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Endnotes

The impact of weather on many commercial businesses and recreational activities is sig-
nificant and varies both geographically and seasonally. Many businesses, including agricul-
ture, insurance, energy, and tourism, are either favorably or adversely affected by weather.
For this reason, the financial markets have created an innovative new class of instruments
called weather derivatives, through which risk exposure to weather (and temperature) may
be transferred or reduced. Weather derivatives are contingent claims written on weather
indices, which in turn, are variables whose values are constructed from weather data. Com-
monly referenced weather indices include, but are not restricted to, Daily Average Tem-
perature (DAT), Cumulative Annual Temperature (CAT), Heating Degree Days (HDDs),
Cooling Degree Days (CDDs), precipitation, snowfall, and wind. In contrast to other con-
tingent claims, weather derivatives pricing poses some difficulties because pricing based
on the traditional risk-neutral no-arbitrage arguments do not work; underlying weather in-
dices at present are not securitized by liquid traded instruments. There also exist some
difficulties in implementing statistical, equilibrium-based pricing techniques, because the
observed weather indices are non-stationary, and “characterized by long-term variations
and trends, potentially with cycles much longer than what the data records reveal.”1 In con-
trast, an actuarial present value pricing approach is rather simple and intuitively appealing,

299



“London” — 2006/11/26 — 12:10 — page 300 — #322
�

�

�

�

�

�

�

�

300 Weather Derivatives Chapter 6

although it cannot capture such cycles and trends in the weather like statistical models. In
this chapter, we explore various pricing models for weather derivatives, including use of
statistical and stochastic models.

In §6.1, we provide a background of the weather derivatives market and how it origi-
nated. In §6.2, we discuss weather contracts, including CME futures contracts and options
contracts on weather indices. In §6.3, we cover modeling temperature based on the work
of Alaton et al. (2000). In §6.4, we discuss general parameter estimation of the model in
§6.3. In §6.5, we review mean-reversion estimation, while in §6.6, we discuss volatility
estimation. In §6.7, we discuss pricing weather derivatives contracts, including European
call and put options on HDDs. In §6.8, we cover historical burn analysis as a method for
pricing. In §6.9, we discuss time-series weather forecasting based on the work of Camp-
bell and Diebold (2005). In §6.10, we give a Monte Carlo implementation in C++ to price
weather options.

6.1 WEATHER DERIVATIVES MARKET

The market for weather derivatives started in 1997 as a response from businesses ef-
fected by El Niño in order to hedge against seasonal weather risk, which can lead to sig-
nificant earnings decline. The El Niño conditions were associated with warm winters in
the eastern and midwestern U.S., resulting in significant energy cost savings for consumers
and businesses. In addition, these conditions suppressed hurricane activities in the Atlantic
and led to minimal economic losses due to hurricanes. However, the same weather pattern
was also associated with extreme floods in California, resulting in both economic loss and
loss of life.

After the El Niño episode, the market for weather derivatives expanded rapidly, and
contracts started to be traded over-the-counter (OTC) as individually negotiated contracts.
The weather derivatives market went from being essentially nonexistent in 1997 to a mar-
ket in 1998 estimated at $500 million, but it was still illiquid, with large spreads and lim-
ited secondary market activity. The market grew to more than $5 billion in 2005, with
better liquidity. This OTC market was primarily driven by companies in the energy sec-
tor. To increase the size of the market and to remove credit risk from the trading of the
contracts, the Chicago Mercantile Exchange (CME) started an electronic marketplace for
weather derivatives in September 1999. This was the first exchange where standard weather
derivatives could be traded. Although weather risk has an enormous impact on many busi-
nesses, including energy producers and consumers, supermarket chains, the leisure indus-
try, and the agricultural industries, it is primarily the energy sector that has driven the
demand for weather derivatives and has caused the weather risk management industry to
now evolve rapidly.2

The growth in the weather derivatives market in the mid-1990s can be attributed to the
deregulation of the energy and utility industries in the U.S. Faced with growing competition
and uncertainty in demand, energy and utility companies sought effective hedging tools to
stabilize their earnings. In the deregulated environment, energy merchants quickly realized
that weather conditions were the main source of revenue uncertainties. Weather affects both
short-term demand and long-term supply of energy. For instance, as shown in Figure 6.1,
the electricity load depends heavily on the temperature level.
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Figure 6.1 Maximum Power Load versus Temperature for New England. Source: Cao, Li,
and Wei (2004).

The maximum power load is at the lowest when the average daily temperature is around
65◦F and becomes higher when the temperature increases or decreases. Similarly, natural
gas consumption is highly dependent on temperature, as shown in Figure 6.2.

Thus, short-term demand of power and energy (discussed in Chapter 7, “Energy and
Power Derivatives”) is largely driven by weather conditions. On the other hand, a specific
pattern of weather conditions (e.g., a strong global warming trend) can also affect “the
long-term supply as energy producers re-adjust their production levels.”3

Campbell and Diebold (2005) suggest a number of interesting considerations that make
weather derivatives different from “standard” derivatives. First, the underlying asset
(weather) is not traded in a spot market. Second, unlike financial derivatives, which are
useful for price hedging but not for quantity hedging, weather derivatives are useful for
quantity hedging but not necessarily for price hedging (although the two are obviously
related). That is, weather derivative products provide protection against weather-related
changes in quantities, complementing extensive commodity price risk management tools
already available through futures. Third, although liquidity in weather derivative markets
has improved, it will likely never be as good as in traditional commodity markets, because
weather is by its nature a location-specific and nonstandardized commodity, unlike, say, a
specific grade of crude oil. One cannot take delivery of the weather underlying the contract.
Consequently, while standard derivatives are used to hedge prices, weather derivatives are
used to hedge quantity changes. For instance, a weather derivatives option might have a
payoff of $1,000 for each day that it rains over the next two months in return for a premium
payment of $10,000 that reflects that risk.
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Monthly Gas Delivery vs Temperature for Illinois Residential (Jan. 89 - Nov. 02)
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Figure 6.2 Monthly Gas Delivery versus Temperature for Illinois Residential. Source: Cao, Li,
and Wei (2004).

The European market has not developed as quickly as the U.S. market, but there are
a number of factors that suggest growth potential. One of them is the fact that Europe’s
energy industry is not yet fully deregulated, and as deregulation spreads throughout the
industry, the volume in weather deals traded in Europe should increase. This will improve
liquidity of the market and encourage new entrants into the market.

