
“London” — 2006/11/26 — 12:10 — page 91 — #113
�

�

�

�

�

�

�

�

C H A P T E R 3

MORTGAGE-BACKED SECURITIES

SECTIONS
3.1 Prepayment Models

3.2 Numerical Example of Prepayment Model
3.3 MBS Pricing and Quoting
3.4 Prepayment Risk and Average Life of MBS

3.5 MBS Pricing Using Monte Carlo in C++
3.6 Matlab Fixed-Income Toolkit for MBS Valuation

3.7 Collateralized Mortgage Obligations (CMOs)
3.8 CMO Implementation in C++
3.9 Planned Amortization Classes (PACS)

3.10 Principal- and Interest-Only Strips
3.11 Interest Rate Risk

3.12 Dynamic Hedging of MBS
Endnotes

Mortgage-backed securities (MBSs) and mortgage pass-throughs (PT) are claims on a
portfolio of mortgages. MBSs are created when a federal agency, mortgage banker, bank,
or investment company buys up mortgages of a certain type—i.e., FHA (Federal Home
Administration) or VA (Veterans’ Administration) insured—and then sells claims on the
cash flows from the portfolio as MBSs, with the proceeds of the MBS sale being used to fi-
nance the purchase of the mortgages. There are two types of MBS: agency and conventional
(private-label).1

Agency MBSs, such as a GNMA pass-through, are securities with claims on a portfo-
lio of mortgages insured against default risk by FHM, VA, or FmHA (Farmers Mortgage
Home Administration). A mortgage banker, bank, or investment company presents a pool
of FHA, VA, or FmHA mortgages of a certain type (30-year fixed, 15-year variable rate,
etc.) to GNMA (Ginnie Mae). If the mortgage pool is in order, GNMA will issue a separate
guarantee that allows the MBSs on the mortgage pool to be issued as a GNMA PT. Other
agency MBSs include the Federal Home Loan Mortgage Corporation (FHLMC) MBSs,
which are claims on a portfolio of conventional mortgages. The FHLMC issues agency
MBSs, whereby the FHLMC buys mortgages from the mortgage originator, and then cre-
ates an MBS referred to as a participation certificate, which it issues through a network

91

“London” — 2006/11/26 — 12:10 — page 92 — #114
�

�

�

�

�

�

�

�

92 Mortgage-Backed Securities Chapter 3

of dealers. FHLMC has a swap program whereby FHLMC swaps MBSs for a savings and
loan’s or commercial bank’s portfolio of mortgages of a certain type. Other government
agencies such as FNMA (Fannie Mae) issue several types of MBS: participation certifi-
cates, swaps, and PTs. With these certificates, homeowners’ mortgage payments pass from
the originating bank through the issuing agency to the holds of the certificates.

Conventional types, also known as private-label types, are issued by commercial banks
(via their holding companies), S&Ls, mortgage bankers, and investment companies. Con-
ventional issued MBSs include those issued by Prudential Home, Chase Mortgage, Citi-
Corp Housing, Ryland/Saxon, GE Capital, and Countrywide. Conventional PTs must be
registered with the SEC. These PTs are often insured with external insurance in the form
of a letter of credit (LOC) of the private-label issuer, as well as internal insurance through
the creation of senior and junior classes of the PT structured by the private-label issuer.

There is both a primary and a secondary market for MBS. In the primary market, in-
vestors buy MBSs issued by agencies or private-label investment companies either directly
or through dealers. Many of the investors are institutional investors. Thus, the creation of
MBS has provided a tool for having real estate financed more by institutions. In the pri-
mary market, MBS issue denominations are typically between $25,000 to $250,000 (with
some as high as $1M) and some have callable features. In the secondary market, MBSs are
traded over-the-counter (OTC). OTC dealers are members of the Mortgage-Backed Secu-
rities Dealer Association (MSDA).

MBSs are some of the most complex securities to model and value due to their sensitiv-
ity to prepayment and interest rates, which affects the timing, frequency, and size of cash
flows to investors. Cash flows (CFs) from MBSs are the monthly CFs from the portfolio of
mortgages (referred to as the collateral). Cash flows include interest on principal, sched-
uled principal, and prepaid principal. Cash flow analysis is essential in the valuation of any
MBS given their impact by the underlying features of the MBS, including weighted aver-
age maturity (WAM), weighted average coupon rate (WAC), pass-through rate (PT rate),
and prepayment rate or speed. The WAM is effectively the duration, or weighted length of
time, of all the payment of MBS cash flows to be paid out to investors. The WAC is the rate
on a portfolio of mortgages (collateral) that is applied to determine scheduled principal.
The PT rate is the interest on principal and is lower than the WAC, with the difference go-
ing to the MBS issuer. The prepayment rate or speed is the assumed prepayment rate made
by homeowners of mortgages in the pool.

In this chapter, we discuss MBS pricing and modeling in detail. In §3.1, we discuss
prepayment and PSA models for MBS pricing. In §3.2, we give numerical examples us-
ing Excel of how the prepayment models work. In §3.3, we discuss MBS pricing, quoting,
and the value and return to investors based on different prepayment and interest rate as-
sumptions. In §3.4, we discuss prepayment risk and the average life of MBS. In §3.5, we
review in detail a numerical implementation in C++ and Excel for valuation and cash flow
analysis of MBS using Monte Carlo simulation. In §3.6, we give numerical examples using
the Fixed-Income Toolbox in Matlab. In §3.7, we discuss MBS derivatives, including col-
lateralized mortgage obligations (CMOs) and sequential-pay tranche structures. We give
examples using Excel. In §3.8, we give an implementation of a CMO in C++. In §3.9,
we discuss planned amortization classes (PAC) and their structures. In §3.10, we review
stripped MBSs, including interest-only (IO) and principal-only (PO) securities. In §3.11,

“London” — 2006/11/26 — 12:10 — page 93 — #115
�

�

�

�

�

�

�

�

Section 3.1 Prepayment Models 93

we discuss interest rate risk of MBSs. Finally, in §3.12, we discuss hedging MBSs and
using MBSs for balance sheet asset-liability management.

3.1 PREPAYMENT MODELS

MBS valuation models typically assume a prepayment rate or speed. Investors and
issuers apply different prepayment models in analyzing MBS. Most models, though, are
compared to a benchmark model or rate. The benchmark model is the one provided by the
Public Securities Association (PSA). PSA measures speed by the Conditional Prepayment
Rate (CPR). CPR is the proportion of the remaining mortgage balance that is prepaid each
month and is quoted on an annual basis. The monthly rate is referred to as the Single-
Monthly Mortality rate (SMM) and is given by:

SMM = 1 − (1 − CPR)1/12 (3.1)

The estimated monthly prepayment is:

Monthly prepayment = SMM ·
[Beginning of month balance− Sched. prin. for month]

For example, if CPR = 6%, beginning-of-the-month balance = $100M, and scheduled
principal for month = $3M, then the estimated prepaid principal for the month would be
$0.499M:

SMM = 1 − [1− .06]1/12 = .005143
Monthly prepaid principal = .005143[$100M − $3M] = $0.499M

In the PSA model, CPR depends on the maturity of the mortgages. PSA’s standard
model assumes that for a 30-year mortgage (360 months), the CPR is equal to .2% the first
month, grows at that rate for 30 months to equal 6%, and stays at 6% for the rest of the
mortgage’s life. This model is referred to as the 100% PSA model. Figure 3.1 shows the
prepayment rate as a function of time in months.

The estimation of CPR for month t is:

CPR =
{

0.06
(

t
30

)
, if t ≤ 30

0.06, if t > 30 (3.2)

As an example, the CPR for month five is:

CPR = .06
(

5
30

)
= .01

SMM = 1 − [1− .01]1/12 = .000837

PSA’s model can be defined in terms of different speeds by expressing the standard
model (100% PSA) in terms of a higher or lower percentage, such as 150% or 50%. In a
period of lower rates, the PSA model could be 150%, and in a period of higher rates, it

“London” — 2006/11/26 — 12:10 — page 94 — #116
�

�

�

�

�

�

�

�

94 Mortgage-Backed Securities Chapter 3

CPR (%)

6.0

0.2

0 30 360
Month

Figure 3.1 100% PSA Model.

could be 50%. For the 100% PSA model, the average time a 30-year mortgage is held is
17 years; for a 225% PSA model, it is 8 years. Figure 3.2 shows the different prepayment
rates as a function of time in months.

CPR (%)

6.0

9.0

0.2

3.0

0 30 360

150 PSA

100 PSA

50 PSA

Month

Figure 3.2 PSA Models.

“London” — 2006/11/26 — 12:10 — page 95 — #117
�

�

�

�

�

�

�

�

Section 3.2 Numerical Example of Prepayment Model 95

Suppose we want to compute the CPR and SMM for month five with 165 PSA speed.
Then we compute the following based on (3.1) and (3.2):

CPR = .06
(

5
30

)
= .01

165CPR = 1.65(.01) = .0165

SMM = 1 − [1 − .0165]1/12 = .0001386

3.2 NUMERICAL EXAMPLE OF PREPAYMENT MODEL

Let p = monthly scheduled mortgage payment, F0 = the face value of the underlying
mortgage pool of the MBS, M = WAM = weighted average of the number of months
remaining until maturity, I = interest rate payment, SP = scheduled principal payment,
PP = prepaid principal, RA = annual interest rate (WAC), Bi, i = 1, . . . , 360, the remain-
ing mortgage balance in month i, and CFi, i = 1, . . . , 360 , the cash flow in the ith month.
Note that the balance in month 1 is the initial face value of the MBS pool, B1 = F0. The
following formula gives p:

p =
F0(

1−1/(1+(RA/12))M

RA/12

) (3.3)

Consider a mortgage portfolio with an underlying face value of $100M, a WAC = 9%,
a WAM = 360 months, and a prepayment speed = 100% PSA. We need to compute the
various cash flows for the first month. The first monthly principal payment is as follows:

p =
$100M(

1−1/(1+(.09/12))360

.09/12

) = $804, 600

The interest payment is:

I =
(

.09
12

)
$100M = $750, 000

The scheduled principal payment is:

SP = $804, 600− $750, 000 = $54, 600

The estimated prepaid principal in the first month is:

CPR =
(

1
30

)
.06 = .002

SMM = 1 − [1− .002]1/12 = .0001668
PP = .0001668[$100M − $54, 620] = $16, 667

“London” — 2006/11/26 — 12:10 — page 96 — #118
�

�

�

�

�

�

�

�

96 Mortgage-Backed Securities Chapter 3

The first-year cash flow is computed as:

CF1 = p + PP + I

= $804, 600 + $750, 000 + $16, 667 = $821, 295

The beginning balance for the second month is:

B2 = B1 − SP − PP

= $100M − $54, 600− $16, 667M = $99.929M

The second-month cash flows are computed as follows. The second monthly payment is:

p =
$99.9287M[

1−1/(1+(.09/12))359

.09/12

] = $804, 488

The interest payment is:

I =
(

.09
12

)
$99.9287M = $749, 465

and the scheduled principal payment is:

SP = $804, 488− $749, 465 = $55, 023

The estimated prepaid principal is:

CPR =
(

2
30

)
.06 = .004

SMM = 1 − [1 − .004]1/12 = .0003339
PP = .0003330[$99.9287M − $55, 023] = $33, 352

Thus, the second-month cash flows are computed as:

CF2 = $749, 400 + $55, 023 + $33, 352 = $837, 840

The remaining month cash flows are computed similarly.
Consider now a mortgage portfolio with a face value of $100M, a WAC = 8.125%, a

WAM = 357 months, a PT rate = 7.5%, and a prepayment = 165% PSA. Note that because
the WAM is not 360 months, but rather 357 months, the pool age is “seasoned” so that the
first month of payments actually starts in month four, and not month one. Moreover, interest
payments are calculated using the PT rate. However, scheduled principal and mortgage
payments are computed using the WAC rate.

