*x1 + x2*x2;
}
while (w >= 1);

c = sqrt(-2*(log(w)/w));
z1 = c*x1;
Y.push_back(z1);
z2 = c*x2;
Y.push_back(z2);

return Y[i];
}
...
...
};

The following is a Monte Carlo implementation using the Faure sequence to value a
European call option with maturity T .

/***********************************************************************
Function: MonteCarloFaureQuasiRandom
Values a European call option using Faure sequence for variance reduction
[in]: double S: asset price

double X: strike price
double vol: volatility
double rate: risk-free rate
double div: dividend yield
double T: option maturity



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 97 --- #119

Section 2.6 Quasi-Random Sequences 97

long N: number of time steps
long M: number of simulations

[out] : callValue
************************************************************************/
double MCPricer::FaureQuasiRandom(double S, double X, double vol, double
rate, double div, double T, long N, long M)
{

int i, j, k;
double dt = T/N; // step step
double mudt = (rate - div - 0.5*vol*vol)*dt; // drift
double voldt = vol*sqrt(dt); // diffusion term
double sum = 0.0;
double sum1 = 0.0;
double lnSt, lnSt1, St, St1;
double lnS = log(S);
double deviate = 0.0;
double callValue = 0.0;
double SD = 0.0; // standard deviation
double SE = 0.0; // standard error
vector<double> x; // stores Faure sequence

k = 0;
for (i = 1; i <= M; i++)
{

// generate Faure sequence
x = util.generateFaure(N,M);

// initialize log asset prices for next simulation path
lnSt = lnS;
lnSt1 = lnS;

for (j = 0; j < N; j++)
{

// get standard normal deviate using polar rejection
// method
deviate = util.polarRejection(x[j],k);

lnSt = lnSt + mudt + voldt*deviate;

// compute antithetic
lnSt1 = lnSt1 + mudt + voldt*(-deviate);
// increment index to retrieve deviate stored in
// vector Y in polar rejection method
k++;

}
St = exp(lnSt);
St1 = exp(lnSt1);

callValue = 0.5*(max(0, St - X) + max(0,St1-X));
sum = sum + callValue;
sum1 = sum1 + callValue*callValue;

}

callValue = exp(-rate*T)*(sum/M)

SD = sqrt(exp(-2*rate*T)*(sum1/M) - callValue*callValue);
cout << "stdev = " << SD << endl;



“London” — 2006/9/8 — 19:21 — page 98 — #120

98 Monte Carlo and Numerical Methods Chapter 2

SE = SD/sqrt(M-1);
cout << "stderr = " << SE << endl;

return callValue;
}

2.7 VARIANCE REDUCTION TECHNIQUES

Suppose we can simulate an independent and identically distributed (i.i.d) sequence
{f∗

i , i = 1, . . . , M}, where each f∗
i has expectation f and variance σ2. An estimator of f

based on M simulations is then the sample mean:

1
M

M∑
i=1

f∗
i (2.23)

By the central limit theorem, for large M , this sample mean is approximately normally
distributed with mean f and standard deviation σ√

M
. The estimate of the option’s price

converges to the true option’s price f with the standard error σ√
M

. The 95% confidence
interval is f − 1.96 σ√

M
< f∗ < f + 1.96 σ√

M
.

Convergence of the crude Monte Carlo is slow to the order of 1/
√

M . To increase the
accuracy 10 times, we need to run 100 times more simulations of sample paths. On the
other hand, decreasing the variance σ2 by a factor of 10 does as much for error reduction
as increasing the number of simulations by a factor of 100.

The simplest variance reduction procedure is antithetic variates. For each path simu-
lated with εk

i (denoted as the ith deviate, i = 1 . . .N on the kth path, k = 1 . . .M ), an
identical path is simulated with −εk

i . The payoff Fk for the path is calculated with εk
i , and

also the payoff F̂k for the path with −εk
i . Then the average is taken: 1

2(Fk + F̂k). Although
εk
i are samples from a standard normal distribution with mean 0, in a sample, you will get

some non-zero mean. The antithetic variates procedure corrects this bias by averaging out
the deviations and centers the mean at 0.

Another variance reduction technique is to use control variates. Control variates are
random variables, whose expected value (mean) that we know, which is correlated with
the variable we are trying to estimate—i.e., the derivative security we want to value.14 The
principle underlying this technique is to “use what you know.” Suppose you are trying to
simulate an estimate for the price of a complex security. Suppose also that you know a
closed-form analytical formula for the price of a similar, but simpler, security. The price of
the complex security can be represented as follows:

fcomplex = fsimple + (fcomplex − fsimple) (2.24)

Because you know the price fsimple from the closed-form formula, you need only estimate
the difference ε∗ = (fcomplex − fsimple) via the following simulation:

f∗
complex = fsimple + ε∗ (2.25)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 99 --- #121

Section 2.8 Monte Carlo Antithetic Example in Matlab 99

Because the securities are similar, the difference ε∗ is small relative to the value fsimple, and
we can find the “bulk” of the value of our complex security exactly without errors, and our
errors are in the relatively smaller estimate of the difference in ε∗.

As an example for practical use of control variates, we use arithmetic and geometric
Asian options. We know the analytical formula for the price of a geometric Asian option
(see Chapter 5, “Collateralized Debt Obligations”), but in practice, we are most interested
in the price of an arithmetic Asian option. There is no simple analytical formula for arith-
metic Asian options. We note that the price of otherwise identical arithmetic and geometric
Asian options are rather close. Thus, we can represent the price of an arithmetic Asian
option as follows:

f∗
arithmetic = f∗

geometric + ε∗

We evaluate this technique next in Section 2.8.

2.8 MONTE CARLO ANTITHETIC EXAMPLE IN MATLAB

The following Matlab code gives an example of option pricing using antithetics to re-
duce the standard error estimate.

Antithetic.m
%% Author: Chetan Jain & Jim Carson
%% The program calculates the estimate Monte Carlo value using antithetic
%% variables of a call option on a stock with dynamics
%% dY = 2(0.04 - Y)dt + 0.2YdW and
%% dS/S = 0.01dt + sqrt(Y)*(-0.7dW + (sqrt(0.51))dZ)
%% where S(0) = 99.7503 and Time = 3 months
%% It also calculates the standard error and the Black Scholes implied
%% volatility of call option

clear;
format long;

T = 0.25;
dt = 1/120;
M = T/dt; %% Number of time steps

y0 = 0.04; %% Value of Y at time zero
s0 = 99.7503; %% Value of S at time zero
N = 50000; %% Number of Monte Carlo simulations
N = N/2; %% Adjusting N for Antithetic variables

for i = 1:N %% Generate N Monte Carlo simulations
y(1) = y0;
y1(1) = y0;
s(1) = s0;
s1(1) = s0;

for j = 2:M %% Generate sample path
xi = randn(1);
xj = randn(1);
y(j) = y(j-1) + 2*(0.04 - y(j-1))*dt + 0.2*y(j-1)*sqrt(dt)*xi;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 100 --- #122

100 Monte Carlo and Numerical Methods Chapter 2

y(j) = max(y(j),0);
s(j) = s(j-1)*( 1 + 0.01*dt + sqrt(y(j-1)*dt)*(-0.7*xi +

(sqrt(0.51))*xj));
s(j) = max(s(j),0);

%% Antithetic variates
y1(j) = y1(j-1) + 2*(0.04 - y1(j-1))*dt + 0.2*y1(j-1)*sqrt(dt)*-xi;
y1(j) = max(y1(j),0);
s1(j) = s1(j-1)*( 1 + 0.01*dt + sqrt(y1(j-1)*dt)*(-0.7*-xi +

(sqrt(0.51))*-xj));
s1(j) = max(s1(j),0);

end

yT(i) = y(M); %% Save terminal values of y
yT1(i) = y1(M); %% Save Antithetic terminal values of y
sT(i) = s(M); %% Save terminal values of s
sT1(i) = s1(M); %% Save Antithetic terminal values of s

c(i) = exp(- 0.01 * 0.25) * max( sT(i) - 100, 0); %% Call values
c(i + N) = exp(- 0.01 * 0.25) * max( sT1(i) - 100, 0); %% Antithetic

%% call values

end

%% MC estimates
sumc = 0;
ConvDiagram_c = zeros(N,1);

for k = 1:2*N
sumc = sumc + c(k);
ConvDiagram_c(k) = sumc/(k);

end

avgc = sumc/(2*N);

N_vector = [1:1:2*N];
plot(N_vector, ConvDiagram_c);
title('Convergence Diagram for European Call Option Price');
xlabel('Number of Samples');
ylabel('Monte Carlo Estimate (with antithetic variables)');

figure;
plot(N_vector, ConvDiagram_c);
title('Convergence Diagram for European Call Option Price [Detail]');
xlabel('Number of Samples');
ylabel('Monte Carlo Estimate (with antithetic variables)');
axis([0 500 0 6]);

%% Standard Error of Call prices

sumSEc = 0;
for k = 1:2*N

sumSEc = sumSEc + (c(i) - avgc)ˆ2 ;
end



“London” — 2006/9/8 — 19:21 — page 101 — #123

Section 2.9 Monte Carlo Implementation in C++ 101

SEc = sqrt(sumSEc/(N*2));

%% Implied Volatility
vol = blsimpv(s0, 100, 0.01, 0.25, avgc, 10);

Running the Matlab function returns the following result:

vol =

0.1944540

Figure 2.4 shows the convergence of a European call price option using antithetics, and
Figure 2.5 shows the convergence of the price in detail.

Convergence Diagram for European Call Option Price

M
on

te
 C

ar
lo

 E
st

im
at

e 
(w

ith
 a

nt
ith

et
ic

 v
ar

ia
bl

es
)

Number of Samples

0

9

7

6

5

4

3

2

1

8

10.5 1.5 2 2.5 3.5 4.53 4 5
3 104

Figure 2.4

2.9 MONTE CARLO IMPLEMENTATION IN C++

The best way to simulate geometric Brownian motion (GBM) of the underlying asset
(random variable) is to use the process for the natural logarithm of the variable, which fol-
lows arithmetic Brownian motion (ABM) and is normally distributed. Let x(t) = ln(S(t)).
Then we have

dx(t) = (r − q − 1
2
σ2)dt + σdz(t) (2.26)



“London” — 2006/9/8 — 19:21 — page 102 — #124

102 Monte Carlo and Numerical Methods Chapter 2

Convergence Diagram for European Call Option Price (Detail)

M
on

te
 C

ar
lo

 E
st

im
at

e 
(w

ith
 a

nt
ith

et
ic

 v
ar

ia
bl

es
)

Number of Samples

0 50

6

5

4

3

2

1

0
100 150 200 250 300 350 400 450 500

Figure 2.5

Equation (2.18) can be discretized by changing the infinitesimal changes dx, dt, and dz
into small discrete changes ∆x, ∆t, and ∆z:

∆x = (r − q − 1
2
σ2)∆t + σ∆z (2.27)

This representation involves no approximation because it is actually the solution of the
SDE in (2.8), which can be written as follows:

x(t + ∆t) = x(t) + (r − q − 1
2
σ2)∆t + σ(z(t + ∆t) − z(t)) (2.28)

We can write equation (2.20) in terms of the underlying asset price S

S(t + ∆t) = S(t) exp
((

r − q − 1
2
σ2

)
∆t + σ (z(t + ∆t) − z(t))

)
(2.29)

where z(t) is standard Brownian motion. The random increment z(t + ∆t) − z(t) has
mean zero and variance ∆t. It can be simulated by random samples of ε

√
∆t, where ε

is a standard deviate drawn from a standard normal distribution. Dividing up the time to
maturity (the time period over which we want to simulate), T , into N time steps, each time
step is of size ∆t = T/N . Consequently, we can generate values of S(t) at the end of these
intervals, ti = i∆t, i = 1, . . . , N using equation (2.20) by computing

x(ti) = x(ti−1) + (r − q − 1
2
σ2)∆t + σεi

√
∆t, i = 1, . . . , N (2.30)

then computing

S(ti) = exp(x(ti))i = 1, . . . , N (2.31)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 103 --- #125

Section 2.9 Monte Carlo Implementation in C++ 103

for each time step of each of the M simulations, and then finally computing the payoff
Max(0, S(T ) − X) at maturity—i.e., the final time step on a given path. To obtain an
estimate Ĉ of the call price, C , we take the discounted average of all the simulated payoffs:

Ĉ = e−rT 1
M

M∑
j=1

Max(0, Sj(T ) − X) (2.32)

Note that to compute a European call estimate under GBM, we can let N = 1. Moreover,
because we have a closed-form solution to the underlying SDE, samples of S(T ) can be
found directly without simulating the entire path. In general, however, N > 1, because
there are many types of derivatives—i.e., path-dependent options—where only an approx-
imate discretization of the SDE to the continuous SDE can be used by taking small time
steps.

The following code implements the Monte Carlo simulation under the risk-neutral pro-
cess in (2.23). It uses the antithetic variates to reduce the variance:

MCPricer MonteCarloAntithetic.cpp
/**************************************************************************
MonteCarloAntithetic : values a European call option using antithetic

variates
[in]: double price: asset price

double strike: strike price
double vol: volatility
double rate: risk-free rate
double div: dividend yield
double T: option maturity
long N: number of time steps
long M: number of simulations

[out] double value (call value)
**************************************************************************/
vector<double> MCPricer::MonteCarloAntithetic(double price, double strike,

double vol, double rate, double div, double T, long M, long N, char type)
{

int i, j;
double deviate; // random deviate
double sum1 = 0.0; // sum of payoffs
double sum2 = 0.0; // sum of squared payoffs
double S1 = price; // stock price for +deviate
double S2 = price; // stock price for -deviate
double lnS1 = log(price); // log of the initial stock price

// for +deviate
double lnS2 = log(price); // log of the initial stock price

// for -deviate
double SD; // standard deviation
double SE; // standard error
double dt = (double) T/N;
double val = 0;
vector<double> value;
double mu = rate - div - 0.5*vol*vol; // drift

// initialize rng



“London” — 2006/9/8 — 19:21 — page 104 — #126

104 Monte Carlo and Numerical Methods Chapter 2

mrng.sgenrand(unsigned(time(0)));

for (i = 0; i < M; i++)
{

// initalize stock price for the next simulation
lnS1 = log(price);
lnS2 = log(price);

for (j = 0; j < N; j++)
{

// generate random deviate
deviate = mrng.genrand();
// simulate paths
lnS1 = lnS1 + mu*dt + vol*sqrt(dt)*deviate;
lnS2 = lnS2 + mu*dt + vol*sqrt(dt)*(-deviate);

}

// convert back to lognormal random variables

S1 = exp(lnS1);
S2 = exp(lnS2);

if (type == 'C')
val = 0.5*(max(0, S1 - strike) +

max(0,S2 - strike));
else // if put

val = 0.5*(max(0, strike - S1) +
max(0, strike - S2));

sum1 = sum1 + val;
sum2 = sum2 + val*val;

}

val = exp(-rate*T)*sum1/M;
value.push_back(val);

// compute standard deviation
SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 - (sum1*sum1)/M));
value.push_back(SD);

// compute standard error
SE = SD/sqrt(M);
value.push_back(SE);

return value;
}

Suppose we want to calculate the price of European call option in a Black-Scholes
world with antithetic variance reduction where S = 50, X = 50, r = 5.5%, q = 2%,
T = 0.75 (nine months), and σ = 0.20. We make the following method call to MonteCar-
loAntithetic with M = 100, 1000, 10000, and 100000 (changing M in the method call),
simulations, and N = 10 time steps.

Table 2.1 summarizes the results. Notice that as the number of simulations increases,
both the standard deviation and standard error decreases. Moreover, as the number of sim-



“London” — 2006/9/8 — 19:21 — page 105 — #127

Section 2.9 Monte Carlo Implementation in C++ 105

Table 2.1
Num. of Simulations MC Call Price Standard Deviation Standard Error

100 3.935 3.458 0.360

1000 4.013 3.200 0.101

10000 4.057 3.153 0.032

100000 4.037 3.093 0.010

ulations increases by a factor of 10, the standard error decreases by approximately a factor
of 3.

The Black-Scholes price is $4.03. Thus, increasing the number of simulations narrows
the confidence interval of the estimate because the standard error decreases.

Monte Carlo is used extensively for simulating outcomes—i.e., profit and losses (P/L)
of dynamic trading strategies. A single sample diffusion path is simulated, and the dynamic
trading strategy is executed over this path. The P/L is then calculated. Then, the process is
repeated M times for M sample paths. The mean is an estimate of the expected P/L from
the trading strategy. A standard deviation of P/Ls around this mean tells you how stable
the trading strategy is. Monte Carlo is extensively used in risk and portfolio management
to compute value-at-risk (VAR) of a portfolio. A confidence level is chosen—for example,
95% or 99%—and the underlying factors of each security are simulated, and the P/L of
each position in each security is calculated based on the realization of the simulated factor
values. The process is repeated for each security M times, and then, based on the simulated
P/L probability distribution generated by the aggregated P/L of all securities in the portfo-
lio, the VAR can be computed by looking at the P/L value that lies to the left of confidence
level of the P/L probability distribution.

As a practical application, suppose we want to implement a dynamic replication strat-
egy {(∆t, Nt) , 0 ≤ t ≤ T} of going long a stock and going short a call option on the stock.
We know from (1.48) that the option price at time t is ft = ∆tSt − NtAt. The following
code implements a dynamic replication strategy on a call option that matures in 20 weeks,
with a strike of 50, a volatility of 20%, a risk-free rate of 5.0%, and a current stock price of
$49. We are always rebalancing between our long equity position and short position in the
money market account (to finance our stock purchases) so that the strategy is self-financing.

Monte Carlo is also well suited for valuation of spread options and basket options (op-
tions on a portfolio of assets). Consider two stocks, S1, and S2, that each follow risk-neutral
price processes

dS1 = (r − q1)S1dt + σ1S1dz1

and

dS2 = (r − q2)S2dt + σ2S2dz2

where dz1dz2 = ρdt. Price paths follow a 2D discretized geometric Brownian motion that
can be simulated according to

S1,i+1 = S1,i exp((r − q1 −
σ2

1

2
)∆t + σ1

√
∆tε1,i+1



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 106 --- #128

106 Monte Carlo and Numerical Methods Chapter 2

and

S2,i+1 = S2,i exp((r − q2 −
σ2

2

2
)∆t + σ2

√
∆t(ρε1,i+1 +

√
1 − ρ2ε2,i+1),

for i = 0, 1, . . . , N , where ε1,i+1 and ε2,i+1 are samples from the standard normal. The
same seed is used for all simulations. The following is an implementation to value a Euro-
pean spread call (or put) option with payoff

e−r(T−t)EQ [Max(S1(T ) − S2(T ) − X, 0)|�t]

for a call and

e−r(T−t)EQ [Max(X − S1(T ) + S2(T ), 0)|�t]

for a put.
The C++ code to price a spread option is:

MCPricer calcMCEuroSpreadOption.cpp
/**************************************************************************

calcMCEuroSpreadOption : computes the value of a European spread
option

[in] double price1: price of asset 1
double price2: price of asset 2
double strike: strike price
double rate : risk free rate
double vol1: volatility of asset 1
double vol2: volatility of asset 2
double div1: dividend yield of asset 1
double div2: dividend yield of asset 2
double rho : correlation of dz1 and dz2
double T: maturity of option
char type: option type (C)all or (P)ut
long M: number of simulations
long N: number of time steps

[out] : price of spread option
**************************************************************************/
vector<double> MCPricer::calcMCEuroSpreadOption(double price1, double

price2, double strike, double rate, double vol1, double vol2, double
div1, double div2, double rho, double T, char type, long M, long N)

{
N = 1; // No path dependency
int i, j; // counter
double dt = T/N; // size of time step
double mu1 = (rate - div1 - 0.5*vol1*vol1); // drift for stock

// price 1
double mu2 = (rate - div2 - 0.5*vol2*vol2); // drift for stock

// price 2
double srho = sqrt(1 - rho*rho);
double sum1 = 0.0; // sum of all the call values on stock 1

// at time T
double sum2 = 0.0; // sum of all the call values on stock 2

// at time T
double S1 = 0.0; // stock price 1



“London” — 2006/9/8 — 19:21 — page 107 — #129

Section 2.9 Monte Carlo Implementation in C++ 107

double S2 = 0.0; // stock price 2
double deviate1 = 0.0; // deviate for stock price 1
double deviate2 = 0.0; // deviate for stock price 2
double z1 = 0.0; // correlated deviate for stock price 1
double z2 = 0.0; // correlated deviate for stock price 2
double CT = 0.0; // option price at maturity
double SD = 0.0; // standard deviate of price
double SE = 0.0; // standard error of price
double val = 0.0; // spread option price today
vector<double> value;

mrng.sgenrand(unsigned(time(0))); // initialize Mersenne RNG

for (i = 0; i < M; i++)
{

// initialize prices for each simulation
S1 = price1;
S2 = price2;

for (j = 0; j < N; j++)
{

// generate deviates
deviate1 = mrng.genrand();
deviate2 = mrng.genrand();

// calculate correlated deviates
z1 = deviate1;
z2 = rho*deviate1 + srho*deviate2;
S1 = S1*exp(mu1*dt + vol1*z1*sqrt(dt));
S2 = S2*exp(mu2*dt + vol2*z2*sqrt(dt));

}

if (type == 'C')
CT = max(S1 - S2 - strike, 0);

else
CT = max(strike - S1 + S2,0);

sum1 = sum1 + CT;
sum2 = sum2 + CT*CT;

}

val = exp(-rate*T)*(sum1/M);
value.push_back(val);

SD = sqrt((sum2 - sum1*sum1/M)*exp(-2*rate*T)/(M-1));
value.push_back(SD);

SE = SD/sqrt(M);
value.push_back(SE);

return value;
}



“London” — 2006/9/8 — 19:21 — page 108 — #130

108 Monte Carlo and Numerical Methods Chapter 2

S1=S2=50 r=0.06 vol1=0.3 vol2=0.2 q1=0.02 q2=0.03 T=0.5

Correlation

–0
.9

–0
.8

–0
.7

–0
.6

–0
.5

–0
.4

–0
.3

–0
.2

–0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

O
pt

io
n 

P
ric

e

8

7

6

5

4

3

2

1

0

Call

Put

Spread Option as a Function of Correlation

Figure 2.6

Suppose S1 = 50, X = 1, r = 0.06, q1 = 2%, q2 = 3%, σ1 = 30%, σ2 = 20%, and
T = 0.5. Figure 2.6 is a plot of the price of call and put spread option prices as a function
of correlation ρ = −1,−0.9, . . . , 0.9, 1, for M = 100, 000 simulations. Note that because
the option is European, we can speed the computation by using only N = 1 time step.
Notice that as the correlation increases, the option price (monotonically) decreases for both
call and put spread options. When ρ = 1, the second random factor ε2,i cancels out of
the second geometric Brownian equation for S2. Consequently, both S1 and S2 are being
driven by only one (the same) source of randomness or uncertainty, ε1,i. Thus, z1,i and z2,i

move in the same direction so that random movements of both assets occur in the same
direction and make the spread S1−S2 decrease because the same direction movements are
offset. On the other hand, when ρ = −1, the randomness of +ε1,i in the equation of the
first asset is offset by −ε1,i in the equation of the second asset, and so movements in one
direction of one asset are magnified by movements in the opposite direction of the other
asset. Thus, a widening of the spread S1−S2 occurs, making the option worth more. Other
numerical techniques for valuing spread options include the Fast Fourier Transform (FFT)
method, which is discussed in the next section.

2.10 FAST FOURIER TRANSFORM

We discuss the Fast Fourier transform (FFT) method for pricing derivatives when higher
dimensional processes cannot be efficiently priced with binomial trees. Because a two-
dimensional binomial scheme is not efficient and does not converge to the true theoretical
price, it may be necessary to use numerical methods to price a bivariate (and higher variate)
option, such as a spread option. In particular, FFT can be used.15 FFT is faster than finite-
difference methods and integro-differential equations.



“London” — 2006/9/8 — 19:21 — page 109 — #131

Section 2.10 Fast Fourier Transform 109

The FFT is an efficient algorithm for computing

w(k) =
N∑

i=1

e−
2πi
N (j−1)(k−1)x(j) k = 1, . . . , N (2.33)

where N is usually a power of 2. The FFT reduces the number of multiplications in the
required N summations from an order of N2 to that of N log2(N), a considerable reduction
in computing time.

Suppose we want to first value a European call option that matures at time T written
on a single underlying stock price ST . The characteristic function of the log stock price,
sT = log(ST ), is given by φT (u) = E

[
eiusT

]
. In many cases, the characteristic function is

known analytically and can be computed numerically. It has been shown that using Fourier
transforms, the risk-neutral probability of a call with strike X finishing in-the-money is
given by

P (ST > X) = Π2 =
1
2

+
1
π

∞∫
0

Re

[
e−iu ln(X)φT (u)

iu

]
du.

The delta of the option, denoted Π1, is numerically computed as

Π1 =
1
2

+
1
π

∞∫
0

Re

[
e−iu ln(X)φT (u − i)

iuφT (−i)

]
du

where Re is the real part of the complex expression. Assuming no dividends and constant
interest rates, the option price is given by the following:

C = SΠ1 − Xe−rT Π2

However, the FFT cannot be used to evaluate the integrals because the integrand is singular
at the required evaluation point u = 0.

Madan and Carr (1999) developed a method to overcome this problem so that the FFT
can be used given its efficient computational speed. Consider the initial call price CT (k) =

k∫
−∞

e−rT (es − ek)qT (s)ds, where qT (s) is the risk-neutral probability density of s and k

is the log strike price. Because CT (k) tends to the initial stock price, S0 , as k tends to −∞,
the call price function is not square integrable. To obtain a square integrable function, we
use a modified call price cT (k) = eαkCT (k) for α > 0. Positive values of α assist in the
integrability of cT (k) over the negative log strike axis but poses problems over the positive
log strike axis. Madan and Carr (1999) suggest that an upper bound for α can be computed
from the analytical expression for the characteristic function (given later in equation (2.36))
and the required condition E

[
Sα+1

T

]
< ∞.16 Moreover, they suggest that 1

4 of this upper
bound serves as a good choice.

The Fourier transform of cT (k) is defined by:

ψT (v) =

∞∫
−∞

eivkcT (k)dk (2.34)



“London” — 2006/9/8 — 19:21 — page 110 — #132

110 Monte Carlo and Numerical Methods Chapter 2

By taking the inverse Fourier transform, we can obtain an analytical expression of
ψT (v) in terms of the characteristic function φT and thus compute call prices numerically:

CT (k) =
e−αk

2π

∞∫
−∞

eivkψT (v)dv
e−αk

π

∞∫
−∞

eivkψT (v)dv (2.35)

where the second equality holds because CT (k) is real, which implies that the function
ψT (v) is odd in its imaginary part and real in its even part.17

The expression for ψT (v) is determined as follows:

ψT (v) =

∞∫
−∞

eivk

∞∫
k

eαke−rT (es − ek)qT (s)ds

=

∞∫
−∞

e−rT qT (s)

s∫
−∞

(es+αk − e(1+α)k)eivkdkds

=

∞∫
−∞

e−rT qT (s)
[

e(α+1+iv)s

α + iv
− e(α+1+iv)s

α + 1 + iv

]
ds

=
e−rT φT (v − (α + 1)i)

α2 + α − v2 + i(2α + 1)v
(2.36)

Call prices can be computed by substituting in (2.36) into (2.35).
Using the Trapezoid Rule for the integrand in (2.35) and setting vj = η(j − 1), Madan

and Carr use the following approximation for the call price:

CT (k) =
e−αk

π

N∑
j=1

e−ivjkψT (vj)η (2.37)

where the effective upper limit of integration is Nη. To use the FFT, Madan and Carr
utilize a strike price spacing of λ and are interested in at-the-money call values C(k),
which correspond to k near 0. The values for k are given by

ku = −b + λ(u − 1), for k = 1, . . . , N (2.38)

which gives a log range from −b to b where b = Nλ
2 . Substituting (2.38) into (2.37) yields

CT (ku) ≈ e−αku

π

N∑
j=1

e−ivj(−Nλ
2 +λ(u−1))ψT (vj)η (2.39)

Because vj = (j − 1)η, we can write (2.39) as

CT (ku) ≈ e−αku

π

N∑
j=1

e−iλη(j−1)(u−1)ei Nλ
2 vjψT (vj)η (2.40)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 111 --- #133

Section 2.11 FFT Implementation in Matlab 111

Moreover, from (2.33), we know

λη =
2π

N
. (2.41)

Madan and Carr then incorporate Simpson’s rule weightings into the summation in order
to obtain an accurate integration with larger values of η because larger η values lead to call
prices at strike spacings relatively small so that more strike prices will lie in the desired
region near the stock price.18 Consequently, Madan and Carr write the analytical expression
for the call price as

CT (ku) =
e−αku

π

N∑
j=1

e−i 2π
N (j−1)(u−1)ei Nλ

2 vjψ(vj)
η

3
(3 + (−1)j + δj−1) (2.42)

where δj is the Kronecker delta function that is unity for j = 0 and 0 otherwise. Because
(2.42) is an exact application of the FFT, the FFT can be used.

2.11 FFT IMPLEMENTATION IN MATLAB

The following is the FFT implementation, written by Madan, Carr, and Liu (2000), in
Matlab to generate the results in their paper:

optfftm.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function y=optfftM(alpha, p0,f,r,t,par,chatfun, measure)
%
% Option Pricing using FFT
% Outputs:
% K, strike price (nxt)
% Opt, Option price (nxt)
% Inputs:
% alpha-- dampening parameter
% p0--- initial spot price (1x1)
% f--- forward price (tx1)
% r-- riskfree rate (tx1)
% t-- maturity (tx1)
% par-- other parameters regarding the cf of log rice
% chatfun --CF of the log price logST/S_t or logST (S_t is scaled to 1)
% measure=0 (default: spot: returns equal distance moneyness=K/S);
% 1: forward: Returns equal distance moneyness=K/F
%
%
% Written by Carr and Madan (1999), adopted by Liuren Wu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [K,Opt]=optfftM2(alpha, p0,f,r,t,par, chatfun, measure,nn,eta)

if nargin==7
measure=0;
nn=4096;
eta=0.05;

end



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 112 --- #134

112 Monte Carlo and Numerical Methods Chapter 2

if nargin==8
nn=4096;
eta=0.05;

end
p=1;
fp=f./p0;

%eta=.05;
lambda=2.*pi./(nn.*eta);
b=nn.*lambda./2;
nn1=nn./2-round(.95./lambda); nn2=nn./2+round(.95./lambda);
%nn1=1918; nn2=2180;

mat=length(t);
u=[1:nn]';
vjv=eta*(u-1);
zz1=optpfftM(vjv,alpha,p,fp,r,t,par,chatfun,measure);

fac=exp(i*b*vjv).*(eta/3).*(3+(-1).ˆu);
fac(1)=eta/3;
nf=size(zz1,2);
zz=zz1.*repmat(fac,1,nf);

gg=fft(zz);
ku=-b+lambda*(u-1);
g=real(gg);
cpf=repmat((exp(-alpha*ku)/pi),1,mat).*g;
ss=exp(ku);

cpfo=cpf(nn1:nn2,:);
sso=ss(nn1:nn2);

nnf=length(sso);
if measure==0

K=repmat(sso*p0,1,mat);
Opt=cpfo*p0;

else
K=sso*f';
Opt=cpfo.*(repmat(f',nnf,1));

end

return

optpfftm.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function y = optpfftM(v,alpha,p,f,r,t,par,chatfun,measure)
%
% Transform the cf of logST./S_t into the dampended cf
% alpha--the dampen factor
% Written by Carr and Madan(1999), adopted by Liuren Wu, Feb,2000
% Modified by Liuren Wu 11/12/2000 for fixed log(K/F)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = optpfftM(v,alpha,p,f,r,t,par,chatfun,measure);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 113 --- #135

Section 2.11 FFT Implementation in Matlab 113

n=length(v(:)); lt=length(t);
en=ones(n,1); et=ones(1,length(t));

u=v-(alpha+1).*i; %nx1
u1=exp(-r.*t); %tx1
u2=eval([chatfun '(u,p,f,r,t,par)']); %nxt
u3=alpha.ˆ2+alpha-v.ˆ2+i.*v.*(2.*alpha+1); %nx1

y=repmat(u1',n,1).*u2./repmat(u3,1,lt);

if measure>0
y=y.*(repmat(p./f',n,1)).ˆ(repmat(i*u,1,lt));

end

return

lscf.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function y =lscf(u,p,f,r,t,par)
%
% CF of log S_T under log-stable model
%(Carr and Wu, 2003)
% par=[lambda, alpha];
% Liuren Wu, Feb, 2000 and after
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y =lscf(u,p,f,r,t,par);

sig=par(1);
alph=par(2);
lambda= - sig.ˆalph.*sec(pi*alph/2);
iu=i*u;

psij=lambda*(iu-(iu).ˆalph);
u1=iu*log(f'); %nxt
u2=psij*t';
y=exp(u1-u2);

return

% and the following is the main function for testing the functions:
% test;
% Price options under the Black-Scholes model and the Log Stable model
% using FFT

close all; clear all; format short; format compact;

S=100;
T=[1 6 12]'/12;
nt=length(T);
r=zeros(nt,1); q=0;
F=S*exp((r-q).*T);

alpha=6; measure=0; eta=1; nn=2ˆ10;



“London” — 2006/9/8 — 19:21 — page 114 — #136

114 Monte Carlo and Numerical Methods Chapter 2

chatfun=['bscf']; sigma=0.21; par=sigmaˆ2;
[Kn,Cn1]=optfftM2(alpha,S,F,r,T,par,chatfun,measure,nn,eta);

figure(1)
plot(Kn(:,1), Cn1)
axis tight
chatfun=['lscf']; par=[0.15; 1.5];
[Kn,Cn2]=optfftM2(alpha,S,F,r,T,par,chatfun,measure,nn,eta);

figure(2)
plot(Kn(:,1), Cn2)
axis tight

return

bscf.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function y = bscf(u,p,f,r,t,par)
%
% CF of log S_T under jump-diffusion
% dS/S=(r-q-\alpha g)dt +(eˆk-1) dJ(\alpha), k\sim N(\omega,\eta)
%
% par=(sigma, alpha, omega, eta );
% CGMY model with maturity dependent C(t).
%
% Liuren Wu, Feb, 2000 and after
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y =bscf(u,p,f,r,t,par);

v=par(1);

psid=0.5*(i*u+u.ˆ2); %nx1

u1=i*u*log(f'); %nxt
u2=psid*(v.*t)';
y=exp(u1-u2);

return

Figure 2.7 shows a plot of the FFT solution for various maturities.