When entrants outside the energy sector become more interested in the weather deriva-
tives market, there will also be an enormous growth potential. As mentioned earlier, there
are companies in many different areas that are affected by the weather. When these compa-
nies start to look at the weather derivatives market for hedging purposes, increased liquidity
as well as new products will probably follow.

Another key for the market to grow is the existence of standardized contracts. London
International Financial Futures Exchange (LIFFE) is currently developing pan-European
weather futures, which should increase the size of the overall weather derivatives market.
There are also some barriers that must be removed if the market is to grow. For example, the
quality and cost of weather data varies considerably across Europe. Companies that want to
analyze their performance against historical weather data must often buy information from
the national meteorological offices, and that could, in some countries, be quite expensive.
It is also important that the quality of the weather data is good so that companies can rely
on it when pricing derivatives.
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6.2 WEATHER CONTRACTS

Weather derivatives are usually structured as swaps, futures, and call/put options based
on different underlying weather indices. Some commonly used indices are Heating and
Cooling Degree Days, rain (precipitation), wind, stream flow, and snowfall. Many weather
derivatives are based on degree-days (temperature) indices, because they are most often
used. We will focus on temperature weather derivatives.

We start with some basic definitions and terminology. We define the temperature Ti

as follows: Given a specific weather station, let Tmax
i and Tmin

i denote the maximal and
minimal temperatures (in degrees Celsius) measured on day i. We define the temperature
for day i as:

Ti =
Tmax

i + Tmin
i

2
(6.1)

Let Ti denote the temperature for day i. Define the Heating Degree Days, HDDi, as

HDDi = max{65◦F − Ti, 0} (6.2)

and the Cooling Degree Days, CDDi, generated on that day, as

CDDi = max{Ti − 65◦F, 0}. (6.3)

Note that the number of HDDs or CDDs for a specific day is just the number of degrees
that the temperature deviates from a reference level. It has become industry standard in the
U.S. to set this reference level at 65◦ Fahrenheit (18◦C). The names Heating and Cooling
Degree Days originate from the U.S. energy sector. The reason is that if the temperature is
below 18◦C, people tend to use more energy to heat their homes, whereas if the temperature
is above 18◦C, people start turning their air conditioners on, for cooling. Most temperature-
based weather derivatives are based on the accumulation of HDDs or CDDs during a certain
period, usually one calendar month or a winter/summer period. Typically, the HDD season
includes winter months from November to March, and the CDD season is from May to
September. April and October are often referred to as the “shoulder months.”

CME Weather Futures

The CME offers standardized futures contracts on temperatures based on the CME De-
gree Day index, which is the cumulative sum of daily HDDs or CDDs during a calendar
month, as well as options on these futures. The CME Degree Day index is currently speci-
fied for 11 U.S., five European, and two Japanese cities. The HDD/CDD index futures are
agreements to buy or sell the value of the HDD/CDD index at a specific future date. The
notional value of one contract is $100 times the Degree Day index, and the contracts are
quoted in HDD/CDD index points. The futures are cash-settled, which means that there
is a daily marking-to-market based upon the index, with the gain or loss applied to the
customer’s account. A CME HDD or CDD call option is a contract that gives the owner
the right, but not the obligation, to buy one HDD/CDD futures contract at a specific price,
usually called the strike or exercise price. The HDD/CDD put option analogously gives the
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304 Weather Derivatives Chapter 6

owner the right, but not the obligation, to sell one HDD/CDD futures contract. On the CME,
the options on futures are European style, which means that they can only be exercised at
the expiration date.

The CME futures have the number of HDDs (or CDDs) over one month or one season
for 15 U.S. cities as the underlying temperature index. The HDD index over the time in-

terval [t1, t2] is defined in a continuous-time setting as
t2∫
t1

max(65 − Tt, 0)dt, whereas the

CDD index is defined as
t2∫
t1

max(Tt − 65, 0)dt.4

For the five European cities, one can trade in futures written on the cumulative (average)
temperature (CAT) index and the HDD index over a month or season. The CAT index over

a timer interval [t1, t2] is defined as
t2∫
t1

Ttdt, where the temperature is measured in degrees

of Celsius and not Fahrenheit. The contracts are denominated in GBP instead of USD.
Moreover, the temperature level for the HDD-contracts is set at 18◦C.

For the two Japanese cities (Tokyo and Osaka), the futures are written on the so-called
Pacific Rim index, which measures the average daily temperature over a month or a season.

The Pacific Rim index over the period [t1, t2] is defined as 1
t2−t1

t2∫
t1

Ttdt, and the contracts

are denominated in Japanese yen.5

The CME also offers trading in plain vanilla European options on the different tempera-
ture index futures. There exists call and put options for different strike and maturities for all
HDD, CDD, CAT, and Pacific Rim index futures. Among the major market makers for the
CME are Aquila Energy, Koch Energy Trading, Southern Energy, Enron, and Castlebridge
Weather Markets. All these firms are also active in the OTC market for weather derivatives.

Following Benth and Šalytė–Benth (2005), consider the price dynamics of futures writ-
ten on the HDD index over a specified period [t1, t2], t1 < t2 from December to March
(e.g., the winter season). Assuming a constant continuously compounding rate r, the fu-
tures price at time t < t1 written on the HDD index is defined as the �t–adapted stochastic
process FHDD(τ, t1, t2) satisfying

e−r(t2−t)EQ

 t2∫
t1

max(c − Tt, 0)dt− FHDD(τ, t1, t2)|�t

 = 0 (6.4)

where Q is the risk-neutral probability and c is equal to 65◦F or 18◦C, depending on
whether the contract is for a U.S. or European city. Given the adaptedness of FHDD(t1, t2),
we find the futures price to be

FHDD(τ, t1, t2) = EQ

 t2∫
t1

max(c − Tt, 0)dt|�t

 . (6.5)
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Analogously, the CDD-futures price is

FCDD(τ, t1, t2) = EQ

 t2∫
t1

max(Tt − c, 0)dt|�t

 . (6.6)

By the same reasoning, one can derive the price of a CAT futures and a Pacific Rim
futures to be