In this example, the schedule monthly mortgage payment is:

p =
$100M[

1−1/(1+(.08125/12))357

.08125/12

] = $743, 970

“London” — 2006/11/26 — 12:10 — page 97 — #119
�

�

�

�

�

�

�

�

Section 3.2 Numerical Example of Prepayment Model 97

The interest payment (which uses the PT rate) is

I =
(

.075
12

)
$100M = $625, 000

and the scheduled principal payment (which uses the WAC rate) is

SP = $743, 970− (.08125/12)($100M) = $66, 880.

The estimated prepaid principal using the 165% PSA model is:

CPR = 1.65
(

4
30

)
.06 = .0132

SMM = 1 − [1− .0132]1/12 = .0011067
PP = .0011067[$100M − $66, 880] = $110, 600

The first-month cash flow (starting in month four) is:

CF1 = $625, 000 + $66, 880 + $110, 600 = $802, 480

The beginning mortgage balance for month two is:

$100M − $66, 880− $110, 600 = $99.822M

The scheduled monthly mortgage payment in the second month is:

p =
$99.822M[

1−1/(1+(.08125/12))356

.08125/12

] = $743, 140

The second-month interest payment is:

I =
(

.075
12

)
$99.822M = $623, 890

The scheduled principal payment in month two is:

SP = $743, 140− (.08125/12)($99.822M) = $67, 260

The estimated prepaid principal is:

CPR = 1.65
(

5
30

)
.06 = .0165

SMM = 1 − [1− .0165]1/12 = .00139
PP = .00189[$99.822M − $67, 260] = $138, 210

Thus, the second-month cash flow is computed as:

CF2 = $623, 890 + $67, 260 + $138, 210 = $829, 360

Table 3.1 shows the cash flows for the first few months.
The Excel spreadsheet MBS1.xls shows the complete computations for every month.

Parameters can be changed (for different assumptions) to generate different cash flows.

“London” — 2006/11/26 — 12:10 — page 98 — #120
�

�

�

�

�

�

�

�

98 Mortgage-Backed Securities Chapter 3

Table 3.1

Source: Johnson, S. (2004)

3.3 MBS PRICING AND QUOTING

The prices of an MBS are quoted as a percentage of the underlying mortgage balance.
The mortgage balance at time t, Ft, is quoted as a proportion of the original balance. This
is called the pool factor pft:

pft =
Ft

F0
(3.4)

Suppose, for example, an MBS backed by a collateral mortgage pool originally worth
$100M, a current pf of .92, and quoted at 95 − 16 (note: 16 is 16/32) would have a market
value of $87.86M, as calculated:

Ft = (pft)F0

= (.92)($100M) = $92M

so that

Market Value = (.9550)($92M) = $87.86M

The market value is the clean price; it does not take into account accrued interest,
denoted AI. For an MBS, accrued interest is based on the time period from the settlement
date (two days after the trade) to the first day of the next month. For example, if the time
period is 20 days, the month is 30 days, and the WAC = 9%, then AI is $.46M:

AI =
(

20
30

)(
.09
12

)
$92M = $460, 000

The full market value would be $88.32M:

FullMktValue = $87.86M + $460, 000 = $88.32M

The market price per share is the full market value divided by the number of shares. If the
number of shares is 400, then the price of the MBS based on a 95 − 16 quote would be
$220,080:

MBS price =
$88.32M

400
= $220, 800

“London” — 2006/11/26 — 12:10 — page 99 — #121
�

�

�

�

�

�

�

�

Section 3.3 MBS Pricing and Quoting 99

The value of an MBS is equal to the present value (PV) of security’s cash flows (CFs);
thus, the value is a function of the MBS’s expected CFs and the interest rate. In addition, for
MBSs, the CFs are also dependent on rates R: A change in rates will change the prepayment
of principal and either increase or decrease early CFs:

VMBS = f(CFs, R)

where

CF = f(R).

Since cash flows, CFs, are a function of rates, the value of MBS is more sensitive to
interest rate changes than a similar corporate bond. This sensitivity is known as extension
risk. Note the following relationships:

if R ↓⇒ lower discount rate ⇒ VM ↑ (just like any other bond)

and

if R ↓ ⇒ Increases prepayment :⇒ VM ↑
⇒ Earlier CFs ↑

On the other hand,

if R ↑⇒ higher discount rate ⇒ VM ↓

and

if R ↑ ⇒ Decreases prepayment :⇒ VM ↓
⇒ Earlier CFs ↓

so that an increase in rates will reduce the market value of the MBS, leading to extension
risk.

There are various exogenous and endogenous factors that influence prepayment other
than refinancing rates. One is housing turnover—the long-term rate at which borrowers in a
pool prepay their mortgages because they sell their homes. Another is the seasoning period,
the number of months over which base voluntary prepayments (housing turnover, cash-out
refinancing, and credit upgrades, but not rate refinancing or defaults) are assumed to in-
crease to long-term levels. Other factors include credit curing—the long-term rate at which
borrowers prepay their mortgages because improved credit and/or increased home pool
prices enable them to get better rates and/or larger loans. As the pool burns out, the rate of
curing declines.2 Default, expressed as a percentage of the PSA Standard Default Assump-
tion (SDA), affects prepayment, as well as the maximum rate-related CPR for burnout—
CPR is lower for a pool that has experienced no prior rate-related refinancing. The lower
the ratio, the faster the pool burns out.3

Many Wall Street firms use proprietary reduced-form prepayment models that use past
prepayment rates and endogenous variables to explain prepayment. These models are cali-
brated to fit observed payment data, unrestricted by theoretical considerations.4

“London” — 2006/11/26 — 12:10 — page 100 — #122
�

�

�

�

�

�

�

�

100 Mortgage-Backed Securities Chapter 3

3.4 PREPAYMENT RISK AND AVERAGE LIFE OF MBS
Average life is the weighted average of the MBS’s or MBS collateral’s time periods,

with the weights being the periodic cash flow payments divided by the total principal. For
example, the original average life of the 30-year, $100M, 9%, 100 PSA mortgage (the first
example in §3.2) portfolio is 12.077 years, computed as follows:

Ave. life =
1
12

(1($71, 295) + 2($88, 376)+ . . . + 360($135, 281))
$100, 000, 000

= 12.077

In general, the average life of the MBS can be computed by the following formula:

Ave. life =
1
12

360∑
i=1

i ∗ CFi

F0
(3.5)

Prepayment risk can be measured in terms of how responsive (sensitive) an MBS’s
or MBS collateral’s average life is to changes in prepayment speed (change in PSA) or
equivalently to changes in rates (because rate changes are the major factor affecting speed):

prepayment risk =
∆Ave. life

∆PSA
∼= ∆Ave. life

∆R
(3.6)

An MBS or its collateral would have zero prepayment risk if

prepayment risk =
∆Ave. life

∆PSA
= 0.

One of the more significant innovations in finance occurred in the 1980s with the devel-
opment of derivative MBSs, such as Planned Amortization Classes (PACs), which had
different prepayment risk features, including some derivatives with zero prepayment risk.

Assumptions of prepayment rates can be made based on the probability of refinancing
rates changing. For example, if there is a high probability that the Federal Open Markets
Committee (the Fed) will lower rates (based, for example, on media reports that they in-
tend to do so in the near future), refinancing rates can be expected to fall as well so that
more homeowners will refinance their mortgages at lower rates. This in turn will increase
the speed of prepayment and thus of the cash flows to investors. PSA rates should then be
adjusted upward. Conversely, if the Fed is expected to raise rates as a response to, say, infla-
tion, refinancing rates can be expected to rise, decreasing prepayment risk and lengthening
the average life of the MBS. PSA rates should then be adjusted downward.

The best way to model refinancing rate scenarios is through Monte Carlo simulation.
One first constructs an interest rate tree—i.e., a binomial tree5—with both the spot rates
and refinancing rates at each node. One runs many simulation paths sampling from possible
interest rate paths that rates could possibly take in the tree. For each simulation path, one
estimates the cash flows based on the refinancing rates at each step along the path. (Each
time step along the path corresponds to a time step made in the short-rate tree.) Specifically,
Monte Carlo simulation can be used to determine the MBS’s theoretical value or rate of
return through the following steps:

“London” — 2006/11/26 — 12:10 — page 101 — #123
�

�

�

�

�

�

�

�

Section 3.4 Prepayment Risk and Average Life of MBS 101

1. Simulate interest rates. Use a binomial interest-rate tree to generate different paths
for spot rates and refinancing rates.

2. Specify a prepayment model based on the spot rates.

3. Generate CF paths for a mortgage portfolio, MBS, or tranche.

4. Determine the PV of each path, the distribution of the path, the average (theoretical
value), and standard deviation. Alternatively, given the market value, determine each
path’s rate of return, distribution, average, and standard deviation.

Step 1

In step 1, to simulate interest rates, we generate interest rate paths from a binomial
interest-rate tree.6 For example, assume a three-period binomial tree of one-year spot rates,
RS

t , and refinancing rates, Rref
t , where RS

0 = 6%, Rref
0 = 8%, u = 1.1, and d = .9091 =

1/1.1. With three periods, there are four possible rates after three periods (years), and there
are eight possible paths in the binomial tree shown in Figure 3.3. Table 3.2 shows eight
short-rate paths simulated from the preceding binomial tree (the eight possible paths rates
can take in the tree).