2.12 PATH-DEPENDENT VALUATION

To price a path-dependent derivative by Monte Carlo, meaning the payoff is dependent
on the entire path taken by the underlying security, we need to estimate the conditional
expectation. Suppose we want to price a European-style claim of the underlying process
(i.e., the payoff)

fT = F ({St, 0 ≤ t ≤ T})



“London” — 2006/9/8 — 19:21 — page 115 — #137

Section 2.12 Path-Dependent Valuation 115

FFT Option Prices

60

50

40

30

20

10

0
40 60 80 100 120 140 160 180 200 220 240

O
pt

io
n 

P
ric

e

Strike Price

1 month
0.5 years
1 year

Figure 2.7

which depends on the entire path from 0 to T. The risk-neutral pricing formula gives the
price of the security at time 0 as a discounted expectation:

fo = e−rT EQ
0,S [F ({St, 0 ≤ t ≤ T})] (2.43)

The expectation is calculated over all possible paths of the risk-neutral process from 0 to T
started at (S, 0). We can estimate this expectation as follows:

1. Divide the path into N time steps ∆t and simulate M sample paths of the risk-neutral
diffusion process.

2. Calculate the terminal payoff for each path. The payoff on the kth path,
{
Sk

i , i =
0, 1, . . . , N} , k = 1, 2, . . . , M (i−time counter on a give path; k - counts different
paths):

F (Sk
0 , Sk

1 , . . . , Sk
N)

3. Discount with the risk-free rate r.

4. Crude Monte Carlo estimate f * of the security price is just an average of all the
discounted payoffs over M sample paths generated:

f∗
0 = e−rτ 1

M

M∑
k=1

F (Sk
0 , Sk

1 , . . . , Sk
N ) (2.44)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 116 --- #138

116 Monte Carlo and Numerical Methods Chapter 2

f∗
0 is an MC estimate of the N -dimensional integral

f∗
0 = e−rτ

∞∫
0

. . .

∞∫
0

F (S0, S1, . . . , SN)pQ ·

(SN , tN |SN−1,tN−1) . . . pQ(S1, t1|S, t)dS1 . . . dSN (2.45)

where

pQ(Si+1, ti+1|Si, ti) =
1

Si+1

√
2πσ2τ

exp


−

(
ln
(

Si+1
Si

)
− µτ

)2

2σ2τ


 ,

µ = r − σ2

2
.

MC simulation is used to calculate these multidimensional integrals involving integration
over multiple points on the path.

Suppose we want to price an Asian option, an option whose value depends on the aver-
age price of the underlying security over the life of the option, by simulation. We generate
M sample paths

{
Sk

i , i = 0, 1, . . . , N
}

, k = 1, 2, . . . , M , index i counts time points on a

given path, index k counts paths, ti = i∆t, ∆t = τ
N , Si+1 = Si exp

{
µ∆t + εi+1σ

√
∆t
}

.

Compute the average price Ak for each path:

Ak =
1
N

N∑
i=1

Sk
i

Estimate the option price:

f(S, t) =
e−rτ

M

M∑
i=1

Max(Ak − X, 0) (2.46)

To reduce variance, always use antithetic variates. Note that it is not necessary to save
all the prices on the path and then compute the average price. The average price can be
computed efficiently by the recurrent relation

Ak,j+1 =
1

j + 1
(jAk,j + Sj+1)

where Aj is the average price between time 0, t0, and tj . One updates the average at each
time step. This saves computing time and memory.

The following is a Monte Carlo implementation to price an Asian option using geomet-
ric averaging on a stock with S = 45, X = 42, σ = 20%, r = 5.5%, q = 1.5%, and T = 1
using M = 1000 simulations with N = 10 time steps (equally spaced fixing times) so that
ti − ti−1 = T/N = ∆t for all i = 1, . . . , N . We make the following call:



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 117 --- #139

Section 2.12 Path-Dependent Valuation 117

void main()
{

MonteCarlo mc;

double price mc.calcMCGAsianPrice(45,42,0.20,0.055,0.015,1,'C');cout <<
"Geometric Asian price = " << price << endl;
}

The function implementation is:

MCPricer calcMCGAsianPrice.cpp
/**************************************************************************
calcMCGAsianPrice: computes the price of a geometric Asian option using

Monte Carlo simulation
[in]: double price: initial stock price

double strike : strike price
double vol : volatility
double rate : risk free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
long M : number of simulations
long N : number of time steps

[out] double : price of geometric Asian option
**************************************************************************/
vector<double> MCPricer::calcMCGAsianPrice(double price, double strike,
double vol, double rate, double div, double T, char type, long M, long N)
{

// initialize variables
double G = 0.0; // price of geometric average

// Asian option
int i, j;
double deviate; // normal deviate
double S = 0.0; // stock price
double sum = 0.0; // sum of payoffs
double sum2 = 0.0; // sum of squared payoffs
double product = 0.0;
double payoff = 0.0; // option payoff
double deltat = 0.0; // step size
double val = 0.0;
vector<double> value;
double stddev, stderror = 0.0;
double dt = (double) T/N; // compute change in step size
double mu = rate - div - 0.5*vol*vol;// compute drift

mrng.sgenrand(unsigned(time(0))); // initialize rng

// for each simulation
for (i = 0; i <= M; i++)
{

S = price;
product = 1;

for (j = 0; j < N; j++)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 118 --- #140

118 Monte Carlo and Numerical Methods Chapter 2

{
deviate = mrng.genrand(); // generate random

// deviate
S = S*exp(mu*dt + vol*sqrt(dt)*deviate);
product *= S;

}

// compute geometric average
G = pow(product,(double)1/N);
if (type == 'C')

payoff = max(G - strike,0);
else

payoff = max(strike - G,0);

sum += payoff;
sum2 += payoff*payoff;

}

val = exp(-rate*T)*(sum/M);
value.push_back(val);

stddev = sqrt((sum2 - sum*sum/M)*exp(-2*rate*T)/(M-1));
value.push_back(stddev);

stderror = stddev/sqrt(M);
value.push_back(stderror);

return value;
}

The price of the geometric average Asian call is $5.76, with a standard deviation of
5.00 and a standard error of 0.50. We now price an arithmetic Asian price option using the
same values for the geometric average Asian call.

MCPricer calcMCAAsianPrice.cpp
vector<double> MCPricer::calcMCAAsianPrice(double price, double strike,

double vol, double rate, double div, double T, char type, long M,
long N)

{
// initialize variables
double A = 0.0; // arithmetic average
double mu = 0.0; // drift
int i, j;
double deviate; // normal deviate
double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
double S = 0.0; // stock price
double sum = 0.0;
double sum1 = 0.0;
double sum2 = 0.0;
double payoff = 0.0;
double val = 0.0;
vector<double> value;
double dt = (double) T/N; // compute step size



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 119 --- #141

Section 2.12 Path-Dependent Valuation 119

mu = rate - div - 0.5*vol*vol; // compute drift
mrng.sgenrand(unsigned(time(0))); // initializer RNG

// for each simulation
for (i = 0; i <= M; i++)
{

S = price;
sum1 = 0;

for (j = 0; j < N; j++)
{

deviate = mrng.genrand();
S = S*exp(mu*dt + vol*sqrt(dt)*deviate);
sum1 += S;

}
A = sum1/N;

if (type == 'C')
payoff = max(A - strike, 0);

else
payoff = max(strike - A,0);

sum += payoff;
sum2 += payoff*payoff;

}
val = exp(-rate*T)*(sum/M);
value.push_back(val);

stddev = sqrt((sum2 - sum*sum/M)*exp(-2*rate*T)/(M-1));
value.push_back(stddev);

stderror = stddev/sqrt(M);
value.push_back(stderror);

return value;
}

The price of the arithmetic average is approximately $5.90, with a standard deviation
of 5.134 and a standard error of 0.514. It is not surprising that the arithmetic average is
higher than the geometric average price because the arithmetic average of a series of values
is always greater than or equal to the geometric average of a series of values.

As discussed, the geometric average option makes a good control variate for the arith-
metic average option. It lowers the standard deviation, and thus standard error, of the esti-
mate. The following is an implementation for pricing an arithmetic average option using a
geometric average control variate:

MCPricer calcMCAAsianGCVPrice.cpp
vector<double> MCPricer::calcMCAAsianGCV(double price, double strike,
double vol, double rate, double div, double T, char type, long M, long N)
{

int i, j; // counters
double geo = 0.0; // geometric average
double ave = 0.0; // arithmetic average



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 120 --- #142

120 Monte Carlo and Numerical Methods Chapter 2

double mu = 0.0; // drift
double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
double portfolio = 0.0;
double deviate; // standard deviate
double S = 0.0; // stock price
double sum = 0.0; // sum of payoffs
double sum1 = 0; // sum of squared payoffs
double product = 0.0;
double payoff = 0.0; // option payoff
double dt = 0.0; // time step
double val = 0.0;
vector<double> value; // stores value, SD, SE

mrng.sgenrand(unsigned(time(0))); // initialize RNG

dt = (double) T/N; // step size
mu = rate - div - 0.5*vol*vol; // drift

// for each simulation
for (i = 0; i <= M; i++)
{

S = price;
product = 1;
sum = 0;
sum1 = 0;

for (j = 0; j < N; j++)
{

deviate = mrng.genrand();
S = S*exp(mu*dt + vol*sqrt(dt)*deviate);
sum = sum + S;
product *= S;

}
// calculate arithmetic average
ave = sum/N;
// calculate geometric average
geo = pow(product,(double)1/N);

if (type == 'C')
payoff = max(0, (ave - strike) - (geo - strike));

else
payoff = max(0, (strike - ave) - (strike - geo));

sum += payoff;
sum1 += payoff*payoff;

}

portfolio = exp(-rate*T)*(sum/M);
value = calcMCGAsianPrice(price,strike,vol,rate,div,T,'C',M,N);
val = portfolio + value[0];
value.push_back(val);

stddev = sqrt((sum1 - sum*sum/M)*exp(-2*rate*T)/(M-1));
value.push_back(stddev);

stderror = stddev/sqrt(M);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 121 --- #143

Section 2.13 Monte Carlo Pricing of Asian Currency Option in Matlab 121

value.push_back(stderror);

return value;
}

The arithmetic price is approximately $5.90, with a standard deviation of 0.185 and a stan-
dard error of 0.019. Table 2.2 summarizes the Monte Carlo results of the Asian option
using different methods and using M = 1000 simulations and N = 10 time steps per path.
Note how small the standard error is using the control variate technique than the arithmetic
average Monte Carlo without it.

Table 2.2

Monte Carlo Estimate Standard Deviation Standard Error

Arithmetic Average $5.898 5.134 0.514

Geometric Average $5.760 5.000 0.500

Geometric Control Variate $5.898 0.185 0.019

2.13 MONTE CARLO PRICING OF ASIAN CURRENCY
OPTION IN MATLAB

Here is an implementation in Matlab to value an Asian currency option.

AsianMC.m
NRepl = 1000;
S0 = 1.1692; % spot exchange rate
rf = 0.0124; % foreign risk rate
rr = 0.0221; % domestic risk free rate
r = rf - rr;
T = 1;
sigma = 0.100336; % volatility
NSamples = 51;

function [P,CI] = AsianMC(S0,X,r,T,sigma,NSamples,NRepl)

randn('state',sum(100*clock))
tic

NSteps = 51
dd = NSteps/NSamples
X = 1.1700;
Payoff = zeros(NRepl,1);
for i=1:NRepl

randn('state',sum(100*clock))
Path=AssetPaths1(S0,r,sigma,T,NSteps,1);
Payoff(i) = max(0, mean(Path(1:dd:(NSteps))) - X);

end

[P,aux,CI] = normfit( exp(-rf*T) * Payoff)



“London” — 2006/9/8 — 19:21 — page 122 — #144

122 Monte Carlo and Numerical Methods Chapter 2

%hist(Payoff,100)
toc

function SPaths=AssetPaths1(S0,mu,sigma,T,NSteps,NRepl)

dt = T/NSteps;
nudt = (mu-0.5*sigmaˆ2)*dt;
sidt = sigma*sqrt(dt);
Increments = nudt + sidt*randn(NRepl, NSteps);
LogPaths = cumsum([log(S0)*ones(NRepl,1) , Increments] , 2);
SPaths = exp(LogPaths);

The output is as follows:

P =

0.028890

aux =

0.044193

CI =

0.026148
0.031633

Elapsed time is 1.680099 seconds.

2.14 FINITE DIFFERENCE METHODS

We discuss numerical methods known as finite difference methods for pricing deriva-
tives by approximating the diffusion process that the derivative must follow. Finite dif-
ference methods are a means for generating numerical solutions to partial differential
equations and linear complementary (free boundary) problems such as those used to price
American options. Finite difference schemes are useful for valuation of derivatives when
closed-form analytical solutions do not exist or for solutions to complicated multi-factor
(multi-dimensional) models. By discretizing the continuous-time partial differential equa-
tion that the derivative security must follow, it is possible to approximate the evolution of
the derivative and, therefore, the present value of the security.

2.15 EXPLICIT DIFFERENCE METHODS

Binomial and trinomial trees work well for pricing European and American options.
However, there are alternative numerical methods that can be used to value these standard
options, as well as more complex derivatives with nonlinear payoffs such as exotic options.
Finite difference methods are used to price derivatives by solving the differential equation
in conjunction with the initial asset price condition and boundary value condition(s)—i.e.



“London” — 2006/9/8 — 19:21 — page 123 — #145

Section 2.15 Explicit Difference Methods 123

payoffs—that the derivative must also satisfy. The differential equation is converted into a
system of difference equations that are solved iteratively.

Consider the Black-Scholes (BS) PDE

∂f

∂t
+ (r − q)S

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2
= rf (2.47)

subject to the payoff condition f(ST , T ) = (ST − X)+. We can extend the trinomial tree
approach by creating a rectangular grid or lattice by adding extra nodes above and below
the tree so that we have 2Nj + 1, Nj ≥ N , nodes at every time step i rather than 2i + 1.
In a similar manner to trinomial trees, when implementing finite difference methods, we
divide space and time into discrete intervals, ∆t and ∆x, which generates the lattice.

We add boundary conditions to the grid, which determines option prices as a function
of the asset price for high and low values so that ∂f

∂S
= 1 for S large and ∂f

∂S
= 0 for S

small. We can simplify the BS PDE by replacing the PDE with finite differences. Thus, we
can discretize the PDE to develop a numerical finite-difference scheme. First, we simplify
the PDE; let x = ln(S) so that

∂f

∂t
+ µ

∂f

∂x
+

1
2
σ2 ∂2f

∂x2
= rf

where µ = r − q. To get rid of the rf term on the LHS, let u(x, t) be a new function:
u(x, t) = er(T−t)f(ex, t). u is a forward price of the option f and satisfies the PDE:

1
2
σ2 ∂2u

∂x2
+ µ

∂u

∂x
= −∂µ

∂t
(2.48)

We will discretize this PDE by taking the central difference of the state variable, x, and
the forward difference of the time variable t. Denote ui,j = u(xj, ti), ti = i∆t, and
xj = j∆x. Substituting the finite differences into the PDE:

1
2
σ2

(
ui+1,j+1 − 2ui+1,j + ui+1,j−1

∆x2

)
+ µ

(
ui+1,j+1 − ui+1,j−1

2∆x

)
=

−
(

ui+1,j − ui,j

∆t

) (2.49)

Rearranging terms, we have the recurrent relation for the forward option price

ui,j = p̃uui+1,j+1 + p̃mui+1,j + p̃dui+1,j−1 (2.50)

where

p̃u =
σ2∆t

2∆x2
+

µ∆t

2∆x

p̃m = 1 − σ2∆t

∆x2
(2.51)

p̃d =
σ2∆t

2∆x2
− µ∆t

2∆x



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 124 --- #146

124 Monte Carlo and Numerical Methods Chapter 2

Note that p̃u + p̃m + p̃d = 1. Denote α = ∆t
(∆x)2

and β = µ∆t
∆x . We can rewrite (2.51)

as p̃u = σ2

2
(α + β), p̃m = 1 − σ2α, and p̃d = σ2

2
(α − β).

The relationship of trinomial trees to finite-difference discretizations of the BS PDE
can be seen as follows. Substitute the present value of the option fi,j = e−r(T−ti)ui,j into
(2.50). We arrive at the backward induction relationship:

fi,j = e−r∆t (p̃ufi+1,j+1 + p̃mfi+1,j + p̃dfi+1,j−1) (2.52)

This is similar to the backward induction methodology in a trinomial tree. This is equivalent
to the discounted expectation of the forward option price (under a risk-neutral measure).
Thus, we have shown that the explicit finite difference scheme is equivalent to approximat-
ing the diffusion process by a discrete trinomial process.

Figure 2.8 is an explicit finite difference discretization.

Explicit Finite-Difference Schemex(j)

t(i)

u(i,j+1)

u(i,j–1)

u(i+1,j)u(i,j)

Figure 2.8

The following Matlab code is an implementation of the explicit finite difference scheme.

ExplicitFiniteDifference.m
%% Explicit Finite Difference Scheme
%% Author: Chetan Jain & Jim Carson
%% This code implements the explicit finite difference scheme for the
%% following PDE:
%% ut = (1 + xˆ2)uxx, -1<x<1, 0<t<1
%% u(x, 0) = xˆ4, -1 <= x <= 1
%% u(-1, t) = u(1, t) = 1, 0<= t <= 1

clear;
format long;

%% Enter k



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 125 --- #147

Section 2.15 Explicit Difference Methods 125

k = 4;

%% Enter alpha
alpha = .69;

%% Initialize x interval
delta_x = 2ˆ(-k);
LeftEndpoint = -1;
RightEndpoint = 1;
InitialNminus = LeftEndpoint/delta_x;
InitialNplus = RightEndpoint/delta_x;

%% Initialize t interval
delta_t = alpha*(delta_xˆ2);
T = 1;
M = T/delta_t;

%% Ensure positive indexes for Matlab and same width as x interval
Nminus = 1;
Nplus = InitialNplus - InitialNminus + Nminus;

%% Boundary condition w.r.t. x
for (i = 1:Nplus)

n = InitialNminus + i - 1;
oldu(i) = (n*delta_x)ˆ4;

end

%% m loop
for (m=1:M)

%% Boundary condition for w.r.t. t
newu(Nminus) = 1;
newu(Nplus) = 1;

%% Get u_m+1 from u_m
for (i = 2:Nplus - 1)

n = InitialNminus + i - 1;
newu(i) = alpha*(1+(n*delta_x)ˆ2)*oldu(i+1) +

(1-2*alpha*(1+(n*delta_x)ˆ2))*oldu(i) +
alpha*(1+(n*delta_x)ˆ2)*oldu(i-1);

end

%% Transplant memory
oldu(:) = newu(:);

end

%% Make plot
plot(oldu);

%% Use linear interpolation to find the requested values

values(Nminus) = oldu(Nminus); %% Initialize values() with
%% boundary condition

w = 1;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 126 --- #148

126 Monte Carlo and Numerical Methods Chapter 2

for (i = 1:Nplus)
n = InitialNminus + i - 1;
if (n*delta_x >= InitialNminus*delta_x + w*0.2)

values(w+1) = oldu(i) + (oldu(i-1)-oldu(i))*(n*delta_x - w*0.2 -
InitialNminus*delta_x)/delta_x;

w = w + 1;
end

end

2.16 EXPLICIT FINITE DIFFERENCE IMPLEMENTATION
IN C++

The following is an implementation of an explicit finite difference scheme.19 N is the
total number of time steps, where each time step is ∆t = T/N and |M | is the total number
of state movements (in either direction from the initial state at time 0) where the state
variable is Sj , j = −M . . .− 1, 0, 1, . . .M .

/***********************************************************************
explicitDiffAmerican: values an American option using the
explicit difference method

[in]: double price : asset price
double strike : strike price
double vol : volatility
double rate: risk-free rate
double div: dividend yield
double T: maturity
int N: number of time steps
int M: number of space steps
char type: (C)all or (P)ut
char bc: boundary conditions (D)irichlet or (N)eumann

[out] : option price
************************************************************************/
double ExplicitDiffMethod::explicitDiffAmerican(double price, double
strike, double vol, double rate, double div, double T, int N, int M,
char type, char bc)
{

int i, j;
double dt = T/N;
double drift = rate - div - 0.5*(vol*vol);
double dx = vol*sqrt(3*dt/2);
double pu, pm, pd;
Array2D<double> C(N,M); // stores option prices
Array2D<double> S(N,M); // stores stock prices

pu = (vol*vol*dt)/(2*dx*dx) + (drift*dt)/(2*dx);
pm = 1.0 - (vol*vol*dt)/(dx*dx);
pd = (vol*vol*dt)/(2*dx*dx) - (drift*dt)/(2*dx);

// initialize asset prices at maturity
for (j = -M; j <= M; j++)

S[N][j] = price*exp(j*dx);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 127 --- #149

Section 2.16 Explicit Finite Difference Implementation in C++ 127

if (type == 'C')
{

for (j = -M; j <= M; j++)
{

C[N][j] = max(S[N][j] - strike,0);
}
// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

if (bc == 'D')
{

C[i][-M] = 0.0;
C[i][M] = max(S[N][M] - strike,0);

}
else
{

C[i][M] = C[i][M-1] + (S[i][M] - S[i][M-1]);
C[i][-M] = C[i][-M+1];

}
}

for (i = N-1; i >= 0; i--)
{

for (j = M-1; j >= -(M-1); j--)
{

C[i][j] = pu*C[i+1][j+1] + pm*C[i+1][j] +
pd*C[i+1][j-1];

C[i][j] = max(S[N][j] - strike, C[i][j]);
}

}
}
else //if (type == 'P')
{

// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

C[i][0] = strike;
C[i][M] = 0;

}
for (j = -M; j <= M; j++)
{

C[N][j] = max(strike - S[N][j],0);
}

for (j = -M; j <= M; j++)
{

C[N][j] = max(strike - S[N][j],0);
}
// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

if (bc == 'D')
{

C[i][-M] = strike;
C[i][M] = max(0,strike - S[N][j]);

}



“London” — 2006/9/8 — 19:21 — page 128 — #150

128 Monte Carlo and Numerical Methods Chapter 2

else // Neumann bc
{

C[i][M] = C[i][M-1];
C[i][-M] = C[i][-M+1] + (S[i][-M] - S[i][-M+1]);

}
}

for (i = N-1; i >= 0; i--)
{

for (j = M-1; j >= -M; j--)
{

C[i][j] = pu*C[i+1][j+1] + pm*C[i+1][j] +
pd*C[i+1][j-1];

C[i][j] = max(strike - S[N][j], C[i][j]);

}
}

}
return C[0][0];

}

Suppose we want to price an ATM American-style call option with S = 50, X = 50,
σ = 0.20, r = 0.06, q = 0.03, N = 4, M = 5, and T = 1. Figure 2.9 is a lattice generated
using the explicitDiffAmerican method.

The value of the call option marching backward from the maturity date T = 1 is $4.76.
It can be shown that as the number of time steps N → ∞, so the explicit difference schemes
will converge to the price using a trinomial diffusion process.

S j i

72.20

63.88

56.51

50.00

44.24

39.14

34.63

22.20

13.88

6.51

0.00

0.00

0.00

0.00

22.20

14.36

6.94

2.24

0.00

0.00

0.00

22.20

14.65

7.97

3.13

0.77

0.00

0.00

22.20

15.09

8.70

4.03

1.33

0.26

0.00

22.20

43210

t 0.00.250.500.751.0

15.47

9.39

4.76

1.91

0.55

0.00

3

2

1

0

–1

–2

–3

Figure 2.9



“London” — 2006/9/8 — 19:21 — page 129 — #151

Section 2.17 Implicit Difference Method 129

2.17 IMPLICIT DIFFERENCE METHOD

If the backward difference, ui,j−ui−1,j

∆t , is used instead of the forward difference for the
time derivative, ∂f

∂t
in (2.49), we will get an implicit difference scheme in which ui+1,,j is

implicitly dependent on ui,j+1, ui,j , and ui,j−1.

ui+1,j = p̃uui,j+1 + p̃mui,j + p̃dui,j−1 (2.53)

where the probabilities p̃u, p̃m, and p̃d are defined in (2.51). If we substitute the present
value of the option fi,j = e−r(T−ti)ui,j into (2.53), we get the risk-neutral expected value:

fi+1,j = e−r∆t(p̃ufi,j+1 + p̃mfi,j + p̃dfi,j−1) (2.54)

If fi,j is a put option, then when the stock price is zero, we get the boundary condition:

fi,−M = X i = 0, 1, . . . , N (2.55)

The value of the option tends to zero as the stock price tends to infinity. We may use the
boundary condition:

fi,M = 0 i = 0, 1, . . . , N (2.56)

The value of the put at maturity (time T ) is:

fN,j = max[X − Sj , 0] j = −M, . . . ,−1, 0, 1, . . .M (2.57)

The following figure, Figure 2.10, is an implicit finite-difference discretization. Equa-
tions (2.55), (2.56), and (2.57) define the value of the put option along the boundaries of

Implicit Finite-Difference Schemex(j)

t(i)

u(i,j) u(i+1,j)

u(i+1,j–1)

u(i–1,j+1)

Figure 2.10



“London” — 2006/9/8 — 19:21 — page 130 — #152

130 Monte Carlo and Numerical Methods Chapter 2

the grid. To solve for the value of f at all other points, we use equation (2.54). First, the
points corresponding to T −∆t are solved. Equation (2.54) with i = N −1 yields 2M −1
linear simultaneous equations:

fN,j = e−r∆t(p̃uN−1,j+1 + p̃mfN−1,j + p̃dfN−1,j−1)
j = −M + 1, . . . , M + 1

(2.58)

Unlike the explicit finite difference method, each equation cannot be solved individually
for the option values at time step i. These equations must be considered with the boundary
conditions. The system of equations can be rewritten as a tridiagonal matrix form. We can
rewrite (2.53) as



p̃m p̃d 0 . . . . . . . . . 0
p̃u p̃m p̃d 0 . . . . . . 0
0 p̃u p̃m p̃d 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 p̃u p̃m p̃d 0
0 . . . . . . 0 p̃u p̃m p̃d

0 . . . . . . . . . 0 p̃u p̃d







ui,−M

ui,−M+1

ui,−M+2

. . .

ui,M−2

ui,M−1

ui,M




=




ui+1,−M

ui+1,−M+1

ui+1,−M+2

. . .

ui+1,M−2

ui+1,M−1

ui+1,M




(2.59)

where the (probability) elements of the matrix in (2.59) are given in (2.51).
Let βU be the upper boundary (for a put βU = 0 if S is much larger than X) and βL be a

lower boundary (for a put βL = X if S = 0) when the asset price reaches the high and low
points, respectively. Then ui+1,−M = βL and ui+1,M = βU . However, we will be using
the partial derivatives (Neumann boundary conditions) of the option price at the boundaries
when we use finite difference schemes. Note that uN,j = f(S) = Max(S−X, 0) for a call
and Max(X − S, 0) for a put option, j = −M, . . . , M . We can rewrite (2.59) as

Mui = bi+1 i = 0, 1, . . . , N − 1 (2.60)

which can be solved for ui because M is nonsingular—i.e., it can be inverted:

ui = M−1b
i+1

(2.61)

where M−1 is the inverse of M. Making use of the boundary conditions, we can solve
(2.61) iteratively starting at time i = N − 1 and solving for uN−1. We know bN because
they are given by the boundary conditions in (2.55), (2.56), and (2.57). After we solve for



“London” — 2006/9/8 — 19:21 — page 131 — #153

Section 2.17 Implicit Difference Method 131

uN−1 at time i = N − 1, we can use it to solve for uN−2 at time i = N − 2 because
bN−1 = uN−1. Thus, we can solve for each ui, i = N − 1, . . . , 0, sequentially working
backward starting from time i = N − 1 until we solve for u0, which gives us a vector
solution of option prices.

Because M is tridiagonal—i.e., only the diagonal, super-diagonal, and sub-diagonal
entries are nonzero—we do not have to store all the zeros, but just the non-zero elements.
The inverse of M, M−1 is not tridiagonal and requires a lot more storage than M.

We can rewrite the system of equations in (2.59) as




1 p∗−M,d 0 . . . . . . . . . 0
0 1 p∗−M+1,d 0 . . . . . . 0
0 0 1 p∗−M+2,d 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 1 p∗M−2,d 0
0 . . . . . . 0 0 1 p∗M−1,d

0 . . . . . . . . . 0 0 1



·




ui,−M

ui,−M+1

ui,−M+2

. . .

ui,M−2

ui,M−1

ui,M




=




u∗
i+1,−M

u∗
i+1,−M+1

u∗
i+1,−M+2

. . .

u∗
i+1,M−2

u∗
i+1,M−1

u∗
i+1,M




(2.62)

where

p∗−M,d =
p̃d

p̃m
, p∗j+1,d =

p̃d

p̃m − p̃up∗j,d
j = −M + 1, . . . , M − 2 (2.63)

and

u∗
i+1,−M =

ui+1,−M

p̃m
, u∗

i+1,j+1 =
ui+1,j+1−p̃uu∗

i+1,j

p̃m − p̃up∗j,d

j = −M + 1, . . . , M − 1
(2.64)

Solving (2.63) and (2.64) from bottom to top, we get:

ui,M = u∗
i+1,M , ui,j = u∗

i+1,j − p∗j,dui,j+1

i = 0 . . .N − 1, j = −M + 1, . . . , M − 1
(2.65)

We could also use an LU decomposition to solve for ui in (2.60) without having to
invert M.



“London” — 2006/9/8 — 19:21 — page 132 — #154

132 Monte Carlo and Numerical Methods Chapter 2

2.18 LU DECOMPOSITION METHOD

In an LU decomposition, we decompose the matrix M into a product of a lower trian-
gular matrix L and an upper triangular matrix U, namely M = LU, of the form:



pm pd 0 . . . . . . . . . 0
pu pm pd 0 . . . . . . 0
0 pu pm pd 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 pu pm pd 0
0 . . . . . . 0 pu pm pd

0 . . . . . . . . . 0 pu pd




=




1 0 . . . . . . 0
�M 1
0 �M−1 1
. . . �M−2 1
. . . . . . . . . . . . . . . . . . . . .