FCAT(τ, t1, t2) = EQ

 t2∫
t1

Ttdt|�t

 , (6.7)

and

FPRIM(τ, t1, t2) = EQ

 1
t2 − t1

t2∫
t1

Ttdt|�t

 . (6.8)

Note that

FPRIM(τ, t1, t2) =
1

t2 − t1
FCAT(τ, t1, t2). (6.9)

Moreover, because max(c − x, 0) = c − x + max(x − c, 0), we have the following:

FHDD(τ, t1, t2) = c(t2 − t1) − FCAT(τ, t1, t2) + FCDD(τ, t1, t2)

Outside the CME, there are a number of different contracts traded in the OTC market.
The buyer of a HDD call, for example, pays the seller a premium at the beginning of the
contract. In return, if the number of HDDs for the contract period is greater than the prede-
termined strike level, the buyer will receive a payoff. The size of the payoff is determined
by the strike and the tick size. The tick size is the amount of money that the holder of the
call receives for each degree-day above the strike level for the period. Often the option has a
cap on the maximum payout unlike, for example, traditional options on stocks. A standard
weather option can be formulated by specifying the following parameters:

• The contract type (call or put)

• The contract period (e.g., month of January)

• The underlying index (HDD or CDD)

• An official weather station from which the temperature data are obtained

• The strike level

• The tick size

• The maximum payoff (if there is any)
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To find a formula for the payout of an option, let K denote the strike level and the tick
size. Let the contract period consist of n days. Then, the number of HDDs and CDDs for
that period are

Hn =
n∑

i=1

HDDi and Cn =
n∑

i=1

CDDi (6.10)

respectively. Now we can write the payoff of an uncapped HDD call as:

α max{Hn − K, 0} (6.11)

The payouts for similar contracts like HDD puts and CDD calls/puts are defined in
the same way. Figure 6.3 shows an example of HDD- and CDD-based forward and option
contracts.

Examples of HDD- and CDD-Based Forward and Option Contracts

HDD Forward CDD Put Option

Current time
Location
Long Position
Short Position
Accumulation
Period
Tick Size
Strike Level
Actual Level
Payoffs at Maturity
(Long Position)

December 1, 2001
Phil, Int'l Airport, Philadelphia
ABC Bank
Power Supply Ltd.

February, 2002
84,000 per HDD
855 HDDs
650 HDDs

(650 – 850) × 4000 = –$800,000

January 1, 2002
Hartsfield Airport, Atlanta
Air Conditioning Ltd.
XYZ Bank

July, 2002
$10,000 per CDD
550 CDDs
510 CDDs

(550 – 510) × 10000 = $400,000

Figure 6.3 Source: Cao, Li, and Wei (2004).

6.3 MODELING TEMPERATURE

To properly model weather derivatives, we must generate the stochastic process that
temperature, the underlying variable, follows and understand its behavior and movements.
There are strong seasonal variations and patterns in temperature. Thus, temperature cannot
be modeled well with random walks. There are other observations to consider: Tempera-
tures exhibit high autocorrelation, which means that short-term behavior will differ from
the long-term behavior. Finally, there is no underlying asset because temperature (or pre-
cipitation) cannot be bought or sold. There is no way to construct a portfolio of financial
assets that replicates the payoff of a weather derivative. Given these issues with temper-
ature, the Black Scholes framework does not apply. Figure 6.4 shows a typical pattern
of average daily temperatures in Stockholm, Sweden starting January 1, 1994 and ending
January 1, 2005.



“London” — 2006/11/26 — 12:10 — page 307 — #329
�

�

�

�

�

�

�

�

Section 6.3 Modeling Temperature 307

25

20

15

10

5

0

—5

—10

—15

—20

—25
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 6.4 Average Temperature in Stockholm, Sweden (Jan. 2004- Jan. 2005). Source:
Alaton, P., Djehiche, B. and Sillberger, D. (2000).

Given the seasonal and cyclical nature of temperature, the model should incorporate
mean reversion in the process. The mean temperature seems to vary between about 20◦C
during the summers and −10◦C during the winters. After a quick glance at Figure 6.1, we
guess that it should be possible to model the seasonal dependence with, for example, some
sine-function. This function would have the form

sin(ωt + θ)

where t denotes the time, measured in days. We let t = 1, 2, . . . denote January 1, January
2, and so on. Because we know that the period of the oscillations is one year (neglecting
leap years), we have ω = 2π

365 . Because the yearly minimum and maximum mean temper-
atures do not usually occur at January 1 and July 1, respectively, we have to introduce a
phase angle θ. Moreover, a closer look at the data series reveals a positive trend in the data.
It is weak, but it does exist. The mean temperature actually increases each year. There can
be many reasons to this. One reason is the fact that we may have a global warming trend
all over the world. Another is the so called urban heating effect, which means that temper-
atures tend to rise in areas nearby a big city, because the city is growing and warming its
surroundings. To catch this weak trend from data, we will assume, as a first approximation,
that the warming trend is linear. We could have assumed it to be polynomial, but due to its
weak effect on the overall dynamics of the mean temperature, it is only the linear term of
this polynomial that will dominate.
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Summing up, a deterministic model for the mean temperature at time t, Tm
t would have

the form

Tm
t = A + Bt + C sin(ωt + θ) (6.12)

where the parameters A, B, C, and θ have to be chosen so that the curve fits the data well.
Temperature movements are not deterministic—they are affected by global and sea-

sonal weather changes. Thus, to obtain a more realistic model, we now have to add some
sort of noise to the deterministic model (6.12). One choice is a standard Wiener process,
(Wt, t ≥ 0). Indeed, this is reasonable not only with regard to the mathematical tractability
of the model, but also because Figure 6.5 shows a good fit of the plotted daily temperature
differences with the corresponding normal distribution, although the probability of getting
small differences in the daily mean temperature will be slightly underestimated.
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Figure 6.5 Daily Temperature Distribution. Source: Alaton, P., Djehiche, B. and Sillberger, D.
(2000), 9.

Noise Process

A closer look at the data series reveals that the variation σ2
t of the temperature varies

across the different months of the year, but nearly constant within each month. Especially
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during the winter, the quadratic variation is much higher than during the rest of the year.
Therefore, we make the assumption that σt is a piecewise constant function, with a constant
value during each month.6 We specify σt as

σt =


σ1 during January
σ2 during February
...
σn during December

where σi, i = 1, ..., 12 are positive constants. Thus, the driving noise process of the tem-
perature would be (σtWt, t ≥ 0).