Suppose we have a mortgage portfolio with a par value of $1M, a WAM = 10 years, a
WAC = 8%, PT rate = 8%, annual cash flow payments, the mortgages are insured against
default risk, and has a balloon payment at the end of year 4 equal to the balance at the

6%
8%

6.6%
8.8%

5.45%
7.27%

7.26%
9.68%

6.6%
8.8%

4.96%
6.61%

7.99%
10.65%

6.6%
8.8%

5.45%
7.27%

4.51%
6.01%

Figure 3.3 Binomial tree for spot and refinancing rates.

“London” — 2006/11/26 — 12:10 — page 102 — #124
�

�

�

�

�

�

�

�

102 Mortgage-Backed Securities Chapter 3

Table 3.2
Year 1 Year 2 Year 3 Year 4

Path 1 8.0000% 7.2728% 6.6117% 6.0107%

Path 2 8.0000% 7.2728% 6.6117% 7.2728%

Path 3 8.0000% 7.2728% 8.0000% 7.2728%

Path 4 8.0000% 8.8000% 8.0000% 7.2728%

Path 5 8.0000% 7.2728% 8.0000% 8.0000%

Path 6 8.0000% 8.8000% 8.0000% 8.0000%

Path 7 8.0000% 8.8000% 9.6800% 8.8000%

Path 8 8.0000% 8.8000% 9.6800% 10.6480%

beginning of year 4 (e.g. the scheduled principal in year 4). We compute the scheduled
monthly mortgage payment:

p =
$1, 000, 000
1−(1/1.08)10

.08

= $149, 029

If we initially assume no prepayment risk, then we obtain the cash flows shown in Table
3.3. The balloon payment at the end of year 4 is:

Balloon = Balance(yr4) − Sch.prin(yr4)
= $775, 149− $86, 957 = $688, 946

The cash flow in year 4 can be computed as

CF4 = Balloon + p

= $688, 946 + $149, 029 = $837, 973

or equivalently, as

CF4 = Balance(yr4) + Interest

= $775, 903 + $62, 513 = $837, 973

Table 3.3
Year Balance P Interest Scheduled Principal CF

1 $1,000,000 $149,029 $80,000 $69,029 $149,029

2 $930,970 $149,029 $74,478 $74,551 $149,029

3 $856,419 $149,029 $68,513 $80,516 $149,029

4 $775,903 $149,029 $62,072 $86,957 $837,975

Step 2

The second step of the Monte Carlo process is to specify a prepayment model. Suppose
we specify the prepayment schedule shown in Table 3.4. The CPR is determined by the
value of the spread X = WAC − Rref.

“London” — 2006/11/26 — 12:10 — page 103 — #125
�

�

�

�

�

�

�

�

Section 3.4 Prepayment Risk and Average Life of MBS 103

Table 3.4
Range CPR

X ≤ 0 5%

0 < X ≤ 0.5% 10%

0.5% < X ≤ 1.00% 20%

1.00% < X ≤ 1.25% 30%

1.25% < X ≤ 2.0% 40%

2.0% < X ≤ 2.5% 50%

2.5% < X ≤ 3.0% 60%

X > 3.0% 70%

Step 3

The third step of the valuation process is the estimation of cash flows for each path
based on the simulated path of refinancing rates, the spread X, and thus the CPR (see Table
3.5).

The calculation of the cash flows for the first path are shown as follows. In year 1, the
scheduled mortgage payment is:

p =
$1, 000, 000
1−(1/1.08)10

.08

= $149, 029

The interest payment is:

I = 0.08($1, 000, 000) = $80, 000

The scheduled principal is:

SP = $149, 029− $80, 000 = $69, 029

Table 3.5 (continued next page)

Source: Johnson, S. (2004)

“London” — 2006/11/26 — 12:10 — page 104 — #126
�

�

�

�

�

�

�

�

104 Mortgage-Backed Securities Chapter 3

Table 3.5 (continued)

Source: Johnson, S. (2004)

“London” — 2006/11/26 — 12:10 — page 105 — #127
�

�

�

�

�

�

�

�

Section 3.4 Prepayment Risk and Average Life of MBS 105

The prepaid principal is:

PP = 0.20($1, 000, 000− $69, 029) = $186, 194

The cash flow in year 1 is:

CF1 = $80, 000 + $69, 029 + $186, 194 = $335, 223

For year 2, along path 1, we have a balance of:

B2 = $1, 000, 000− $69, 029− $186, 194 = $744, 776

The scheduled monthly mortgage payment is:

p =
$744, 446
1−(1/1.08)9

.08

= $119, 223

The interest payment is:

I = 0.08($744, 776) = $59, 582

The scheduled principal payment is:

SP = $119, 223− $59, 582 = $59, 641

The prepaid principal in the second year is:

PP = 0.4($755, 776− $59, 641) = $274, 054

The cash flow is:

CF2 = $59, 582 + $59, 641 + $274, 052 = $393, 277

In year 3, on path 1, the balance is:

B3 = $744, 776− $59, 641− $274, 054 = $411, 081

The scheduled monthly mortgage payment is:

p =
$411, 081
1−(1/1.08)8

.08

= $71, 543

The interest payment is:

I = 0.08($411, 081) = $32, 886

The scheduled principal payment is:

SP = $71, 543− $32, 886 = $38, 648

“London” — 2006/11/26 — 12:10 — page 106 — #128
�

�

�

�

�

�

�

�

106 Mortgage-Backed Securities Chapter 3

The prepaid principal in the third year is:

PP = 0.4($411, 081− $38, 648) = $148, 973

The cash flow is:

CF3 = $32, 886 + $38, 648 + $148, 973 = $220, 507

Finally, in year 4, the balance is:

B4 = $411, 081− $38, 648− $148, 943 = $223, 460

The interest payment is:

I = 0.08($223, 460) = $17, 877

The cash flow is:

CF4 = B4 + I

= $223, 460 + $17, 877 = $241, 337

The cash flows for all the other paths are computed similarly.

Step 4

The fourth step of the valuation process is the valuation of the cash flows along each
of the paths. The PV of each path’s cash flows are determined by specifying the appro-
priate discount rates. Because the mortgages are insured against default risk, the only risk
investors are exposed to is prepayment risk. The risk premium for such risk is known as
the option adjusted spread (OAS). The OAS is a measure of the spread over the govern-
ment Treasury bonds rates provided by the MBS when all embedded options have been
into account.7 One can view the OAS as the market price for unmodeled risks (risks that
the model cannot capture), such as the forecast error associated with prepayments. The
OAS is the spread, such that when added to all the spot rates on all interest rate paths, make
the average present value of the paths equal to the observed market price (plus accrued
interest). Thus, it equates the observed market price of a security to its theoretical value.
Mathematically, it is equivalent to the solution of K in

P Market =
1
N

[PV (path 1) + PV (path 2) + . . . + PV (path N)]

=
1
N

[
T∑

i=1

CF path 1
i

(1 + Z1
i + K)i

+
T∑

i=1

CF path 2
i

(1 + Z2
i + K)i

+ ... +

T∑
i=1

CF
path N
i

(1 + ZN
i + K)i

] (3.7)

“London” — 2006/11/26 — 12:10 — page 107 — #129
�

�

�

�

�

�

�

�

Section 3.4 Prepayment Risk and Average Life of MBS 107

where Zj
i is the zero rate at time i—i.e, month i = 1, . . . , T on path j = 1, ..., N . Typi-

cally, T = 360 and N = 1, 024.
The cash flow “yield” that is a standard measure in evaluating any MBS is the static

spread. This is the yield spread in “a static scenario (i.e., no volatility interest rates) of
the bond over the theoretical Treasury spot rate curve, not a single point on the Treasury
yield curve.”8 The magnitude of this spread depends on the steepness of the yields curve:
the steeper the curve, the greater the difference between the bond and Treasury yields.9

There are two ways to compute the static spread. The first approach is to use today’s yield
curve to discount future cash flows and keep the mortgage refinancing rate fixed at today’s
mortgage rate.10

Because the mortgage refinancing rate is fixed, the investor can usually specify a rea-
sonable prepayment rate, which can be used to estimate the bond’s future cash flows until
the maturity of the bond. The second approach, known as the zero volatility OAS, computes
the static spread by allowing the mortgage rates to go up the curve as implied by forward
interest rates.11 In this case, a prepayment model is needed to determine the vector of fu-
ture prepayment rates (a prepayment schedule) implied by the vector of future refinancing
rates. After a static spread and OAS is computed, the implied cost of the prepayment option
embedded in any MBS can be computed by calculating the different between the OAS (at
the assumed volatility of interest rates) and the static spread. That is

Option cost = Static spread − OAS (3.8)

Consequently, because, in general, a tranche’s option cost is more stable than its OAS in the
face of uncertainty of interest rate movements, then, for small market moves, the OAS of a
tranche may be approximated by recalculating the static spread and subtracting its option
cost. This is quite useful because the OAS is computationally expensive to evaluate while
the static spread is cheap and easy to compute.12

It is important to point out that investors in MBSs hold the equivalent of long positions
in noncallable bonds and short positions in call (prepayment) options.13 The noncallable
bond is a collection of zero-coupon bonds—i.e., Treasury strips—and the call option gives
the borrower the right to prepay the mortgage at any time prior to maturity of the loan.14

Thus, the value of MBSs is the difference between the value of the noncallable bond and
the value of the call (prepayment) option. The OAS is the spread differential between the
bond component and the option value component of the MBS. The two main inputs into
the computation of an OAS are the cash flows generated as a function of the principal
(scheduled and unscheduled) and coupon payments, as well as the interest rate paths gen-
erated under an assumed term structure of the zero-coupon curve for discounting the cash
flows.15 At each cash flow date, the spot rate (observed from the interest rate path taken at
the corresponding time step of the term structure) determines the discount factor for each
cash flow.16

“London” — 2006/11/26 — 12:10 — page 108 — #130
�

�

�

�

�

�

�

�

108 Mortgage-Backed Securities Chapter 3

Denote zt to be the appropriate zero discount rate for maturity t (i.e., t years or months),
seen today (time 0) (and similarly, ftj , the forward discount rate of maturity t seen at
time j), and K, the option adjusted spread. In our simple four-step binomial example,
the one-year forward (zero) rate at time 0 is f10 = 8.0%; the one-year forward rates
at time step 1 are f11 = {8.6%, 7.45%}; the one-year forward rates at time step 2 are
f12 = {9.26%, 8%, 6.96%}; and the one-year forward rates at time step 3 are f13 =
{9.986%, 8.6%, 7.45%, 6.51%}.