0 �−M+1 1



·




yM zM 0 . . . . . . 0
0 yM−1 zM−1

0 yM−2 zM−2

0 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . .

z−M+1

0 0 0 y−M




(2.66)

In order to determine the quantities �j , yj , and zj , j = −M + 1, . . . , M − 1, we
multiply the two matrices on the right-hand side of (2.66) and equation the result to the
left-hand side. After some simple calculations:

yM = pm

yj = pm − pupd

yj−1
j = −M + 1, . . . , M − 1 (2.67)

zj = −pd, �j = −pu

yj
j = −M + 1, . . . , M − 1

The only quantities we need to calculate and store are the yj . j = −M +2, . . . , M −1. We
can rewrite the original problem in Mui = bi+1 as L(Uui) = bi+1, i = 0, . . . , N − 1,
which may be broken down into two simpler subproblems:

Lqi = bi, Uui+1 = qi (2.68)



“London” — 2006/9/8 — 19:21 — page 133 — #155

Section 2.18 LU Decomposition Method 133

where qi is an intermediate vector. We eliminate the �j from L and the zj from U using
(2.67); the solution procedure is to solve two subproblems:



1 0 . . . . . . 0
− pu

yM
1

0 − pu

yM−1
1

. . .

. . . . . . . . . . . . . . . . . .

0 . . . − pu

y−M+1
1







qi,M

qi,M−1

. . .

. . .

qi,−M+1

qi,−M




=




bi,M−1

bi,M−2

. . .

. . .

bi,−M+2

bi,−M+1




(2.69)

and 


yM pd . . . . . . 0
yM−1 pd 0

0
. . . . . .

. . .

. . . . . . . . . . . . pd

0 . . . y−M







ui,M

ui,M−1

. . .

. . .

ui,−M+1

ui,−M




=




qi,M

qi,M−1

. . .

. . .

qi,−M+1

qi,−M




(2.70)

The intermediate quantities qi,j are found by forward substitution. We can read off the
value of qi,M directly, while any other equation in the system relates only qi,j and qi,j−1.
If we solve the system in decreasing i-incidental order, we have qi,j available at the time
we have to solve for qi,j−1. Consequently, we can find qi,j as follows:

qi,M = bi,M , qi,j = bi,j +
pdqi,j−1

yj−1
, j = −M + 1, . . . , M − 1 (2.71)

Solving (2.70) for the ui,j (after we find the intermediate qi,j ) is achieved through back-
ward substitution. We can read ui+1,−M directly (it is the value of the boundary), and if
we solve in increasing i-incidental order, we can find all of the ui,j in the same manner:

ui+1,−M =
qi,−M

y−M
ui+1,j =

qi,j + pdui+1,j+1

yj
j = −M + 1, . . . , M − 1 (2.72)

At the boundary, we get the following conditions:

ui,M − ui,M−1 = βU (2.73)

ui,−M+1 − ui,−M = βL (2.74)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 134 --- #156

134 Monte Carlo and Numerical Methods Chapter 2

βU and βL are the derivatives at the boundary so that

βU = Si,M − Si,M−1, βL = 0

for a call and

βU = 0, βL = −1 · (Si,−M+1 − Si,−M)

for a put.

2.19 LU DECOMPOSITION EXAMPLE IN MATLAB

The following Matlab code gives an LU decomposition used in a forward difference
scheme.

ForwardDifference.m
%% Forward Difference Scheme
%% Author: Chetan Jain and Jim Carson
%% Boundary value problem for the function u = u(x) defined for
%% 0 <= x <= 1
%% uxx + x*ux + u = 0, u(0) = 1, u(1) = exp(-1/2)
%% error at grid point n, e = u - u(n*delta_x)
%% LU decomposition has been used here
%% Values of e(N/2) have been computed

clear;

for k = 2:12

%% Initialize
delta_x = 2ˆ(-k);
DELTA_x(k-1) = delta_x; %% Storing delta_x for plots
N = 1/delta_x;
alpha = 1/(delta_xˆ2); %% Parameter in finite difference scheme

Nminus = 1;
Nplus = N + 1;

%% Boundary conditions
u_0 = 1;
u_N = exp(-.5);

%% Create vector b
b(Nminus) = alpha*u_0;
for i = Nminus+1:Nplus-3

b(i) = 0;
end
b(Nplus-2) = (alpha + (Nplus-2))*u_N;

%% LU Decomposition
%%%%%%%%%%%%%%%%%%%%



“London” — 2006/9/8 — 19:21 — page 135 — #157

Section 2.19 LU Decomposition Example in Matlab 135

%% Find y
y(Nminus) = 2*alpha;
for i = Nminus+1:Nplus-2

y(i) = (2*alpha + i) - (alphaˆ2 + alpha*i)/y(i-1);
end

%% Find z
for i = Nminus:Nplus-3

z(i) = -(alpha + i);
end

%% Find l
for i = Nminus:Nplus-3;

l(i) = -alpha/y(i);
end

%% Find q
q(Nminus) = b(Nminus);
for i = Nminus+1:Nplus-2

q(i) = b(i) + (alpha*q(i-1))/y(i-1);
end

%% Find u
u(Nplus-1) = u_N;
u(Nplus-2) = q(Nplus-2)/y(Nplus-2);

for i=Nplus-3:-1:1
u(i) = (q(i) + (alpha + i)*u(i+1))/y(i);

end

%% Determine error at grid point:

j = (Nplus/2) + .5;
error(k-1) = u(j) - exp(-.5*((j*delta_x)ˆ2));
k = k+1;

end % end k "for" loop

%% Plots

plot(-log(DELTA_x), -log(abs(error)))
xlabel('-log(delta(x))')
ylabel('-log |error_N_/_2|')
title('Forward Difference Error Plot: -log |error_N_/_2| as a function

of -log(delta(x))')

Figure 2.11 shows a forward difference error plot as function of the space step. In
particular, the error is linearized by taking the negative value of the error logarithm and the
space step.

The figure shows that the logarithm of the inverse error increases as the logarithm of
the inverse of the step size, (∆x)−1, increases.



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 136 --- #158

136 Monte Carlo and Numerical Methods Chapter 2

Forward Difference Error Plot: –log  errorN/2  as a function of –log(delta (x))  
10

9

8

7

6

5

4

3
1 2 3 4 5 6

–log(delta(x))
7 8 9

–l
og

  e
rr

or
N

/2

Figure 2.11

2.20 IMPLICIT DIFFERENCE EXAMPLE IN MATLAB

The following Matlab function prices a vanilla European call/put using the implicit
finite difference method.

Implicit Difference.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: Olivier Rochet (June 2005)
% This function prices a Vanilla European Call/Put using the Implicit
% Scheme of the Finite Difference Method.
% Parameters are as follows:
% OptionType = 1 for a Call or 0 for a Put
% SO = initial asset price ; K = strike price ; r = risk free rate ; q =
% dividend % rate ; T = time to maturity ; sig = volatility ;
% Smin = minimum stock price ;
% Smax = maximum stock price ; Ds = stock price step size ; Dt = time step
% size.
% This function keeps track of the time required to price the option.
% Note: When pricing using Finite Difference Methods, you increase accuracy
% by making the mesh finer and finer. In our case adequate pricing results
% are obtained with Ds = 0.5 and Dt = 1/1200 with Smin = 20 and Smax = 300.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [P] = ImplicitEuro(OptionType,SO,K,r,q,T,sig,Smin,Smax,Ds,Dt)

tic % Keep track of time

% Calculate number of stock price steps and take care of rounding.
N = round((Smax - Smin) / Ds);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 137 --- #159

Section 2.20 Implicit Difference Example in Matlab 137

Ds = (Smax - Smin) / N;
% Calculate number of time steps and take care of rounding.
M = round(T/Dt);
Dt = (T/M);

A=zeros(N,N); % A matrix
S=zeros(N,1); % stock price vector
V=zeros(N,1); % option value vector
matsol=zeros(N,M+1); % solution matrix

for i=1:1:N % Generate S and V vectors
S(i)=Smin + i*Ds;
if OptionType == 1

V(i)=max(S(i)-K,0); % Call: Payoff that is initial condition
else

V(i)=max(K-S(i),0); % Put: Payoff that is initial condition
end

end

for i=1:1:N % Build A matrix
% Set up coefficients
Alpha = 0.5*(sigˆ2)*(S(i)ˆ2)*(Dt/(Dsˆ2));
Betha = (r-q)*S(i)*(Dt/(2*Ds));
Lph=-Alpha+Betha;
Dph=1+r*Dt+2*Alpha;
Uph=-Alpha-Betha;
% Fill A matrix
if i==1

A(i,i) = Dph + 2*Lph;
A(i,i+1) = Uph - Lph;

elseif i==N
A(i,i-1) = Lph - Uph;
A(i,i) = Dph + 2*Uph;

else
A(i,i-1) = Lph;
A(i,i) = Dph;
A(i,i+1) = Uph;

end
end

matsol(:,1)=V; % Initiate first column of matrix solution with payoff
% that is initial condition

invA = Aˆ-1; % Invert matrix A before performing calculations

for k=1:M % Generate solution matrix
matsol(:,k+1)=invA*matsol(:,k);

end

% find closest point on the grid and return price
% with a linear interpolation if necessary

DS = SO-Smin;

indexdown = floor(DS/Ds);
indexup = ceil(DS/Ds);



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 138 --- #160

138 Monte Carlo and Numerical Methods Chapter 2

if indexdown == indexup
P = matsol(indexdown,M+1);

else
P = matsol(indexdown,M+1)+ (DS - matsol(indexdown,M+1))...

*(matsol(indexup,M+1) - matsol(indexdown,M+1))/Ds;
end

toc % Keep track of time

SO = 50; % initial stock price
K = 52; % strike price
r = 0.025; % risk free rate
q = 0.01; % dividend yield
sig = 0.3; % volatility
Smin = 20; % min stock price on grid
Smax = 300; % max stock price on grid
Ds = 0.5; % stock step size
Dt = 1/1200; % time step size

P = ImplicitEuro(OptionType,SO,K,r,q,T,sig,Smin,Smax,Ds,Dt)

Output:

P =
5.38588

The following Matlab code implements the implicit difference scheme method to solve a
PDE using SOR.

ImplicitDifference.m
%% SOR
%% Author: Chetan Jain & Jim Carson
%% This code implements the fully implicit finite difference scheme
%% for the following PDE using SOR:
%% ut = 3yˆ2uyy - 3yuy, 1 < y < e, 0<t<1
%% u(y, 0) = 0, 1 <= y <= e
%% u(1, t) = t, 0<= t <= 1
%% u(e, t) = tˆ2 0 <= t <= 1

clear;
format long;

%% Enter alpha
alpha = 0.1;

%% Choose omega for SOR algorithm
omega = 1;

k=3;

%% Initialize x interval
delta_x = 2ˆ(-k);
LeftEndpoint = 0;
RightEndpoint = 1;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 139 --- #161

Section 2.20 Implicit Difference Example in Matlab 139

InitialNminus = LeftEndpoint/delta_x;
InitialNplus = RightEndpoint/delta_x;

%% Ensure positive indexes for Matlab and same width as x interval
Nminus = 1;
Nplus = InitialNplus - InitialNminus + Nminus;

%% Initialize t interval
delta_t = alpha*(delta_xˆ2);
beta = delta_t/delta_x;
T = 1;
M = T/delta_t;

%% Boundary condition w.r.t. x
for (i = Nminus:Nplus)

% n = InitialNminus + i - 1;
oldu(i,1) = 0;

end

%% Boundary condition w.r.t. t
for (i = 1:M+1)

oldu(1,i) = (i-1)*delta_t;
oldu(Nplus,i) = ((i-1)*delta_t)ˆ2;

end

%% SOR algorithm
%%%%%%%%%%%%%%%%%

for (i = 2:M+1)
newu = ones(Nplus,1) %% Create vector newu
count = 0;
while (sum((newu(2:Nplus-1,1) - oldu(2:Nplus-1,i)).ˆ2) > 0.000001)

count = count + 1;
oldu(2:Nplus-1,i) = newu(2:Nplus-1);

for (j = 2:Nplus-1)
y(j) = (1/(1+6*alpha))*(oldu(j,i-1) + 3*(alpha + beta)*

oldu(j-1,i) - 3*(beta - alpha)*oldu(j+1,i));
newu(j,1) = oldu(j,i) + omega*(y(j) - oldu(j,i));

end
end % end while loop

end

oldu(:,M+1)
plot(oldu(:,M+1))

%% Use linear interpolation to find the requested values

values(Nminus) = oldu(Nminus,M+1); %% Initialize values() with
%% boundary condition

w = 1;

for (i = 1:Nplus)
n = Nminus + i - 1;



“London” — 2006/9/8 — 19:21 — page 140 — #162

140 Monte Carlo and Numerical Methods Chapter 2

if (n*delta_x >= Nminus*delta_x + w*0.2)
values(w+1) = oldu(i,M+1) + (oldu(i-1,M+1)-oldu(i,M+1))*

(n*delta_x - w*0.2 - Nminus*delta_x)/delta_x;
w = w + 1;

end

end

2.21 CRANK-NICOLSON SCHEME

The Crank-Nicolson is a type of finite difference scheme that is used to overcome the
stability limitations imposed by the stability and convergence restrictions of the explicit
finite difference scheme. The Crank-Nicolson converges faster than the implicit and ex-
plicit finite difference schemes. The rate of convergence of the Crank-Nicolson scheme is
O((∆t)2), whereas it is O((∆t)) for the implicit and explicit finite difference methods.

Essentially, the Crank-Nicolson method is an average of the implicit and explicit meth-
ods. Consider a simple diffusion equation. If we use a forward difference approximation
for the time partial derivative, we obtain the explicit scheme

ui+1,j − ui,j

∆t
+ O(∆t) =

ui,j+1 − 2ui,j + ui,j−1

(∆x)2
+ O((∆t)2)

and if we take the backward difference, we get the implicit scheme

ui+1,j − ui,j

∆t
+ O(∆t) =

ui+1,j+1 − 2ui+1,j + ui+1,j−1

(∆x)2
+ O((∆t)2)

Taking the average of these two equations, we get:20

ui+1,j − ui,j

∆t
+ O(∆t) =

1
2

(
ui,j+1 − 2ui,j + ui,j−1

(∆x)2
+

ui+1,j+1 − 2ui+1,j + ui+1,j−1

(∆x)2

)
+

O((∆x)2)

(2.75)

Ignoring the error terms, we get the Crank-Nicolson scheme

ui+1,j −
1
2
α (ui+1,j+1 − 2ui+1,j + ui+1,j−1) =

ui,j +
1
2
α (ui,j+1 − 2ui,j + ui,j−1)

(2.76)

where α = 1
2

∆t
(∆x)2 . Notice that ui+1,j−1, ui+1,j , and ui+1,j+1 are now determined implic-

itly in terms of ui,j , ui,j+1, and ui,j−1. Equation (2.76) can be solved in the same manner
as the implicit scheme in (2.53) because everything on the right-hand side can be evaluated
explicitly if the ui,j are known. Denote the left-hand side of (2.76) by Zi,j . The problem of
solving (2.74) reduces to first computing

Zi,j = (1 − α)ui,j +
1
2
α (ui,j−1 + ui,j+1) (2.77)



“London” — 2006/9/8 — 19:21 — page 141 — #163

Section 2.21 Crank-Nicolson Scheme 141

which is an explicit formula for Zi,j , and then solving

(1 + α)ui+1,j −
1
2
α (ui+1,j−1 + ui+1,j+1) = Zi,j. (2.78)

We can write (2.78) as a linear system

Aui+1 = bi (2.79)

where the matrix A is given by

A =




1 + α −1
2α 0 . . . 0

−1
2
α 1 + α −1

2
α . . .

0 −1
2α . . . 0

. . . . . . −1
2α

0 0 . . . −1
2
α 1 + α


 (2.80)

and the vectors ui+1 and bi are given by

ui+1 =




ui+1,N−+1

. . .

ui+1,0

. . .

ui+1,N+−1


 , bi =




Zi,N−+1

. . .

Zi,0

. . .

Zi,N+−1


+

1
2
α




ui+1,N−

0
. . .

0
ui+1,N+


 (2.81)

The vector on the far right-hand side of (2.81), in bi comes from the boundary conditions
applied at the end points of a finite mesh where x = N−∆x and x = N+∆x. N− and N+

are integers, chosen to be sufficiently large so that no significant errors are introduced.
To implement the Crank-Nicolson scheme, we first generate the vector bi using known

quantities. Then, we use either an LU decomposition solver or an SOR solver to solve the
system (2.79). The scheme is both stable and convergent for all values of α > 0.

We can apply the Crank-Nicolson scheme to the Black-Scholes diffusion equation by
replacing time and space derivatives with finite differences centered at the time step i+1/2.

1
2
σ2

(
(ui+1,j+1 − 2ui+1,j + ui+1,j−1) + (ui,j+1 − 2ui,j + ui,j−1)

2∆x2

)
+

µ

(
(ui+1,j+1 − ui+1,j−1) + (ui,j+1 − ui,j−1)

4∆x

)
+

ui+1,j − ui,j

∆t
−

r

(
ui+1,j + ui,j

2

)
= 0.

which can be written as

puui,j+1 + pmui,j + pdui,j−1 = −puui+1,j+1 −
(pm − 2)ui+1,j − pdui+1,j−1

(2.82)



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 142 --- #164

142 Monte Carlo and Numerical Methods Chapter 2

where

pu = −1
4
∆t

(
σ2

∆x2
+

µ

∆x

)

pm = 1 + ∆t
σ2

2∆x2
+

r∆t

2
(2.83)

pd = −1
4
∆t

(
σ2

∆x2
− µ

∆x

)

We can write (2.82) in the form in (2.77). First, set

Zi,j = puui,j+1 + pmui,j + pdui,j−1

and then solve

−puui+1,j+1 − (pm − 2)ui+1,j − pdui+1,j−1 = Zi,j

using an LU decomposition.

2.22 ASIAN OPTION PRICING USING CRANK-NICOLSON
IN MATLAB

The following Matlab code prices an Asian option using the Crank-Nicolson method.

Asian Option.m
% Author: Jan Vecer
% Crank - Nicolson finite difference
% Thomas algorithm

tic
clear

%parameters

r=0.05; % risk free
sig=.5; % volatility
K1=0; % parametro per floating strike
K2=2; % strike per fixed asian
S0=2;
gamma=0;
T =1; %

%space and time constraints

z=[-1 1];
t=[0 1];

%time grid

n=200;
dt=(t(2)-t(1))/n;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 143 --- #165

Section 2.22 Asian Option Pricing Using Crank-Nicolson in Matlab 143

tvec = t(1):dt:t(2);

%space grid

m=200;
dz=(z(2)-z(1))/m;
zvec = z(1):dz:z(2);

%strategy

%q = zeros(length(tvec),1);
%q = (1/(r*t(2)))*(1-exp(-r*(t(2)-tvec(:))));

thalf=0.5*(tvec(1:n)+tvec(2:n+1));

q = (1/(r*t(2)))*(1-exp(-r*(t(2)-thalf(:))));

%constants

mu=dzˆ2/dt;

u=zeros(n+1,m+1);

%terminal condition

%u(n+1,:)=ones;
%u(n+1,:)=zvec;

u(n+1,:)=max(zvec-K1,0);

%computation

for i=n:-1:1,

%if mod(i,20)==0
% fprintf('%3.0f',i)
%end

%tridiagonal terms

a=(sigˆ2)*(zvec(3:m)-q(i)).ˆ2;
b=(sigˆ2)*(zvec(2:m)-q(i)).ˆ2 + 2*mu;
c=(sigˆ2)*(zvec(2:m-1)-q(i)).ˆ2;
d=(sigˆ2)*(zvec(2:m)-q(i)).ˆ2 - 2*mu;

%explicit part of the scheme (right hand side)

aux = d.*u(i+1,2:m)-[(1/2)*c.*u(i+1,3:m),0]-[0,(1/2)*a.*u(i+1,2:m-1)];
aux(1) = aux(1) - (1/2)*((sigˆ2)*(q(i)-zvec(2)).ˆ2*u(i+1,1));
aux(m-1) = aux(m-1)-(1/2)*((sigˆ2)*(q(i)-zvec(m)).ˆ2*u(i+1,m+1));

%left hand side of the equation

Dleft=-diag(b)+(1/2)*diag(c,1)+(1/2)*diag(a,-1);

%corner elements of the matrix



“London” — 2006/9/8 — 19:21 — page 144 — #166

144 Monte Carlo and Numerical Methods Chapter 2

Dleft(m-1,m-1)=Dleft(m-1,m-1)+ (sigˆ2)*(q(i)-zvec(m)).ˆ2;
Dleft(m-1,m-2)=Dleft(m-1,m-2)- (1/2)*(sigˆ2)*(q(i)-zvec(m)).ˆ2;
Dleft(1,1) = Dleft(1,1) + (sigˆ2)*(q(i)-zvec(2)).ˆ2;
Dleft(1,2) = Dleft(1,2) - (1/2)*(sigˆ2)*(q(i)-zvec(2)).ˆ2;

%solving implicit part of Crank Nicolson

u(i,2:m)=(Dleft\aux')';

%corner elements

u(i,m+1)=2*u(i,m)-u(i,m-1);
u(i,1)=2*u(i,2)-u(i,3);

end

%prices
point(1)=(1-exp(-r*t(2)))/(r*t(2))-exp(-r*t(2))*(K2/S0);
S0*spline(zvec,u(1,:),point(1)), m, n

toc

ans =

0.2464

m =

200

n =

200

Elapsed time is 6.995622 seconds.

ENDNOTES

1. Note that to compute each simulated path, the initial asset price, asset volatility, time to
maturity, number of time steps, and drift term need to be specified.

2. E[NN′] = E

[
χ2(1) 0
0 χ2(1)

]
=
[

1 0
0 1

]
= I. Note that the expectation (mean) of a

chi-squared random variable is its number of degrees of freedom.
3. See Numerical Recipes in C for the code implementing the algorithm, pgs. 96–98. Also see

the Template Numerical Toolkit.
4. Clewlow, L. and Strickland, C. (1998), pg. 128.
5. See http://math.nist.gov/tnt/.
6. See http://www.math.keio.ac.jp/matumoto/emt.html.
7. Su, Y. and Fu, M. (2000), pg. 587.
8. Ibid., pg. 587.



“London” — 2006/9/8 — 19:21 — page 145 — #167

Endnotes 145

9. Ibid., pg. 587.
10. The mathematical definition of discrepancy of n sample points is Dn =

sup
J

∣∣∣A(J;n)
n

− V (J)
∣∣∣ where J =

d∏
i=1

[0, ui) = [0, u1)d, ui ≤ 1, d is the dimension, A(J ; n)

are the number of points landed in region J , and V (J) is the volume of J .
11. There are other low-discrepancy sequences, including Halton (1960), Niederreiter (1992),

and Niederreiter and Shiue (1995).
12. The code was adapted from Austen McDonald (http://www.prism.gatech.edu/

∼gte363v/montecarlo/), who massaged the original Sobol version into a parallel version.
13. Clewlow, L. and Strickland, C. (1998), pg. 131.
14. Clewlow, L. and Strickland, C. (1998), pg. 95.
15. The material in the section follows the work of Madan and Carr (1999). See Madan and

Carr (1999), “Option Valuation Using the Fast Fourier Transform”; see also Dempster and
Hong, Spread Option Valuation and the Fast Fourier Transform, Judge Institute of Man-
agement Studies at the University of Cambridge (July 2000).

16. See Madan and Carr (1999), “Option Valuation Using the Fast Fourier Transform,” pg. 6.
17. Ibid, pg. 5.
18. Ibid., pg. 11.
19. In order to keep consistent with the notion given—e.g., Sj , j = −M . . .− 1, 0, 1, . . .M—

we allow array indices to be negative. Although this is not considered good program-
ming practice, the array indices cannot go out of bounds because proper memory is al-
located in initialization to handle the total memory needed during the implementation.
The reader can easily modify the code so that the indices remain positive—e.g., go from
j = 0, 1, . . .2∗M—because there are |M| nodes above and below the nodes in the middle.

20. It can be shown that the error terms in (2.73) are accurate to rather than



“London” — 2006/9/8 — 19:21 — page 146 — #168



“London” — 2006/9/8 — 19:21 — page 147 — #169

C H A P T E R 3

COPULA FUNCTIONS

SECTIONS
3.1 Definition and Basic Properties of Copula Functions

3.2 Classes of Copula Functions
3.3 Archimedean Copulae

3.4 Calibrating Copulae
3.5 Numerical Results for Calibrating Real-Market Data

3.6 Using Copulas in Excel

Endnotes

Copula functions are essential instrumentalities in the pricing of structured credit prod-
ucts given the ability of these functions to incorporate correlation dependencies of the un-
derlying credits. They can be characterized in terms of density functions (for elliptical cop-
ulae) and generator functions (for Archimedean copulas). Copulae are instrumental in pric-
ing credit products like credit default swaps, credit swap indices (CDXs), and collateralized
debt obligations (CDOs) that require modeling dependency and correlation structures of
the underlying reference entities. In §3.1, we provide the definition and basic properties of
copula functions. In §3.2, we discuss classes of copula functions, including the multivari-
ate Gaussian copula and multivariate Student’s t copula. In §3.3, we review Archimedean
copulae, a large and flexible class of copulae for modeling dependency structures. In §3.4,
we discuss calibrating copulae. We review using the exact maximum likelihood method for
the Gaussian and Student’s t copula. We discuss the inference functions for margins meth-
ods (IFM), as well as the canonical maximum likelihood method for calibrating the copula
parameters. We also discuss the Bouyè, Mashal, and Zeevi methods. In addition, we pro-
vide Matlab implementations for both of these calibration methods. In §3.5, we discuss and
provide numerical results from calibrating copulae to real-market data. The work follows
directly from Galiani (2003). In §3.6, some Excel copulae examples in Excel are given.

3.1 DEFINITION AND BASIC PROPERTIES OF
COPULA FUNCTIONS

An n-dimensional copula is a function C : [0, 1]n → [0, 1] that has the following
properties:

147



“London” — 2006/9/8 — 19:21 — page 148 — #170

148 Copula Functions Chapter 3

1. C(u) is increasing in each component uk with k ∈ {1, 2, ..., n}.

2. For every vector u ∈ [0, 1]n, C(u) = 0 if at least one coordinate of the vector u is
0, and C(u) = uk if all the coordinates of u are equal to 1 except the k-th one.

3. For every a, b ∈ [0, 1]n with a ≤ b given a hypercube B = [a, b] =
[a1, b1] × [a2, b2] × · · · × [an, bn] whose vertices lie in the domain of C , its vol-
ume1 VC(B) ≥ 0.

The definition shows that C is a multivariate distribution function with uniformly dis-
tributed marginals. The statistical interpretation of the preceding properties will become
further meaningful once we adapt the definition of copula functions to a vector or random
variables. But first, we will need an auxiliary theory, which constitutes one of the most
relevant results in the copula methodology.
Theorem 1 (Sklar): Let G be an n-dimensional distribution function with margins
F1, F2, . . . , Fn. Then there exists an n-dimensional copula C such that, for x ∈ 
n, we
have

G(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (3.1)

Moreover, if F1, F2, . . . , Fn are continuous, then C is unique. Sklar’s theorem ex-
presses the basic idea of dependence modeling via copula functions, by stating that for
any multivariate distribution function, the univariate marginals (the distribution functions
in case of random variables) and the dependence structure can be separated, with the lat-
ter completely described by a copula function. As Scaillet (2000), Sklar’s theorem has an
important corollary:
Corollary 1: Let G and C be, respectively, an n-dimensional distribution function (with
continuous univariate marginals (F1, F2, . . . , Fn) and an n-dimensional copula function.
Then for any u ∈ [0, 1]n, we have

C(u1, u2, . . . , un) = G(F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)), (3.2)

where F−1
i (ui) denotes the inverse of the cumulative distribution function, namely, for

ui ∈ [0, 1], F−1
i (ui) = inf{x : Fi(x) ≥ ui}. The importance of equation (3.2) will be

clear in the following sections after we present a general framework for simulation of ran-
dom numbers generated by a specific copula. Let (X1 , X2, . . . , Xn)′ be an n-dimensional
vector of random variables with distribution functions (F1, F2, . . . , Fn) and joint distribu-
tion function G. Then, by Sklar’s theorem, if (F1, F2, . . . , Fn) are continuous functions,
(X1, X2, ...., Xn)′ has a unique copula, as described by the following representation:

G(x1, x2, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)
= C(F1(x1), F2(x2), . . . , Fn(xn))

This representation of copula functions allows to further re-establish the last two prop-
erties of definition 1. In fact, property (2) follows from the fact that, by the so-called
“probability-integral transform” (see Casella and Berger [2000]), if the random variables
X and Y have continuous distribution function FX and FY , then the random variables



“London” — 2006/9/8 — 19:21 — page 149 — #171

Section 3.2 Classes of Copula Functions 149

U = FX(X) and V = FY (Y ) are uniformly distributed on [0, 1] and, therefore, in the
bivariate case,

C(u, 1) = P (U ≤ u, V ≤ 1) = P (U ≤ u) = u

and

C(u, 0) = P (U ≤ u, V ≤ 0) = 0

Property (3) ensures that the copula function C respects the defining characteristic of a
proper multivariate distribution function, assigning non-negative weights to all rectangular
subsets in [0, 1]n.

By applying Sklar’s theorem and by exploiting the relation between the distribution and
the density function,2 we can easily derive the multivariate copula density
c(F1(x1), . . . , Fn(xn)) associated with a copula C(F1(x1), . . . , Fn(xn)):

f(x1, ..., xn) =
∂n[C(F1(x1), ..., Fn(xn))]

∂F1(x1)...∂Fn(xn)
·

n∏
i=1

fi(xi)

= c(F1(x1), ..., Fn(xn)) ·
n∏

i=1

fi(xi),

where we define

c(F1(x1), . . . , Fn(xn)) =
f(x1 , . . . , xn)

n∏
i=1

fi(xi)
. (3.3)

As we will see in §3.2, knowledge of the associated copulate density will be particularly
useful in order to calibrate its parameters to real-market data.

3.2 CLASSES OF COPULA FUNCTIONS

There are different families of copula functions that can be classified. The most com-
mon are the Gaussian and t copulas belonging to the elliptical family.3

Multivariate Gaussian Copula

Definition 1: Let R be a symmetric, positive definite matrix with diag(R) = 1 and let
ΦR be the standardized multivariate normal distribution correlation matrix R. Then the
multivariate Gaussian copula is defined as

C(u1, u2, . . . , un; R) = ΦR(Φ−1(u1), Φ−1(u2), . . . , Φ−1(un)), (3.4)



“London” — 2006/9/8 — 19:21 — page 150 — #172

150 Copula Functions Chapter 3

where Φ−1(u) denotes the inverse of the normal cumulative distribution function. The
associated multinormal copula density is obtained by applying equation (3.3):

c(Φ(x1), . . . , Φ(xn)) =
fgaussian(x1, . . . , xn)

n∏
i=1

fgaussian
i (xi)

=
1

(2π)n/2|R|1/2 exp
(
−1

2x′R−1x
)

n∏
i=1

1√
2π

exp
(
−1

2
x2

i

)

Thus, fixing ui = Φ(xi), and denoting ς = (Φ−1(u1), . . . , Φ−1(un))′ the vector of
the Gaussian univariate inverse distribution functions, we have the following:

c(u1, u2, . . . , un; R) =
1

|R|1/2
exp

[
−1

2
ς ′(R−1 − I)ς

]
(3.5)

Figure 3.1 shows the surface of the Gaussian copula density as depicted in (3.5) for the
bivariate case with correlation r.