Mean-Reversion

We know that the temperature cannot, for example, rise day after day for a long time.
This means that our model should not allow the temperature to deviate from its mean value
for more than short periods of time. In other words, the stochastic process describing the
temperature we are looking for should have a mean-reverting property. Putting all the as-
sumptions together, we model temperature by a stochastic process solution of the following
SDE7

dTt = a(Tm
t − Tt)dt + σtdWt (6.13)

where a ∈ � determines the speed of mean-reversion. The solution of such an equation is
usually called an Ornstein-Uhlenbeck process. Alaton et al. (2000) suggests adding another
term to the drift because equation (6.13) is not actually mean-reverting to Tm

t in the long
run, as shown by Dornier and Queruel (2000):8

dTm
t

dt
= B + ωC cos(ωt + θ) (6.14)

Given the mean temperature Tm
t is not constant, this term will adjust the drift so that

the solution of the SDE has the long run mean Tm
t .

Starting at Ts = x, we now get the following model for the temperature

dTt =
(

dTm
t

dt
+ a(Tm

t − Tt)
)

dt + σtdWt, t>s (6.15)

whose solution is

Tt = (x − Tm
s )e−a(t−s) + Tm

t +

t∫
s

e−a(t−τ)στdWτ (6.16)

where

Tm
t = A + Bt + C sin(ωt + θ). (6.17)
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6.4 PARAMETER ESTIMATION

To estimate the unknown parameters A, B, C , θ, a, and σ, one can use least squares
regression techniques. To find the numerical values of the parameters in (6.17), we can
estimate the parameters of

Yt = a1 + a2t + a3 sin(ωt) + a4 cos(ωt) (6.18)

by fitting the function in (6.18) to the temperature data using the method of least squares.
We must find the parameter vector ξ = (a1, a2, a3, a4) that solves

min
ξ

||Y− X||2 (6.19)

where Y is the vector with elements (6.18) and X is the (historical) data vector. The con-
stant in the model (6.17) are then obtained by

A = a1 (6.20)

B = a2 (6.21)

C =
√

a2
3 + a2

4 (6.22)

θ = arctan
(

a4

a3

)
− π (6.23)

As an example, Alaton et al. (2000) estimates the parameters in (6.18) using temper-
ature data from the Bromma Airport in Stockholm, Sweden from the last 40 years. The
following function for the mean temperature is given by:

Tm
t = 5.97 + 6.57 · 10−5t + 10.4 sin

(
2π

365
t − 2.01

)
(6.24)

The amplitude of the sin-function is about 10◦C, which means that the difference in
temperature between a typical winter day and a summer day is about 20◦C.9

6.5 VOLATILITY ESTIMATION

Alaton et al. (2000) provides to estimators for σ from the data (collected for each
month). Given a specific month µ of Ni days, denote the outcomes of the observed tem-
peratures during the month µ by Tj , j = 1, . . . , Ni. The first estimator is based on the
quadratic variation of Tt (see Basawa and Prasaka Rao [1980], 212–213).10

σ̂2
i =

1
N

Nµ−1∑
j=0

(Tj+1 − Tj)2 (6.25)

The second estimator is derived by discretizing (6.15) and viewing the discretized equa-
tion as a regression equation. During a given month µ, the discretized equation is

Tj = Tm
j − Tm

j−1 + aTm
j−1 + (1 − a)Tj−1 + σµεj−1, j = 1, ..., Nµ (6.26)
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where {εj}Nm−1
j=1 are independent standard normally distributed random variables—e.g.,

εj ∼ N(0, 1). Let T̃j = Tj − (Tm
j − Tm

j−1). Then we can write (6.26) as

T̃j = aTm
j−1 + (1 − a)Tj−1 + σµεj−1, (6.27)

which can be seen as a regression of today’s temperature on yesterday’s temperature. Thus,
an efficient estimator of σi is (see Brockwell and Davis [1990]):11

σ̂2
µ =

1
Nµ − 2

Nµ∑
j=0

(T̃j − aTm
j−1 + (1 − a)Tj−1)2 (6.28)

To evaluate the estimator in (6.28), one needs to find an estimator of the mean-reversion
parameter a, which is done in the next section.

6.6 MEAN-REVERSION PARAMETER ESTIMATION

The mean-reversion parameter can be estimated using the martingale estimation func-
tion methods given by Bibby and Sorensen (1995).12 Let b(Tt; a) denote the drift term of
the temperature stochastic process in (6.15):

b(Tt; a) =
dTm

t

dt
+ a(Tm

t − Tt) (6.29)

Following Alaton et al. (2000), based on observations collected during n days, an effi-
cient estimator ân of a is obtained as a zero of equation:

Gn(ân) = 0 (6.30)

where

Gn(a) =
n∑

i=1

ḃ(Ti−1; a)
σ2

i−1

(Ti − E[Ti|Ti−1]) (6.31)

and ḃ(Tt; a) denotes the derivatives of the drift in (6.29) with respect to a. To solve (6.30),
one only needs to determine each of the conditional expectation terms E[Ti|Ti−1] in (6.31).
By equation (6.16) for t ≥ s,

Tt = (Ts − Tm
s )e−a(t−s) + Tm

t +

t∫
s

e−a(t−τ)στdWτ (6.32)

which yields

E[Ti|Ti−1] = (Ti−1 − Tm
i−1)e

−a + Tm
i (6.33)

where as before

Tm
t = A + Bt + C sin(ωt + θ).
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Therefore,

Gn(a) =
n∑

i=1

Tm
i−1 − Ti−1

σ2
i−1

(
Ti − (Ti−1 − Tm

i−1)e
−a − Tm

i

)
(6.34)

from which one finds the mean-reversion estimator

ân = − log


n∑

i=1

Yi−1(Ti − Tm
i )

n∑
i=1

Yi−1(Ti−1 − Tm
i−1)

 (6.35)

is the unique zero of equation (6.30), where

Yi−1 =
Tm

i−1 − Ti−1

σ2
i−1

i = 1, 2, . . . , n. (6.36)

6.7 PRICING WEATHER DERIVATIVES

Model Framework

We define the following parameters for the pricing model:

• Tm
t : modeled average temperature at time t

• Tt: current temperature at time t

• a: mean reversion parameter

• σ: volatility of the temperature

• Wt: Wiener process

The market for weather derivatives is a typical example of an incomplete market, be-
cause the underlying variable, the temperature, is not tradable. Therefore, we have to con-
sider the market price of risk λ, in order to obtain unique prices for such contracts. Because
there is not yet a real market from which we can obtain prices, we assume for simplicity
that the market price of risk is constant. Furthermore, we assume that we are given a risk-
free asset with constant interest rate r and a contract that for each degree Celsius pays one
unit of currency. Thus, under a martingale measure Q, characterized by the market price of
risk λ, the temperature process also denoted by Tt satisfies the following dynamics:

dTt =
(

dTm
t

dt
+ a(Tm

t − Tt) − λσt

)
dt + σtdWt (6.37)

where {Wt, t ≥ 0} is a Q–Wiener process. Following Alaton et al. (2000), we start comput-
ing the expected value and the variance of Tt because the price of a derivative is expressed
as a discounted expected value under the risk-neutral martingale measure Q. We will use
Girsanov’s theorem to change to the drift under the physical measure P . However, because
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Girsanov’s transformation only changes the drift, the variance of Tt is the same under both
measures. Therefore,

Var[Tt|�s] =

t∫
s

σ2
ue−2a(t−u)du. (6.38)

Furthermore, it follows from (6.16) that

EP [Tt|�s] = (Ts − Tm
s )e−a(t−s) + Tm

t . (6.39)

Thus, in view of equation (6.37), we must have the following:

EQ[Tt|�s] = EP [Tt|�s] −
t∫

s

λσue−a(t−u) (6.40)

Evaluating the integrals in one of the intervals where σ is constant, we get that

EQ[Tt|�s] = EP [Tt|�s] −
λσi

a
(1 − e−a(t−s)) (6.41)

and the variance is

Var[Tt|�s] =
σ2

2a

(
1 − e−2a(t−s)

)
. (6.42)

The covariance of the temperature between two different days is for 0 ≤ s ≤ t ≤ u:

Cov[Tt, Tu|�s] = e−a(u−t) Var[Tt|�s] (6.43)

As Alaton et al. (2000) shows, suppose now that t1 and tn denote the first and last day
of a month and start the process at some time s from the month before [t1, tn]. To compute
the expected value and variance of Tt in this case, we split the integrals in (6.40) and (6.38)
into two integrals where σ is constant in each one. We then get

EQ[Tt|�s] = EP [Tt|�s] −
λ

a
(σi − σj)e−a(t−t1) +

λσi

a
e−a(t−s) − λσj

a
(6.44)

and the variance is

Var[Tt|�s] =
1
2a

(
σ2

i − σ2
j

)
e−2a(t−t1) − σ2

i

2a
e−2a(t−s) +

σ2
j

2a
. (6.45)

The generalization to a larger time interval now becomes straightforward.

Pricing a Heating Degree Day Option

To price a standard HDD call option, we use the payoff given in (6.5)

χ = α max(Hn − K, 0) (6.46)
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where

Hn =
n∑

i=1

max(65◦F − Tt, 0). (6.47)

The payoff depends on the accumulation of HDDs during some time period (e.g., in the
winter during the month of January).

For simplicity, we assume that the tick size is α = 1. The contract in (6.46) is a type
of arithmetic average Asian option. In the case of a log-normally distributed underlying
process, no exact formula for the price of such an option is known, so we try to make
some sort of approximation. We know that under the risk-neutral measure Q, and given
information at time s,

Tt ∼ N(µt, σ
2
t )

where µt is given by (6.44) and σ2
t is given by (6.45). Suppose the probability that max

(65−Tt, 0) = 0 is extremely small on a winter day. Then, for such a contract, we can write

Hn = 65n −
n∑

i=1

Tti . (6.48)

We now determine fair pricing under a (normal) distributional model. Following Alaton
et al. (2000), we know that Tt, i = 1, ..., n are all samples from an Ornstein-Uhlenbeck
process, which is a Gaussian process. This means that the vector (Tt1 , Tt2, . . . , Ttn) is
Gaussian. Because the sum of (6.48) is a linear combination of the elements of the vector,
Hn is also Gaussian.13 We compute the first and second moments. We have, for t < t1,

EQ[Hn|�s] = EQ

[
65n−

n∑
i=1

Tti |�s

]
= 65n−

n∑
i=1

EQ[Tti |�t] (6.49)

and

Var[Hn|�s] =
n∑

i=1

Var[Tti |�s] + 2
n∑

j=1

∑
i<j

Cov[Tti , Ttj |�t]. (6.50)

Suppose we make the previous calculations and find that:

EQ[Hn|�t] = µn and Var[Hn|�t] = σ2
n (6.51)

Then, Hn ∼ N(µn, σn). Thus, the price at t ≤ t1 of the claim (6.46) is given by

cHDD(t) = e−r(tn−t)EQ[max(Hn − K, 0)|�t]

= e−r(tn−t)

∞∫
K

(x − K)fHn(x)dk

= e−r(tn−t)

(
(µn − K)Φ(−αn) +

σn√
2π

e−
α2

n
2

)
(6.52)
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where αn = (K − µn)/σn and Φ denotes the cumulative standard normal distribution
function (see also Platen and West [2004], pg. 2314).

Similarly, we can derive the formula for the price of an HDD put option with the claim
payoff of:

y = max(K − Hn, 0) (6.53)

The price is

pHDD(t) = e−r(tn−t)EQ[max(K − Hn, 0)|�t]

= e−r(tn−t)

K∫
0

(K − x)fHn(x)dx

= e−r(tn−t)

{
(K − µn)

(
Φ(αn) − Φ

(
−µn

σn

))
+

σn√
2π

(
e−

α2
n
2 − e−

1
2 (µn

σn
)2
)}

.

(6.54)

Formulas (6.52) and (6.54) for call and put, respectively, hold primarily for contracts
during winter months, which typically is the period from November to March.15 Dur-
ing the summer months, we cannot use these formulas without restrictions. If the mean
temperatures are very close to, or even higher than, 65◦F (18◦C), we no longer have
max(65 − Tti , 0) �= 0. For such contracts, we can use Monte Carlo simulation.