The value of each path is obtained by discounting each cash flow by its risk-adjusted
zero-spot rate, z. In our example of four time steps, the value of the MBS on path i is

Vi =
CF1

1 + z1
+

CF2

(1 + z2)2
+

CF3

(1 + z3)3
+

CF4

(1 + z4)4

where, because we can express zero rates in terms of forward rates, we have

z1 = f10,

z2 = ((1 + f10)(1 + f11))
1/2 − 1

z3 = ((1 + f10)(1 + f11)(1 + f12))
1/3 − 1

z4 = ((1 + f10)(1 + f11)(1 + f12)(1 + f13))
1/4 − 1

In general, on path i = 1, . . . , N ,

zT = {(1 + f10)(1 + f11)(1 + f12)...(1 + f12T)}1/T − 1

Note that in our example, we have assumed one-year forward rates, but in a more complex
and realistic implementation, we would be simulating future one-month rates over a period
of 360 months. Thus, for each path, we would be simulating 360 one-month future interest
rates, mortgage refinancing rates, and cash flows instead of just four, and we would be
simulating many more paths—i.e., 1024, instead of eight.

The zero-rate calculations for path one are

z1 = 0.08

z2 = ((1.08)(1.074546))1/2 − 1 = 0.077269

z3 = ((1.08)(1.074546)(1.069588))1/3 − 1 = 0.074703

z4 = ((1.08)(1.074546)(1.069588)(1.06508))1/4 − 1 = 0.072289

so that the MBS value for path one is

V1 =
$335, 224

1.08
+

$393, 278
(1.077269)2

+
$220, 507
(1.04703)3

+
$241, 337

(1.072289)4
= $1, 009, 470.

“London” — 2006/11/26 — 12:10 — page 109 — #131
�

�

�

�

�

�

�

�

Section 3.4 Prepayment Risk and Average Life of MBS 109

Table 3.6 shows the MBS computed for each of the eight paths.
The final step is to compute the theoretical value of the MBS by averaging over all

values taken on each path. In this example, the theoretical value of the mortgage portfolio
is the average of the MBS values computed on each of the eight paths:

V̄ =
1
N

N∑
i=1

Vi (3.9)

Evaluating (3.8), the theoretical value is $997,235 or 99.7235% of par. Note, in addition to
the theoretical value, we also can determine the variance of the distribution:

Var(V) =
1
N

N∑
i=1

[Vi − V̄]2 (3.10)

Equivalently, we can also compute the theoretical value by taking the weighted average
of each MBS value computed on each path, where the weight is the probability of obtaining
that value on the path (each up and down move is assumed to be 0.5), shown in Table 3.7.

Table 3.6 (continued next page)

Source: Johnson, S. (2004)

“London” — 2006/11/26 — 12:10 — page 110 — #132
�

�

�

�

�

�

�

�

110 Mortgage-Backed Securities Chapter 3

Table 3.6 (continued)

Source: Johnson, S. (2004)

“London” — 2006/11/26 — 12:10 — page 111 — #133
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 111

Table 3.7
Value Prob.

1009470 0.125

1008167 0.125

1005411 0.125

997720.3 0.125

1001031 0.125

992574.1 0.125

985008 0.125

978502.5 0.125

Wt. Value $997,235

3.5 MBS PRICING USING MONTE CARLO IN C++
To price MBSs in C++, we create and define an MBS class that contains methods for

MBS pricing via Monte Carlo simulations of spot rate paths in a binomial tree.

#ifndef _MBS_H__
#define _MBS_H__

#include <vector>
#include "math.h"
#include "time.h"
#include "Utility.h"
#include "TNT.h"
#define SIZE_X 100
#define SIZE_Y 100

using namespace std;

We define two global double array variables that will be used to store the spot rates and
discount rates in the binomial tree.

static TNT::Array2D<double> spotRate(SIZE_X,SIZE_Y);
static TNT::Array2D<double> discountRate(SIZE_X,SIZE_Y);

The MBS class contains an overloaded constructor that accepts the notional principal,
coupon, weighted average WAC, weighted average maturity (WAM), and option adjusted
spread (OAS). The class contains a method calcPrice that first builds a binomial tree
and then simulates the interest rate paths on the tree using Monte Carlo. The calcPrice
method accepts the initial spot rate, mortgage refinance rate, the number of steps in the bi-
nomial tree, and the number of simulations. The MBS class also contains a method to com-
pute the conditional prepayment rate (CPR) calcCPR, which accepts the current refinance
rate and a method computeZeroRates that computes the current discount factor by ac-
cepting as input the current time step in the binomial tree and the stored history of discount
rates on the current path. The MBS class contains acalcPayment function that computes
the current mortgage payment by receiving the remaining principal and time to maturity as

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 112 --- #134
�

�

�

�

�

�

�

�

112 Mortgage-Backed Securities Chapter 3

input. Finally, the MBS class contains a getPrice that returns the calculated MBS price,
a getStdDev method that returns the standard deviation of the computed MBS price, and
a getStdError method that returns the standard error of the computed MBS price.

MBS.h
// MBS.h: interface for the MBS class.
//
//

#ifndef _MBS_H__
#define _MBS_H__

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <vector>
#include "math.h"
#include "time.h"
#include "Utility.h"
#include "TNT\TNT.h"
#define SIZE_X 100
#define SIZE_Y 100

using namespace std;
static TNT::Array2D<double> spotRate(SIZE_X,SIZE_Y);
static TNT::Array2D<double> discountRate(SIZE_X,SIZE_Y);

class MBS
{
public:

MBS();
MBS(double principal, double coupon, double WAC, double WAM,

double OAS) :
faceValue(principal), coupon(coupon), WAC(WAC), WAM(WAM),
OAS(OAS), T(WAM) { }

virtual ˜MBS() { }
double calcPayment(double principal, double T); // compute

// payment
// amount

void calcPrice(double initRate, double financeRate, int N,
long int M);

double calcCPR(double rate);
void buildTree(double initRate, double financeRate, int N);
double computeZeroRates(int cnt, vector<double> rate);
double calcSMM(double x);
double getPrice();
double getStdDev();
double getStdErr();
double getMaturity();
double getWAM();
double getWAC();
double getOAS();

private:
double OAS; // option adjusted spread
double faceValue; // principal amount

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 113 --- #135
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 113

double coupon; // coupon rate
double WAM; // weighted average maturity
double WAC; // weighted average coupon
vector<double> zeroRates; // store discount zero coupon rates
double T; // maturity of MBS
double mbsPrice; // price
double stdDev; // standard deviation
double stdErr; // standard error

};

#endif _MBS_H__

The method definitions are

MBS.cpp
// MBS.cpp: implementation of the MBS class.
//
//

#include "MBS.h"

//
// Construction/Destruction
//

void MBS::buildTree(double initRate, double financeRate, int N)
{

Utility util;
double u = 1.1;
double d = 1/u;
double p = (exp(initRate*T) - d)/(u - d);
double deviate = 0.0;
long seed = 0;
double refRate = financeRate;
long* idum = 0;
double pay = faceValue;
double faceAmount = 0.0;
double interest = 0.0;
double schedulePrincipal = 0.0;
double prepaidPrincipal = 0.0;
double CPR = 0.0;
double balance = faceValue;
double sum = 0.0;
double totalsum = 0.0;
double SMM = 0.0;
TNT::Array1D<double> CF(SIZE_X); // cash_flow
vector<double> disc(0.0);

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;
// build binomial tree for rates
for (int i = 0; i <= N; i++)
{

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 114 --- #136
�

�

�

�

�

�

�

�

114 Mortgage-Backed Securities Chapter 3

for (int j = 0; j <= i; j++)
{

spotRate[i][j] = initRate*pow(u,j)*pow(d,i-j);
discountRate[i][j] = spotRate[i][j] + OAS;

}
}

faceAmount = faceValue;
int k = 0;
long int M = 10000;
int cnt = 0;
double r = 0.0;
int j = 0;

for (k = 0; k < M; k++)
{

sum = 0.0;
balance = faceValue;
refRate = financeRate;
j = 0;
disc.clear();
disc.empty();
disc.push_back(discountRate[0][0]);

for (i = 0; i < N; i++)
{

balance = balance - (schedulePrincipal +
prepaidPrincipal);

deviate = util.gasdev(idum);

if (deviate > 0)
{

j++;
refRate = refRate*u;

}
else
{

j--;
if (j < 0)

j = 0;
refRate = refRate*d;

}
disc.push_back(discountRate[i+1][j]);
interest = coupon*balance;
pay = calcPayment(balance,WAM-i);
schedulePrincipal = pay - interest;

if (balance >= schedulePrincipal)
{

CPR = calcCPR(refRate);
SMM = calcSMM(CPR);
prepaidPrincipal = SMM*(balance -

schedulePrincipal);

if (i != N-1)
CF[i] = interest +

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 115 --- #137
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 115

schedulePrincipal +
prepaidPrincipal;

else
CF[i] = interest + balance;

r = computeZeroRates(i,disc);
sum = sum + CF[i]/(pow(1+r,i+1));

}
else

goto x;

}
x:
totalsum = totalsum + sum;

}
double ave = (totalsum/M);
std::cout << "MBS price = " << ave << endl;

}

double MBS::calcCPR(double rate)
{

double CPR = 0.0;
double value = WAC - rate;

/*
if (value <= 0)

CPR = 0.05;
else if ((value <= 0.005) && (value > 0))

CPR = 0.10;
else if ((value <= 0.01) && (value > 0.005))

CPR = 0.20;
else if ((value <= 0.0125) && (value > 0.01))

CPR = 0.30;
else if ((value <= 0.02) && (value > 0.0125))

CPR = 0.40;
else if ((value <= 0.025) && (value > 0.02))

CPR = 0.50;
else if ((value <= 0.03) && (value > 0.025))

CPR = 0.60;
else

CPR = 0.70;
*/

CPR = 100*(1-pow((1-(value/100)),12));

return CPR;

}

double MBS::calcPayment(double fv, double T) {
return (fv*coupon)/(1-pow(1/(1+coupon),T));