200

150

100

50

0

0 0
0.2

0.4
0.6

0.8
1

1

0.5

Figure 3.1 Gaussian copula density for bivariate case



“London” — 2006/9/8 — 19:21 — page 151 — #173

Section 3.2 Classes of Copula Functions 151

The following Matlab code computes the Gaussian copula density surface.

gaussian copula density.m
% This script plot the density of a bivariate gaussian copula function
% Pairwise correlation is set at 50%

R=ones(2,2);
r=.5;

R(1,2)=r;
R(2,1)=r;
X=zeros(2,1);
U=zeros(2,1);
gc=zeros(39,39);
h=0;

for i=0.025:.025:.975
h=h+1;
k=0;
for j=0.025:.025:.975

X=[i;j];
k=k+1;
U=norminv(X);
block1=1/(det(R)ˆ0.5);
block2=-0.5*U'*(inv(R)-ones(2,2))*U;
gauss_grid(h,k)=block1*exp(block2);

end
end
surf(gauss_grid)

Multivariate Student’s T Copula

Definition 2: Let R be a symmetric, positive definite matrix with diag(R) = 1 and let
TR,v be the standardized multivariate Student’s t distribution with correlation matrix R and
v degrees of freedom.4 Then the multivariate Student’s t copula function is defined as

C(u1, u2, . . . , un; R, v) = TR,v(t−1
v (u1), t−1

v (u2), . . . , t−1
v (un)) (3.6)

where t−1
v (u) denotes the inverse of the Student’s t cumulative distribution function. The

associated Student’s t copula density is obtained by applying equation (3.3):

c(u1, u2, ..., un; R, v) =
fStudent(x1, . . . , xn)

n∏
i=1

fStudent
i (xi)

(3.7)

= |R|−1/2 Γ
(

v+n
2

)
Γ
(

v+1
2

)
[

Γ
(

v
2

)
Γ
(

v+1
2

)
]n

(
1 + ς′R−1ς

v

)− v+n
2

n∏
i=1

(
1 + ς2

i

v

)− v+1
2

where ς = (t−1
v (u1), t−1

v (u2), . . . , t−1
v (un))′.



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 152 --- #174

152 Copula Functions Chapter 3

a

8

6

4

2

0

0 0
0.2

0.4
0.6

0.8
1

1

0.5

Figure 3.2 Student’s t copula density for bivariate case

Figure 3.2 shows the surface of the Student’s t copula density as given in (3.7) for a
bivariate case with correlation r.

The following Matlab code computes a t copula density surface:

t copula density1.m
% This script plots che bivariate Student's t copula with 50% correlation
% and 3 degrees of freedom

R=ones(2,2);
r= .5;

R(1,2)=r;
R(2,1)=r;
X=zeros(2,1);
U=zeros(2,1);
gc2=zeros(39,39);
h=0;
DoF=3; % degrees of freedom
d=2; %dimension
Block_1=0;
Block_2=0;
for i=0.025:.025:.975

h=h+1;



“London” — 2006/9/8 — 19:21 — page 153 — #175

Section 3.3 Archimedean Copulae 153

k=0;
for j=0.025:.025:.975

X=[i;j];
k=k+1;
y=(tinv(X,DoF));
A=gamma((DoF+d)/2)*((gamma(DoF/2))ˆ(d-1));
B=((gamma((DoF+1)/2))ˆd)*((det(R))ˆ0.5);
Block_1=A/B;
A=0;
B=0;

Block_2=1;
for l=1:d

C=(1+((y(l)ˆ2)/DoF))ˆ(-(DoF+1)/2);
Block_2=Block_2*C;
C=0;

end
D=y'*inv(R)*y/DoF;
Block_3=(1+D)ˆ(-(DoF+d)/2);
D=0;
t_grid(h,k)=(Block_1/Block_2)*Block_3;

end
end

surf(t_grid)

3.3 ARCHIMEDEAN COPULAE

Archimedean copulae constitute an important class of copula functions not only be-
cause of their analytical tractability (many of the most common Archimedean copulae have
closed form expression), but also because they provided a large spectrum of different de-
pendence structures.

Following the analysis of Nelson (1999), consider a function ϕ : [0, 1] → [0,∞) such
that:

• ϕ is continuous.

• ϕ′(u) < 0 for all u ∈ [0, 1].

• ϕ(1) = 0.

Define the pseudo-inverse of ϕ as the function ϕ[−1] : [0,∞) → [0, 1] such that:

ϕ[−1](t) =
{

ϕ−1(t) for 0 ≤ t ≤ ϕ(0)
0 for ϕ(0) ≤ t ≤ ∞

Now, if ϕ is convex, then the function C : [0, 1]2 → [0, 1], defined as

C(u, v) = ϕ[−1] [ϕ(u) + ϕ(v)] (3.8)

is an Archimedean copula and ϕ is called the generator of the copula. Furthermore, if
ϕ(0) = ∞, the pseudo-inverse describes an ordinary inverse function (that is, ϕ[−1] =
ϕ−1) and we call ϕ and C , respectively, a strict generator and a strict Archimedean copula.



“London” — 2006/9/8 — 19:21 — page 154 — #176

154 Copula Functions Chapter 3

Gumbel Copula: Let ϕ(t) = (− ln t)θ with θ ≥ 1. Then, using equation (3.8), we have

CGumbel
θ (u, v) = ϕ−1[ϕ(u) + ϕ(v)] = exp

{
−
[
(− ln u)θ + (− lnv)θ

]1/θ
}

.

Clayton Copula: Let ϕ(t) = (t−θ−1)/θ with θ ∈ [−1,∞)\{0}. Then, using (3.8), we
have

CClayton
θ (u, v) = max[(u−θ + v−θ − 1)1/θ, 0].

Note that if θ > 0, then ϕ(0) = ∞, and we can simplify the preceding equation as

CClayton
θ (u, v) = (u−θ + v−θ − 1)1/θ. (3.9)

Frank Copula: Let ϕ(t) = − ln e−θt−1
e−θ−1 with θ ∈ 
 \ {0}. Then, using equation (3.8),

we have

CFrank
θ (u, v) = −1

θ
ln
[
1 +

(e−θu − 1)(e−θv − 1)
e−θ − 1

]
. (3.10)

We can generalize the Archimedean copulae framework to the multivariate case. Fol-
lowing the analysis of Embrechts, Lindskog, and McNeil (2001), we have the following
theorem:
Theorem 2(Kimberling): Let ϕ : [0, 1] → [0,∞) be a continuous, strictly decreasing
function such that ϕ(0) = ∞ and ϕ(1) = 0, and let ϕ−1 be the inverse of ϕ. Then, for all
n ≥ 2, the function C : [0, 1]n → [0, 1] defined as

C(u1, u2, . . . , un) = ϕ−1[ϕ(u1) + ϕ(u2) + . . . + ϕ(un)]

is an n-dimensional Archimedean copula if and only if ϕ−1 is completely monotone5 on
[0,∞).

3.4 CALIBRATING COPULAE

Calibrating copula parameters to real-market data is an important step in pricing struc-
tured credit products to ensure accuracy and robustness in pricing. In the following analysis,
we consider a random sample represented by the time series X = (X1t, X2t, ..., XNt)T

t=1

where N stands for the number of underlying assets—e.g., loans—and T represents the
number of observations (on a daily monthly, quarterly, or yearly basis) available.

Exact Maximum Likelihood Method (EML)

Let Θ be the parameter space and θ be the k-dimensional vector of parameters to be es-
timated. Let Lt(θ) and lt(θ) be, respectively, the likelihood and the log-likelihood function
for the observation at time t. Define the log-likelihood function l(θ) as the following:

l(θ) =
T∑

t=1

lt(θ) (3.11)



“London” — 2006/9/8 — 19:21 — page 155 — #177

Section 3.4 Calibrating Copulae 155

Consider the canonical expression for density function as expressed by equation (3.3).
We can expand (3.11) as follows:

l(θ) =
T∑

t=1

ln c(F1(xt
1), ..., FN(xt

N )) +
T∑

t=1

N∑
n=1

ln fn(xt
n). (3.12)

Define the maximum likelihood estimator, as the vector θ̂ such that

θ̂ = (θ̂1, θ̂2, . . . , θ̂k) ∈ arg max{l(θ) : θ ∈ Θ}.

Gaussian Copula: Let Θ = {R : R ∈ 
NxN} denote the parameter space with R
being a symmetric and positive definite matrix. Applying equation (3.12) to the case of the
gaussian copula density given in equation (3.5) yields

lgaussian(θ) = −T

2
ln |R| − 1

2

T∑
t=1

ς
′
t(R

−1 − I)ςt. (3.13)

Assuming that the log-likelihood function in (3.13) is differentiable in θ and that the
solution of the equation ∂

∂θ
�(θ) = 0 defines a global maximum, we can easily recover

the maximum likelihood estimator θ̂ = R̂ for the gaussian copula whose log-likelihood is
given in equation (3.13):

∂

∂R−1
�gaussian(θ) =

T

2
R − 1

2

T∑
t=1

ς ′tςt

and therefore

R̂ =
1
T

T∑
t=1

ς ′tςt. (3.14)

Student’s t Copula: Let θ =
{
(v, R) : v ∈ [2,∞), R ∈ 
NxN

}
, with R being a sym-

metric and positive definite matrix, denote the parameter space. We can apply (3.14) to the
case of the Student’s t copula density given in (3.7). In this case, the calculation is more
involved, leading to the following:

�Student(θ) = T ln
Γ
(

v+N
2

)
Γ
(

v
2

) − NT ln
Γ
(

v+1
2

)
Γ
(

v
2

) − T

2
ln |R| −

v + N

2

T∑
t=1

ln
(

1 +
ς ′tR

−1ςt
v

)
+

v + 1
2

T∑
t=1

N∑
n=1

ln
(

1 +
ς2
nt

v

)
.

(3.15)

Unlike the case of Gaussian copula, the calibration of the Student’s t copula via the
EML method is more complicated because it requires a simultaneous estimation (see, for



“London” — 2006/9/8 — 19:21 — page 156 — #178

156 Copula Functions Chapter 3

example, Johnson and Kotz (1972)) of the parameters of the marginals and the parameters
related to the dependence structure. But this procedure, as indicated by Mashal and Naldi
(2002), requires a large amount of data and is computationally intensive. For that reason,
the alternative methodologies of the inference functions for margins method (IFM) and
canonical maximum likelihood method (CML) are employed.

The Inference Functions for Margins Method (IFM)

The IFM, based on the work of Joe and Xu (1996), exploiting the fundamental idea of
copula theory (that is, the separation between the univariate margins and the dependence
structure), expresses equation (3.12) as

�(θ) =
T∑

t=1

ln c(F1(xt
1; θ1), . . . , FN(xt

N ; θN); α) +
T∑

t=1

N∑
n=1

lnfn(xt
n; θn). (3.16)

The peculiarity of (3.16) relies in the separation between the vector of the parameters
for the univariate marginals θ = (θ1 , . . . , θN ) and the vector of the copula parameters α.
In other words, the calibration of the copula parameters to market data is performed via a
two-stage procedure:

1. Estimation of the vector of the parameters for the marginal univariates θ = (θ1, ..., θN)
via the EML method. For instance, considering the time series of the ith underlying
asset, we have6

θ̂i = arg max
θt

T∑
t=1

ln fi(xt
i; θi).

2. Estimation of the vector of copula parameters α, using the previous estimators θ̂ =
(θ̂1 . . . , θ̂N):

α̂IFM = arg max
α

T∑
t=1

ln c
(
F1(xt

1; θ̂1), . . . , FN(xt
n; θ̂N); α

)
.

The IFM estimator is then defined as the vector θIFM = (θ̂, α̂IFM).

The Canonical Maximum Likelihood Method (CML)

Both the EML and IFM methods are based on an exogenous specification, and thus
imposition, of the parametric form of the univariate marginals.7 An alternative method,
which does not imply any a priori assumption on the distributional form of the marginals,
is the CML method and relies on the concept of the empirical marginal transformation.
The transformation tends to approximate the unknown parametric marginals F̂n(·), for n =
1, . . . , N , with the empirical distribution functions F̂n(·), defined as follows

F̂n(·) =
1
T

T∑
t=1

1{Xnt≤·} for n = 1, . . . , N, (3.17)



“London” — 2006/9/8 — 19:21 — page 157 — #179

Section 3.5 Numerical Results for Calibrating Real-Market Data 157

where 1{Xnt≤·} represents the indicator function. The CML is then implemented via a
two-stage procedure:

1. Transformation of the initial data set X = (X1t, X2t, . . . , XNt)T
t=1 into uniform

variates, using the empiricial marginal distribution—that is, for t = 1, . . . , T , let

ût = (ût
1, û

t
2, . . . , ût

N) =
⌊
F̂1(X1t), F̂2(X2t), . . . , F̂N(XNt)

⌋
.

2. Estimation of the vector of the copula parameters α, via the following relation:

α̂CML = arg max
α

T∑
t=1

ln c
(
ût

1, û
t
2, . . . , ût

N ; α
)
.

The CML estimator is then defined as the vector θCML = α̂CML.

3.5 NUMERICAL RESULTS FOR CALIBRATING
REAL-MARKET DATA

In this section, we will present an application, as shown by Galiani (2003), of the CML
method for calibrating the parameter of the Student’s t copula to real-market data. We
consider a portfolio of four stocks (Fiat, Merrill Lynch, Ericsson, and British Airways)
with 990 daily observations spanning from August 14, 1999 to July 15, 2003. There are two
approaches provided: the first developed by Bouyè et al., based on a recursive optimization
procedure for the correlation matrix; the second, proposed by Mashal and Zeevi, based on
the rank correlation estimator given by the Kendall’s tau.

Bouy„e, Durrelman, Nikeghbali, Riboulet, and Roncalli Method

This procedure is composed of a series of subsequent steps and is summarized and
implemented as follows:

1. Starting from the random sample X of stock returns, transform the initial data set
into the set of uniform variates Û using the empirical marginal transformation and
using the canonical maximum likelihood method (CML) given in §3.4.3.

2. For each value of the degrees of freedom v on a specified range, assess the correlation
matrix RCML

v using the following routine:

i. For each fixing date t, let ξt = (t−1
v (û1t), t−1

v (u2t), . . . , t−1
v (û2t))′ for t =

1, . . . , T .

ii. Estimate the exact maximum likelihood (EML) estimator R̂ of the correlation
matrix for the Gaussian copula, using equation (3.14). Then set R0 = R̂.

iii. Obtain Rv,k+1 via the following recursive scheme:8

Rv,k+1 =
v + N

Tv

T∑
t=1

ξ′tξt(
1 +

ξ′
tR−1

v,kξt

v

)



“London” — 2006/9/8 — 19:21 — page 158 — #180

158 Copula Functions Chapter 3

iv. Rescale matrix entries in order to have unit diagonal elements:

(Rv,k+1)i,j =
(Rv,k+1)i,j√

(Rv,k+1)i,i (Rv,k+1)j,j

v. Repeat procedure iii–iv until Rv,k+1 = Rv,k and set RCML
v = Rv,k.

3. Find the CML estimator vCML of the degrees of freedom by maximizing the log-
likelihood function of the Student’s t copula density:

vCML = arg max
v∈Θ

T∑
t=1

log cStudent(ût
1, û

t
2, . . . , ût

N ; RCML
v , v)

Figure 3.3 plots the log-likelihood function of the t copula density as a function of the
degrees of freedom, by which we can see that the estimated number of degrees of freedom
is 10.

1600

1580

1560

1540

1520

1500Lo
g-

Li
ke

lih
oo

d 
F

un
ct

io
n 

V
al

ue

1480

1460
2 4 6 8 10

Degrees of Freedom

CML Estimation (Bouyé Approach)

CML Estimator
DoF=10

12 14 16 18

Figure 3.3 Log-likelihood function of the t copula density using Bouyè method



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 159 --- #181

Section 3.5 Numerical Results for Calibrating Real-Market Data 159

IMF t CORR.m
function [U_sample,CORR]=IFM_t_CORR(R,DoF,M)

% This function, starting from a random sample M, estimate the correlation
% matrix for the Student's t copula via the Bouye(2000), p.42 algorithm.
% Moreover it returns the uniform variate sample via the
% probability-integral transformation with Student's t margins.
% R: correlation matrix for the gaussian copula
% DoF: degrees of freedom for the multivariate t copula density
% M: random sample of equity returns

N=size(R,2);
T=size(M,1);
U_emp=zeros(size(M));
U_st=zeros(size(M));
t_CORR=zeros(N);
CORR=zeros(N);

for n=1:N
U_emp(:,n)=emp_dis(M(:,n));

end

for i=1:T
U_st(i,:)=tinv(U_emp(i,:),DoF);

end

for k=1:100
dummy_CORR=zeros(N);

if k==1
for i=1:T

term=(U_st(i,:)'*U_st(i,:))/(1+(U_st(i,:)*
inv(R)*U_st(i,:)'/DoF));

dummy_CORR=dummy_CORR+term;
end
t_CORR=dummy_CORR*(DoF+N)/(T*DoF);
for xx=1:N

for yy=1:xx
CORR(xx,yy)=t_CORR(xx,yy)/(sqrt(t_CORR(xx,xx))*

sqrt(t_CORR(yy,yy)));
CORR(yy,xx)=CORR(xx,yy);

end
end

else
for i=1:T

term=(U_st(i,:)'*U_st(i,:))/(1+(U_st(i,:)*inv(CORR)*
U_st(i,:)'/DoF));

dummy_CORR=dummy_CORR+term;
end
t_CORR=dummy_CORR*(DoF+N)/(T*DoF);
for xx=1:N

for yy=1:xx
CORR(xx,yy)=t_CORR(xx,yy)/(sqrt(t_CORR(xx,xx))*

sqrt(t_CORR(yy,yy)));
CORR(yy,xx)=CORR(xx,yy);

end
end



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 160 --- #182

160 Copula Functions Chapter 3

end
end

U_sample=U_st;

emp dis1.m
function X=emp_dis(Y)
% Compute the empirical marginal transformation, for the asset return
% samples, as described in Mashal(2002), "Beyond Correlation", pag.15
% As input we provide the i-th row of our d-columns sample
% i: #observation d: #asset in the basket

X=zeros(length(Y),1); % create a vector of d dimension
count=0;
for k=1:length(Y)

for s=1:length(Y)
if Y(s)<=Y(k)

count=count+1;
end

end
X(k)=count/length(Y); % compute the empirical

% distribution function
if X(k)==1

X(k)=.999999; % otherwise, if 1, then we have
% problem in using the t inverse

end
count=0;

end

t copula density2.m
function c=t_copula_density(U,DoF,Corr)

% gives the t-copula density for fixed input of "U" ( t-th row of the
% uniform sample with N elements), degrees of freedom "DoF", and
% correlation matrix "Corr"
%
N=length(U);
A=0;
B=0;
C=0;
D=0;
Block_1=0;
Block_2=1;
Block_3=0;

% Now, we split formula 4, pag. 12 of Mashal(2002) "Beyond Correlation" in
% 3 blocks

A=gamma((DoF+N)/2)*((gamma(DoF/2))ˆ(N-1));
B=((gamma((DoF+1)/2))ˆN)*((det(Corr))ˆ0.5);
Block_1=A/B;



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 161 --- #183

Section 3.5 Numerical Results for Calibrating Real-Market Data 161

for n=1:N
C=(1+((U(n)ˆ2)/DoF))ˆ(-(DoF+1)/2);
Block_2=Block_2*C;

end

D=U'*inv(Corr)*U/DoF;
Block_3=(1+D)ˆ(-(DoF+N)/2);

c=(Block_1/Block_2)*Block_3;

pseudo sample IFM.m
% Starting from a random sample M, this script, generates a matrix (T*N) of
% uniform variates through the probability-integral transformation with
% gaussian margins.

% T: # of observation in the time series for each asset
% N: # of assets

M = xlsread('C:\copula\DataSet_new.xls'); % equity return database
N=size(M,2);
T=size(M,1);
ML_CORR=zeros(N);
Average=zeros(N,1);
Deviation=zeros(N,1);
U_nor1=zeros(size(M));
U_nor2=zeros(size(M));

for i=1:N
Average(i)=mean(M(:,i));
Deviation(i)=std(M(:,i),1);
U_nor1(:,i)=normcdf((M(:,i)-Average(i))/Deviation(i));

end

for i=1:T
U_nor2(i,:)=norminv(U_nor1(i,:));
ML_CORR=ML_CORR+U_nor2(i,:)'*U_nor2(i,:);

end

ML_CORR=ML_CORR/T;

t copula CML
function MLE=t_copula_CML(DoF)
% calculate the target function to be maximized as described in Step 3
% pag. 43 of Mashal's (2002) paper
pseudo_sample
T=size(U,1); % number of observation for each stock
Log_L=zeros(T,1);
Sum_Log_L=0;
% For each observation compute the t-copula density and sum over
for t=1:T

Log_L(t)=log(t_copula_density(U(t,:),DoF,CORR_EST));



“London” — 2006/9/8 — 19:21 — page 162 — #184

162 Copula Functions Chapter 3

Sum_Log_L=Sum_Log_L+Log_L(t);
end

MLE=Sum_Log_L;

Mashal and Zeevi Method

The Bouyè procedure can be computationally heavy when dealing with several under-
lying assets and large data sets, and, as pointed out by Mashal and Zeevi (2002), affected
by numerical instability due to the inversion of close to singular matrices. Consequently,
Mashal and Zeevi propose to estimate the correlation matrix for the Student’s t copula via
a rank correlation estimator, namely the Kendall’s tau, exploiting the result included in the
following theorem:
Theorem 3: Let X ∼ EN(µ, Σ, ϕ), where for i, j ∈ {1, 2, . . . , N}, Xi and XJ are
continuous. Then,

τ (Xi, Xj) =
2
π

arcsin Ri,j (3.18)

where EN(µ, Σ, ϕ), denotes the N-dimensional elliptical distributionwith parameters (µ, Σ, ϕ),
and τ (Xi, Xj) and Ri,j indicate, respectively, the Kendall’s tau9 and the Pearson’s linear
correlation coefficient for the random variables (Xi, Xj).
Proof: See Lindkog, McNeil, and Schmock (2001).

1. Starting from the random sample X of stock prices, transform the initial data set into
the set of uniform variate Û using the empirical marginal transformations described
in §3.4.3.

2. From equation (3.18), estimate the correlation matrix RCML.

3. Find the CML estimator vCML of the degrees of freedom by maximizing the log-
likelihood function of the Student’s t copula density:

vCML = arg max
v∈Θ

T∑
t=1

log cStudent(ût
1, û

t
2, . . . , ût

N ; RCML, v)

Figure 3.4 plots the log-likelihood function of the t copula density as a function of the
degrees of freedom, by which we can see that the estimated number of degrees of freedom
is 9.

The corresponding calibrated correlation matrix RCML
9 is shown in Table 3.1.



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 163 --- #185

Section 3.5 Numerical Results for Calibrating Real-Market Data 163

Degrees of Freedom

CML Estimation (Mashal Approach)

4 6 8 10 12 14 16 18

Lo
g-

Li
ke

lih
oo

d 
F

un
ct

io
n 

V
al

ue
1460

1440

1420

1400

1380

1360

1340

1320

1300

CML Estimator
DoF=9

Figure 3.4 Log-likelihood function of the t copula density using Mashal and Zeevi method

Table 3.1 Correlation Matrix
1 0.34771 0.81475 0.77631

0.34771 1 0.62666 0.65706

0.81475 0.62666 1 0.77288

0.77631 0.65706 0.77288 1

The following is the Matlab implementation of the Mashal and Zeevi method:

t copula density3.m
function c=t_copula_density(U,DoF,Corr)

% gives the t-copula density for fixed input of "U" ( i-th row of the
% pseudo sample with d elements), degrees of freedom "DoF", and
% correlation matrix "Corr"
%
d=length(U);
y=zeros(d,1); % create the vector of univariate t r.v.s.
z=zeros(d,1);
z=DoF;
y=(tinv(U,z))'; % vector the inverse of the t cdf

% Now, we split formula 4, pag. 12 of Mashal(2002) "Beyond Correlation"
% in 3 blocks

A=gamma((DoF+d)/2)*((gamma(DoF/2))ˆ(d-1));



‘‘London’’ --- 2006/9/8 --- 19:21 --- page 164 --- #186

164 Copula Functions Chapter 3

B=((gamma((DoF+1)/2))ˆd)*((det(Corr))ˆ0.5);
Block_1=A/B;
A=0;
B=0;

Block_2=1;
for k=1:d

C=(1+((y(k)ˆ2)/DoF))ˆ(-(DoF+1)/2);
Block_2=Block_2*C;
C=0;

end

D=y'*inv(Corr)*y/DoF;
Block_3=(1+D)ˆ(-(DoF+d)/2);
D=0;

c=(Block_1/Block_2)*Block_3;

emp dis2.m
function X=emp_dis(Y)
% Compute the empirical marginal transformation, for the asset return
% samples, as described in Mashal(2002), "Beyond Correlation", pag.15
% As input we provide the i-th row of our d-columns sample
% i: #observation d: #asset in the basket

X=zeros(length(Y),1); % create a vector of d dimension
count=0;
for k=1:length(Y)

for s=1:length(Y)
if Y(s)<=Y(k)

count=count+1;
end

end
X(k)=count/length(Y); % compute the empirical

% distribution function
if X(k)==1

X(k)=.999999; % otherwise, if 1, then we have
% problem in using the t inverse

end
count=0;

end

kendall.m
function TAU=KENDALL(A,B);

% This function computes the Kendall's tau for a bivariate vector of
% observations

A=A(:);
B=B(:);
N=length(A);
N1=0;N2=0;S=0;



“London” — 2006/9/8 — 19:21 — page 165 — #187

Section 3.5 Numerical Results for Calibrating Real-Market Data 165

for J=1:N
A1=A(J+1:N)-A(J);
A2=B(J+1:N)-B(J);
AA=A1.*A2;
i=find(AA>=0);
lni=length(i);
k=find(˜AA(i)); % find the zero products.
dis=length(AA)-lni; % discordant pairs.
con=lni-length(k); % concordant pairs
l=length(find(˜(˜A1(i(k))))); % add up the extra zeros
m=length(find(˜(˜A2(i(k)))));
N1=N1+con+dis+l;
N2=N2+con+dis+m;
S=S+con-dis;

end
TAU=S/sqrt(N1*N2);

pseudo sample.m
% Starting from a random sample M, this script creates a pseudo sample and
% compute the estimated correlation matrix using Kendall's Tau as described
% in Mashal(2001), "Beyond Correlation", p.41.

% T: # of observation in the time series for each asset
% N: # of assets

M = xlsread('C:\copula\DataSet_new.xls'); % equity price database
N=size(M,2);
T=size(M,1);
U=zeros(size(M));
corr_matrix=zeros(N);

% for each underlying asset we calculate the empirical distribution
for n=1:N

U(:,n)=emp_dis(M(:,n));
end

% create the correlation matrix (via Kendall's tau), using the procedure
% described in page 42-42 of Mashal(2001) "Beyond Correlation"

for i=1:N
for j=i:N

if i==j
corr_matrix(i,j)=1;

else
corr_matrix(i,j)=sin(pi*0.5*KENDALL(U(:,i),U(:,j)));
corr_matrix(j,i)=corr_matrix(i,j);
end

end
end

CORR_EST=corr_matrix;
CORR_LIN=corrcoef(U);



“London” — 2006/9/8 — 19:21 — page 166 — #188

166 Copula Functions Chapter 3

The corresponding calibrated correlation matrix RCML is shown in Table 3.2.

Table 3.2 Calibrated Correlation Matrix
1 0.44818 0.90208 0.83975

0.44818 1 0.67615 0.68552

0.90208 0.67615 1 0.84178

0.83975 0.68552 0.84178 1

3.6 USING COPULAS IN EXCEL

Figure 3.5 shows random Monte Carlo simulations to value a portfolio using bivariate
Frank copula. Figure 3.6 shows a simulation for the Clayton copula.

Figure 3.5 Random Monte Carlo simulations



“London” — 2006/9/8 — 19:21 — page 167 — #189

Endnotes 167

Figure 3.6 Clayton copula simulation

ENDNOTES

1. The volume VC(B) of a n-box B = [a, b] is defined as follows:

VC(B) =
∑

d

sgn(d)C(d)

=
2∑

i1=1

2∑
i2=1

· · ·
2∑

in=1

(−1)i1+i2+...+inC(d1i1, d2i2, . . . , dnin) ≥ 0

where dj1 = aj and dj2 = bj for all j ∈ {1, 2, . . . , n}.
2. In the univariate case, the density function f(x) of a random variable X can be obtained

by the cumulative distribution function via the following relation:

f(x) =
∂F (x)

∂x
.

3. Based on the definition of Fang, Kotz, and Ng (1987), if X is an n-dimensional vector of
random variables and for some µ ∈ 
n, and some nxn nonnegative definite, symmetric
matrix Σ, the characteristic function ϕX−µ(t) of X − µ is a function of the quadratic
form t′Σt, then X has an elliptical distribution with parameters (µ, Σ, ϕ) and we write
X ∼ En(µ, Σ, ϕ).



“London” — 2006/9/8 — 19:21 — page 168 — #190

168 Copula Functions Chapter 3

4. Following Johnson and Kotz (1972), p. 134, given a random vector X =
(X1, . . . , Xn)′ with a joint standardized multinormal distribution with correlation matrix
R and a χ2

v-distributed random variable S, independent from X, we define the standardized
multivariate Student’s t joint density function with correlation matrix R and v degrees of
freedom, as the joint distribution function of the random vector Y = ( X1

S/
√

v
, . . . , Xn

S/
√

v
)′:

f(y) =
Γ
(

v+n
2

)
Γ
(

v
2

) 1

(πv)n/2 |R|1/2

(
1 +

y′R−1y

v

)− (v+n)
2

5. A function f(t) is said to be completely monotone on the interval D if it has derivatives of
all orders which alternate in sign, that is

(−1)k dk

dtk
f(t) ≥ 0

for all t in the interior of D and k = 0, 1, 2, 3....
6. Mashal and Naldi (2002) suggest procedures for estimating the parameters of the marginals

based on a numerical optimization routine for the likelihood of the univariate returns.
Namely, starting from a univariate return sample, {Xt}T

t=1, they construct a new sample

{X̂t}T
t=1 =

{
Xt−m

H

}T

t=1
where m is the location parameter and H is the scale factor, to be

distributed as a Student’s t random variable with v degrees of freedom. Therefore, given a
parameter space Θ = {θ : m ∈ 
, H > 0, v > 2} with θ = (m, H, v), they define the

maximum likelihood estimator θ̂ =
(
m̂, Ĥ, v̂

)
as θ̂ = arg max

θ∈Θ

T∏
t=1

f student
v

(
X̂t

)
.