Zeng (2000) discusses a pure actuarial statistical approach (see also Platen and West
[2004]), as well as a prediction-based pricing approach for weather derivatives. In the latter
approach, a normal distribution is fit to the historical CDD data by assuming that the op-
tion CDD follows a normal distribution with the mean and standard deviation equal to the
sample mean and standard deviation, respectively, of the historical data. The probability of
“non-exceedance” is evenly divided into the highest, middle, and lowest thirds, as shown
in Figure 6.6.

The fitted distribution is then sampled such that the number of samples corresponding
to the highest, middle, and lowest thirds are proportional to the above, near, and below cli-
mate norms (denoted pA, pN , and pB, respectively). For instance, unlike traditional Monte
Carlo, which samples the fitted distribution evenly across the probabilistic distribution, the
prediction-based approach only samples from the highest, middle, and lowest thirds, re-
spectively, of the distribution so as to incorporate the probabilistic climate prediction into
the sample CDD values (a biased sampling Monte Carlo approach). The payoffs are aver-
aged over from this sampled distribution just like in traditional Monte Carlo. The method
exploits the fact that the rank-order correlation of the historical data will be high given the
seasonal nature of temperature (for instance, a high July temperature tends to be associated
with a high June-July-August (JJA) temperature), and that the predicted anomaly probabil-
ities for the temperature pA, pN , and pB are assumed to approximate the probabilities that
the CDD will be above, near, and below the climate norm, respectively.16
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Figure 6.6 The probability of non-exceedance. Source: Zeng (2000).

6.8 HISTORICAL BURN ANALYSIS

The method of historical burn analysis evaluates the contract against historical data and
takes the average of realized payoffs as the fair value estimate. For instance, suppose a call
option is written on a city’s CDDs for the month of July, and suppose we have 20 years of
daily temperatures. To apply the historical burn analysis method, for each July of the past
20 years, we calculate the option payoff using the realized CDDs. The average of the 20
payoffs is the estimate for the call option value. Thus, this method’s key assumption is that
the past always reflects the future on average. To be more precise, the method assumes that
the distribution of the past payoffs accurately depicts the future payoff’s distribution.This is
a far-reaching requirement in most cases. For instance, we have only 20 payoff observations
in the previous example, which can hardly capture the complete characteristics of the true
distribution.

Cao, Li, and Wei (2004) apply this method to call options written on the three-month
(January, February, and March) cumulative HDDs for Atlanta, Chicago, and New York.
Table 6.1 shows the calculations. They first calculate the realized cumulative HDDs for
each year, and then evaluate the option’s payoff17 accordingly. (The exercise prices are set
at 1,500, 3,200, and 2,500 for Atlanta, Chicago, and New York, respectively.) When Cao,
Li, and Wei (2004) use all 20 historical observations for Atlanta, for example, the average
payoff is 92.15; when the most recent 19 observations are used, the average payoff is 82.37,
and so on. When they use only the most recent 10 observations, the fair value estimate is
22.50. Going back 10 years versus 20 years would lead to a difference of more than 300%
in value estimates! The estimates for the option on New York’s HDDs have the smallest
dispersion. But even there, the highest estimate is 70% higher than the lowest estimate.

We can argue that we should use as long a time series as possible to enhance accu-
racy. However, using more data will cover more temperature variations, but a derivative
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security’s payoff depends on the future temperature behavior, which may be quite different
from past history. This is especially true if the maturity of the derivative security is short.
Ultimately, the decision boils down to a trade-off between statistical power and representa-
tiveness.18 The commonly accepted sample length in the industry appears to be between 20
to 30 years. Furthermore, we could combine the burn analysis with temperature forecasts
to arrive at a more representative price estimate.

Like an insurance or actuarial method, the method of historical burn analysis is inca-
pable of accounting for the market price of risk associated with the temperature variable.19

These methods are only useful from the perspective of a single dealer.20 To establish a
unique market price that incorporates a risk premium, we need a dynamic, forward-looking
model such as

dY (t) = β[θ(t) − Y (t)]dt + σ(t)Y r
t dW (t) (6.55)

where Y (t) is the current temperature, θ(t) is the deterministic long-run level of the tem-
perature, β is the speed at which the instantaneous temperature reverts to the long-run level
θ(t), σ(t) is the volatility (which is season-dependent), r = 0, 0.5, or 1, and W (t) is a
Wiener process that models the temperature’s random innovations. The process in (6.55)
needs to be discretized as

Yt − Yt−1 = β[θ(t) − Yt]∆t + σ(t)Y r
t ∆Wt

in order to estimate β and the parameters imbedded in θ(t) and σ(t), where the functional
forms for θ(t) and σ(t) can be specified based on careful statistical analyses. Once the
process in (6.55) is estimated using a method like ordinary least squares, we can then value
any contingent claim by taking expectation of the discounted future payoff; i.e.,

X = e−r(T−t)E [g(Yt, Yt+1, ..., YT)] (6.56)

where X is the current value of the contingent claim, r is the risk-free interest rate, T is
the maturity of the claim, and g(Yt, Yt+1, ..., YT) is the payoff at time T , which usually
is a function of the realized temperatures, Yt, Yt+1, ..., YT (e.g., a contract on cumulative
HDDs or CDDs).

Given the complex form of θ(t) and σ(t) and the path-dependent nature of most pay-
offs, the formula in (6.55) usually does not have closed-form solutions. Monte Carlo simu-
lations must be used. There are two additional drawbacks of this continuous setup. First, it
does not allow a place for the market price of risk. Instead, a risk-neutral valuation is im-
posed without any theoretical justification. Second, the process in (6.55) cannot reflect the
persistent serial correlations typically present in daily temperatures.21 As a result of these
drawbacks, time-series discrete processes and models that can incorporate serial correla-
tion have been proposed for forecasting the temperature, as discussed in the next section
(see Campbell and Diebold [2002]; Cao and Wei [2003]).