}

void MBS::calcPrice(double initRate, double financeRate, int N,
long int M){

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 116 --- #138
�

�

�

�

�

�

�

�

116 Mortgage-Backed Securities Chapter 3

Utility util; // utility class for generating
// random deviates

double u = 1.1; // up move in binomial tree
double d = 1/u; // down move in binomial tree
double p = (exp(initRate*T) - d)/(u - d); // up probablity
double deviate = 0.0; // random deviate
long seed = 0; // seed
double refRate = financeRate; // refinance rate
long* idum = NULL; // pointer to seed value for RNG
double pay = faceValue; // face value of MBS
double faceAmount = 0.0; // face amount
double interest = 0.0; // interest payment
double schedulePrincipal = 0.0; // scheduled principal payments
double prepaidPrincipal = 0.0; // prepaid principal payments
double CPR = 0.0; // conditional prepayments
double SMM = 0.0; // monthly mortality
double balance = faceValue; // balance remaining
double sum = 0.0; // sum of discounted cash flows

// along a path
double totalsum = 0.0; // total sum of all discounted cash flows
double totalsum2 = 0.0;
TNT::Array1D<double> CF(SIZE_X); // cash_flow
vector<double> disc(0.0); // stores discount rates

// build binomial tree for rates
for (int i = 0; i <= N; i++)
{

for (int j = 0; j <= i; j++)
{

spotRate[i][j] = initRate*pow(u,j)*pow(d,i-j);
discountRate[i][j] = spotRate[i][j] + OAS;

}
}

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;
faceAmount = faceValue;
int k = 0;
int cnt = 0;
double r = 0.0;
int j = 0;

for (k = 0; k < M; k++)
{

sum = 0.0;
balance = faceValue;
refRate = financeRate;
j = 0;
disc.clear();
disc.push_back(discountRate[0][0]);

for (i = 0; i < N; i++)
{

balance = balance - (schedulePrincipal +
prepaidPrincipal);

deviate = util.gasdev(idum);

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 117 --- #139
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 117

if (deviate > 0)
{

j++;
refRate = refRate*u;

}
else
{

j--;
if (j < 0)
j = 0;

refRate = refRate*d;
}
disc.push_back(discountRate[i+1][j]);
interest = coupon*balance;
pay = calcPayment(balance,WAM-i);
schedulePrincipal = pay - interest;

if (balance >= schedulePrincipal)
{

CPR = calcCPR(refRate);
SMM = calcSMM(CPR);

prepaidPrincipal = SMM*(balance -
schedulePrincipal);

if (i != N-1)
CF[i] = interest + schedulePrincipal +

prepaidPrincipal;
else

CF[i] = interest + balance;

r = computeZeroRates(i,disc);
sum = sum + CF[i]/(pow(1+r,i+1));

}
else // break out of loop

goto x;

}
x:
totalsum = totalsum + sum;
totalsum2 = totalsum2 + sum*sum;

}
double ave = (totalsum/M);

mbsPrice = ave;
stdDev = sqrt(totalsum2 - (double)(totalsum*totalsum)/M)*(exp(-
2*initRate*T)/(M-1));
stdErr = (double) stdDev/sqrt(M);

}

double MBS::calcSMM(double CPR) {
return (1 - pow((1 - CPR),(double)1/12));

}

double MBS::computeZeroRates(int cnt, vector<double> rate) {

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 118 --- #140
�

�

�

�

�

�

�

�

118 Mortgage-Backed Securities Chapter 3

double value = WAC+1;
for (int j = 1; j <= cnt; j++)

value = value*(1 + rate[j]);

if (cnt == 0)
value = WAC;

else
value = pow(value,(double)1/(cnt+1)) - 1;

return value;
}

double MBS::getPrice() {
return mbsPrice;

}

double MBS::getStdDev() {
return stdDev;

}

double MBS::getStdErr() {
return stdErr;

}

double MBS::getMaturity() {
return T;

}

double MBS::getWAM() {
return WAM;

}

double MBS::getWAC() {
return WAC;

}

double MBS::getOAS() {
return OAS;

}

Consider pricing an MBS with the parameters used previously:

Main.cpp
#include <fstream.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <math.h>
#include <map>

#define SIZE_X 100
#include "CMO.h"

void main()

“London” — 2006/11/26 — 12:10 — page 119 — #141
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 119

{
std::cout.precision(7);
double principal = 1000000; // underlying principal

// (notional) of MBS
double coupon = 0.08; // coupon rate
double WAC = 0.08; // weighted average

// coupon rate
double WAM = 10; // weighted average maturity
double OAS = 0.02; // option adjusted spread
double initSpotRate = 0.06; // spot rate
double initRefinanceRate = 0.08; // refinance rate
int N = 10; // number of time steps in tree
long int M = 100000; // number of simulation paths
MBS mbs(principal,coupon,WAC,WAM,OAS);

std::cout << "Running Monte Carlo to price MBS..." << endl << endl;
mbs.calcPrice(initSpotRate,initRefinanceRate,N,M);
std::cout << "MBS Price = " << mbs.getPrice() << endl;
std::cout << "Std Deviation = " << mbs.getStdDev() << endl;
std::cout << "Std Error = " << mbs.getStdErr() << endl << endl;

std::cout << "Pricing MBS with Simulations of Binomial
Tree Paths..." << endl;

MBS mbs1(principal,coupon,WAC,N,OAS);
mbs1.buildTree(initSpotRate,coupon,N);

vector<Tranche> tranche;
Tranche trA('A',500000,0.06);
tranche.push_back(trA);
Tranche trB('B',300000,0.065);
tranche.push_back(trB);
Tranche trC('C',200000,0.07);
tranche.push_back(trC);
Tranche trZ('Z',100000, 0.075);
tranche.push_back(trZ);

std::cout << endl;
std::cout << "Pricing CMO Tranches..." << endl << endl;
CMO cmo(mbs,tranche);
cmo.calcCashFlows(initSpotRate,initRefinanceRate,N,M);

}

The results are as follows:

MBS Price = 964386.69
Std Deviation = 110.07
Std Error = 1.10

We can improve the accuracy by increasing the number of simulations. For instance, if M
= 100, 000, then:

MBS Price = 964469.78
Std Deviation = 34.86
Std Error = 0.11

“London” — 2006/11/26 — 12:10 — page 120 — #142
�

�

�

�

�

�

�

�

120 Mortgage-Backed Securities Chapter 3

Thus, the price of the MBS is priced at roughly 96.5% of par. The more time steps, however,
improves the accuracy of the computed price.

Continuous Time Model

The binomial model is a simple discrete model and does not capture the movement of
interest rates in practice because at each step, rates can only go up or down—they cannot
stay the same or move in between time steps. To capture a realistic evolution of interest rate
movements, an arbitrage-free model of the term structure of interest rates is typically used.
The short rate is assumed to follow a diffusion (a continuous time stochastic) process. The
general form of these models is described in terms of changes in the short rate, as follows:

drt = κ(θ − r)dt + σrαdzt, r(0) = r0

where drt represents an infinitesimal change in rt over an infinitesimal time period, dt, and
dzt is a standard Wiener process. κ is the speed of mean-reversion, θ is the long-run mean
of the interest rate process, α is the proportion conditional volatility exponent, and σ is the
instantaneous standard deviation of changes in rt. The various short-rate models differ by
the parameter α. The Vasicek model assumes it is 0, the Cox-Ingersoll-Ross (CIR) model
assumes it to be 0.5, and the Courtadon model assumes it to be 1.

In order to simulate the process, we discretize it as follows (assume Courtadon):

∆rt = κ(θ − rt)∆t + σrt

√
∆tzt, r(0) = r0

Many interest rate models have some form of mean reversion, reverting the generated in-
terest rate paths to some “long-run” level. Without reversion, interest rates could obtain
unreasonably high and low levels. Volatility, over time, would theoretically approach infin-
ity. Similarly, a large percentage volatility assumption would result in greater fluctuations
in yield, which in turn results in a greater probability of the opportunity to refinance. The
increased probability in refinancing is a greater value attributed to the implied call option,
and a higher resulting option cost.17

In addition to a more realistic term structure, we need to expand our prepayment model
to reflect the effects of multiple factors that impact prepayment. We can utilize the Richard
and Roll (1989) prepayment model, which is based on empirical estimation of the mort-
gagor’s financing condition. The model tries to explain prepayments by observing actual
prepayments and relating them to the measurable factors suggested by their economic the-
ory of prepayments. The prepayment model makes a few assumptions. The maximum CPR
is 50% and the minimum CPR is 0%. The midpoint CPR at 25% occurs at a WAC-refinance
rate differential at 200 basis points. At midpoint, the maximum slope is 6% CPR for a 10
basis point rate shift.

The Richard and Roll (1989) model identifies four factors that should be included in
any prepayment model:18

1. Refinancing incentive: borrower’s incentive to refinance

RI(t) = a + b(arctan(c + d(WAC − rt)))

“London” — 2006/11/26 — 12:10 — page 121 — #143
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 121

where19

a = (max CPR + minCPR)/2
b = 100(maxCPR − a)/(π/2)
d = max slope/b

c = −d x midpoint diff.

2. Seasoning (age of the mortgage):

Age(t) = min(
t

30
, 1)

3. Seasonality (monthly multiplier): yearly trends in housing turnover20

MM(t) = (0.94, 0.76, 0.74, 0.95, 0.98, 0.92, 0.98, 1.10, 1.18, 1.22, 1.23, 0.98)

where t is the tth month, t = 1...12.

4. Burnout multiplier: A spike in refinancing due to incentives is followed by a burnout

BM(t) = 0.3 + 0.7
B(t)
B(0)

where B(t) is the mortgage balance at time t and B(0) is the initial mortgage pool
balance.

The annualized prepayment rate, CPR(t), is equal to

CPR(t) = RI(t)xAge(t)xMM(t)xBM(t).

The cash flows for the MBS under this expanded prepayment model are as follows:

• MP(t) is the scheduled mortgage payment for period (month) t:

MP(t) = B(t)
(

WAC/12
1 − (1 + WAC/12)−WAM+t

)
• IP(t) is the interest payment for period t:

IP(t) = B(t)
(

WAC
12

)
• PP(t) is the principal prepayment for period t

PP(t) = SMM(t)(B(t) − SP(t))

where

SMM(t) = 1 − 12
√

1 − CPR(t) and SP(t) = MP(t) − IP(t).

“London” — 2006/11/26 — 12:10 — page 122 — #144
�

�

�

�

�

�

�

�

122 Mortgage-Backed Securities Chapter 3

• SP(t) is the scheduled principal payment for period t, and SMM(t) is the single
monthly mortality-rate at time t.

The reduction in the mortgage balance for each month is given by

B(t + 1) = B(t) − TPP(t)

where TPP(t) is the total principal payment for period t. As before, we computed the
expected cash flows at time t, CF(t), of the MBS, and thus the MBS price P , using these
formulas and Monte Carlo:

P = EQ

[
M∑

t=0

PV (t)

]
= EQ

[
M∑

t=0

df(t)CF(t)

]

where

PV = Present value for cash flow at time t.

df(t) =
t∏

k=1

1
(1 + rk)

= Discounting factor for time t.