7. Note that for equation (3.15), we have fixed ς = (t−1
v (u1), t−1

v (u2), . . . , t−1
v (uN))′. Simi-

larly, with regard to equation (3.13), we have ς = (Φ−1(u1), . . . , Φ−1(uN ))′.
8. This equation is derived by the maximum output of the log-likelihood function for the t

copula density given in equation (3.15):

∂�Student(θ)
∂R−1

=
T

2
R − v + N

2

T∑
t=1

ξ′
tξt

v(
1 + ξ′

tR−1ξt

v

)
from where we note that the ML estimator of R must satisfy the following equation:

RML =
v + N

Tv

T∑
t=1

ξ′tξt(
1 + ξ′

tR−1
ML ξt

v

)
9. Using the definition given by Embrechts, Lindskog, and McNeil (2001), let (x, y) and

(x̃, ỹ) be two observations from a vector (X, Y ) of continuous random variables. Then
(x, y) and (x̃, ỹ) are said to be concordant if

(x − x̄) − (y − ȳ) > 0

and discordant otherwise. The Kendall’s tau is then defined as the probability of concor-

dance minus the probability of discordance; namely, given two pairs (X, Y ) and
(
X̃, Ỹ

)



“London” — 2006/9/8 — 19:21 — page 169 — #191

Endnotes 169

of independent random variables with the same distribution F (., .), we have:

τ = P
[
(X − X̄)(Y − Ȳ ) > 0

]
− P

[
(X − X̄)(Y − Ȳ ) < 0

]
As suggested by Meneguzzo and Vecchiato (2002), given two series Xt and Yt with t =
1, . . . , T , the consistent estimator of the Kendall’s tau is then computed as

τ =
2

T (T − 1)

∑
i<j

sgn [(Xi − Xj)(YiYj)] ,

where

sgn(x) =
{

1 if x ≥ 0
−1 if x < 0



“London” — 2006/9/8 — 19:21 — page 170 — #192



“London” — 2006/9/12 — 22:22 — page 171 — #193

C H A P T E R 4

MORTGAGE-BACKED SECURITIES

SECTIONS
4.1 Prepayment Models

4.2 Numerical Example of Prepayment Model
4.3 MBS Pricing and Quoting
4.4 Prepayment Risk and Average Life of MBS

4.5 MBS Pricing Using Monte Carlo in C++
4.6 Matlab Fixed-Income Toolkit for MBS Valuation

4.7 Collateralized Mortgage Obligations (CMOs)
4.8 CMO Implementation in C++
4.9 Planned Amortization Classes (PACS)

4.10 Principal- and Interest-Only Strips
4.11 Interest Rate Risk

4.12 Dynamic Hedging of MBS
Endnotes

Mortgage-backed securities (MBSs) and mortgage pass-throughs (PT) are claims on a
portfolio of mortgages. MBSs are created when a federal agency, mortgage banker, bank,
or investment company buys up mortgages of a certain type—i.e., FHA (Federal Home
Administration) or VA (Veterans’ Administration) insured—and then sells claims on the
cash flows from the portfolio as MBSs, with the proceeds of the MBS sale being used to fi-
nance the purchase of the mortgages. There are two types of MBS: agency and conventional
(private-label).1

Agency MBS, such as a GNMA pass-through, are securities with claims on a portfo-
lio of mortgages insured against default risk by FHM, VA, or FmHA (Farmers Mortgage
Home Administration). A mortgage banker, bank, or investment company presents a pool
of FHA, VA, or FmHA mortgages of a certain type (30-year fixed, 15-year variable rate,
etc.) to GNMA (Ginnie Mae). If the mortgage pool is in order, GNMA will issue a separate
guarantee that allows the MBSs on the mortgage pool to be issued as a GNMA PT. Other
agency MBSs include the Federal Home Loan Mortgage Corporation (FHLMC) MBSs,
which are claims on a portfolio of conventional mortgages. The FHLMC issues agency
MBSs, whereby the FHLMC buys mortgages from the mortgage originator, and then cre-
ates an MBS referred to as a participation certificate, which it issues through a network

171



“London” — 2006/9/12 — 22:22 — page 172 — #194

172 Mortgage-Backed Securities Chapter 4

of dealers. FHLMC has a swap program whereby FHLMC swaps MBSs for a savings and
loan’s or commercial bank’s portfolio of mortgages of a certain type. Other government
agencies such as FNMA (Fannie Mae) issue several types of MBS: participation certifi-
cates, swaps, and PTs. With these certificates, homeowners’ mortgage payments pass from
the originating bank through the issuing agency to the holds of the certificates.

Conventional types, also known as private-label types, are issued by commercial banks
(via their holding companies), S&Ls, mortgage bankers, and investment companies. Con-
ventional issued MBSs include those issued by Prudential Home, Chase Mortgage, Citi-
Corp Housing, Ryland/Saxon, GE Capital, and Countrywide. Conventional PTs must be
registered with the SEC. These PTs are often insured with external insurance in the form
of a letter of credit (LOC) of the private-label issuer, as well as internal insurance through
the creation of senior and junior classes of the PT structured by the private-label issuer.

There is both a primary and a secondary market for MBS. In the primary market, in-
vestors buy MBSs issued by agencies or private-label investment companies either directly
or through dealers. Many of the investors are institutional investors. Thus, the creation of
MBS has provided a tool for having real estate financed more by institutions. In the pri-
mary market, MBS issue denominations are typically between $25,000 to $250,000 (with
some as high as $1M) and some have callable features. In the secondary market, MBSs are
traded over-the-counter (OTC). OTC dealers are members of the Mortgage-Backed Secu-
rities Dealer Association (MSDA).

MBSs are some of the most complex securities to model and value due to their sensitiv-
ity to prepayment and interest rates, which affects the timing, frequency, and size of cash
flows to investors. Cash flows (CFs) from MBSs are the monthly CFs from the portfolio of
mortgages (referred to as the collateral). Cash flows include interest on principal, sched-
uled principal, and prepaid principal. Cash flow analysis is essential in the valuation of any
MBS given their impact by the underlying features of the MBS, including weighted aver-
age maturity (WAM), weighted average coupon rate (WAC), pass-through rate (PT rate),
and prepayment rate or speed. The WAM is effectively the duration, or weighted length of
time, of all the payment of MBS cash flows to be paid out to investors. The WAC is the rate
on a portfolio of mortgages (collateral) that is applied to determine scheduled principal.
The PT rate is the interest on principal and is lower than the WAC, with the difference go-
ing to the MBS issuer. The prepayment rate or speed is the assumed prepayment rate made
by homeowners of mortgages in the pool.

In this chapter, we discuss MBS pricing and modeling in detail. In §4.1, we discuss
prepayment and PSA models for MBS pricing. In §4.2, we give numerical examples us-
ing Excel of how the prepayment models work. In §4.3, we discuss MBS pricing, quoting,
and the value and return to investors based on different prepayment and interest rate as-
sumptions. In §4.4, we discuss prepayment risk and the average life of MBS. In §4.5, we
review in detail a numerical implementation in C++ and Excel for valuation and cash flow
analysis of MBS using Monte Carlo simulation. In §4.6, we give numerical examples using
the Fixed-Income Toolbox in Matlab. In §4.7, we discuss MBS derivatives, including col-
lateralized mortgage obligations (CMOs) and sequential-pay tranche structures. We give
examples using Excel. In §4.8, we give an implementation of a CMO in C++. In §4.9,
we discuss planned amortization classes (PAC) and their structures. In §4.10, we review
stripped MBS, including interest-only (IO) and principal-only (PO) securities. In §4.11,



“London” — 2006/9/12 — 22:22 — page 173 — #195

Section 4.1 Prepayment Models 173

we discuss interest rate risk of MBSs. Finally, in §4.12, we discuss hedging MBS and
using MBS for balance sheet asset-liability management.

4.1 PREPAYMENT MODELS

MBS valuation models typically assume a prepayment rate or speed. Investors and
issuers apply different prepayment models in analyzing MBS. Most models, though, are
compared to a benchmark model or rate. The benchmark model is the one provided by the
Public Securities Association (PSA). PSA measures speed by the Conditional Prepayment
Rate (CPR). CPR is the proportion of the remaining mortgage balance that is prepaid each
month and is quoted on an annual basis. The monthly rate is referred to as the Single-
Monthly Mortality rate (SMM) and is given by:

SMM = 1 − (1 − CPR)1/12 (4.1)

The estimated monthly prepayment is:

Monthly prepayment = SMM ·
[Beginning of month balance− Sched. prin. for month]

For example, if CPR = 6%, beginning-of-the-month balance = $100M, and scheduled
principal for month = $3M, then the estimated prepaid principal for the month would be
$0.499M:

SMM = 1 − [1− .06]1/12 = .005143
Monthly prepaid principal = .005143[$100M − $3M ] = $0.499M

In the PSA model, CPR depends on the maturity of the mortgages. PSA’s standard
model assumes that for a 30-year mortgage (360 months), the CPR is equal to .2% the first
month, grows at that rate for 30 months to equal 6%, and stays at 6% for the rest of the
mortgage’s life. This model is referred to as the 100% PSA model. Figure 4.1 shows the
prepayment rate as a function of time in months.

The estimation of CPR for month t is:

CPR =
{

0.06
(

t
30

)
, if t ≤ 30

0.06, if t > 30 (4.2)

As an example, the CPR for month five is:

CPR = .06
(

5
30

)
= .01

SMM = 1 − [1− .01]1/12 = .000837

PSA’s model can be defined in terms of different speeds by expressing the standard
model (100% PSA) in terms of a higher or lower percentage, such as 150% or 50%. In a
period of lower rates, the PSA model could be 150%, and in a period of higher rates, it



“London” — 2006/9/12 — 22:22 — page 174 — #196

174 Mortgage-Backed Securities Chapter 4

CPR (%)

6.0

0.2

0 30 360
Month

Figure 4.1 100% PSA Model

could be 50%. For the 100% PSA model, the average time a 30-year mortgage is held is
17 years; for a 225% PSA model, it is 8 years. Figure 4.2 shows the different prepayment
rates as a function of time in months.

CPR (%)

6.0

9.0

0.2

3.0

0 30 360

150 PSA

100 PSA

50 PSA

Month

Figure 4.2 PSA Models



“London” — 2006/9/12 — 22:22 — page 175 — #197

Section 4.2 Numerical Example of Prepayment Model 175

Suppose we want to compute the CPR and SMM for month five with 165 PSA speed.
Then we compute the following based on (4.1) and (4.2):

CPR = .06
(

5
30

)
= .01

165CPR = 1.65(.01) = .0165

SMM = 1 − [1 − .0165]1/12 = .0001386

4.2 NUMERICAL EXAMPLE OF PREPAYMENT MODEL

Let p = monthly scheduled mortgage payment, F0 = the face value of the underlying
mortgage pool of the MBS, M = WAM = weighted average of the number of months
remaining until maturity, I = interest rate payment, SP = scheduled principal payment,
PP = prepaid principal, RA = annual interest rate (WAC), Bi, i = 1, . . . , 360, the remain-
ing mortgage balance in month i, and CFi, i = 1, . . . , 360 , the cash flow in the ith month.
Note that the balance in month 1 is the initial face value of the MBS pool, B1 = F0. The
following formula gives p:

p =
F0(

1−1/(1+(RA/12))M

RA/12

) (4.3)

Consider a mortgage portfolio with an underlying face value of $100M, a WAC = 9%,
a WAM = 360 months, and a prepayment speed = 100% PSA. We need to compute the
various cash flows for the first month. The first monthly principal payment is as follows:

p =
$100M(

1−1/(1+(.09/12))360

.09/12

) = $804, 600

The interest payment is:

I =
(

.09
12

)
$100M = $750, 000

The scheduled principal payment is:

SP = $804, 600− $750, 000 = $54, 600

The estimated prepaid principal in the first month is:

CPR =
(

1
30

)
.06 = .002

SMM = 1 − [1− .002]1/12 = .0001668
PP = .0001668[$100M − $54, 620] = $16, 667



“London” — 2006/9/12 — 22:22 — page 176 — #198

176 Mortgage-Backed Securities Chapter 4

The first-year cash flow is computed as:

CF1 = p + PP + I

= $804, 600 + $750, 000 + $16, 667 = $821, 295

The beginning balance for the second month is:

B2 = B1 − SP − PP

= $100M − $0.0546− $0.01667M = $99.9287M

The second-month cash flows are computed as follows. The second monthly payment is:

p =
$99.9287M[

1−1/(1+(.09/12))359

.09/12

] = $804, 488

The interest payment is:

I =
(

.09
12

)
$99.9287M = $749, 465

and the scheduled principal payment is:

SP = $804, 488− $749, 465 = $55, 023

The estimated prepaid principal is:

CPR =
(

2
30

)
.06 = .004

SMM = 1 − [1 − .004]1/12 = .0003339
PP = .0003330[$99.9287M − $55, 023] = $33, 352

Thus, the second-month cash flows are computed as:

CF2 = $749, 400 + $55, 023 + $33, 352 = $837, 840

The remaining month cash flows are computed similarly.
Consider now a mortgage portfolio with a face value of $100M, a WAC = 8.125%, a

WAM = 357 months, a PT rate = 7.5%, and a prepayment = 165% PSA. Note that because
the WAM is not 360 months, but rather 357 months, the pool age is “seasoned” so that the
first month of payments actually starts in month four, and not month one. Moreover, interest
payments are calculated using the PT rate. However, scheduled principal and mortgage
payments are computed using the WAC rate.

In this example, the schedule monthly mortgage payment is:

p =
$100M[

1−1/(1+(.08125/12))357

.08125/12

] = $743, 970



“London” — 2006/9/12 — 22:22 — page 177 — #199

Section 4.2 Numerical Example of Prepayment Model 177

The interest payment (which uses the PT rate) is

I =
(

.075
12

)
$100M = $625, 000

and the scheduled principal payment (which uses the WAC rate) is

SP = $743, 970− (.08125/12)($100M) = $66, 880.

The estimated prepaid principal using the 165% PSA model is:

CPR = 1.65
(

4
30

)
.06 = .0132

SMM = 1 − [1− .0132]1/12 = .0011067
PP = .0011067[$100M − $.06688] = $110, 600

The first-month cash flow (starting in month four) is:

CF1 = $625, 000 + $66, 880 + $110, 600 = $802, 480

The beginning mortgage balance for month two is:

$100M − $66, 880− $110, 600 = $99.822M

The scheduled monthly mortgage payment in the second month is:

p =
$99.822M[

1−1/(1+(.08125/12))356

.08125/12

] = $743, 140

The second-month interest payment is:

I =
(

.075
12

)
$99.822M = $623, 890

The scheduled principal payment in month two is:

SP = $743, 140− (.08125/12)($99.822M) = $67, 260

The estimated prepaid principal is:

CPR = 1.65
(

5
30

)
.06 = .0165

SMM = 1 − [1− .0165]1/12 = .00139
PP = .00139[$99.822M − $.06726] = $138, 210

Thus, the second-month cash flow is computed as:

CF2 = $623, 890 + $67, 260 + $138, 210 = $829, 360

Table 4.1 shows the cash flows for the first few months.
The Excel spreadsheet MBS1.xls shows the complete computations for every month.

Parameters can be changed (for different assumptions) to generate different cash flows.



“London” — 2006/9/12 — 22:22 — page 178 — #200

178 Mortgage-Backed Securities Chapter 4

Table 4.1

Source: Johnson, S. (2004)

4.3 MBS PRICING AND QUOTING

The prices of an MBS are quoted as a percentage of the underlying mortgage balance.
The mortgage balance at time t, Ft, is quoted as a proportion of the original balance. This
is called the pool factor pft:

pft =
Ft

F0
(4.4)

Suppose, for example, an MBS backed by a collateral mortgage pool originally worth
$100M, a current pf of .92, and quoted at 95 − 16 (note: 16 is 16/32) would have a market
value of $87.86M, as calculated:

Ft = (pft)F0

= (.92)($100M) = $92M

so that

Market Value = (.9550)($92M) = $87.86M

The market value is the clean price; it does not take into account accrued interest,
denoted AI. For an MBS, accrued interest is based on the time period from the settlement
date (two days after the trade) to the first day of the next month. For example, if the time
period is 20 days, the month is 30 days, and the WAC = 9%, then AI is $.46M:

AI =
(

20
30

) (
.09
12

)
$92M = $460, 000

The full market value would be $88.32M:

FullMktValue = $87.86M + $460, 000 = $88.32M

The market price per share is the full market value divided by the number of shares. If the
number of shares is 400, then the price of the MBS based on a 95 − 16 quote would be
$220,080:

MBS price =
$88.32M

400
= $220, 800



“London” — 2006/9/12 — 22:22 — page 179 — #201

Section 4.3 MBS Pricing and Quoting 179

The value of an MBS is equal to the present value (PV) of security’s cash flows (CFs);
thus, the value is a function of the MBS’s expected CFs and the interest rate. In addition, for
MBS, the CFs are also dependent on rates R: A change in rates will change the prepayment
of principal and either increase or decrease early CFs:

VMBS = f(CFs, R)

where

CF = f(R).

Since cash flows, CFs, are a function of rates, the value of MBS is more sensitive to
interest rate changes than a similar corporate bond. This sensitivity is known as extension
risk. Note the following relationships:

if R ↓⇒ lowerdiscountrate ⇒ VM ↑ (just like any other bond)

and

if R ↓⇒ Increases prepayment :⇒ VM ↑
Earlier CFs ↑

On the other hand,

if R ↑⇒ higherdiscountrate ⇒ VM ↓

and

if R ↑ ⇒ Decreases prepayment :⇒ VM ↓
⇒ Earlier CFs ↓

so that an increase in rates will reduce the market value of the MBS, leading to extension
risk.

There are various exogenous and endogenous factors that influence prepayment other
than refinancing rates. One is housing turnover—the long-term rate at which borrowers in a
pool prepay their mortgages because they sell their homes. Another is the seasoning period,
the number of months over which base voluntary prepayments (housing turnover, cash-out
refinancing, and credit upgrades, but not rate refinancing or defaults) are assumed to in-
crease to long-term levels. Other factors include credit curing—the long-term rate at which
borrowers prepay their mortgages because improved credit and/or increased home pool
prices enable them to get better rates and/or larger loans. As the pool burns out, the rate of
curing declines.2 Default, expressed as a percentage of the PSA Standard Default Assump-
tion (SDA), affects prepayment, as well as the maximum rate-related CPR for burnout—
CPR is lower for a pool that has experienced no prior rate-related refinancing. The lower
the ratio, the faster the pool burns out.3

Many Wall Street firms use proprietary reduced-form prepayment models that use past
prepayment rates and endogenous variables to explain prepayment. These models are cali-
brated to fit observed payment data, unrestricted by theoretical considerations.4



“London” — 2006/9/12 — 22:22 — page 180 — #202

180 Mortgage-Backed Securities Chapter 4

4.4 PREPAYMENT RISK AND AVERAGE LIFE OF MBS
Average life is the weighted average of the MBS’s or MBS collateral’s time periods,

with the weights being the periodic cash flow payments divided by the total principal. For
example, the original average life of the 30-year, $100M, 9%, 100 PSA mortgage (the first
example in §4.2) portfolio is 12.077 years, computed as follows:

Ave. life =
1
12

(1($71, 295) + 2($88, 376)+ . . . + 360($135, 281))
$100, 000, 000

= 12.077

In general, the average life of the MBS can be computed by the following formula:

Ave. life =
1
12

360∑
i=1

i ∗ CFi

F0
(4.5)

Prepayment risk can be measured in terms of how responsive (sensitive) an MBS’s
or MBS collateral’s average life is to changes in prepayment speed (change in PSA) or
equivalently to changes in rates (because rate changes are the major factor affecting speed):

prepayment risk =
∆Ave. life

∆PSA
∼= ∆Ave. life

∆R
(4.6)

An MBS or its collateral would have zero prepayment risk if

prepayment risk =
∆Ave. life

∆PSA
= 0.

One of the more significant innovations in finance occurred in the 1980s with the develop-
ment of derivative MBS, such as Planned Amortization Classes (PACs), which had different
prepayment risk features, including some derivatives with zero prepayment risk.

Assumptions of prepayment rates can be made based on the probability of refinancing
rates changing. For example, if there is a high probability that the Federal Open Markets
Committee (the Fed) will lower rates (based, for example, on media reports that they in-
tend to do so in the near future), refinancing rates can be expected to fall as well so that
more homeowners will refinance their mortgages at lower rates. This in turn will increase
the speed of prepayment and thus of the cash flows to investors. PSA rates should then be
adjusted upward. Conversely, if the Fed is expected to raise rates as a response to, say, infla-
tion, refinancing rates can be expected to rise, decreasing prepayment risk and lengthening
the average life of the MBS. PSA rates should then be adjusted downward.

The best way to model refinancing rate scenarios is through Monte Carlo simulation.
One first constructs an interest rate tree—i.e., a binomial tree5—with both the spot rates
and refinancing rates at each node. One runs many simulation paths sampling from possible
interest rate paths that rates could possibly take in the tree. For each simulation path, one
estimates the cash flows based on the refinancing rates at each step along the path. (Each
time step along the path corresponds to a time step made in the short-rate tree.) Specifically,
Monte Carlo simulation can be used to determine the MBS’s theoretical value or rate of
return through the following steps:



“London” — 2006/9/12 — 22:22 — page 181 — #203

Section 4.4 Prepayment Risk and Average Life of MBS 181

1. Simulate interest rates. Use a binomial interest-rate tree to generate different paths
for spot rates and refinancing rates.

2. Specify a prepayment model based on the spot rates.

3. Generate CF paths for a mortgage portfolio, MBS, or tranche.

4. Determine the PV of each path, the distribution of the path, the average (theoretical
value), and standard deviation. Alternatively, given the market value, determine each
path’s rate of return, distribution, average, and standard deviation.

Step 1

In step 1, to simulate interest rates, we generate interest rate paths from a binomial
interest-rate tree.6 For example, assume a three-period binomial tree of one-year spot rates,
RS

t , and refinancing rates, Rref
t , where RS

0 = 6%, Rref
0 = 8%, u = 1.1, and d = .9091 =

1/1.1. With three periods, there are four possible rates after three periods (years), and there
are eight possible paths in the binomial tree shown in Figure 4.3. Table 4.2 shows eight
short-rate paths simulated from the preceding binomial tree (the eight possible paths rates
can take in the tree).

Suppose we have a mortgage portfolio with a par value of $1M, a WAM = 10 years, a
WAC = 8%, PT rate = 8%, annual cash flow payments, the mortgages are insured against
default risk, and has a balloon payment at the end of year 4 equal to the balance at the

6%
8%

6.6%
8.8%

5.45%
7.27%

7.26%
9.68%

6.6%
8.8%

4.96%
6.61%

7.99%
10.65%

6.6%
8.8%

5.45%
7.27%

4.51%
6.01%

Figure 4.3 Binomial tree for spot and refinancing rates



“London” — 2006/9/12 — 22:22 — page 182 — #204

182 Mortgage-Backed Securities Chapter 4

Table 4.2
Year 1 Year 2 Year 3 Year 4

Path 1 8.0000% 7.2728% 6.6117% 6.0107%

Path 2 8.0000% 7.2728% 6.6117% 7.2728%

Path 3 8.0000% 7.2728% 8.0000% 7.2728%

Path 4 8.0000% 8.8000% 8.0000% 7.2728%

Path 5 8.0000% 7.2728% 8.0000% 8.0000%

Path 6 8.0000% 8.8000% 8.0000% 8.0000%

Path 7 8.0000% 8.8000% 9.6800% 8.8000%

Path 8 8.0000% 8.8000% 9.6800% 10.6480%

beginning of year 4 (e.g. the scheduled principal in year 4). We compute the scheduled
monthly mortgage payment:

p =
$1, 000, 000
1−(1/1.08)10

.08

= $149, 029

If we initially assume no prepayment risk, then we obtain the cash flows shown in Table
4.3. The balloon payment at the end of year 4 is:

Balloon = Balance(yr4) − Sch.prin(yr4)
= $775, 149− $86, 957 = $688, 946

The cash flow in year 4 can be computed as

CF4 = Balloon + p

= $688, 946 + $149, 029 = $837, 973

or equivalently, as

CF4 = Balance(yr4) + Interest

= $775, 903 + $62, 513 = $837, 973

Table 4.3
Year Balance P Interest Scheduled Principal CF

1 $1,000,000 $149,029 $80,000 $69,029 $149,029

2 $930,970 $149,029 $74,478 $74,551 $149,029

3 $856,419 $149,029 $68,513 $80,516 $149,029

4 $775,903 $149,029 $62,072 $86,957 $837,975

Step 2

The second step of the Monte Carlo process is to specify a prepayment model. Suppose
we specify the prepayment schedule shown in Table 4.4. The CPR is determined by the
value of the spread X = WAC − Rref.



“London” — 2006/9/12 — 22:22 — page 183 — #205

Section 4.4 Prepayment Risk and Average Life of MBS 183

Table 4.4
Range CPR

X ≤ 0 5%

0 < X ≤ 0.5% 10%

0.5% < X ≤ 1.00% 20%

1.00% < X ≤ 1.25% 30%

1.25% < X ≤ 2.0% 40%

2.0% < X ≤ 2.5% 50%

2.5% < X ≤ 3.0% 60%

X > 3.0% 70%

Step 3

The third step of the valuation process is the estimation of cash flows for each path
based on the simulated path of refinancing rates, the spread X, and thus the CPR (see Table
4.5).

The calculation of the cash flows for the first path are shown as follows. In year 1, the
scheduled mortgage payment is:

p =
$1, 000, 000
1−(1/1.08)10

.08

= $149, 029

The interest payment is:

I = 0.08($1, 000, 000) = $80, 000

The scheduled principal is:

SP = $149, 029− $80, 000 = $69, 029

Table 4.5 (continued next page)

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 184 — #206

184 Mortgage-Backed Securities Chapter 4

Table 4.5 (continued)

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 185 — #207

Section 4.4 Prepayment Risk and Average Life of MBS 185

The prepaid principal is:

PP = 0.20($1, 000, 000− $69, 029) = $186, 194

The cash flow in year 1 is:

CF1 = $80, 000 + $69, 029 + $186, 194 = $335, 223

For year 2, along path 1, we have a balance of:

B2 = $1, 000, 000− $69, 029− $186, 194 = $744, 776

The scheduled monthly mortgage payment is:

p =
$744, 446
1−(1/1.08)9

.08

= $119, 223

The interest payment is:

I = 0.08($744, 776) = $59, 582

The scheduled principal payment is:

SP = $119, 223− $59, 582 = $59, 641

The prepaid principal in the second year is:

PP = 0.4($755, 776− $59, 641) = $274, 054

The cash flow is:

CF2 = $59, 582 + $59, 641 + $274, 052 = $393, 277

In year 3, on path 1, the balance is:

B3 = $744, 776− $59, 641− $274, 054 = $411, 081

The scheduled monthly mortgage payment is:

p =
$411, 081
1−(1/1.08)8

.08

= $71, 543

The interest payment is:

I = 0.08($411, 081) = $32, 886

The scheduled principal payment is:

SP = $71, 543− $32, 886 = $38, 648



“London” — 2006/9/12 — 22:22 — page 186 — #208

186 Mortgage-Backed Securities Chapter 4

The prepaid principal in the third year is:

PP = 0.4($411, 081− $38, 648) = $148, 973

The cash flow is:

CF3 = $32, 886 + $38, 648 + $148, 973 = $220, 507

Finally, in year 4, the balance is:

B4 = $411, 081− $38, 648− $148, 943 = $223, 460

The interest payment is:

I = 0.08($223, 460) = $17, 877

The cash flow is:

CF4 = B4 + I

= $223, 460 + $17, 877 = $241, 337

The cash flows for all the other paths are computed similarly.

Step 4

The fourth step of the valuation process is the valuation of the cash flows along each
of the paths. The PV of each path’s cash flows are determined by specifying the appro-
priate discount rates. Because the mortgages are insured against default risk, the only risk
investors are exposed to is prepayment risk. The risk premium for such risk is known as
the option adjusted spread (OAS). The OAS is a measure of the spread over the govern-
ment Treasury bonds rates provided by the MBS when all embedded options have been
into account.7 One can view the OAS as the market price for unmodeled risks (risks that
the model cannot capture), such as the forecast error associated with prepayments. The
OAS is the spread, such that when added to all the spot rates on all interest rate paths, make
the average present value of the paths equal to the observed market price (plus accrued
interest). Thus, it equates the observed market price of a security to its theoretical value.
Mathematically, it is equivalent to the solution of K in

P Market =
1
N

[PV (path 1) + PV (path 2) + . . . + PV (path N)]

=
1
N

[
T∑

i=1

CF path 1
i

(1 + Z1
i + K)i

+
T∑

i=1

CF path 2
i

(1 + Z2
i + K)i

+ ... +

T∑
i=1

CF
path N
i

(1 + ZN
i + K)i

] (4.7)



“London” — 2006/9/12 — 22:22 — page 187 — #209

Section 4.4 Prepayment Risk and Average Life of MBS 187

where Zj
i is the zero rate at time i—i.e, month i = 1, . . . , T on path j = 1, ..., N . Typi-

cally, T = 360 and N = 1, 024.
The cash flow “yield” that is a standard measure in evaluating any MBS is the static

spread. This is the yield spread in a static scenario—i.e., no volatility interest rates—of a
bond over the entire theoretical Treasury spot rate curve (not a single point on the Treasury
yield curve). The magnitude of this spread depends on the steepness of the yields curve:
the steeper the curve, the greater the difference between the bond and Treasury yields.8

There are two ways to compute the static spread. The first approach is to use today’s yield
curve to discount future cash flows and keep the mortgage refinancing rate fixed at today’s
mortgage rate.9

Because the mortgage refinancing rate is fixed, the investor can usually specify a rea-
sonable prepayment rate, which can be used to estimate the bond’s future cash flows until
the maturity of the bond. The second approach, known as the zero volatility OAS, computes
the static spread by allowing the mortgage rates to go up the curve as implied by forward
interest rates.10 In this case, a prepayment model is needed to determine the vector of fu-
ture prepayment rates (a prepayment schedule) implied by the vector of future refinancing
rates. After a static spread and OAS is computed, the implied cost of the prepayment option
embedded in any MBS can be computed by calculating the different between the OAS (at
the assumed volatility of interest rates) and the static spread. That is

Option cost = Static spread − OAS (4.8)

Consequently, because, in general, a tranche’s option cost is more stable than its OAS in the
face of uncertainty of interest rate movements, then, for small market moves, the OAS of a
tranche may be approximated by recalculating the static spread and subtracting its option
cost. This is quite useful because the OAS is computationally expensive to evaluate while
the static spread is cheap and easy to compute.11

It is important to point out that investors in MBS hold the equivalent of long positions
in noncallable bonds and short positions in call (prepayment) options.12 The noncallable
bond is a collection of zero-coupon bonds—i.e., Treasury strips—and the call option gives
the borrower the right to prepay the mortgage at any time prior to maturity of the loan.13

Thus, the value of MBS is the difference between the value of the noncallable bond and
the value of the call (prepayment) option. The OAS is the spread differential between the
bond component and the option value component of the MBS. The two main inputs into
the computation of an OAS are the cash flows generated as a function of the principal
(scheduled and unscheduled) and coupon payments, as well as the interest rate paths gen-
erated under an assumed term structure of the zero-coupon curve for discounting the cash
flows.14 At each cash flow date, the spot rate (observed from the interest rate path taken at
the corresponding time step of the term structure) determines the discount factor for each
cash flow.15



“London” — 2006/9/12 — 22:22 — page 188 — #210

188 Mortgage-Backed Securities Chapter 4

Denote zt to be the appropriate zero discount rate for maturity t (i.e., t years or months),
seen today (time 0) (and similarly, ftj , the forward discount rate of maturity t seen at
time j), and K, the option adjusted spread. In our simple four-step binomial example,
the one-year forward (zero) rate at time 0 is f10 = 8.0%; the one-year forward rates
at time step 1 are f11 = {8.6%, 7.45%}; the one-year forward rates at time step 2 are
f12 = {9.26%, 8%, 6.96%}; and the one-year forward rates at time step 3 are f13 =
{9.986%, 8.6%, 7.45%, 6.51%}.

The value of each path is obtained by discounting each cash flow by its risk-adjusted
zero-spot rate, z. In our example of four time steps, the value of the MBS on path i is

Vi =
CF1

1 + z1
+

CF2

(1 + z2)2
+

CF3

(1 + z3)3
+

CF4

(1 + z4)4

where, because we can express zero rates in terms of forward rates, we have

z1 = f10,

z2 = ((1 + f10)(1 + f11))
1/2 − 1

z3 = ((1 + f10)(1 + f11)(1 + f12))
1/3 − 1

z4 = ((1 + f10)(1 + f11)(1 + f12)(1 + f13))
1/4 − 1

In general, on path i = 1, . . . , N ,

zT = {(1 + f10)(1 + f11)(1 + f12)...(1 + f12T )}1/T − 1

Note that in our example, we have assumed one-year forward rates, but in a more complex
and realistic implementation, we would be simulating future one-month rates over a period
of 360 months. Thus, for each path, we would be simulating 360 one-month future interest
rates, mortgage refinancing rates, and cash flows instead of just four, and we would be
simulating many more paths—i.e., 1024, instead of eight.

The zero-rate calculations for path one are

z1 = 0.08

z2 = ((1.08)(1.074546))1/2 − 1 = 0.077269

z3 = ((1.08)(1.074546)(1.069588))1/3 − 1 = 0.074703

z4 = ((1.08)(1.074546)(1.069588)(1.06508))1/4 − 1 = 0.072289

so that the MBS value for path one is

V1 =
$335, 224

1.08
+

$393, 278
(1.077269)2

+
$220, 507
(1.04703)3

+
$241, 337

(1.072289)4
= $1, 009, 470.