6.9 TIME-SERIES WEATHER FORECASTING

As Figure 6.4 shows, the daily average temperature moves in a given city repeatedly
and regularly through periods of high temperature (summer) and low temperature (win-
ter). However, seasonal fluctuations differ noticeably across cities both in terms of ampli-
tude and detail of pattern.22 But most cities’ unconditional temperature distributions are
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bimodal, with peaks characterized by cool and warm temperatures.23 Temperature time-
series across cities suggests that a seasonal component will be an important factor in any
time-series model fit to daily average temperature, as “average temperature displays pro-
nounced seasonal variation, with both the amplitude and precise seasonal patterns differing
noticeably across cities.”24 Campbell and Diebold (2000) use a low-ordered Fourier series
as opposed to daily dummies to model seasonality for two reasons. First, use of a low-
ordered Fourier series produces a smooth seasonal pattern, which accords with the basic
intuition that “the progression through different seasons is gradual rather than discontin-
uous.”25 Second, the Fourier approximation “produces a huge reduction in the number of
parameters to be estimated, which significantly reduces computing time and enhances nu-
merical stability.”26

Campbell and Diebold (2000) also incorporate nonseasonal factors that may be op-
erative in the dynamics of daily average temperature, though dominated by seasonality;
in particular, a deterministic linear trend and cycle—persistent (but covariance stationary)
dynamics apart from trend and seasonality.27 These cyclical dynamics are captured using
autoregressive lags, which facilitates numerically stable parameter estimates. Thus, an au-
toregressive model to forecast or estimate future average temperature is suggested:

Tt = Trendt + Seasonalt +
L∑

l=1

ρt−1Tt−l + σεt (6.57)

where

Trendt = β0 + β1t

and

Seasonalt =
P∑

p=1

(
δc,p cos

(
2πp

d(t)
365

)
+ δs,p sin

(
2πp

d(t)
365

))
(6.58)

εt
iid∼ N(0, 1)

and where d(t) is a repeating step function that cycles through 1, . . . , 365 (i.e., each day of
the year assumes one value between 1 and 365). The model is estimated using ordinary least
squares, regressing average temperature on constant, trend, Fourier, and lagged average
temperature terms, using L = 25 autoregressive lags (in order to capture long-memory
dynamics) and three Fourier sine and cosine terms (P = 3).

Campbell and Diebold (2002) find that the model in (6.57), based on the correlograms
of the squared residuals, has conditional heteroskedasticity in the model and has drastic
misspecification related to nonlinear dependence despite residual autocorrelations that are
negligible and consistent with white noise. As a result, Campbell and Diebold (2002) re-
specify the model as

Tt = Trendt + Seasonalt +
L∑

l=1

ρt−1Tt−l + σtεt (6.59)
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where

Trendt = β0 + β1t

and

Seasonalt =
P∑

p=1

(
δc,p cos

(
2πp

d(t)
365

)
+ δs,p sin

(
2πp

d(t)
365

))
(6.60)

σ2
t =

Q∑
q=1

(
γc,q cos

(
2πq

d(t)
365

)
+ γs,q sin

(
2πq

d(t)
365

))
+

R∑
r=1

αrε
2
t−r (6.61)

εt
iid∼ N(0, 1)

where, as before, d(t) is a repeating step function that cycles through 1, . . . ,365 (i.e., each
day of the year assumes one value between 1 and 365), and one sets L = 25, P = 3,
Q = 2, and R = 1.

Model (6.57) is identical to model (6.59) with the addition of the conditional variance
equation (6.61), which allows for two types of volatility dynamics. First, it captures sea-
sonality volatility by approximating seasonality in the conditional variance in the same
way as equation (6.60) approximates seasonality in the conditional mean, via a Fourier
series.28 Second, the variance equation captures “autoregressive effects in the conditional
variance movements, which often arise naturally in time-series contexts, in which shocks
to the conditional variance may have effects that persist for several periods, precisely as in
the seminal work of Engle (1982).”29 The model is estimated using Engle’s (1982) asymp-
totically efficient two-step approach. First, equation (6.59) is estimated by ordinary least
squares, regressing average temperature on constant, trend, Fourier, and lagged average
temperature terms. Second, the variance equation (6.61) is estimated by regressing squared
residuals from equation (6.59) on constant, Fourier, and lagged squared residual terms.
Square roots of the inverse of fitted values σ̂−1

t are used as weights in a weighted least
squares re-estimation of (6.59).30

Campbell and Diebold (2002) show that the estimated model for conditional hetero-
skedasticity reduces (but does not eliminate) residual excess kurtosis. Figures 6.7 and 6.8
show the correlograms and correlograms of squared residuals, respectively, for the daily
average temperature in various U.S. cities.

Each panel displays autocorrelations of the squared residuals from our daily average
temperature model(

Tt − Trendt + Seasonalt + Tt − Trendt + Seasonalt +
L∑

l=1

ρt−1Tt−l

)2

together with approximate 95% confidence intervals under the null hypothesis of white
noise.31 The correlograms shows that there was no evidence of serial correlation in the
standardized residuals. The correlograms of the squared standardized residuals from model
(6.59) are substantial improvement over those from model (6.55), suggesting that there
is no significant deviation from white noise behavior and that the fitted model (6.59) is
adequate.32
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Figure 6.7 Correlograms. Source: Campbell and Diebold (2002).



“London” — 2006/11/26 — 12:10 — page 322 — #344
�

�

�

�

�

�

�

�

322 Weather Derivatives Chapter 6

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

A t l a n t a

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

C h i c a g o

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

C i n c i n n a t i

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

D a l l a s

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

D e s  M o i n e s

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

L a s  V e g a s

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

N e w  Y o r k

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

P h i l a d e l p h i a

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

P o r t l a n d

- . 1 5

- . 1 0

- . 0 5

. 0 0

. 0 5

. 1 0

. 1 5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

T u c s o n

Figure 6.8 Correlograms of squared residuals. Source: Campbell and Diebold (2002).
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Figure 6.9 shows the actual values, fitted values, and residuals of the daily average
temperature in various cities in the U.S.

Each panel displays actual values, fitted values, and residuals from an unobserved-
components model

Tt = Trendt + Seasonalt +
L∑

l=1

ρt−1Tt−l + σtεt.

Figure 6.10 shows the estimated conditional standard deviations of the daily average
temperature in various U.S. cities.

Each panel displays a time series of estimated conditional standard deviations of daily
average temperature obtained from the model:

σ̂t =
2∑

q=1

(
γ̂c,q cos

(
2πq

d(t)
365

)
+ γ̂s,q sin

(
2πq

d(t)
365

))
+ α̂ε2

t−1

Figure 6.11 shows the estimated seasonal patterns of daily average temperature (Fourier
series versus daily dummies).