CF(t) = MP(t) + PP(t) = TTP(t) + IP(t)
MP(t) = SP(t) + IP(t)

TPP(t) = SP(t) + PP(t).

Monte Carlo simulation can be used to help people like portfolio managers identify
whether current MBS market prices are rich or cheap compared to their theoretical values
and variances, and make potentially profitable trades to capture “mispricings” in the market
compared to their “true” theoretical values. One can use the information from the simula-
tion to estimate the average life of each path and the mean and variance from all the paths.
From this, one can estimate prepayment risk.

There are two types of cash flow analysis approaches. The first, static cash flow anal-
ysis, assumes a constant PSA, while the second, vector (or dynamic) cash flow analysis
assumes that the PSA changes over time. The static cash flow methodology estimates CFs
based on different PSA speeds, and then calculates the yields on the CFs for prices and
for different PSA speeds, assuming a constant interest rate volatility assumption. Static CF
analysis is useful in determining what is a good price given the estimated yields based on
PSA speeds, duration, average life, and other features of the mortgage or MBS. Table 3.8
shows static analysis for different par value, price, and PSA speeds assumptions.

Based on CF analysis, an investor would be willing to pay 90.75% of par or less for
the MBS, if they required a yield of 9.76% for an MBS investment with a PSA of 165 (or
equivalently for an investment with an average life of 2.93, and duration of 2.57).

Vector analysis is a more dynamic approach. Vector analysis can be used like static CF
analysis to determine prices given required yields. The example at the bottom of Table 3.8
shows vector analysis in which different PSA speeds are assumed for three subperiods.

In general, a decrease in PSA will benefit longer-maturity tranches more than shorter
maturity tranches. Slowing down prepayment increases the OAS for all tranches, more for

“London” — 2006/11/26 — 12:10 — page 123 — #145
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 123

Table 3.8
Par Value PSA Yield Mean Std Dev.

(Price as % of Par) 50% 100% 165%

$44.127M 8.37% 9.01% 9.76% 9.047% .5681

(90.75)

$45.100M 7.82% 8.31% 8.88% 8.3367% .4330

(92.75)

$46.072M 7.29% 7.63% 8.03% 7.6500% .5234

(94.75)

$47.045M 6.78% 6.97% 7.20% 6.9800% .1717

(96.75)

$48.017M 6.28% 6.34% 6.40% 6.3400% .0490

(98.75)

Average Life (Years) 5.10 3.80 2.93

Maturity 9.40 7.15 5.40

Duration 4.12 3.22 2.57

Vector Analysis:

Month: PSA

1–36 50 100 165

37–138 200 200 400

139–357 300 300 400

At $48.127M:

Yield 6.02% 6.01% 6.00% 6.0100% .00816

Average Life 3.51 2.71 2.63

Duration 2.97 2.40 2.34

Source: Johnson, S. (2004)

those tranches trading above par, as well as increases their price. However, changes in price
are not as great for shorter duration tranches, as their prices do not move as much from a
change in OAS as a longer duration tranche. Conversely, an increase in PSA will reduce
the OAS and price of all tranches, especially if they are trading above par. Interest-only
(IO) tranches and IO types of tranches will be adversely affected by an increase as well. A
reduction in interest rate volatility increases the OAS and price of all tranches, though most
of the increase is realized by the longer maturity tranches. The OAS gain for each of the
tranches follows more or less the OAS durations of those tranches.21 An increase in interest
rate volatility will distribute the collateral’s loss such that the longer the tranche duration,
the greater the loss.

As part of the valuation model, option-adjusted duration and option-adjusted convexity
are important measures. In general, duration measures the price sensitivity of a bond to a
small change in interest rates. Duration can be interpreted as the approximate percentage
change in price for 100-basis point parallel shift in the yield curve.22

For example, if a bond’s duration is 3.4, this suggests that a 100-basis point increase
in rates will result in a price decrease of approximately 3.4%. A 50-basis point increase

“London” — 2006/11/26 — 12:10 — page 124 — #146
�

�

�

�

�

�

�

�

124 Mortgage-Backed Securities Chapter 3

in yields will decrease the price by roughly 1.7%. The smaller the basis point change, the
better the approximated change will be.

The effective duration of an MBS (or any fixed-income security) can be approximated
as follows:

Effective Duration =
V− − V+

2V0∆r
(3.11)

where

V− = Price if yield is decreased (per $100 of par value) by ∆r.

V+ = Price if yield is increased (per $100 of par value) by ∆r.

V0 = Initial price (per $100 of par value).

∆r = Number of basis points change in rates used in calculate V− and V+.

Effective duration—in contrast to modified duration, which is the standard measure
of duration—assumes that prices in the formula (3.11) are computed assuming cash flow
changes when interest rates change. Modified duration, on the other hand, assumes that
if interest rates change, the cash flow does not change so that modified duration is an ap-
propriate measure for option-free securities like Treasury bonds, but not for securities with
embedded options like MBSs, where cash flows are affected by rate changes. Consequently,
MBSs use effective duration, also known as OAS duration, which can be computed using
an OAS model as follows. First, the bond’s OAS is found using the current term structure
of interest rates. Next, the bond is reprised holding OAS constant, but shifting the term
structure twice—one shift increases yields and one shift decreases yields generating two
prices, V− and V+, respectively.23

Subsequently, effective duration can be used with a binomial tree or with CF analysis to
measure the duration of a bond with option risk or an MBS. The following steps are utilized
for using a binomial tree to value a bond with an embedded option. First, take a yield
curve estimated with bootstrapping and value the bond, V0, using the calibration approach.
Then, let the estimated yield curve with bootstrapping decrease by a small amount and then
estimate the price of the bond using the calibration approach: V−. Let the estimated yield
curve with bootstrapping decrease by a small amount, and then estimate the price of the
bond using the calibration approach: V+. Finally, calculate the effective duration in (3.11).
Similarly, using static cash flow analysis, you can calculate effective duration as follows.
For a given PSA, determine the prices associated with small yield changes (you can also
use a model in which you assume PSA changes as rates change), and then use the formula
(3.11). It is important to note that effective duration assumes only parallel shifts in the term
structure and will not correctly predict the bond price change if shifts are not parallel.

Convexity is a measure of a security that is the approximate change in price that is not
explained by duration. It can be viewed as the second-order term of the Taylor expansion
of the bond price as a function of yield. Bonds with positive convexity will have a greater
percentage increase in price than the percentage price decrease if the yield changes by
a given number of basis points. Conversely, bonds with negative convexity will have a
greater percentage price decrease than percentage price increase if yields change a given
number of basis points. Although positive convexity is a desirable feature of a bond, a pass-
through security can exhibit either positive or negative convexity, depending on the current

“London” — 2006/11/26 — 12:10 — page 125 — #147
�

�

�

�

�

�

�

�

Section 3.5 MBS Pricing Using Monte Carlo in C++ 125

mortgage refinancing rate relative to the rate on the underlying mortgage loans. Convexity
can be computed as:

V+ + V− − 2(V0)
2V0(∆r)2

(3.12)

If cash flows do not change when yields change, then the resulting convexity from
(3.12) is a good approximation to the standard convexity of an option-free bond. However,
if prices in (3.12) are derived by changing the cash flows change (by changing prepayment
rates) when yields change, the resulting convexity is called effective convexity.24 If prices
are obtained by simulating the OAS via Monte Carlo simulation or by an OAS model, the
resulting value is known as OAS convexity.

As an example of computing duration and convexity, consider a PSA 165 MBS with
the following prices and yields shown in Table 3.9.

Table 3.9
Price Yield

102.1875 6.75%

100.2813 7.00%

98.4063 7.25%

From (3.12), we find the duration is

102.1875− 98.4063
2(100.2813)(.0025)

= 7.54

and the convexity is

102.1875 + 98.4063− 2(100.2813)
2(100.2813)(.0025)2

= 24

Thus, for a 25% change in the yield, the bond price will change by 7.54%, with a positive
convexity of 24%—meaning 24% of the price change is not captured by the duration.

Figure 3.4 shows the simulated cash flows for a 30-year MBS with a 8.5% coupon on a
$1,000,000 pool.

For MBS-pricing models where the underlying factor follows a diffusion process, see
Kariya and Kobayashi (2000) for a one-factor (interest rate) valuation model and Kariya,
Ushiyama, and Pliska (2002) for a three-factor (interest rate, mortgage rate, and housing
price) valuation model.25

“London” — 2006/11/26 — 12:10 — page 126 — #148
�

�

�

�

�

�

�

�

126 Mortgage-Backed Securities Chapter 3

45,000

35,000

25,000

15,000

40,000

30,000

20,000

10,000

5,000

Period
1 25 51 151 321 336 35125176 104 205 221126 176 276

0

D
ol

la
rs

Figure 3.4 Simulated cash flows for a 30-year MBS. Source: Bandic, I. (2002), pg. 23.

3.6 MATLAB FIXED-INCOME TOOLKIT FOR
MBS VALUATION

The Matlab Fixed-Income Toolkit can be used for MBS valuation and for computing
many MBS measures, such as effective duration, convexity, and OAS. The following vari-
ables are inputs in MBS valuation in Matlab:

• Price: Clean price for every $100 of face value.

• Yield: Mortgage yield, compounded monthly (in decimal).

• Settle: Settlement date. A serial date or date string. Settle must be earlier than or
equal to Maturity.

• OriginalBalance: Original balance value in dollars (balance at the beginning of each
TermRemaining).

• TermRemaining: (Optional) Number of full months between settlement and matu-
rity.

• Maturity: Maturity date. A serial date number of date string.

• IssueDate: Issue date. A serial date number or date string.

• GrossRate: Gross coupon rate (including fees), in decimal. Equal to WAC.

• CouponRate: Net coupon rate, in decimal. Default = GrossRate. Equal to PT rate.

• Delay: (Optional) Delay (in days) between payment from homeowner and receipt by
bondholder. Default = 0 (no delay between payment and receipt).

“London” — 2006/11/26 — 12:10 — page 127 — #149
�

�

�

�

�

�

�

�

Section 3.6 Matlab Fixed-Income Toolkit for MBS Valuation 127

• NMBS: Number of mortgage-backed securities.

• PrepaySpeed: (Optional) Relation of the conditional prepayment rate (CPR) to the
benchmark model. Default = 0. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

• PrepayMatrix: (Optional) Used only when PrepayModel and PrepaySpeed are un-
specified. Customized prepayment vector: A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to each MBS, each row
corresponds to each month after settlement.