“London” — 2006/9/12 — 22:22 — page 189 — #211

Section 4.4 Prepayment Risk and Average Life of MBS 189

Table 4.6 shows the MBS computed for each of the eight paths.
The final step is to compute the theoretical value of the MBS by averaging over all

values taken on each path. In this example, the theoretical value of the mortgage portfolio
is the average of the MBS values computed on each of the eight paths:

V̄ =
1
N

N∑
i=1

Vi (4.9)

Evaluating (4.8), the theoretical value is $997,235 or 99.7235% of par. Note, in addition to
the theoretical value, we also can determine the variance of the distribution:

Var(V ) =
1
N

N∑
i=1

[Vi − V̄ ]2 (4.10)

Equivalently, we can also compute the theoretical value by taking the weighted average
of each MBS value computed on each path, where the weight is the probability of obtaining
that value on the path (each up and down move is assumed to be 0.5), shown in Table 4.7.

Table 4.6 (continued next page)

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 190 — #212

190 Mortgage-Backed Securities Chapter 4

Table 4.6 (continued)

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 191 — #213

Section 4.5 MBS Pricing Using Monte Carlo in C++ 191

Table 4.7

4.5 MBS PRICING USING MONTE CARLO IN C++

To price MBS in C++, we create and define an MBS class that contains methods for
MBS pricing via Monte Carlo simulations of spot rate paths in a binomial tree.

#ifndef _MBS_H__
#define _MBS_H__

#include <vector>
#include "math.h"
#include "time.h"
#include "Utility.h"
#include "TNT.h"
#define SIZE_X 100
#define SIZE_Y 100

using namespace std;

We define two global double array variables that will be used to store the spot rates and
discount rates in the binomial tree.

static TNT::Array2D<double> spotRate(SIZE_X,SIZE_Y);
static TNT::Array2D<double> discountRate(SIZE_X,SIZE_Y);

The MBS class contains an overloaded constructor that accepts the notional principal,
coupon, weighted average WAC, weighted average maturity (WAM), and option adjusted
spread (OAS). The class contains a method calcPrice that first builds a binomial tree
and then simulates the interest rate paths on the tree using Monte Carlo. The calcPrice
method accepts the initial spot rate, mortgage refinance rate, the number of steps in the bi-
nomial tree, and the number of simulations. The MBS class also contains a method to com-
pute the conditional prepayment rate (CPR) calcCPR, which accepts the current refinance
rate and a method computeZeroRates that computes the current discount factor by ac-



“London” -- 2006/9/12 -- 22:22 -- page 192 -- #214

192 Mortgage-Backed Securities Chapter 4

cepting as input the current time step in the binomial tree and the stored history of discount
rates on the current path. The MBS class contains a calcPayment function that computes
the current mortgage payment by receiving the remaining principal and time to maturity as
input. Finally, the MBS class contains a getPrice that returns the calculated MBS price,
a getStdDev method that returns the standard deviation of the computed MBS price, and
a getStdError method that returns the standard error of the computed MBS price.

MBS.h
// MBS.h: interface for the MBS class.
//
//////////////////////////////////////////////////////////////////////

#if !defined(AFX_MBS_H__76187F6C_FE6C_425F_97B6_7639548A3878__INCLUDED_)
#define AFX_MBS_H__76187F6C_FE6C_425F_97B6_7639548A3878__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <vector>
#include "math.h"
#include "time.h"
#include "Utility.h"
#include "TNT\TNT.h"
#define SIZE_X 100
#define SIZE_Y 100

using namespace std;
static TNT::Array2D<double> spotRate(SIZE_X,SIZE_Y);
static TNT::Array2D<double> discountRate(SIZE_X,SIZE_Y);

class MBS
{

public:
MBS();
MBS(double principal, double coupon, double WAC, double WAM,

double OAS) :
faceValue(principal), coupon(coupon), WAC(WAC), WAM(WAM),
OAS(OAS), T(WAM) { }

virtual ~MBS() { }
double calcPayment(double principal, double T); // compute

// payment
// amount

void calcPrice(double initRate, double financeRate, int N,
long int M);

double calcCPR(double rate);
void buildTree(double initRate, double financeRate, int N);
double computeZeroRates(int cnt, vector<double> rate);
double calcSMM(double x);
double getPrice();
double getStdDev();
double getStdErr();
double getMaturity();
double getWAM();



“London” -- 2006/9/12 -- 22:22 -- page 193 -- #215

Section 4.5 MBS Pricing Using Monte Carlo in C++ 193

double getWAC();
double getOAS();

private:
double OAS; // option adjusted spread
double faceValue; // principal amount
double coupon; // coupon rate
double WAM; // weighted average maturity
double WAC; // weighted average coupon
vector<double> zeroRates; // store discount zero coupon rates
double T; // maturity of MBS
double mbsPrice; // price
double stdDev; // standard deviation
double stdErr; // standard error

};

#endif _MBS_H__

/*
class MBS
{
public:

MBS();
MBS(double principal, double coupon, double WAC, double WAM,

double OAS) :
faceValue(principal), coupon(coupon), WAC(WAC), WAM(WAM), OAS(OAS),

T(WAM) { }
virtual ~MBS();

class MBS
{

public:
MBS() { }
MBS(double principal, double coupon, double WAC, double WAM,

double OAS) :
faceValue(principal), coupon(coupon), WAC(WAC), WAM(WAM),

OAS(OAS),
T(WAM) { }

virtual ~MBS() { }
double calcPayment(double principal, double T); // compute

// payment
// amount

void calcPrice(double initRate, double financeRate, int N,
long int M);

double calcCPR(double rate);
double computeZeroRates(int cnt, vector<double> rate);
double getPrice();
double getStdDev();
double getStdErr();

private:
double OAS; // option adjusted spread
double faceValue; // principal amount
double coupon; // coupon rate

double WAM; // weighted average maturity
double WAC; // weighted average coupon
vector<double> zeroRates; // store discount zero coupon rates
double T; // maturity of MBS
double mbsPrice; // price
double stdDev; // standard deviation



“London” -- 2006/9/12 -- 22:22 -- page 194 -- #216

194 Mortgage-Backed Securities Chapter 4

double stdErr; // standard error
};

#endif _MBS_H__

double calcCPR(double rate);
private:

double OAS; // option adjusted spread
double faceValue; // principal amount
double coupon; // coupon rate
double WAM; // weighted average maturity
double WAC; // weighted average coupon
vector<double> zeroRates;
double valuationMBS();

double computeZeroRates(int N, vector<double> rate);
double T;

};
*/

//#endif // !defined(AFX_MBS_H__76187F6C_FE6C_425F_97B6_7639548A3878_
_INCLUDED_)

The method definitions are

MBS.cpp
// MBS.cpp: implementation of the MBS class.
//
//////////////////////////////////////////////////////////////////////

#include "MBS.h"

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

void MBS::buildTree(double initRate, double financeRate, int N)
{

Utility util;
double u = 1.1;
double d = 1/u;
double p = (exp(initRate*T) - d)/(u - d);
double deviate = 0.0;
long seed = 0;
double refRate = financeRate;
long* idum = 0;
double pay = faceValue;
double faceAmount = 0.0;
double interest = 0.0;
double schedulePrincipal = 0.0;
double prepaidPrincipal = 0.0;
double CPR = 0.0;
double balance = faceValue;
double sum = 0.0;



“London” -- 2006/9/12 -- 22:22 -- page 195 -- #217

Section 4.5 MBS Pricing Using Monte Carlo in C++ 195

double totalsum = 0.0;
double SMM = 0.0;
TNT::Array1D<double> CF(SIZE_X); // cash_flow
vector<double> disc(0.0);

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;
// build binomial tree for rates
for (int i = 0; i <= N; i++)
{

for (int j = 0; j <= i; j++)
{

spotRate[i][j] = initRate*pow(u,j)*pow(d,i-j);
discountRate[i][j] = spotRate[i][j] + OAS;

}
}

faceAmount = faceValue;
int k = 0;
long int M = 10000;
int cnt = 0;
double r = 0.0;
int j = 0;

for (k = 0; k < M; k++)
{

sum = 0.0;
balance = faceValue;
refRate = financeRate;
j = 0;
disc.clear();
disc.empty();
disc.push_back(discountRate[0][0]);

for (i = 0; i < N; i++)
{

balance = balance - (schedulePrincipal +
prepaidPrincipal);

deviate = util.gasdev(idum);

if (deviate > 0)
{

j++;
refRate = refRate*u;

}
else
{

j--;
if (j < 0)

j = 0;
refRate = refRate*d;

}
disc.push_back(discountRate[i+1][j]);
interest = coupon*balance;
pay = calcPayment(balance,WAM-i);



“London” -- 2006/9/12 -- 22:22 -- page 196 -- #218

196 Mortgage-Backed Securities Chapter 4

schedulePrincipal = pay - interest;

if (balance >= schedulePrincipal)
{

CPR = calcCPR(refRate);
SMM = calcSMM(CPR);
prepaidPrincipal =

SMM*(balance -
schedulePrincipal);

if (i != N-1)
CF[i] = interest +

schedulePrincipal +
prepaidPrincipal;

else
CF[i] = interest + balance;

r = computeZeroRates(i,disc);
sum = sum + CF[i]/(pow(1+r,i+1));

}
else

goto x;

}
x:
totalsum = totalsum + sum;

}
double ave = (totalsum/M);
std::cout << "MBS price = " << ave << endl;

}

double MBS::calcCPR(double rate)
{

double CPR = 0.0;
double value = WAC - rate;

/*
if (value <= 0)

CPR = 0.05;
else if ((value <= 0.005) && (value > 0))

CPR = 0.10;
else if ((value <= 0.01) && (value > 0.005))

CPR = 0.20;
else if ((value <= 0.0125) && (value > 0.01))

CPR = 0.30;
else if ((value <= 0.02) && (value > 0.0125))

CPR = 0.40;
else if ((value <= 0.025) && (value > 0.02))

CPR = 0.50;
else if ((value <= 0.03) && (value > 0.025))

CPR = 0.60;
else

CPR = 0.70;
*/

CPR = 100*(1-pow((1-(value/100)),12));



“London” -- 2006/9/12 -- 22:22 -- page 197 -- #219

Section 4.5 MBS Pricing Using Monte Carlo in C++ 197

return CPR;

}

double MBS::calcPayment(double fv, double T) {
return (fv*coupon)/(1-pow(1/(1+coupon),T));

}

void MBS::calcPrice(double initRate, double financeRate, int N,
long int M){

Utility util; // utility class for generating
// random deviates

double u = 1.1; // up move in binomial tree
double d = 1/u; // down move in binomial tree
double p = (exp(initRate*T) - d)/(u - d); // up probablity
double deviate = 0.0; // random deviate
long seed = 0; // seed
double refRate = financeRate; // refinance rate
long* idum = NULL; // pointer to seed value for RNG
double pay = faceValue; // face value of MBS
double faceAmount = 0.0; // face amount
double interest = 0.0; // interest payment
double schedulePrincipal = 0.0; // scheduled principal payments
double prepaidPrincipal = 0.0; // prepaid principal payments
double CPR = 0.0; // conditional prepayments
double SMM = 0.0; // monthly mortality
double balance = faceValue; // balance remaining
double sum = 0.0; // sum of discounted cash flows

// along a path
double totalsum = 0.0; // total sum of all discounted cash flows
double totalsum2 = 0.0;
TNT::Array1D<double> CF(SIZE_X); // cash_flow
vector<double> disc(0.0); // stores discount rates

// build binomial tree for rates
for (int i = 0; i <= N; i++)
{

for (int j = 0; j <= i; j++)
{

spotRate[i][j] = initRate*pow(u,j)*pow(d,i-j);
discountRate[i][j] = spotRate[i][j] + OAS;

}
}

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;
faceAmount = faceValue;
int k = 0;
int cnt = 0;
double r = 0.0;
int j = 0;

for (k = 0; k < M; k++)



“London” -- 2006/9/12 -- 22:22 -- page 198 -- #220

198 Mortgage-Backed Securities Chapter 4

{
sum = 0.0;
balance = faceValue;
refRate = financeRate;
j = 0;
disc.clear();
disc.push_back(discountRate[0][0]);

for (i = 0; i < N; i++)
{

balance = balance - (schedulePrincipal +
prepaidPrincipal);

deviate = util.gasdev(idum);

if (deviate > 0)
{

j++;
refRate = refRate*u;

}
else
{

j--;
if (j < 0)
j = 0;

refRate = refRate*d;
}
disc.push_back(discountRate[i+1][j]);

interest = coupon*balance;
pay = calcPayment(balance,WAM-i);
schedulePrincipal = pay - interest;

if (balance >= schedulePrincipal)
{

CPR = calcCPR(refRate);
SMM = calcSMM(CPR);
prepaidPrincipal = SMM*(balance -

schedulePrincipal);

if (i != N-1)
CF[i] = interest + schedulePrincipal +

prepaidPrincipal;
else

CF[i] = interest + balance;

r = computeZeroRates(i,disc);
sum = sum + CF[i]/(pow(1+r,i+1));

}
else // break out of loop

goto x;

}
x:
totalsum = totalsum + sum;
totalsum2 = totalsum2 + sum*sum;

}



“London” — 2006/9/12 — 22:22 — page 199 — #221

Section 4.5 MBS Pricing Using Monte Carlo in C++ 199

double ave = (totalsum/M);

mbsPrice = ave;
stdDev = sqrt(totalsum2 - (double)(totalsum*totalsum)/M)*(exp(-
2*initRate*T)/(M-1));
stdErr = (double) stdDev/sqrt(M);

}

double MBS::calcSMM(double CPR) {

return (1 - pow((1 - CPR),(double)1/12));
}

double MBS::computeZeroRates(int cnt, vector<double> rate)
{

double value = WAC+1;
for (int j = 1; j <= cnt; j++)

value = value*(1 + rate[j]);

if (cnt == 0)
value = WAC;

else
value = pow(value,(double)1/(cnt+1)) - 1;

return value;
}

double MBS::getPrice() {
return mbsPrice;

}

double MBS::getStdDev() {
return stdDev;

}

double MBS::getStdErr() {
return stdErr;

}

double MBS::getMaturity() {
return T;

}

double MBS::getWAM() {
return WAM;

}

double MBS::getWAC() {
return WAC;

}

double MBS::getOAS() {
return OAS;

}



“London” -- 2006/9/12 -- 22:22 -- page 200 -- #222

200 Mortgage-Backed Securities Chapter 4

Consider pricing an MBS with the parameters used previously:

Main-ch04.cpp
#include <fstream.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <math.h>
#include <map>

#define SIZE_X 100
#include "CMO.h"

void main()
{

std::cout.precision(7);
double principal = 1000000; // underlying principal

// (notional) of MBS
double coupon = 0.08; // coupon rate
double WAC = 0.08; // weighted average

// coupon rate
double WAM = 10; // weighted average maturity
double OAS = 0.02; // option adjusted spread
double initSpotRate = 0.06; // spot rate
double initRefinanceRate = 0.08; // refinance rate
int N = 10; // number of time steps in tree
long int M = 100000; // number of simulation paths
MBS mbs(principal,coupon,WAC,WAM,OAS);

std::cout << "Running Monte Carlo to price MBS..." << endl << endl;
mbs.calcPrice(initSpotRate,initRefinanceRate,N,M);
std::cout << "MBS Price = " << mbs.getPrice() << endl;
std::cout << "Std Deviation = " << mbs.getStdDev() << endl;
std::cout << "Std Error = " << mbs.getStdErr() << endl << endl;

std::cout << "Pricing MBS with Simulations of Binomial
Tree Paths..." << endl;

MBS mbs1(principal,coupon,WAC,N,OAS);
mbs1.buildTree(initSpotRate,coupon,N);

vector<Tranche> tranche;
Tranche trA('A',500000,0.06);
tranche.push_back(trA);
Tranche trB('B',300000,0.065);
tranche.push_back(trB);
Tranche trC('C',200000,0.07);
tranche.push_back(trC);
Tranche trZ('Z',100000, 0.075);
tranche.push_back(trZ);

std::cout << endl;
std::cout << "Pricing CMO Tranches..." << endl << endl;



“London” — 2006/9/12 — 22:22 — page 201 — #223

Section 4.5 MBS Pricing Using Monte Carlo in C++ 201

CMO cmo(mbs,tranche);
cmo.calcCashFlows(initSpotRate,initRefinanceRate,N,M);

}

The results are as follows:

MBS Price = 964386.69
Std Deviation = 110.07
Std Error = 1.10

We can improve the accuracy by increasing the number of simulations. For instance, if M
= 100, 000, then:

MBS Price = 964469.78
Std Deviation = 34.86
Std Error = 0.11

Thus, the price of the MBS is priced at roughly 96.5% of par. The more time steps, however,
improves the accuracy of the computed price.

Continuous Time Model

The binomial model is a simple discrete model and does not capture the movement of
interest rates in practice because at each step, rates can only go up or down—they cannot
stay the same or move in between time steps. To capture a realistic evolution of interest rate
movements, an arbitrage-free model of the term structure of interest rates is typically used.
The short rate is assumed to follow a diffusion (a continuous time stochastic) process. The
general form of these models is described in terms of changes in the short rate, as follows:

drt = κ(θ − r)dt + σrαdzt, r(0) = r0

where drt represents an infinitesimal change in rt over an infinitesimal time period, dt, and
dzt is a standard Wiener process. κ is the speed of mean-reversion, θ is the long-run mean
of the interest rate process, α is the proportion conditional volatility exponent, and σ is the
instantaneous standard deviation of changes in rt. The various short-rate models differ by
the parameter α. The Vasicek model assumes it is 0, the Cox-Ingersoll-Ross (CIR) model
assumes it to be 0.5, and the Courtadon model assumes it to be 1.

In order to simulate the process, we discretize it as follows (assume Courtadon):

∆rt = κ(θ − rt)∆t + σrt

√
∆tzt, r(0) = r0

Many interest rate models have some form of mean reversion, reverting the generated in-
terest rate paths to some “long-run” level. Without reversion, interest rates could obtain
unreasonably high and low levels. Volatility, over time, would theoretically approach infin-
ity. Similarly, a large percentage volatility assumption would result in greater fluctuations
in yield, which in turn results in a greater probability of the opportunity to refinance. The
increased probability in refinancing is a greater value attributed to the implied call option,
and a higher resulting option cost.16



“London” — 2006/9/12 — 22:22 — page 202 — #224

202 Mortgage-Backed Securities Chapter 4

In addition to a more realistic term structure, we need to expand our prepayment model
to reflect the effects of multiple factors that impact prepayment. We can utilize the Richard
and Roll (1989) prepayment model, which is based on empirical estimation of the mort-
gagor’s financing condition. The model tries to explain prepayments by observing actual
prepayments and relating them to the measurable factors suggested by their economic the-
ory of prepayments. The prepayment model makes a few assumptions. The maximum CPR
is 50% and the minimum CPR is 0%. The midpoint CPR at 25% occurs at a WAC-refinance
rate differential at 200 basis points. At midpoint, the maximum slope is 6% CPR for a 10
basis point rate shift.

The Richard and Roll (1989) model identifies four factors that should be included in
any prepayment model:17

1. Refinancing incentive: borrower’s incentive to refinance

RI(t) = a + b(arctan(c + d(WAC − rt)))

where18

a = (max CPR + minCPR)/2
b = 100(max CPR − a)/(π/2)
d = max slope/b

c = −d x midpoint diff.

2. Seasoning (age of the mortgage):

Age(t) = min(
t

30
, 1)

3. Seasonality (monthly multiplier): yearly trends in housing turnover19

MM(t) = (0.94, 0.76, 0.74, 0.95, 0.98, 0.92, 0.98, 1.10, 1.18, 1.22, 1.23, 0.98)

where t is the tth month, t = 1...12.

4. Burnout multiplier: A spike in refinancing due to incentives is followed by a burnout

BM(t) = 0.3 + 0.7
B(t)
B(0)

where B(t) is the mortgage balance at time t and B(0) is the initial mortgage pool
balance.

The annualized prepayment rate, CPR(t), is equal to

CPR(t) = RI(t)xAge(t)xMM(t)xBM(t).



“London” — 2006/9/12 — 22:22 — page 203 — #225

Section 4.5 MBS Pricing Using Monte Carlo in C++ 203

The cash flows for the MBS under this expanded prepayment model are as follows:

• MP(t) is the scheduled mortgage payment for period (month) t:

MP(t) = B(t)
(

WAC/12
1 − (1 + WAC/12)−WAM+t

)

• IP(t) is the interest payment for period t:

IP(t) = B(t)
(

WAC
12

)

• PP(t) is the principal prepayment for period t

PP(t) = SMM(t)(B(t) − SP(t))

where

SMM(t) = 1 − 12
√

1 − CPR(t) and SP(t) = MP(t) − IP(t).

• SP(t) is the scheduled principal payment for period t, and SMM(t) is the single
monthly mortality-rate at time t.

The reduction in the mortgage balance for each month is given by

B(t + 1) = B(t) − TPP(t)

where TPP(t) is the total principal payment for period t. As before, we computed the
expected cash flows at time t, CF(t), of the MBS, and thus the MBS price P , using these
formulas and Monte Carlo:

P = EQ

[
M∑

t=0

PV (t)

]
= EQ

[
M∑

t=0

df(t)CF(t)

]

where

PV = Present value for cash flow at time t.

df(t) =
t∏

k=1

1
(1 + rk)

= Discounting factor for time t.

CF(t) = MP(t) + PP(t) = TTP(t) + IP(t)
MP(t) = SP(t) + IP(t)

TPP(t) = SP(t) + PP(t).

Monte Carlo simulation can be used to help people like portfolio managers identify
whether current MBS market prices are rich or cheap compared to their theoretical values
and variances, and make potentially profitable trades to capture “mispricings” in the market



“London” — 2006/9/12 — 22:22 — page 204 — #226

204 Mortgage-Backed Securities Chapter 4

compared to their “true” theoretical values. One can use the information from the simula-
tion to estimate the average life of each path and the mean and variance from all the paths.
From this, one can estimate prepayment risk.

There are two types of cash flow analysis approaches. The first, static cash flow anal-
ysis, assumes a constant PSA, while the second, vector (or dynamic) cash flow analysis
assumes that the PSA changes over time. The static cash flow methodology estimates CFs
based on different PSA speeds, and then calculates the yields on the CFs for prices and
for different PSA speeds, assuming a constant interest rate volatility assumption. Static CF
analysis is useful in determining what is a good price given the estimated yields based on
PSA speeds, duration, average life, and other features of the mortgage or MBS. Table 4.8
shows static analysis for different par value, price, and PSA speeds assumptions.

Based on CF analysis, an investor would be willing to pay 90.75% of par or less for
the MBS, if they required a yield of 9.76% for an MBS investment with a PSA of 165 (or
equivalently for an investment with an average life of 2.93, and duration of 2.57).

Table 4.8
Par Value PSA Yield Mean Std Dev.

(Price as % of Par) 50% 100% 165%

$44.127M 8.37% 9.01% 9.76% 9.047% .5681

(90.75)

$45.100M 7.82% 8.31% 8.88% 8.3367% .4330

(92.75)

$46.072M 7.29% 7.63% 8.03% 7.6500% .5234

(94.75)

$47.045M 6.78% 6.97% 7.20% 6.9800% .1717

(96.75)

$48.017M 6.28% 6.34% 6.40% 6.3400% .0490

(98.75)

Average Life (Years) 5.10 3.80 2.93

Maturity 9.40 7.15 5.40

Duration 4.12 3.22 2.57

Vector Analysis:

Month: PSA

1–36 50 100 165

37–138 200 200 400

139–357 300 300 400

At $48.127M:

Yield 6.02% 6.01% 6.00% 6.0100% .00816

Average Life 3.51 2.71 2.63

Duration 2.97 2.40 2.34

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 205 — #227

Section 4.5 MBS Pricing Using Monte Carlo in C++ 205

Vector analysis is a more dynamic approach. Vector analysis can be used like static CF
analysis to determine prices given required yields. The example at the bottom of Table 4.8
shows vector analysis in which different PSA speeds are assumed for three subperiods.

In general, a decrease in PSA will benefit longer-maturity tranches more than shorter
maturity tranches. Slowing down prepayment increases the OAS for all tranches, more for
those tranches trading above par, as well as increases their price. However, changes in price
are not as great for shorter duration tranches, as their prices do not move as much from a
change in OAS as a longer duration tranche. Conversely, an increase in PSA will reduce
the OAS and price of all tranches, especially if they are trading above par. Interest-only
(IO) tranches and IO types of tranches will be adversely affected by an increase as well. A
reduction in interest rate volatility increases the OAS and price of all tranches, though most
of the increase is realized by the longer maturity tranches. The OAS gain for each of the
tranches follows more or less the OAS durations of those tranches.20 An increase in interest
rate volatility will distribute the collateral’s loss such that the longer the tranche duration,
the greater the loss.

As part of the valuation model, option-adjusted duration and option-adjusted convexity
are important measures. In general, duration measures the price sensitivity of a bond to a
small change in interest rates. Duration can be interpreted as the approximate percentage
change in price for 100-basis point parallel shift in the yield curve.21

For example, if a bond’s duration is 3.4, this suggests that a 100-basis point increase
in rates will result in a price decrease of approximately 3.4%. A 50-basis point increase
in yields will decrease the price by roughly 1.7%. The smaller the basis point change, the
better the approximated change will be.

The effective duration of an MBS (or any fixed-income security) can be approximated
as follows:

Effective Duration =
V− − V+

2V0∆r
(4.11)

where

V− = Price if yield is decreased (per $100 of par value) by ∆r.

V+ = Price if yield is increased (per $100 of par value) by ∆r.

V0 = Initial price (per $100 of par value).

∆r = Number of basis points change in rates used in calculate V− and V+.

Effective duration—in contrast to modified duration, which is the standard measure
of duration—assumes that prices in the formula (4.11) are computed assuming cash flow
changes when interest rates change. Modified duration, on the other hand, assumes that if
interest rates change, the cash flow does not change so that modified duration is an appro-
priate measure for option-free securities like Treasury bonds, but not for securities with
embedded options like MBS, where cash flows are affected by rate changes. Consequently,
MBS use effective duration, also known as OAS duration, which can be computed using
an OAS model as follows. First, the bond’s OAS is found using the current term structure
of interest rates. Next, the bond is reprised holding OAS constant, but shifting the term
structure twice—one shift increases yields and one shift decreases yields generating two
prices, V− and V+, respectively.22



“London” — 2006/9/12 — 22:22 — page 206 — #228

206 Mortgage-Backed Securities Chapter 4

Subsequently, effective duration can be used with a binomial tree or with CF analysis to
measure the duration of a bond with option risk or an MBS. The following steps are utilized
for using a binomial tree to value a bond with an embedded option. First, take a yield
curve estimated with bootstrapping and value the bond, V0, using the calibration approach.
Then, let the estimated yield curve with bootstrapping decrease by a small amount and then
estimate the price of the bond using the calibration approach: V−. Let the estimated yield
curve with bootstrapping decrease by a small amount, and then estimate the price of the
bond using the calibration approach: V+. Finally, calculate the effective duration in (4.11).
Similarly, using static cash flow analysis, you can calculate effective duration as follows.
For a given PSA, determine the prices associated with small yield changes (you can also
use a model in which you assume PSA changes as rates change), and then use the formula
(4.11). It is important to note that effective duration assumes only parallel shifts in the term
structure and will not correctly predict the bond price change if shifts are not parallel.

Convexity is a measure of a security that is the approximate change in price that is not
explained by duration. It can be viewed as the second-order term of the Taylor expansion
of the bond price as a function of yield. Bonds with positive convexity will have a greater
percentage increase in price than the percentage price decrease if the yield changes by
a given number of basis points. Conversely, bonds with negative convexity will have a
greater percentage price decrease than percentage price increase if yields change a given
number of basis points. Although positive convexity is a desirable feature of a bond, a pass-
through security can exhibit either positive or negative convexity, depending on the current
mortgage refinancing rate relative to the rate on the underlying mortgage loans. Convexity
can be computed as:

V+ + V− − 2(V0)
2V0(∆r)2

(4.12)

If cash flows do not change when yields change, then the resulting convexity from
(4.12) is a good approximation to the standard convexity of an option-free bond. However,
if prices in (4.12) are derived by changing the cash flows change (by changing prepayment
rates) when yields change, the resulting convexity is called effective convexity.23 If prices
are obtained by simulating the OAS via Monte Carlo simulation or by an OAS model, the
resulting value is known as OAS convexity.

As an example of computing duration and convexity, consider a PSA 165 MBS with
the following prices and yields shown in Table 4.9.

Table 4.9
Price Yield

102.1875 6.75%

100.2813 7.00%

98.4063 7.25%



“London” — 2006/9/12 — 22:22 — page 207 — #229

Section 4.6 Matlab Fixed-Income Toolkit for MBS Valuation 207

From (4.12), we find the duration is

102.1875− 98.4063
2(100.2813)(.0025)

= 7.54

and the convexity is

102.1875 + 98.4063− 2(100.2813)
2(100.2813)(.0025)2

= 24

Thus, for a 25% change in the yield, the bond price will change by 7.54%, with a positive
convexity of 24%—meaning 24% of the price change is not captured by the duration.

Figure 4.4 shows the simulated cash flows for a 30-year MBS with a 8.5% coupon on a
$1,000,000 pool.

For MBS-pricing models where the underlying factor follows a diffusion process, see
Kariya and Kobayashi (2000) for a one-factor (interest rate) valuation model and Kariya,
Ushiyama, and Pliska (2002) for a three-factor (interest rate, mortgage rate, and housing
price) valuation model.24

45,000

35,000

25,000

15,000

40,000

30,000

20,000

10,000

5,000

Period
1 25 51 151 321 336 35125176 104 205 221126 176 276

0

D
ol

la
rs

Figure 4.4 Simulated cash flows for a 30-year MBS. Source: Bandic, I. (2002), pg. 23.

4.6 MATLAB FIXED-INCOME TOOLKIT FOR
MBS VALUATION

The Matlab Fixed-Income Toolkit can be used for MBS valuation and for computing
many MBS measures, such as effective duration, convexity, and OAS. The following vari-
ables are inputs in MBS valuation in Matlab:



“London” — 2006/9/12 — 22:22 — page 208 — #230

208 Mortgage-Backed Securities Chapter 4

• Price: Clean price for every $100 of face value.

• Yield: Mortgage yield, compounded monthly (in decimal).

• Settle: Settlement date. A serial date or date string. Settle must be earlier than or
equal to Maturity.

• OriginalBalance: Original balance value in dollars (balance at the beginning of each
TermRemaining).

• TermRemaining: (Optional) Number of full months between settlement and matu-
rity.

• Maturity: Maturity date. A serial date number of date string.

• IssueDate: Issue date. A serial date number or date string.

• GrossRate: Gross coupon rate (including fees), in decimal. Equal to WAC.

• CouponRate: Net coupon rate, in decimal. Default = GrossRate. Equal to PT rate.

• Delay: (Optional) Delay (in days) between payment from homeowner and receipt by
bondholder. Default = 0 (no delay between payment and receipt).

• NMBS: Number of mortgage-backed securities.

• PrepaySpeed: (Optional) Relation of the conditional prepayment rate (CPR) to the
benchmark model. Default = 0. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

• PrepayMatrix: (Optional) Used only when PrepayModel and PrepaySpeed are un-
specified. Customized prepayment vector: A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each MBS, each row
corresponds to each month after settlement.

• ZeroMatrix: A matrix of three columns. Column 1: serial date numbers. Column
2: spot rates with maturities corresponding to the dates in Column 1. Column 3:
Compounding of rates in Column 1. Values are 1 (annual), 2 (semiannual), 3 (three
times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and –1 (continuous).

• Interpolation: Interpolation method. Computes the corresponding spot rates for the
bond’s cash flow. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
Default = 1.

All inputs (except PrepayMatrix and ZeroMatrix) are NMBS x 1 vectors. The following
variables are inputs for pricing bonds, which can in turn be used to find the implied yield
curve for pricing mortgage-backed securities:

• Face: (Optional) Face value of each bond in the portfolio. Default = 100.

• Yield: Scalar or vector containing yield to maturity of instruments.



“London” -- 2006/9/12 -- 22:22 -- page 209 -- #231

Section 4.6 Matlab Fixed-Income Toolkit for MBS Valuation 209

• Settle: Settlement date. A scalar or vector of serial date numbers. Settle must be
earlier than or equal to Maturity.

• Maturity: Maturity date. A scalar or vector of serial date numbers of date strings.

• ConvDates: Conversion dates for the bonds. A matrix of serial date numbers.