The panels shows smooth seasonal patterns estimated from Fourier models,

Seasonalt =
3∑

p=1

(
δc,p cos

(
2πp

d(t)
365

)
+ δs,p sin

(
2πp

d(t)
365

))
,

and rough seasonal patterns estimated from dummy variable models,

Seasonalt =
365∑
t=1

δiDit.

Figure 6.12 shows histograms of the estimated unconditional distributions of daily average
temperature in various U.S. cities from 1996–2001.
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Figure 6.9 Actual values, fitted values, and residuals of the daily average temperature in

various cities in the U.S. Source: Campbell and Diebold (2002).
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Figure 6.10 Estimated conditional standard deviations of the daily average temperature in

various U.S. cities. Source: Campbell and Diebold (2002).



“London” — 2006/11/26 — 12:10 — page 326 — #348
�

�

�

�

�

�

�

�

326 Weather Derivatives Chapter 6

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

F o u r i e r  S e a s o n a l D u m m y  S e a s o n a l

A t l a n t a

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

C h i c a g o

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

C i n c i n n a t i

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

D a l l a s

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

D e s  M o i n e s

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

L a s  V e g a s

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

N e w  Y o r k

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

P h i l a d e l p h i a

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

P o r t l a n d

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 9 6 1 : 0 1 1 9 6 1 : 0 4 1 9 6 1 : 0 7 1 9 6 1 : 1 0

T u c s o n

Figure 6.11 Estimated seasonal patterns of daily average temperature (Fourier series versus

daily dummies). Source: Campbell and Diebold (2002).
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Figure 6.12 Histograms of the estimated unconditional distributions of daily average temper-

ature in various U.S. cities from 1996-2001. Source: Campbell and Diebold (2002).
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6.10 PRICING WEATHER OPTIONS IN C++
A weather option such as HDD or CDD can be thought of as an Asian option because

the payoff depends on the average temperature over the period. We can price these op-
tions using Monte Carlo. We can adapt the code of an arithmetic Asian option to price a
weather option—e.g., an HDD—by using the average formula in (6.1) and taking the in-
dividual payoff in (6.2) and the associated summed payoffs in (6.46). For each day in the
period (of M days), we need to simulate the temperature N times (the number of times we
sample the temperature during the day) and compute the high and low and take the aver-
age. This procedure is simulated K times, and the average payoff is taken over all paths
and discounted to generate the expected value. We simulate the weather process using an
Ornstein-Uhlenbeck process.

MCPricer calcMCAsianPriceWeather.cpp
vector<double> MCPricer::calcMCAAsianPriceWeather(double price,
double strike, double DDstrike, double vol, double rate,
double div, double T, char type, long K, long M, long N)

{
// initialize variables
double A = 0.0; // arithmetic average
double mu = 0.0; // drift
int i, j, k; // counters
double deviate; // normal deviate
double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
double W = 0.0; // weather option price
double sum = 0.0; // sum payoffs
double sum1 = 0.0;
double sum2 = 0.0; // sum squared payoffs
double payoff = 0.0; // payoff
double val = 0.0; // option value
double dt = (double) T/N; // compute step size
double a = 0.10; // mean reversion
double Wbar = 65; // long-run temperature
double minW, maxW = 0; // min and max temperature
double tick_size = 100; // tick size
vector<double> value; // store price, std dev., etc.
vector<double> Wvec; // store temperatures

mrng.sgenrand(unsigned(time(0))); // initializer RNG

// number of simulations
for (k = 0; k < K; k++)
{

payoff = 0;
// for each day
for (i = 0; i < M; i++)
{
W = Wbar;

Wvec.clear();
Wvec.empty();
// number of time steps (hours) in each day

for (j = 0; j < N; j++)
{
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deviate = mrng.genrand();
mu = -a*(W - Wbar);

W = W + mu*dt + vol*sqrt(dt)*deviate;
// Ornstein-Uhlenbeck process

Wvec.push_back(W);
}

// sort temperatures
sort(Wvec.begin(),Wvec.end());
minW = Wvec[0];
maxW = Wvec[Wvec.size()-1];

A = 0.5*(maxW + minW);
if (type == 'C') // cooling days

payoff += tick_size*max(A - strike, 0);
else

payoff += tick_size*max(strike - A,0);
}
sum += payoff;
sum2 += payoff*payoff;

}
sum = (double) sum/(K*M); // average over all pays and days
sum2 = sum*sum;
val = exp(-rate*T)*(sum);
value.push_back(val);

stddev = sqrt((sum2 - sum*sum/M)*exp(-2*rate*T)/(K-1));
value.push_back(stddev);

stderror = stddev/sqrt(K);
value.push_back(stderror);

value.push_back(payoff);

if (type == 'C')
value.push_back(tick_size*(DDstrike - payoff));

else
value.push_back(tick_size*(payoff - DDstrike));

return value;
}

The main method is

MCPricer weather main.cpp
#include "MCPricer.h"

void main()
{

MCPricer mcp;
long N = 5;
long M = 100000;

// weather options
double W = 50;
double strikeW = 65;
double volW = 0.2;
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long numDays = 30;
long K = 10000;
long numSteps = 100;
double HDDstrike = numDays*strikeW;
double mat = (double) numDays/360;
vector<double> val;
cout.precision(8);

val = mcp.calcMCAAsianPriceWeather(W,strikeW,HDDstrike,volW,rate,div,
mat,'C',K,numDays,numSteps);

std::cout << "Weather option price = " << val[0] << endl;
std::cout << "Std deviation = " << val[1] << endl;
std::cout << "Std Error = " << val[2] << endl;
std::cout << "Actual HDD Price = "<< val[3] << endl;
std::cout << "HDD Payoff at Maturity = " << val[4] << endl << endl;

}

The is the price of an HDD with a mean reversion of 0.1, a volatility of 0.2, a long-run
mean of 65◦F, with K = 10000 simulations, M = 30 days, and N = 100 time steps.

Weather option price = 14.462588
Std deviation = 0.14220213
Std Error = 0.0014220213
Actual HDD Price = 433.15165
HDD Payoff at Maturity = 151684.83
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