• ZeroMatrix: A matrix of three columns. Column 1: serial date numbers. Column
2: spot rates with maturities corresponding to the dates in Column 1. Column 3:
Compounding of rates in Column 1. Values are 1 (annual), 2 (semiannual), 3 (three
times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and –1 (continuous).

• Interpolation: Interpolation method. Computes the corresponding spot rates for the
bond’s cash flow. Available methods are (0) nearest, (1) linear, and (2) cubic spline.
Default = 1.

All inputs (except PrepayMatrix and ZeroMatrix) are NMBS x 1 vectors. The following
variables are inputs for pricing bonds, which can in turn be used to find the implied yield
curve for pricing mortgage-backed securities:

• Face: (Optional) Face value of each bond in the portfolio. Default = 100.

• Yield: Scalar or vector containing yield to maturity of instruments.

• Settle: Settlement date. A scalar or vector of serial date numbers. Settle must be
earlier than or equal to Maturity.

• Maturity: Maturity date. A scalar or vector of serial date numbers of date strings.

• ConvDates: Conversion dates for the bonds. A matrix of serial date numbers.

• CouponRates: Matrix containing coupon rates for each bond in the portfolio in dec-
imal form. The first column of this matrix contains rates applicable between Settle
and dates in the first column of ConvDates.

• Period: (Optional) Number of coupons per year of the bond. A vector of integers.
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2 (semiannual).

• Basis: (Optional) Day count basis of the instrument. A vector of integers. 0 = ac-
tual/actual (default), 1 = 30/360, 2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA
compliant), 5 = 30/360 (ISDA compliant), 6 = 30/360 (European), and 7 = actual/365
(Japanese).

• EndMonthRule: (Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having 30 or fewer days. 0 =
ignore rule, meaning that a bond’s coupon payment date is always the same numeri-
cal day of the month. 1 = set rule on (default), meaning that a bond’s coupon payment
date is always the last actual day of the month.

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 128 --- #150
�

�

�

�

�

�

�

�

128 Mortgage-Backed Securities Chapter 3

Suppose we want to compute the cash flows and balances of an FHLMC mortgage pool
with an initial balance of $10,000,000, PSA of 150, WAC = 8.125%, term of 360 months,
and a remaining term of 357 months (the pool has been “seasoned” for three months). We
use the following Matlab code:

OriginalBalance = 1000000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 125;
[Balance, Payment, Principal, Interest, Prepayment] =
mbspassthrough(OriginalBalance,...
GrossRate, OriginalTerm, TermRemaining, PrepaySpeed)

This code produces the output shown in Table 3.10 (Balance, Payment, Principal, In-
terest, and Prepayment).

Table 3.10
Month Balance Payment Principal Interest Prepayment

1 998,490.00 7439.7 668.8373 6770.8 836.6

2 996,780.00 7433.4 672.8021 6760.6 1045.4

3 994,850.00 7425.7 676.6479 6749 1253.8

4 992,700.00 7416.3 680.3719 6735.9 1461.6

5 990,350.00 7405.4 683.9716 6721.4 1668.7

6 987,790.00 7392.9 687.4443 6705.5 1875

7 985,020.00 7378.9 690.7876 6688.2 2080.4

8 982,040.00 7363.4 693.9991 6669.4 2284.7

9 978,850.00 7346.3 697.0763 6649.2 2487.7

10 975,460.00 7327.7 700.017 6627.7 2689.5

350 5,640.00 832.5 788.7487 43.8 36.7

351 4,820.00 827.1 788.9469 38.2 31.4

352 4,000.00 821.8 789.1451 32.6 26.1

353 3,190.00 816.4 789.3434 27.1 20.8

355 1,590.00 805.9 789.7401 16.2 10.3

356 790.00 800.7 789.9385 10.7 5.2

357 0.00 795.5 790.137 5.3 0

Source: Johnson, S. (2004)

These values are computed in the same way as in §3.2. Given a portfolio of mortgage-
backed securities, we could compute the clean prices and accrued interest using the Matlab
mbsprice function. Suppose the yield on the portfolio is 7.25%, the WAC (gross coupon)
is 8.5%, the maturity is January 10, 2034, the issue date is January 10, 2004, and we want
the price on five settlement dates: March 10, 2004; May 17, 2004; May 17, 2005; January
10, 2006; and June 10, 2006 with PT (coupon) rates of 7.5%, 7.875%, 7.75%, 7.95%,
and 8.125%, on each of the MBS securities, respectively. Assume the delay in the start of
payments is 20 days:

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 129 --- #151
�

�

�

�

�

�

�

�

Section 3.6 Matlab Fixed-Income Toolkit for MBS Valuation 129

% MBS.m : compute MBS prices and accrued interest
Yield = 0.0725;
Settle = datenum(['10-Mar-2004';'17-May-2004';'17-May-2005';'10-Jan-
2006';'10-Jun-2006']);
Maturity = datenum('10-Jan-2034');
IssueDate = datenum('10-Jan-2004');
GrossCoupon = 0.085;
CouponRate = [0.075; 0.07875; 0.0775; 0.0795; 0.08125];
Delay = 20;
Speed = 150;
[Price, Accrt] = mbsprice(Yield, Settle, Maturity, IssueDate, ...

GrossRate, CouponRate, Delay, Speed)

Table 3.11 shows the prices and accrued interest at each of the settlement dates.

Table 3.11
Settlement Date Price Accrued Interest

March 10, 2004 101.0937 0.0000

May 17, 2004 103.2801 0.1531

May 17, 2005 102.3677 0.1507

Jan 10, 2006 103.3897 0.0000

June 10, 2006 104.3008 0.0000

Suppose that we want to compute the OAS of the mortgage pool at the March 10, 2004
settlement date with a roughly a 28-year WAM remaining, given assumptions of a 100,
150, and 200 PSA speeds using the computed price and coupon on March 10, 2004 for
the preceding mortgage pool. In Matlab, we first need to create a zero matrix constructed
(implied) by bond prices (assume all bonds pay semiannual coupons) and yields:

Bonds = [datenum('11/21/2004') 0.045 100 2 3 1;
datenum('02/20/2005') 0.0475 100 2 3 1;
datenum('07/31/2007') 0.0500 100 2 3 1;
datenum('08/15/2010') 0.0550 100 2 3 1;
datenum('03/15/2012') 0.0575 100 2 3 1;
datenum('02/15/2015') 0.0600 100 2 3 1;
datenum('03/31/2020') 0.0650 100 2 3 1;
datenum('08/15/2025') 0.0720 100 2 3 1;
datenum('07/20/2034') 0.0850 100 2 3 1];

Yields = [0.0421; 0.0452; 0.0482; 0.0510; 0.0532; 0.0559;
0.0620; 0.0682; 0.0785];
% Since the above is Treasury data and not "selected" agency data, an
% ad-hoc method of altering the yield has been chosen for demonstration
% purposes
Yields = Yields + 0.025*(1./[1:9]');

% Get parameters from Bonds matrix
Settle = datenum('10-Mar-2004');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);

“London” — 2006/11/26 — 12:10 — page 130 — #152
�

�

�

�

�

�

�

�

130 Mortgage-Backed Securities Chapter 3

Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);

% compute bond prices
[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...
Face);

% uses the bootstrap method to return a zero curve given a portfolio of
% coupon bonds and their prices
[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
SpotCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, SpotCompounding];
Maturity = datenum('10-Jan-2034');
IssueDate = datenum('10-Jan-2004');
GrossRate = 0.085;
Delay = 20;
Interpolation = 1;
PrepaySpeed = [100 150 200];
Price = 101.0937;
CouponRate = 0.075;
Settle = datenum('10-Mar-2004');

OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

The OAS results are shown in Table 3.12

Table 3.12
PSA OAS

100 82.6670

150 101.8518

200 114.6088

We can compute the effective duration and convexity of the mortgage pool using the
functions mbsdurp (duration given price), mbsdury (duration given yield), mbsconvp
(convexity given price), and mbsconvy (convexity given yield). For instance, continuing
with the example, we can compute the yearly duration, modified duration, and convexity of
the pool on March 10, 2004 for the 100, 150, and 200 PSA speed assumptions by making
the function calls following the code:

% compute regular duration and modified duration
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed)

% compute convexity
Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay,PrepaySpeed)

“London” — 2006/11/26 — 12:10 — page 131 — #153
�

�

�

�

�

�

�

�

Section 3.7 Collateralized Mortgage Obligations (CMOs) 131

Table 3.13 shows duration, modified duration, and convexity for 100, 150, and 200 PSAs.

Table 3.13
PSA Year Duration Mod. Duration Convexity

100 7.0669 6.8148 82.3230

150 6.1048 5.8881 62.2476

200 5.3712 5.1814 48.3368

3.7 COLLATERALIZED MORTGAGE OBLIGATIONS
(CMOS)

CMOs are securities backed by a pool of mortgages, MBSs, stripped MBSs, or CMOs.
They are structured so that there are several classes of bonds; these classes are called
tranches. Each tranche has a different priority claim on the principal. There are two general
types of CMOs: sequential-pay tranches and planned and amortization class (PAC). In a
sequential-pay tranche, each bond class is prioritized in terms of the order of the princi-
pal payment. Principal for each tranche is paid sequentially by priority: The first priority
tranche’s principal is paid entirely (retired) before the next class, which has its principal
paid before the next class, and so on. This process continues until all the tranches in the
structure are paid off. In general, the YTM of the first tranche is the lowest because it has
the shortest average life and the least prepayment risk. Each successive tranche has a longer
average life and a higher YTM.

The last tranche in many plain vanilla structures does not receive interest until all the
tranches with shorter maturities are paid off. These classes are known as accrual bonds or
“Z bonds” due to their similarity to zero-coupon bonds. The interest that would be paid to
the Z bond is used to pay the principal in the shorter maturity tranches, which shortens their
average lives.

Figure 3.5 shows a hypothetical distribution of principal and interest cash flows between
the sequential pay bonds and the Z bond.

Suppose we form sequential-pay tranches from the mortgage portfolio described in
Table 3.14: $100M mortgage portfolio, WAM = 357 months, WAC = 8.125%, PT rate =
7.5%, and prepayment speed = 165.

The distribution of cash flows is made as follows. Principal payments are first made to
A, then to B, then to C, and so on down to the residual tranches. Principal payment includes
both scheduled principal payment and prepaid principal. The coupon payment is based on
the remaining balance in the tranche. Table 3.15 shows the structured tranche payments.