• CouponRates: Matrix containing coupon rates for each bond in the portfolio in dec-
imal form. The first column of this matrix contains rates applicable between Settle
and dates in the first column of ConvDates.

• Period: (Optional) Number of coupons per year of the bond. A vector of integers.
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2 (semiannual).

• Basis: (Optional) Day count basis of the instrument. A vector of integers. 0 = ac-
tual/actual (default), 1 = 30/360, 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA
compliant), 5 = 30/360 (ISDA compliant), 6 = 30/360 (European), and 7 = actual/365
(Japanese).

• EndMonthRule: (Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days. 0 =
ignore rule, meaning that a bond’s coupon payment date is always the same numeri-
cal day of the month. 1 = set rule on (default), meaning that a bond’s coupon payment
date is always the last actual day of the month.

Suppose we want to compute the cash flows and balances of an FHLMC mortgage pool
with an initial balance of $10,000,000, PSA of 150, WAC = 8.125%, term of 360 months,
and a remaining term of 357 months (the pool has been “seasoned” for three months). We
use the following Matlab code:

OriginalBalance = 1000000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 125;
[Balance, Payment, Principal, Interest, Prepayment] =

mbspassthrough(OriginalBalance,...
GrossRate, OriginalTerm, TermRemaining, PrepaySpeed)

This code produces the output shown in Table 4.10 (Balance, Payment, Principal, In-
terest, and Prepayment).

These values are computed in the same way as in §4.2. Given a portfolio of mortgage-
backed securities, we could compute the clean prices and accrued interest using the Matlab
mbsprice function. Suppose the yield on the portfolio is 7.25%, the WAC (gross coupon)
is 8.5%, the maturity is January 10, 2034, the issue date is January 10, 2004, and we want
the price on five settlement dates: March 10, 2004; May 17, 2004; May 17, 2005; January
10, 2006; and June 10, 2006 with PT (coupon) rates of 7.5%, 7.875%, 7.75%, 7.95%,
and 8.125%, on each of the MBS securities, respectively. Assume the delay in the start of
payments is 20 days:



“London” — 2006/9/12 — 22:22 — page 210 — #232

210 Mortgage-Backed Securities Chapter 4

Table 4.10
Month Balance Payment Principal Interest Prepayment

1 998,490.00 7439.7 668.8373 6770.8 836.6

2 996,780.00 7433.4 672.8021 6760.6 1045.4

3 994,850.00 7425.7 676.6479 6749 1253.8

4 992,700.00 7416.3 680.3719 6735.9 1461.6

5 990,350.00 7405.4 683.9716 6721.4 1668.7

6 987,790.00 7392.9 687.4443 6705.5 1875

7 985,020.00 7378.9 690.7876 6688.2 2080.4

8 982,040.00 7363.4 693.9991 6669.4 2284.7

9 978,850.00 7346.3 697.0763 6649.2 2487.7

10 975,460.00 7327.7 700.017 6627.7 2689.5

350 5,640.00 832.5 788.7487 43.8 36.7

351 4,820.00 827.1 788.9469 38.2 31.4

352 4,000.00 821.8 789.1451 32.6 26.1

353 3,190.00 816.4 789.3434 27.1 20.8

355 1,590.00 805.9 789.7401 16.2 10.3

356 790.00 800.7 789.9385 10.7 5.2

357 0.00 795.5 790.137 5.3 0

Source: Johnson, S. (2004)

% MBS.m : compute MBS prices and accrued interest
Yield = 0.0725;
Settle = datenum(['10-Mar-2004';'17-May-2004';'17-May-2005';'10-Jan-
2006';'10-Jun-2006']);
Maturity = datenum('10-Jan-2034');
IssueDate = datenum('10-Jan-2004');
GrossCoupon = 0.085;
CouponRate = [0.075; 0.07875; 0.0775; 0.0795; 0.08125];
Delay = 20;
Speed = 150;
[Price, Accrt] = mbsprice(Yield, Settle, Maturity, IssueDate, ...

GrossRate, CouponRate, Delay, Speed)

Table 4.11 shows the prices and accrued interest at each of the settlement dates.

Table 4.11
Settlement Date Price Accrued Interest

March 10, 2004 101.0937 0.0000

May 17, 2004 103.2801 0.1531

May 17, 2005 102.3677 0.1507

Jan 10, 2006 103.3897 0.0000

June 10, 2006 104.3008 0.0000



“London” — 2006/9/12 — 22:22 — page 211 — #233

Section 4.6 Matlab Fixed-Income Toolkit for MBS Valuation 211

Suppose that we want to compute the OAS of the mortgage pool at the March 10, 2004
settlement date with a roughly a 28-year WAM remaining, given assumptions of a 100,
150, and 200 PSA speeds using the computed price and coupon on March 10, 2004 for
the preceding mortgage pool. In Matlab, we first need to create a zero matrix constructed
(implied) by bond prices (assume all bonds pay semiannual coupons) and yields:

Bonds = [datenum('11/21/2004') 0.045 100 2 3 1;
datenum('02/20/2005') 0.0475 100 2 3 1;
datenum('07/31/2007') 0.0500 100 2 3 1;
datenum('08/15/2010') 0.0550 100 2 3 1;
datenum('03/15/2012') 0.0575 100 2 3 1;
datenum('02/15/2015') 0.0600 100 2 3 1;
datenum('03/31/2020') 0.0650 100 2 3 1;
datenum('08/15/2025') 0.0720 100 2 3 1;
datenum('07/20/2034') 0.0850 100 2 3 1];

Yields = [0.0421; 0.0452; 0.0482; 0.0510; 0.0532; 0.0559;
0.0620; 0.0682; 0.0785];
% Since the above is Treasury data and not "selected" agency data, an
% ad-hoc method of altering the yield has been chosen for demonstration
% purposes
Yields = Yields + 0.025*(1./[1:9]');

% Get parameters from Bonds matrix
Settle = datenum('10-Mar-2004');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);
Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);

% compute bond prices
[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...

Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...
Face);

% uses the bootstrap method to return a zero curve given a portfolio of
% coupon bonds and their prices
[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
SpotCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, SpotCompounding];
Maturity = datenum('10-Jan-2034');
IssueDate = datenum('10-Jan-2004');
GrossRate = 0.085;
Delay = 20;
Interpolation = 1;
PrepaySpeed = [100 150 200];
Price = 101.0937;
CouponRate = 0.075;
Settle = datenum('10-Mar-2004');

OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)



“London” — 2006/9/12 — 22:22 — page 212 — #234

212 Mortgage-Backed Securities Chapter 4

Table 4.12
PSA OAS

100 82.6670

150 101.8518

200 114.6088

The OAS results are shown in Table 4.12
We can compute the effective duration and convexity of the mortgage pool using the

functions mbsdurp (duration given price), mbsdury (duration given yield), mbsconvp
(convexity given price), and mbsconvy (convexity given yield). For instance, continuing
with the example, we can compute the yearly duration, modified duration, and convexity of
the pool on March 10, 2004 for the 100, 150, and 200 PSA speed assumptions by making
the function calls following the code:

% compute regular duration and modified duration
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, É CouponRate, Delay, PrepaySpeed)

% compute convexity
Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay,PrepaySpeed)

Table 4.13 shows duration, modified duration, and convexity for 100, 150, and 200 PSAs.

Table 4.13
PSA Year Duration Mod. Duration Convexity

100 7.0669 6.8148 82.3230

150 6.1048 5.8881 62.2476

200 5.3712 5.1814 48.3368

4.7 COLLATERALIZED MORTGAGE OBLIGATIONS
(CMOS)

CMOs are securities backed by a pool of mortgages, MBSs, stripped MBSs, or CMOs.
They are structured so that there are several classes of bonds; these classes are called
tranches. Each tranche has a different priority claim on the principal. There are two general
types of CMOs: sequential-pay tranches and planned and amortization class (PAC). In a
sequential-pay tranche, each bond class is prioritized in terms of the order of the princi-
pal payment. Principal for each tranche is paid sequentially by priority: The first priority
tranche’s principal is paid entirely (retired) before the next class, which has its principal
paid before the next class, and so on. This process continues until all the tranches in the
structure are paid off. In general, the YTM of the first tranche is the lowest because it has



“London” — 2006/9/12 — 22:22 — page 213 — #235

Section 4.7 Collateralized Mortgage Obligations (CMOs) 213

the shortest average life and the least prepayment risk. Each successive tranche has a longer
average life and a higher YTM.

The last tranche in many plain vanilla structures does not receive interest until all the
tranches with shorter maturities are paid off. These classes are known as accrual bonds or
“Z bonds” due to their similarity to zero-coupon bonds. The interest that would be paid to
the Z bond is used to pay the principal in the shorter maturity tranches, which shortens their
average lives.

Figure 4.5 shows a hypothetical distribution of principal and interest cash flows between
the sequential pay bonds and the Z bond.

Principal Repayment

14000

0

2000

4000

6000

8000

10000

12000

Cash Flow (€) Net Interest for the Year

Years
0 10 20 30

A

B

C Z

Tranche A

Tranche B

Tranche C

Z Bond

Pooled Monthly
Cash Flows

Pass-Through Sponsoring Agencies

Principal

Interest

Figure 4.5 Sequential Pay Bonds and Z Bonds

Suppose we form sequential-pay tranches from the mortgage portfolio described in
Table 4.14: $100M mortgage portfolio, WAM = 357 months, WAC = 8.125%, PT rate =
7.5%, and prepayment speed = 165.

The distribution of cash flows is made as follows. Principal payments are first made to
A, then to B, then to C, and so on down to the residual tranches. Principal payment includes
both scheduled principal payment and prepaid principal. The coupon payment is based on
the remaining balance in the tranche. Table 4.15 shows the structured tranche payments.

To attract certain types of investors, floating-rate and inverse floating-rate tranches are
created. These two tranches can be created from an existing one such as the C tranche.
For example, a floating rate class (FR) and inverse floating rate class (IFR) in C can be
constructed such that the floating rate is, for example, LIBOR + 50 basis points, and the
inverse floating rate is 28.5 − 3 (LIBOR). The FR class is 75% of tranche C, and the IFR
class is 25%. Thus, the tranches can be constructed as shown in Table 4.16.

Table 4.14
Tranche Par PT Rate

A $48.625M 7.5%

B $9M 7.5%

C $42.375M 7.5%



“London” — 2006/9/12 — 22:22 — page 214 — #236

214 Mortgage-Backed Securities Chapter 4

Table 4.15

Source: Johnson, S. (2004)



“London” — 2006/9/12 — 22:22 — page 215 — #237

Section 4.7 Collateralized Mortgage Obligations (CMOs) 215

Table 4.16
Tranche Par PT Rate

A $48.625M 7.5%

B $9M 7.5%

FR $31.782M LIBOR + 50 bps

IFR $10.549M 28.5 − 3 (LIBOR)

Note that in the inverse floating rate equations, 28.5 is referred to as the cap rate (K)
and 3 is called the leverage rate (L). Because the floating and inverse floating classes were
created from class C, which paid a rate of 7.5%, the K and L were found such that:

.75[LIBOR + .5%] + .25[K − L(P LIBOR) = 7.5%

If LIBOR is 6%, then:

FR = 6% + .5% = 6.5%
IFR = 28.5− 3(6%) = 10.5

.75(6.5%)+ .25(10.5%) = 7.5%

CMOs often have tranches with different rates. Such CMOs often include a special
type of tranche known as a notional interest-only class, which receives only the residual
interest. Notional IO classes are often described as paying a certain base interest on a
notional principal. Consider the following CMO with an NIO shown in Table 4.17.

The notional principal of the NIO class is $13.75M. The interest-only (IO) class re-
ceives the excess interest of 7.5% over the rate paid on each class. For example, from class
A, the IO class would receive 1.5% (7.5% − 6%) on $48.625M, which is $0.729375M.
Capitalizing $.729375M at 7.5% yields a notional principal of $9.725M for the IO class on
class A. The sum of the notional principals for each class yields the IO’s notional principal
of $13.75M, as shown in Table 4.18.

Suppose we have a $30,000,000 FHLMC mortgage pool with three tranches, A, B, and
C, each with a size of $10,000,000. Assume the first tranche pool “balloons out” in 60
months, the second pool “balloons out” in 90 months, and the third is regularly amortized
to maturity. The prepayment speeds are assumed to be 100, 165, and 200 for each tranche,
respectively. Suppose that the delay before the first pass-through payment made after issue
is 30 days, the WAC (GrossRate in Matlab) is 8.125%, the PT rate (CouponRate in Matlab)

Table 4.17
Tranche Par PT Rate

A $48.625M 6.0%

B $9M 6.5%

Z $42.375M 7.0%

NIO $13.750M 7.5%



“London” — 2006/9/12 — 22:22 — page 216 — #238

216 Mortgage-Backed Securities Chapter 4

Table 4.18
Tranche Par PT Rate (.075−PT Rate) Par Notional Principal

A $48.625M 6.0% $729,375 $9.725M

B $9M 6.5% $90,000 $1.2M

Z $42.375M 7.0% $211,875 $2.825M

Total $13.75M

is 7.5%, the issue date is March 1, 2004, the settlement date is March 1, 2004, and the
maturity is March 1, 2034. The following Matlab code computes cash flows between settle
and maturity dates, the corresponding time factors in months from settle, and the mortgage
pool factor (the fraction of loan principal outstanding) for each tranche:

% mbsfamounts
% [output] CFlowAmounts: vector of cash flows starting from Settle
% through end of the last month (Maturity)
% CflowDates: indicates when cash flows occur, including
% at Settle. A negative number at Settle indicates
% accrued interest is due.
% TFactors: vector of times in months from Settle,
% corresponding to each cash flow.
% Factors: vector of mortgage factors (the fraction of
% the balance still outstanding at the end of each month).
Settle = [datenum('1-Mar-2004');

datenum('1-Mar-2004');
datenum('1-Mar-2004')];

Maturity = [datenum('1-Mar-2034')];
IssueDate = datenum('1-Mar-2004');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 30;
PSASpeed = [100; 165; 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);
PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1) = SMM(1:60,1);
PrepayMatrix(1:90,2) = SMM(1:90,2);
PrepayMatrix(:,3)=SMM(:,3)
[CFlowAmounts, TFactors, Factors] = mbscfamounts(Settle, Maturity,
IssueDate, ...
GrossRate, CouponRate, Delay, [], PrepayMatrix)

The cash flows for the difference sequential tranches are shown in Table 4.19.
We can compute the price and accrued interest of each of the mortgage pools by using

the following code:

[Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

The price and accrued interest is shown in Table 4.20. No tranche pool has any accrued
interest because the settlement date is the same as the issue date.



“London” — 2006/9/12 — 22:22 — page 217 — #239

Section 4.7 Collateralized Mortgage Obligations (CMOs) 217

Table 4.19
Month Tranche A CF Tranche B CF Tranche C CF

1 0 0 0

2 70,708.00 71,794.00 72,379.00

3 72,368.00 74,534.00 75,702.00

4 74,015.00 77,256.00 79,004.00

5 75,649.00 79,957.00 82,283.00

59 95,117.00 105,150.00 108,680.00

60 94,592.00 104,190.00 107,470.00

61 94,070.00 103,240.00 106,270.00

62 7,580,500.00 102,290.00 105,080.00

63 0.00 101,350.00 103,910.00

64 0.00 100,420.00 102,750.00

88 0.00 80,383.00 78,340.00

89 0.00 79,637.00 77,455.00

90 0.00 78,897.00 76,579.00

91 0.00 78,163.00 75,713.00

92 0.00 4,811,500.00 74,857.00

93 0.00 0.00 74,009.00

358 0.00 0.00 2,017.40

359 0.00 0.00 1,976.90

360 0.00 0.00 1,936.80

361 0.00 0.00 1,897.30

Table 4.20
Price Accrued Interest

Tranche A 101.1477 0

Tranche B 100.8520 0

Tranche C 100.7311 0



“London” — 2006/9/12 — 22:22 — page 218 — #240

218 Mortgage-Backed Securities Chapter 4

We can compute the effective duration and convexity of the mortgage pool using the
mbsdurp (duration given price), mbsdury (duration given yield), mbsconvp (convexity
given price), and mbsconvy (convexity given yield). For instance, continuing with the
example, we can compute the yearly duration, modified duration, and convexity of the
pool on March 10, 2004 for the 100, 150, and 200 PSA speed assumptions by making the
function calls following the code:

% compute regular duration and modified duration
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, É

CouponRate, Delay, PrepaySpeed)

% compute convexity
Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, É

PrepaySpeed)

The duration, modified duration, and convexity results returned from the Matlab func-
tions above for 100, 150, and 200 PSAs are shown in Table 4.21. Figure 4.6 shows simu-
lated cash flows for a sequential-pay CMO.

Table 4.21
PSA Year Duration Mod. Duration Convexity

100 7.0669 6.8148 82.3230

150 6.1048 5.8881 62.2476

200 5.3712 5.1814 48.3368

Figure 4.6 Simulated CMO Cash Flows. Source: Bandic (2002), 28.



“London” -- 2006/9/12 -- 22:22 -- page 219 -- #241

Section 4.8 CMO Implementation in C++ 219

4.8 CMO IMPLEMENTATION IN C++

CMO.h
#ifndef _CMO__
#define _CMO__

#include <vector>
#include <algorithm>
#include <numeric>
#include "Constants.h"
#include "MBS.h"

using namespace std;

class Tranche
{

public:
Tranche() {}
Tranche(char clas, double balance, double coupon)

: initBalance_(balance), balance_(balance),
coupon_(coupon), clas_(clas) {}

virtual ~Tranche() {}
double initBalance_;
double balance_;
double coupon_;
vector<double> cashFlows_;
vector<double> sumCF_;
vector<double> inter_;
vector<double> principal_;
vector<double> discount_;
vector<double> T_;
double price_;
double interest_;
double princip_;
double averageLife_;
char clas_;

};

class CMO
{

public:
CMO(MBS m, vector<Tranche> tr) : mbs(m), tranche(tr)
{

for (int i = 0; i < tranche.size(); i++)
collateral_.push_back(tranche[i].balance_);

}
virtual ~CMO() { }
void calcTrancheCF();
inline double calcCPR(double SMM)

{ return 100*(1-pow((1-(SMM/100)),12)); }
inline double calcSMM(double scheduleBal,

double actualBal) {



“London” -- 2006/9/12 -- 22:22 -- page 220 -- #242

220 Mortgage-Backed Securities Chapter 4

return 100*((double)(scheduleBal -
actualBal)/scheduleBal);

}
inline double calcPSA(double age, double CPR) {

return 100*((double)(CPR/(0.2*min(age,30))));
}

inline double calcRefinance(double r) {

double WAC = mbs.getWAC();
double a = (double) 0.5/2;
double b = (double) 100*((0.5 - a)/(PI/2));
double d = (double) 0.06/b;
double c = (double) -d*0.02;

return (double) (a + b*(atan(c + d*(WAC - r))));
}
inline double calcBurnout(int t, Tranche tr,

double balance) {

return (double) (0.3 +
0.7*((double)balance/1000000));

}
inline double calcMP(int t, Tranche tr, double balance) {

double WAC = mbs.getWAC();
double WAM = mbs.getWAM();

return balance*(((double)WAC/12)/(1-pow((1+
(double)WAC/12),-WAM+t)));

}
inline double calcIP(int t, Tranche tr, double r,

double balance) {

double WAC = mbs.getWAC();

return (balance)*((double)(tr.coupon_/12));
}
inline double calcPP(int t, Tranche tr, double r,

double balance) {

double SMM = calcSMM1(t,tr,r,balance);
double SP = calcSP(t,tr,r,balance);

return SMM*(balance - SP);

}
inline double calcMM(int t) {

double MM[12] = { 0.94, 0.76, 0.74, 0.95, 0.98,
0.92, 0.98, 1.10, 1.18, 1.22, 1.23, 0.98};

int rem = t % 12;

if (t == 1)
rem = 1;

return MM[rem-1];



“London” -- 2006/9/12 -- 22:22 -- page 221 -- #243

Section 4.8 CMO Implementation in C++ 221

}
inline double calcCPR1(int t, Tranche tr, double r,

double balance) {

double RI = calcRefinance(r);
double age = calcAge(t);
double MM = calcMM(t);
double BM = calcBurnout(t,tr,balance);

return RI*age*MM*BM;

}
inline double calcAge(int t) {

return min((double)t/30,1);
}
inline double calcSMM1(int t,Tranche tr, double r,

double balance) {

double CPR = calcCPR1(t,tr,r,balance);

return (1 - pow((1 - CPR),(double)1/12));
}
inline double calcSP(int t, Tranche tr, double r,

double balance) {

double MP = calcMP(t,tr,balance);
double IP = calcIP(t,tr,r,balance);

return MP - IP;
}
void calcCashFlows(double initRate, double financeRate,

int N, int M);
private:

MBS mbs;
vector<Tranche> tranche;
vector<double> collateral_;

};

#endif

Here are the method definitions:

CMO.cpp
#include "CMO.h"
#include "Utility.h"

void CMO::calcCashFlows(double initRate, double financeRate, int N, int M)
{

Utility util;
int i, t = 0;
double r = 0.0715;
const double kappa = 0.29368;
const double vol = 0.11;
const double theta = 0.08;



“London” -- 2006/9/12 -- 22:22 -- page 222 -- #244

222 Mortgage-Backed Securities Chapter 4

double deviate = 0;
long seed = 0;
long* idum = 0;
double balance = 0;
double sum = 0;
double S[4] = {0};
double sum1 = 0;
double sum2 = 0;
double sum3 = 0;
double sumA = 0;
double sumB = 0;
double sumC = 0;
double sumD = 0;
double CPR = 0;
double interest = 0.0;
double mbsPrice = 0;
double stdErr = 0;
double stdDev = 0;
double totalsum = 0;
double totalsumA = 0;
double totalsumB = 0;
double totalsumC = 0;
double totalsumD = 0;
double totalsum2 = 0;
double schedulePrincipal = 0;
double prepaidPrincipal = 0;
double discount = 0;
double principal = 0;
double pay = 0.0;
double r1 = 0.0;
double rr = 0.0;
int cnt = 0;
double trancheBal = 0.0;
double T = mbs.getMaturity();
double WAM = mbs.getWAM();
double OAS = mbs.getOAS();
double dt = (double) T/N;
double interest1 = 0;
vector<double> disc(0.0);
vector<double> time1;
TNT::Array1D<double> CF(SIZE_X); // cash_flow
vector<double> p;

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;

for (t = 1; t <= N; t++)
time1.push_back((double)(t-1)/12);

for (i = 0; i < M; i++)
{

r = initRate;
sum = 0;
sumA = 0;
sumB = 0;
sumC = 0;



“London” -- 2006/9/12 -- 22:22 -- page 223 -- #245

Section 4.8 CMO Implementation in C++ 223

sumD = 0;
schedulePrincipal = 0;
prepaidPrincipal = 0;
balance = 1000000;
cnt = 1;
disc.clear();
disc.empty();
disc.push_back(r);
p.clear();
p.push_back(0);

for (int j = 0; j < tranche.size(); j++)
{

tranche[j].balance_ = collateral_[j];
tranche[j].inter_.clear();
tranche[j].principal_.clear();
trancheBal = calcPP(0,tranche[j],r,

tranche[j].balance_) +
calcMP(0,tranche[j],
tranche[j].balance_);

tranche[j].principal_.push_back(trancheBal);
tranche[j].interest_ = calcIP(0,tranche[j],r,

tranche[j].balance_);
tranche[j].inter_.push_back(tranche[j].interest_);
S[j] = 0;

}

for (t = 1; t <= N; t++)
{

balance = balance - (schedulePrincipal +
prepaidPrincipal);

deviate = util.gasdev(idum);
r = r + kappa*(theta - r)*dt +

vol*r*sqrt(dt)*deviate;
disc.push_back(r);
interest = calcIP(t,tranche[cnt-1],r,balance);
schedulePrincipal = calcMP(t,tranche[cnt-1],

balance);
prepaidPrincipal = calcPP(t,tranche[cnt-1],r,

balance);
tranche[cnt-1].balance_ = tranche[cnt-1].balance_ -

schedulePrincipal -
prepaidPrincipal;

principal = schedulePrincipal + prepaidPrincipal;
tranche[cnt-1].principal_.push_back(principal);
tranche[cnt-1].princip_ = principal;
p.push_back(principal);

if (tranche[cnt-1].balance_ > 0)
interest1 = calcIP(t,tranche[cnt-1],r,

tranche[cnt-1].balance_);
else

interest1 = 0;
tranche[cnt-1].inter_.push_back(interest1);
tranche[cnt-1].interest_ = interest1;

for (int k = 1; k <= tranche.size(); k++)



“London” -- 2006/9/12 -- 22:22 -- page 224 -- #246

224 Mortgage-Backed Securities Chapter 4

{
if (k != cnt)
{

interest1 = calcIP(t,tranche[k-1],r,
tranche[k-1].balance_);

if (tranche[k-1].balance_ != 0 )
{

tranche[k-1].inter_.
push_back(interest1);

tranche[k-1].interest_ =
interest1;

}
else
{

tranche[k-1].inter_.
push_back(0.0);

tranche[k-1].interest_ =
0.0;

}

tranche[k-1].principal_.
push_back(0.0);

tranche[k-1].princip_ = 0.0;
}

rr = mbs.computeZeroRates(t-1,disc);
S[k-1] = (tranche[k-1].interest_ +

tranche[k-1].princip_)/
(pow(1+rr+OAS,
(double)(t-1)/12));

if (k == 1)
sumA = sumA + S[k-1];

else if (k == 2)
sumB = sumB + S[k-1];

else if (k == 3)
sumC = sumC + S[k-1];

else
sumD = sumD + S[k-1];

}

if (tranche[cnt-1].balance_ > 0)
{

if (balance >= schedulePrincipal)
{

if (t != N)
CF[t-1]

= schedulePrincipal +
interest +
prepaidPrincipal;

else
CF[t-1] = interest +

balance;

rr = mbs.computeZeroRates(t-1,disc);
sum = sum + CF[t-1]/(pow(1+rr+OAS,



“London” -- 2006/9/12 -- 22:22 -- page 225 -- #247

Section 4.8 CMO Implementation in C++ 225

(double)(t-1)/12));

}
else

goto x;
}
else
{

tranche[cnt-1].balance_ = 0;
cnt++;

}
}

x:
totalsum = totalsum + sum;
totalsumA = totalsumA + sumA;
totalsumB = totalsumB + sumB;
totalsumC = totalsumC + sumC;
totalsumD = totalsumD + sumD;
totalsum2 = totalsum2 + sum*sum;

}

calcTrancheCF();

for (int j = 0; j < tranche.size(); j++)
{

sum1 = 0;
sum2 = 0;
for (i = 0; i < tranche[j].principal_.size(); i++)
{

sum1 = sum1 + (time1[i])*(tranche[j].principal_[i]);
sum2 = sum2 + tranche[j].principal_[i];

}
tranche[j].averageLife_ = sum1/sum2;

}

sum1 = 0;
sum = accumulate(p.begin(),p.end(),0);
for (j = 0; j < p.size(); j++)

sum1 = sum1 + time1[j]*p[j];

std::cout << endl;
std::cout << "collateral price = " << totalsum/M << " " <<

"Ave.Life = " << sum1/sum << endl;
std::cout << "Tranche A price = " << totalsumA/M << " " <<

"Ave.Life = " << tranche[0].averageLife_ <<
endl;
std::cout << "Tranche B price = " << totalsumB/M << " " <<

"Ave.Life = " << tranche[1].averageLife_ <<
endl;
std::cout << "Tranche C price = " << totalsumC/M << " " <<

"Ave.Life = " << tranche[2].averageLife_ <<
endl;
std::cout << "Tranche Z price = " << totalsumD/M << " " <<

"Ave.Life = " << tranche[3].averageLife_ <<
endl;



“London” -- 2006/9/12 -- 22:22 -- page 226 -- #248

226 Mortgage-Backed Securities Chapter 4

T = mbs.getMaturity();
stdDev = sqrt(totalsum2 - (double)(totalsum*totalsum)/M)*

(exp(-2*initRate*T)/(M-1));
stdErr = (double) stdDev/sqrt(M);

}

void CMO::calcTrancheCF()
{

vector<Tranche>::iterator iter;
vector<double>::iterator iter1;
vector<double>::iterator iter2;
int cnt = 1;

for (iter = tranche.begin(); iter != tranche.end(); iter++)
{

iter2 = iter->inter_.begin();
cnt = 1;
for (iter1 = iter->principal_.begin(); iter1 !=

iter->principal_.end(); iter1++)
{

std::cout << "Mo." << cnt << " Class: " <<
iter->clas_ << " " <<
"Principal= " << *iter1

<< " " << "Coupon= " << *iter2 << endl;
iter2++;
cnt++;

}
}

}

The main method is as follows:

void main()
{

std::cout.precision(7);
double principal = 1000000; // underlying principal notional)

// of MBS
double coupon = 0.08; // coupon rate
double WAC = 0.08; // weighted average coupon rate
double WAM = 10; // weighted average maturity
double OAS = 0.02; // option adjusted spread
double initSpotRate = 0.06; // spot rate
double initRefinanceRate = 0.08; // refinance rate
int N = 10; // number of time steps in tree
long int M = 100000; // number of simulation paths

MBS mbs(principal,coupon,WAC,WAM,OAS);

vector<Tranche> tranche;
Tranche trA('A',500000,0.06);
tranche.push_back(trA);
Tranche trB('B',300000,0.065);
tranche.push_back(trB);



“London” -- 2006/9/12 -- 22:22 -- page 227 -- #249

Section 4.8 CMO Implementation in C++ 227

Tranche trC('C',200000,0.07);
tranche.push_back(trC);
Tranche trZ('Z',100000, 0.075);
tranche.push_back(trZ);

std::cout << endl;
std::cout << "Pricing CMO Tranches..." << endl << endl;
CMO cmo(mbs,tranche);
cmo.calcCashFlows(initSpotRate,initRefinanceRate,N,M);

}

The output is as follows:

Pricing CMO Tranches...

Mo.1 Class: A Principal= 51851.6 Coupon= 2500
Mo.2 Class: A Principal= 115430 Coupon= 1922.85
Mo.3 Class: A Principal= 114668.5 Coupon= 1349.507
Mo.4 Class: A Principal= 113798.2 Coupon= 780.5165
Mo.5 Class: A Principal= 113024 Coupon= 215.3967
Mo.6 Class: A Principal= 111815.5 Coupon= 0
Mo.7 Class: A Principal= 0 Coupon= 0
Mo.8 Class: A Principal= 0 Coupon= 0
Mo.9 Class: A Principal= 0 Coupon= 0
Mo.10 Class: A Principal= 0 Coupon= 0
Mo.1 Class: B Principal= 31110.96 Coupon= 1625
Mo.2 Class: B Principal= 0 Coupon= 1625
Mo.3 Class: B Principal= 0 Coupon= 1625
Mo.4 Class: B Principal= 0 Coupon= 1625
Mo.5 Class: B Principal= 0 Coupon= 1625
Mo.6 Class: B Principal= 0 Coupon= 1625
Mo.7 Class: B Principal= 110373.5 Coupon= 1027.143
Mo.8 Class: B Principal= 108932.9 Coupon= 437.0903
Mo.9 Class: B Principal= 107334.2 Coupon= 0
Mo.10 Class: B Principal= 0 Coupon= 0
Mo.1 Class: C Principal= 20740.64 Coupon= 1166.667
Mo.2 Class: C Principal= 0 Coupon= 1166.667
Mo.3 Class: C Principal= 0 Coupon= 1166.667
Mo.4 Class: C Principal= 0 Coupon= 1166.667
Mo.5 Class: C Principal= 0 Coupon= 1166.667
Mo.6 Class: C Principal= 0 Coupon= 1166.667
Mo.7 Class: C Principal= 0 Coupon= 1166.667
Mo.8 Class: C Principal= 0 Coupon= 1166.667
Mo.9 Class: C Principal= 0 Coupon= 1166.667
Mo.10 Class: C Principal= 105320.6 Coupon= 552.2968
Mo.1 Class: Z Principal= 10370.32 Coupon= 625
Mo.2 Class: Z Principal= 0 Coupon= 625
Mo.3 Class: Z Principal= 0 Coupon= 625
Mo.4 Class: Z Principal= 0 Coupon= 625
Mo.5 Class: Z Principal= 0 Coupon= 625
Mo.6 Class: Z Principal= 0 Coupon= 625
Mo.7 Class: Z Principal= 0 Coupon= 625
Mo.8 Class: Z Principal= 0 Coupon= 625
Mo.9 Class: Z Principal= 0 Coupon= 625
Mo.10 Class: Z Principal= 0 Coupon= 625



“London” — 2006/9/12 — 22:22 — page 228 — #250

228 Mortgage-Backed Securities Chapter 4

collateral price = 682754.6 Ave.Life = 0.4104376
Tranche A price = 564751.1 Ave.Life = 0.2279203
Tranche B price = 321741.6 Ave.Life = 0.5318972
Tranche C price = 108757.8 Ave.Life = 0.6266037
Tranche Z price = 5460.491 Ave.Life = 0

4.9 PLANNED AMORTIZATION CLASSES (PACS)
Planned amortization classes (PACs) (also called planned redemption obligations) are

tranches set up such that they have zero (or at least minimum) prepayment risk. PACs are
set up by applying low and high PSA speeds to the collateral. The PAC bond then receives a
promise of the minimum CF each month, with a support bond created that receives the rest.
These support classes, sometimes referred to as companions, absorb principal payments
and pay off sooner if the PSA exceeds the PAC range. If the PSA is below the range, the
companion classes have a longer life and amortization schedule. In either case, the PAC
classes experience less volatility than they would in a sequential-pay structure because of
the stability provided by the companions.

PACs are much less sensitive to prepayment risk than standard pass-throughs as long as
the PSA speed falls between the low and high PSA thresholds used. Suppose one applied 90
and 300 PSA models to the collateral of a $100M mortgage pool with a WAC = 8.125%,
WAM = 357 months, and PT rate = 7.5%. This would yield two different monthly princi-
pals over the 357-month period. We also need to factor in a seasoning factor, a factor that
accounts for the prepayment based on the season, which we assume to be 3. Table 4.22
shows the cash flows for a PAC with the above features.

To show how these calculations were made, we know that in the first month (period 1),
the PAC balance is $100,000,000. The computed interest for this first month is:

I1 = (0.075/12) ∗ (100, 000, 000) = $625, 000

The computed PAC principal payment is:

p =
(0.08125/12)(100, 000, 000)
1 − (1/(1 + 0.08125/12))357

= $743, 967.06

The PAC scheduled principal payment is:

743, 967.06− (0.085/12)(100, 000, 000) = 66, 883.73

The low PAC PSA speed is assumed to be 90. We compute the PAC adjuster seasoning
factor, which we take to be:

Min

(
month + seasoning factor

number of months until fixed CPR
, 1

)

Thus, in the first month, this value is:

Min

(
1 + 3
30

, 1
)

= 0.13333



“London” — 2006/9/12 — 22:22 — page 229 — #251

Section 4.9 Planned Amortization Classes (PACS) 229

T
a
b
le

4
.2

2

So
ur

ce
:J

oh
ns

on
,S

.(
20

04
)



“London” — 2006/9/12 — 22:22 — page 230 — #252

230 Mortgage-Backed Securities Chapter 4

The PAC adjuster seasoning factor is then applied to the PAC CPR:(
PSA
100

)
(Fixed CPR)(adjuster seasoning factor) =

(
90
100

)
(0.06)(0.1333)

= 0.0072

The SMM is:

SMM = (1 − (1 − PAC CPR)1/357 = (1 − (1 − 0.0072)1/357 = 0.00060199

The PAC prepaid principal is:

SMM(balance − scheduled principal) ·
0.00060199(100, 000, 000− 66, 883.73) = $60, 158.65

The PAC cash flow is:

PAC Interest + PAC Scheduled Principal +
PAC Prepaid Principal = 625, 000 + 66, 883.73 + 60, 148.65

= $752, 042.38

We can now compute the PAC low PSA total prepayment amount:

PAC Scheduled Principal + PAC Prepaid Principal = 66, 883.72+ 60, 158.65
= $127, 042.38

The same computations are then made for the high PSA level of 300. The main differ-
ence is that the PAC CPR in this case is:(

PSA

100

)
(Fixed CPR)(adjuster seasoning factor) =

(
300
100

)
(0.06)(0.1333)

= 0.024

The PAC bond has an average life of 7.26 years. Moreover, between PSA speeds of 90
and 300, the PAC bond’s average life is 7.26 years, implying no prepayment risk. Table
4.23 shows average life for the PAC and support bond for various PSA assumptions.

The PAC bond can be broken into other PAC tranches. The most common is a sequential-
pay PAC. For example, one can form six sequential-pay PACs using the previous collateral.
The average life for the PAC classes will be stable within the 90–300 PSA range; 90–300
is referred to as the collar. Some PACs will move outside that range. This is referred to as
the effective collar. The more classes you have, the more narrow you make the windows,
making the PAC resemble a bullet bond. Such PACs could be sold to liability-management
funds to meet liabilities with certain liabilities or durations—cash flow matching. In the
1980s, one could find CMOs (especially PACs) with as many as 70 tranches; in the early
1990s, the average number of tranches was 24. Like the PACs, the support bond also can
be divided into different classes: sequential-pay, floaters, accrual bonds, and so on.



“London” — 2006/9/12 — 22:22 — page 231 — #253

Section 4.10 Principal- and Interest-Only Strips 231

Table 4.23
PSA Speed PAC Support Collateral

0 10.36 23.84 20.36

50 8.04 21.69 15.36

90 7.26 20.06 12.26

100 7.26 18.56 11.67

150 7.26 12.56 9.33

200 7.26 8.36 7.69

250 7.26 5.35 6.52

300 7.26 3.11 5.64

350 6.61 2.91 4.98

400 6.06 2.74 4.45

Targeted amortization classes (TACs) also offer prepayment protection within a defined
PSA range, but not below the PSA used to price the CMO. This could result in a lengthening
of average life if prepayments slow down, and for this reason, TACs offer higher yields in
relation to comparable PACs.

Figure 4.7 shows the cash flows paid to a hypothetical GNMA PAC 100/300.

$100,000 par value 30-year 8% bond priced at PSA 165

Residual Amount for Companions

1400

1200

C
as

h 
F

lo
w

s 
($

)

1000

800

600

400

200

0
1 30 60 90 120 150 180

Months

PAC 100/300 Principal Payment
Schedule

300 PSA

100 PSA

Prepayment Rate > PAC Range
Companions get paid faster.

Prepayment Rate < PAC Range
Companions provide support to pay the

amount to PAC bonds.

Figure 4.7 GNMA PAC 100/300 Cash Flows

4.10 PRINCIPAL- AND INTEREST-ONLY STRIPS

Stripped MBSs were introduced by FNMA in 1986. Any MBS can be “stripped” and
sold separately by directing a collateral’s cash flows into principal-only (PO) or interest-



“London” — 2006/9/12 — 22:22 — page 232 — #254

232 Mortgage-Backed Securities Chapter 4

only (IO) securities. IO classes receive just the interest on the mortgages. PO classes receive
just the principal payments. The yield on PO bonds depends on the speed of prepayment.
The faster the prepayment, the greater the yield. For instance, PO investors who paid $75
million for a mortgage portfolio with a principal of $100 million would receive a higher
yield if the $100 million were paid early (e.g., first years) than if it were spread out. POs
have an inverse price-interest rate sensitivity relationship: If interest rates decrease, then
prepayments increase so that the PO (yield) return increases and its price (value) increases.
Analogously, if interest rates increase, then prepayments decrease so that the PO (yield)
return decreases and its price (value) decreases.

Because IO investors receive interest on the outstanding principal, they want prepay-
ments to be slow. For example, IO investors holding an IO claim on a $400 million 7.5%
pool would receive $30 million (= $400 ∗ 0.075) if the principal were paid immediately.
By contrast, if the principal were paid off by equal increments over four years, the return
would be $75 million (see Table 4.24).

Because a rate decrease augments speed, it lowers the return on an IO bond, causing
its value to decrease. Whether IO bonds decrease in response to a rate decrease depends
on whether this effect dominates the effect of lower discount rates on increasing value. In
other words, when interest rates decrease, the prepayments increase, which decreases the
return, and the value of the IO must be balanced against the increase in value from the
effect of lower discount rates. The two effects may offset one another so that it is possible
that there is a direct relationship between value and return for an IO bond.

Like CMOS, stripped MBSs are a derivative product. Both strips are extremely volatile
and, as stated, dependent on prepayment rates. POs perform well in high prepayment envi-
ronments when the principal purchased at a discount is returned at par, faster than expected,
making them a bullish investment with a large, positive duration. IOs perform better if pre-
payments are slow because the principal remains outstanding for a longer period and in-
terest payments continue, making them an investment with a negative duration—i.e., their
price increases as interest rates increase and vice versa. IOs are often used to hedge interest
rate risks in MBS or CMO portfolios. Portfolio losses that are caused by an increase in rates
are partially or fully offset by a corresponding appreciation in the IO position, depending
on the structure of the hedge.

Consider a stripped MBS with a collateral pool of $100 million, WAM = 357 months,
WAC = 0.08125, PT rate = 0.075, and a PSA = 165. The cash flows are given as shown
in Table 4.25.

Table 4.24
Year 1 ($400M )(0.75) = $30.0M

Year 2 ($300M )(0.75) = $22.5M

Year 3 ($200M )(0.75) = $15.0M

Year 4 ($100M )(0.75) = $7.5M

Total $75M



“London” — 2006/9/12 — 22:22 — page 233 — #255

Section 4.11 Interest Rate Risk 233

Table 4.25

4.11 INTEREST RATE RISK

The MBS interest rate risk is similar to that of other fixed-income securities: When
interest rates fall, price goes up and vice versa. However, the prepayment optionality “em-
bedded” in MBS impacts the degree of price movement based on the relationship between
the security’s coupon rate and current mortgage rates. When a pass-through coupon is either
at or above current mortgage rates, homeowners are more likely to exercise the prepayment
option. As the likelihood of prepayment increases, the price of the MBS pass-through does
not go up as much as that of an otherwise identical security with no optionality due to the
increased prepayment risk. This is known as negative convexity.

When a pass-through coupon is below current mortgage rates, or “out of the money,”
homeowners are unlikely to exercise the prepayment option. Although the prepayment op-
tion is less likely to be exercised, the price of the pass-through still exhibits negative con-
vexity because investors maintain their principal investment at lower levels than the current
market rate for longer periods of time. This is known as extension risk. Figure 4.8 shows
the inverse relationship between the price of a regular fixed-income security and interest
rates. Figure 4.9 shows the negative convexity of an MBS.

4.12 DYNAMIC HEDGING OF MBS

Institutions hold significant positions in mortgage-backed securities (MBSs) for a vari-
ety of reasons. Hedging interest rate risk of MBSs is an important concern whether the po-
sitions reflect trades on relative value or inventory holdings due to main businesses. MBSs
hedging is complicated by the fact that the timing of the cash flows is dependent on the
prepayment behavior of the pool. In particular, mortgagors are more likely to prepay given
the incentive to refinance when interest rates fall. Thus, fixed-rate investors are implicitly
writing a call option on the corresponding fixed-rate bond.25 Though other factors influence



“London” — 2006/9/12 — 22:22 — page 234 — #256

234 Mortgage-Backed Securities Chapter 4

With fixed-income securities, there is an inverse
relationship between interest rates and price.

Fixed Income Securities
115

105

95

85

75

65
–3%

P
ric

e 
(�

)

–2% –1% 0% 1% 2% 3%

Figure 4.8 Inverse relationship between the price of a regular fixed income security and interest

rates

prepayments—e.g., seasonality and burnout—interest rates are the predominant factor in
valuing MBSs. Because of this predominance, U.S. Treasury securities, or more specifi-
cally, Treasury note (T-note) futures, are often used to hedge MBSs. There are two reasons:
(1) T-note futures are very liquid instruments; and (2) the prices of those instruments are
determined by the underlying term structure of interest rates and thus relate directly to the
value of MBSs.26 We follow the work of Boudoukh, Richardson, Stanton, and Whitelaw
(1995) in the following discussion.

There are two common approaches to hedging MBSs using T-note futures. The first is
purely empirical and involves the regression of past returns on MBSs against past returns
on T-note futures. The estimated regression coefficient from the resulting relation can then
be used to hedge the interest rate risk of MBSs using the risk in T-notes. The advantage of

The price of a security with prepayment optionality does not go up as much
as that of an otherwise identical security, and drops further.

Mortgage-Backed Securities

–3%

95

85

75

65

P
ric

e 
(�

)

–2% –1% 0% 1% 2% 3%

MBS prepayments
increase in a falling
rate environment.

MBS principal maintained at lower rates in
rising interest rate environment.

Figure 4.9 Negative convexity of a MBS



“London” — 2006/9/12 — 22:22 — page 235 — #257

Section 4.12 Dynamic Hedging of MBS 235

this method is that it does not involve strong assumptions regarding the underlying model
for the evolution of interest rates or prepayments.27 The disadvantage is that the method
is static in nature. It does not explicitly adjust the hedge ratio for changes in interest rates
and mortgage prepayments, which can potentially be detrimental from mishedging a large
portfolio exposure.28 Consequently, the observations used in the regression represent an
average of the relation between MBSs and T-note futures only over the sample period,
which may or may not be representative of the current period.

As an alternative, a second approach is model-based. It involves specification of the
interest rate process and a prepayment model. The assumptions then help map an MBS
pricing functional to interest rates and possibly other factors.29 The approach represents a
dynamic method for determining co-movements between MBS prices and T-note futures
prices. These co-movements are completely specified by conditioning on current values
of the relevant economic variables and on particular parameter values. The basic idea is
to estimate a conditional hedge ratio between returns on an MBS and returns on a T-note
futures. This is important for MBSs because, as interest rates change, expected future pre-
payments change, and thus the timing of the future prepayments change, and thus timing
of the future cash flows also changes.

To estimate the conditional hedge ratio, a structural model is usually required (as with
model-based MBS valuation approaches). There are two drawbacks: First, there is no con-
sensus regarding what is a reasonable specification of how the term structure moves through
time, and how these movements relate to prepayment behavior. The model price is going to
be closely related to these possibly ad-hoc assumptions, which may be reasonable or unrea-
sonable.30 Second, and more subtle, is the recognition that the parameter values themselves
may often be “chosen” or estimated from a static viewpoint.31 For instance, empirical pre-
payment models often reflect ad hoc prepayment rates on data sets housing and interest
rate factors. But any of the well-documented MBS-hedging fiascoes would imply that the
resulting regression coefficients, which present an average of the relation of the past, do
not have the same link to the variable factors describing the current period. In other words,
static in-sample regression estimated coefficients are not accurate estimators of future out-
of-sample coefficients.

One method that has worked well in reducing the error between in-sample and out-of-
sample estimators is the probability density estimation method.

The Multivariable Density Estimation Method

Multivariate density estimation (MDE) is a method for estimating the joint density of a
set of variables. Given the joint and marginal densities of these variables, the corresponding
distributions and conditional moments, such as the mean, can be calculated. The estimation
relates the expected return on an MBS to the return on a T-note futures, conditional on rel-
evant information available at any point in time. We have T observations, z1, z2, . . . , zT ,
where each zt is an m-dimensional vector that might include the MBS and T-note futures
returns, as well as several variables describing the state of the economy. One popular con-
sistent measure of the joint density is the Parzen (fixed window width) density estimator:



“London” — 2006/9/12 — 22:22 — page 236 — #258

236 Mortgage-Backed Securities Chapter 4

f̂(z∗) =
1

Thm

T∑
t=1

K

(
z∗ − zt

h

)

where K(·) is called the kernel function (with the property that it integrates to unity) and
is often chosen to be a density function, h is window or smoothing parameter (which helps
determine how tight the kernel function is), and f̂(z∗) is the estimate of the probability
density at z∗. The density at any point z∗ is estimated as the average of densities centered
at the actual data points zt. The further a data point is away from the estimation point, the
less it contributes to the estimated density. Consequently, the estimate is highest near high
concentrations of data points and lowest when observations are sparse.32 A commonly used
kernel is the multivariate normal density:

K(z) =
1

(2π)m/2
e−

1
2 z′z

Let zt = (Rmbs
t+1 , RTN

t+1, xt), where Rmbs
t+1 and RTN

t+1 are the one-period returns on the MBS
and T-note futures from t and t+1, respectively, and xt is an (m−2)-dimensional vector of
factors known at time t. We can then obtain the conditional mean, E

[
Rmbs

t+1 |RTN
t+1, xt

]
—

i.e., the expected MBS return given movements in the T-note return—conditional on the
current economic state as described by xt. Specifically,

E
[
Rmbs

t+1 |RTN
t+1, xt

]
=

∫
Rmbs

t+1

f(Rmbs
t+1 , RTN

t+1, xt)
f1(RTN

t+1, xt)
dRmbs

=

t∑
i=1

Rmbs
t+1−iK

t−i
1 (·, ·)

t∑
i=1

Kt−i
i (·, ·)

(4.13)

where Kt−i
1 (·, ·) = K1((RTN

t+1−i − RTN
t+1)/hTN), (xt−i − xt)/h)).

K1(·, ·) is the marginal density,
∫

K(z)dRmbs, which is also a multivariate normal
density. The expected return in equation (4.13) is simply a weighted average of past returns
where the weights depend on the levels of the conditioning variables relative to their levels
in the past.

Given E
[
Rmbs

t+1 |RTN
t+1, xt

]
, a hedge ratio can be formed by estimating how much the

return on the MBS changes as a function of changes in the T-note futures return, conditional
on currently available information xt. That is



“London” — 2006/9/12 — 22:22 — page 237 — #259

Section 4.12 Dynamic Hedging of MBS 237

∂E
[
Rmbs

t+1 |RTN
t+1, xt

]
∂RTN

t+1

=

t∑
i=1

Rmbs
t+1−i

∂Kt−i
1 (·,·)

∂RT N
t+1

t∑
i=1

Kt−1
1 (·, ·)

−

t∑
i=1

Rmbs
t+1−iK

t−i
1 (·, ·)

t∑
i=1

∂Kt−1
1 (·,·)

∂RTN
t+1[

t∑
i=1

Kt−i
1 (·, ·)

]2

(4.14)

where

∂Kt−i
1 (·, ·)

∂RTN
t+1

= −
[
(RTN

t+1−i − RTN
t+1)

(hTN )2

]
Kt−i

1 (·, ·).

A couple of points can be made. First, equation (4.14) provides a formula for the hedge ratio

between an investor’s MBS position and T-note futures. For example, if
∂E[Rmbs

t+1 |RT N
t+1,xt]

∂RTN
t+1

equals 0.5, then for every $1 of an MBS held, the investor should short $0.50 worth of
T-note futures. Second, the hedge ratio will change dynamically, depending on the current
economic state described by xt. For example, suppose xt is an m − 2 vector of term
structure variables. As these variables change, whether they are the level, slope, or curvature
of the term structure, the hedge ratio may change in response. Thus, the appropriate position
in T-note futures will vary over time. Third, the hedge ratio is a function of the unknown
return on the T-note futures. If the conditional relation between MBS returns and T-note
futures returns is always linear, then the same hedge ratio will be appropriate, regardless of
how T-note futures move. If the relation is not linear, then the investor must decide what
type of T-note moves to hedge. For example, the investor might want to form the MBS
hedge in the neighborhood of the conditional mean of the T-note futures return because
many of the potential T-note futures will lie in that region. On the other hand, it may be
the case that the investor is concerned about the tails of the distribution T -note futures
returns, and thus adjusts the hedge ratio to take account of potential extreme moves in
interest rates and T-note futures. Fourth, the hedge ratio is horizon specific. In contrast to the
instantaneous hedge ratio, the method’s implied hedge ratio directly reflects the distribution
of MBS returns over the relevant horizon. Thus, different hedge ratios may be appropriate
for daily, weekly, or monthly horizons.

The static OLS regression coefficient, or hedge ratio, is given by

β =

t∑
i=1

Rmbs
t+1−iR

TN
t+1−i − TµmbsµTN

t∑
i=1

(RTN
t+1−i − µTN)2

(4.15)

where µmbs = 1
T

t∑
i=1

Rmbs
t+1−i and µTN = 1

T

t∑
i=1

RTN
t+1−i.



“London” — 2006/9/12 — 22:22 — page 238 — #260

238 Mortgage-Backed Securities Chapter 4

In contrast, the dynamic hedging method explicitly takes into account the current eco-
nomic state. Equation (4.14) can be rewritten as

∂E
[
Rmbs

t+1 |RTN
t+1, xt

]
∂RTN

t+1

=
t∑

i=1

Rmbs
t+1−i

[
(RTN

t+1−i − RTN
t+1)

(hTN )2

]
wi(t) −

[
t∑

i=1

Rmbs
t+1−iwi(t)

]
·

[
t∑

i=1

(
(RTN

t+1−i − RTN
t+1)

(hTN)2

)
wi(t)

]
(4.16)

where wi(t) = Kt−i
1 (·,·)

t�

i=1
Kt−i

1 (·,·)
.

The hedge ratio in (4.16) is constructed by taking past pairs of MBS and T-note futures
returns, and then differentially weighting these pairs’ co-movements by determining how
“close” (RTN

t+1−i, xt−i) pairs are to a chosen value of RTN
t+1 and current information xt. The

dynamic hedge ratio is similar in spirit to a regression hedge, except that the weights are no
longer constant, but instead depend on current information. wi(t) puts little weight on the
observation pair (Rmbs

t+1−i, R
TN
t+1−i) if the current information xt is not close to xt−i in a

distributional sense. The hedge ratio adjusts to current economic conditions. For example,
if interest rates are currently high, but the term structure is inverted, then more weight will
be given to past co-movements between MBS and T-note futures in that type of interest rate
environment.

Boudoukh, Richardson, Stanton, and Whitelaw (1995) apply the method to weekly 30-
year fixed-rate GNMA MBS (with 8%, 9%, and 10% coupons) and T-note futures data over
the period January 1987 to May 1994. The GNMA prices represent dealer-quoted prices
on X% coupon-bearing GNMAs traded for forward delivery on a to be announced (TBA)
basis.33 Performing an out-of-sample analysis, their research shows that the dynamic hedg-
ing method performs considerably better than the static regression method. For instance, in
hedging weekly returns on 10% GNMA, the dynamic method reduces the volatility of the
GNMA return from 41 to 24 basis points, whereas a static method manages only 29 basis
points of residual volatility. Furthermore, only 1 basis point of the volatility of the dynam-
ically hedged return can be attributed to risk associated with U.S. Treasuries in contrast to
14 basis points of interest rate risk in the statically hedged return.

The results of Boudoukh, Richardson, Stanton, and Whitelaw (1995) shown in Table
4.26 compares the mean, volatility, and autocorrelation of unhedged returns on GNMA
TBAs and hedged returns using two different approaches. The approaches involve hedging
GNMAs with T-note futures, resulting in the hedged return, Rmbs

t+1 −βt+RTN
t+1, where Rmbs

t+1

and RTN
t+1 are the out-of-sample returns on GNMAs and T-note futures respectively, and

the hedge ratio, is estimated using the prior 150 weeks of data in one of two ways: (1) a
linear hedge based on a regression of past Rmbs

t+1 on RTN
t+1, and (2) a MDE hedge using the

distribution of Rmbs
t+1 and RTN

t+1, conditional on the 10-year yield at time t. The estimation is
performed on a rolling basis and covers the out-of-sample period, December 1989 to May
1994. Results are reported for both weekly and overlapping monthly returns.



“London” — 2006/9/12 — 22:22 — page 239 — #261

Section 4.12 Dynamic Hedging of MBS 239

Table 4.26

Source: Boudoukh, Richardson, Stanton, and Whitelaw (1995)

Figure 4.10 shows hedge ratios for hedging weekly 10% (top) and 8% (bottom) GNMA
returns using the 10-year T-note futures. Hedge ratios are estimated on a 150-week rolling
basis using both a linear regression and MDE. The MDE hedge ratios condition on the level
of the 10-year T-note yield.

Figure 4.11 shows the expected weekly return on a 10% (top) and an 8% (bottom)
GNMA as a function of the contemporaneous 10-year T-note futures return, conditional on
three different levels of the 10-year T-note yield. The relation is estimated using MDE over
the period January 1987 to May 1994. Returns are in percent per week.



“London” — 2006/9/12 — 22:22 — page 240 — #262

240 Mortgage-Backed Securities Chapter 4

1989–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1990 1991 1992

LinearG
N

M
A

 1
0 

H
ed

ge
 R

at
io

 (1
 w

ee
k)

MDE

Date
1993 1994 1995

1989–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1990 1991 1992

LinearG
N

M
A

 8
 H

ed
ge

 R
at

io
 (1

 W
ee

k)

MDE

Date

1993 1994 1995

Figure 4.10 Hedge ratios for hedging weekly 10% (top) and 8% (bottom) GNMA returns

using the 10-year T-note futures



“London” — 2006/9/12 — 22:22 — page 241 — #263

Section 4.12 Dynamic Hedging of MBS 241

i10yr=6.0%
i10yr=7.5%
i10 yr=9.0%

T-Note Return

E
(G

N
M

A
 1

0 
R

et
ur

n)

–1.5–1
.5

–1
.0

–0
.5

0.
0

0.
5

1.
0

1.
5

–1.0 –0.5 0.5 1.0 1.50.0

i10yr=6.0%
i10yr=7.5%
i10yr=9.0%

T-Note Return

E
(G

N
M

A
 8

 R
et

ur
n)

–1.5–1
.5

–1
.0

–0
.5

0.
0

0.
5

1.
0

1.
5

–1.0 –0.5 0.5 1.0 1.50.0

Figure 4.11 Expected weekly return on a 10% (top) and an 8% (bottom) GNMA as a function

of the contemporaneous 10-year T-note futures return, conditional on three different levels of the

10-year T-note yield



“London” — 2006/9/12 — 22:22 — page 242 — #264

242 Mortgage-Backed Securities Chapter 4

ENDNOTES

1. Throughout this chapter, we follow the direct work of Dr. Stafford Johnson, Professor of
Finance at Xavier University, at http://www.academ.xu.edu/johnson/.

2. Obazee, P. (2002), pp. 338–339. See “Understanding the Building Blocks for OAS Models”
in Interest Rate, Term Structure, and Valuation Modeling. Edited by Frank J. Fabozzi, Wiley
& Sons.

3. Id., pp. 338–339.
4. Id., pp. 338–339.
5. In practice, one would use a more sophisticated term structure model than the binomial

model such as the Hull-White, Black-Derman-Toy, Black-Karasinski, or Cox-Ingersoll-
Ross interest rate models.

6. We give the C++ code later in the chapter.
7. Hull, J. (1996), pg. 391.
8. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pp. 445–446. “Monte Carlo Simula-

tion/OAS Approach to Valuing Residential Real Estate-Backed Securities” in Interest Rate,
Term Structure, and Valuation Modeling, Wiley & Sons.

9. Id., pp. 445–446.
10. Id., pg. 446.
11. Id., pg. 453.
12. Obazee, P. (2002), pp. 315–344. See “Understanding the Building Blocks for OAS Models”

in Interest Rate, Term Structure, and Valuation Modeling. Edited by Frank J. Fabozzi, Wiley
& Sons.

13. Id., pg. 317.
14. Id., pg. 318.
15. Id., pg. 319.
16. Bandic, I., pg. 11.
17. The refinancing incentive and seasoning factor were previously discussed, but are
18. Formulas from Davidson/Herskovitz (1996).
19. Monthly parameters were taken from Figure 3 in Richard Roll (1989).
20. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pg. 459. “Monte Carlo Simulation/OAS

Approach to Valuing Residential Real Estate-Backed Securities” in Interest Rate, Term
Structure, and Valuation Modeling, Wiley & Sons.

21. Id., pg. 454.
22. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pg. 454.
23. Id., pg. 455.
24. The one-factor model has the capacity to describe the burnout effect of prepayment by

embedding heterogeneity of prepayment behavior into the MBS valuation as a function of
mortgage rates. In contrast, the three-factor model is based on discrete-time, no-arbitrage
pricing theory, making an association between prepayment behavior and cash flow patterns
where prepayment behavior is due to refinancing (caused by changes in interest rates) and
rising housing prices by incentive response functions.

25. Boudoukh, Richardson, Stanton, and Whitelaw (1995), pg. 1.
26. Id., pg. 1.
27. Id., pg. 1.



“London” — 2006/9/12 — 22:22 — page 243 — #265

Endnotes 243

28. For a discussion of some of the problems associated with static hedges, see, for example,
Breeden (1991) and Breeden and Giarla (1992). With respect to linear regression hedges in
particular, Batlin (1987) discusses the effect of the prepayment option on the hedge ratio
between MBSs and T-note futures.

29. Davidson and Herkowitz (1992) provide an analysis of the various theoretical methodolo-
gies for valuing MBSs in practice. The advantages and disadvantages of each approach are
discussed in detail. With respect to the particular issue of hedging MBSs, Roberts (1987)
gives an analysis, focusing primarily on model-based approaches to MBS valuation.

30. Id.
31. Id., pg. 2.
32. Id., pg. 3.
33. The TBA market is most commonly employed by mortgage originators who have a given

set of mortgages that have not yet been pooled. However, trades can also involve existing
pools, on an unspecified basis. This means that, at the time of the agreed-upon transac-
tion, the characteristics of the mortgage pool to be delivered (e.g., the age of the pool, its
prepayment history, and so on) are at the discretion of the dealer. Nonetheless, as long as
new mortgages with the required coupon are being originated, these pools are likely to be
delivered because seasoned pools are more valuable in the interest rate environment that
characterizes a sample period. Thus, GNMA TBAs are best viewed as forward contracts
on generic, newly issued, securities.



“London” — 2006/9/12 — 22:22 — page 244 — #266



IN MATLAB, C++, AND EXCEL

10

J U S T I N  L O N D O N  

MODELING 
DERIVATIVES 
APPLICATIONS 

www.ftpress.com | An imprint of Pearson Press

Pub Date: November 2006 • $189.99 • Cloth • ISBN 0-13-196259-0   
National Marketing Campaign   

For further information contact: Amy Fandrei at 
amy.fandrei@pearsoned.com • 317.428.3082 

ADVANCE READER’S COPY—PLEASE DO NOT QUOTE FOR 
PUBLICATION WITHOUT CHECKING AGAINST THE FINISHED BOOK

This is the first book for professionals with prebuilt, fully tested code
you can use to start modeling and pricing complex derivatives. All the
code in the book may be downloaded by the book’s purchasers from
a secure Web site, and is designed for both ease of use and ease 
of adaptation.

UNIQUE FEATURES:

■ Provides ready-to-use derivatives pricing tools that cannot be found in any other book
■ Includes models for the fastest-growing areas, including weather, energy, and power 

derivatives, CDOs, and credit derivatives 
■ Monte Carlo simulation, copula methodologies, and finite differences are covered in detail 

The derivatives industry is growing at breakneck speed: hundreds of financial institutions

now market complex derivatives; thousands of financial and technical professionals need to

model them accurately and effectively. Now, for the first time, one book brings together

proven, tested real-time models created for each of today’s leading modeling platforms:

C++, MATLAB, and Microsoft Excel. Using this book’s models, professionals can save

months of development time, while improving the accuracy and reliability of the models

they create. The book shows how to implement pricing algorithms for a wide variety of complex

derivatives, including rapidly emerging instruments covered in no other book. Utilizing actual

Bloomberg data, the book covers credit derivatives, CDOs, mortgage-backed securities,

asset-backed securities, fixed-income securities, and today’s increasingly important weather,

power, and energy derivatives. Along the way, the book presents underlying theory and math

in the context of practical implementation, covering everything from Monte Carlo simulation

to copula methods and finite differences.

JUSTIN LONDON has developed fixed-income and equity models for trading companies and

his own quantitative consulting firm. He has analyzed and managed bank corporate loan

portfolios using credit derivatives in the Asset Portfolio Group of a large bank in Chicago,

Illinois, as well as advised several banks in their implementation of derivative trading systems.

London is the founder of a global online trading and financial technology company. A graduate

of the University of Michigan, London holds a  BA in economics and mathematics, an 

MA in applied economics, and an MS in financial engineering, computer science, and 

mathematics, respectively.

M
O

DELIN
G DERIVATIVES APPLICATIO

N
S

LON
DON