To attract certain types of investors, floating-rate and inverse floating-rate tranches are
created. These two tranches can be created from an existing one such as the C tranche.
For example, a floating rate class (FR) and inverse floating rate class (IFR) in C can be
constructed such that the floating rate is, for example, LIBOR + 50 basis points, and the

“London” — 2006/11/26 — 12:10 — page 132 — #154
�

�

�

�

�

�

�

�

132 Mortgage-Backed Securities Chapter 3

Principal Repayment

14000

0

2000

4000

6000

8000

10000

12000

Cash Flow (€) Net Interest for the Year

Years
0 10 20 30

A

B

C Z

Tranche A

Tranche B

Tranche C

Z Bond

Pooled Monthly
Cash Flows

Pass-Through Sponsoring Agencies

Principal

Interest

Figure 3.5 Sequential Pay Bonds and Z Bonds.

Table 3.14
Tranche Par PT Rate

A $48.625M 7.5%

B $9M 7.5%

C $42.375M 7.5%

inverse floating rate is 28.5 − 3 (LIBOR). The FR class is 75% of tranche C, and the IFR
class is 25%. Thus, the tranches can be constructed as shown in Table 3.16.

Note that in the inverse floating rate equations, 28.5 is referred to as the cap rate (K)
and 3 is called the leverage rate (L). Because the floating and inverse floating classes were
created from class C, which paid a rate of 7.5%, the K and L were found such that:

.75[LIBOR + .5%] + .25[K − L(P LIBOR) = 7.5%

If LIBOR is 6%, then:

FR = 6% + .5% = 6.5%
IFR = 28.5− 3(6%) = 10.5

.75(6.5%)+ .25(10.5%) = 7.5%

CMOs often have tranches with different rates. Such CMOs often include a special
type of tranche known as a notional interest-only class, which receives only the residual
interest. Notional IO classes are often described as paying a certain base interest on a
notional principal. Consider the following CMO with an NIO shown in Table 3.17.

The notional principal of the NIO class is $13.75M. The interest-only (IO) class re-
ceives the excess interest of 7.5% over the rate paid on each class. For example, from class
A, the IO class would receive 1.5% (7.5% − 6%) on $48.625M, which is $0.729375M.
Capitalizing $.729375M at 7.5% yields a notional principal of $9.725M for the IO class on
class A. The sum of the notional principals for each class yields the IO’s notional principal
of $13.75M, as shown in Table 3.18.

“London” — 2006/11/26 — 12:10 — page 133 — #155
�

�

�

�

�

�

�

�

Section 3.7 Collateralized Mortgage Obligations (CMOs) 133

Table 3.15

Source: Johnson, S. (2004)

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 134 --- #156
�

�

�

�

�

�

�

�

134 Mortgage-Backed Securities Chapter 3

Table 3.16
Tranche Par PT Rate

A $48.625M 7.5%

B $9M 7.5%

FR $31.782M LIBOR + 50 bps

IFR $10.549M 28.5 − 3 (LIBOR)

Table 3.17
Tranche Par PT Rate

A $48.625M 6.0%

B $9M 6.5%

Z $42.375M 7.0%

NIO $13.750M 7.5%

Table 3.18
Tranche Par PT Rate (.075−PT Rate) Par Notional Principal

A $48.625M 6.0% $729,375 $9.725M

B $9M 6.5% $90,000 $1.2M

Z $42.375M 7.0% $211,875 $2.825M

Total $13.75M

Suppose we have a $30,000,000 FHLMC mortgage pool with three tranches, A, B, and
C, each with a size of $10,000,000. Assume the first tranche pool “balloons out” in 60
months, the second pool “balloons out” in 90 months, and the third is regularly amortized
to maturity. The prepayment speeds are assumed to be 100, 165, and 200 for each tranche,
respectively. Suppose that the delay before the first pass-through payment made after issue
is 30 days, the WAC (GrossRate in Matlab) is 8.125%, the PT rate (CouponRate in Matlab)
is 7.5%, the issue date is March 1, 2004, the settlement date is March 1, 2004, and the
maturity is March 1, 2034. The following Matlab code computes cash flows between settle
and maturity dates, the corresponding time factors in months from settle, and the mortgage
pool factor (the fraction of loan principal outstanding) for each tranche:

% mbsfamounts
% [output] CFlowAmounts: vector of cash flows starting from Settle
% through end of the last month (Maturity)
% CflowDates: indicates when cash flows occur, including
% at Settle. A negative number at Settle indicates
% accrued interest is due.
% TFactors: vector of times in months from Settle,
% corresponding to each cash flow.
% Factors: vector of mortgage factors (the fraction of
% the balance still outstanding at the end of each month).
Settle = [datenum('1-Mar-2004');

datenum('1-Mar-2004');
datenum('1-Mar-2004')];

“London” — 2006/11/26 — 12:10 — page 135 — #157
�

�

�

�

�

�

�

�

Section 3.7 Collateralized Mortgage Obligations (CMOs) 135

Maturity = [datenum('1-Mar-2034')];
IssueDate = datenum('1-Mar-2004');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 30;
PSASpeed = [100; 165; 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);
PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1) = SMM(1:60,1);
PrepayMatrix(1:90,2) = SMM(1:90,2);
PrepayMatrix(:,3)=SMM(:,3)
[CFlowAmounts, TFactors, Factors] = mbscfamounts(Settle, Maturity,

IssueDate, ...
GrossRate, CouponRate, Delay, [], PrepayMatrix)

The cash flows for the difference sequential tranches are shown in Table 3.19.
We can compute the price and accrued interest of each of the mortgage pools by using

the following code:

[Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Table 3.19
Month Tranche A CF Tranche B CF Tranche C CF

1 0 0 0

2 70,708.00 71,794.00 72,379.00

3 72,368.00 74,534.00 75,702.00

4 74,015.00 77,256.00 79,004.00

5 75,649.00 79,957.00 82,283.00

59 95,117.00 105,150.00 108,680.00

60 94,592.00 104,190.00 107,470.00

61 94,070.00 103,240.00 106,270.00

62 7,580,500.00 102,290.00 105,080.00

63 0.00 101,350.00 103,910.00

64 0.00 100,420.00 102,750.00

88 0.00 80,383.00 78,340.00

89 0.00 79,637.00 77,455.00

90 0.00 78,897.00 76,579.00

91 0.00 78,163.00 75,713.00

92 0.00 4,811,500.00 74,857.00

93 0.00 0.00 74,009.00

358 0.00 0.00 2,017.40

359 0.00 0.00 1,976.90

360 0.00 0.00 1,936.80

361 0.00 0.00 1,897.30

“London” — 2006/11/26 — 12:10 — page 136 — #158
�

�

�

�

�

�

�

�

136 Mortgage-Backed Securities Chapter 3

The price and accrued interest is shown in Table 3.20. No tranche pool has any accrued
interest because the settlement date is the same as the issue date.

Table 3.20
Price Accrued Interest

Tranche A 101.1477 0

Tranche B 100.8520 0

Tranche C 100.7311 0

We can compute the effective duration and convexity of the mortgage pool using the
mbsdurp (duration given price), mbsdury (duration given yield), mbsconvp (convexity
given price), and mbsconvy (convexity given yield). For instance, continuing with the
example, we can compute the yearly duration, modified duration, and convexity of the
pool on March 10, 2004 for the 100, 150, and 200 PSA speed assumptions by making the
function calls following the code:

% compute regular duration and modified duration
[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate,

CouponRate, Delay, PrepaySpeed)

% compute convexity
Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay,

PrepaySpeed)

The duration, modified duration, and convexity results returned from the Matlab func-
tions above for 100, 150, and 200 PSAs are shown in Table 3.21. Figure 3.6 shows simu-
lated cash flows for a sequential-pay CMO.

Table 3.21
PSA Year Duration Mod. Duration Convexity

100 7.0669 6.8148 82.3230

150 6.1048 5.8881 62.2476

200 5.3712 5.1814 48.3368

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 137 --- #159
�

�

�

�

�

�

�

�

Section 3.8 CMO Implementation in C++ 137

Figure 3.6 Simulated CMO Cash Flows. Source: Bandic (2002), 28.

3.8 CMO IMPLEMENTATION IN C++

CMO.h
#ifndef _CMO__
#define _CMO__

#include <vector>
#include <algorithm>
#include <numeric>
#include "Constants.h"
#include "MBS.h"

using namespace std;

class Tranche
{

public:
Tranche() {}
Tranche(char clas, double balance, double coupon)

: initBalance_(balance), balance_(balance), coupon_(coupon),
clas_(clas) {}

virtual ˜Tranche() {}
double initBalance_;
double balance_;
double coupon_;
vector<double> cashFlows_;
vector<double> sumCF_;
vector<double> inter_;
vector<double> principal_;
vector<double> discount_;
vector<double> T_;
double price_;

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 138 --- #160
�

�

�

�

�

�

�

�

138 Mortgage-Backed Securities Chapter 3

double interest_;
double princip_;
double averageLife_;
char clas_;

};

class CMO
{
public:

CMO(MBS m, vector<Tranche> tr) : mbs(m), tranche(tr)
{

for (int i = 0; i < tranche.size(); i++)
collateral_.push_back(tranche[i].balance_);

}
virtual ˜CMO() { }
void calcTrancheCF();
inline double calcCPR(double SMM) { return 100*(1-pow((1-

(SMM/100)),12)); }
inline double calcSMM(double scheduleBal, double actualBal) {

return 100*((double)(scheduleBal - actualBal)/scheduleBal);
}
inline double calcPSA(double age, double CPR) {

return 100*((double)(CPR/(0.2*min(age,30))));
}
inline double calcRefinance(double r) {

double WAC = mbs.getWAC();
double a = (double) 0.5/2;
double b = (double) 100*((0.5 - a)/(PI/2));
double d = (double) 0.06/b;
double c = (double) -d*0.02;
return (double) (a + b*(atan(c + d*(WAC - r))));

}
inline double calcBurnout(int t, Tranche tr, double balance) {

return (double) (0.3 + 0.7*((double)balance/1000000));
}
inline double calcMP(int t, Tranche tr, double balance) {

double WAC = mbs.getWAC();
double WAM = mbs.getWAM();

return balance*(((double)WAC/12)/(1-pow((1+(double)WAC/12),
-WAM+t)));

}
inline double calcIP(int t, Tranche tr, double r,

double balance) {

double WAC = mbs.getWAC();

return (balance)*((double)(tr.coupon_/12));
}
inline double calcPP(int t, Tranche tr, double r,

double balance) {

double SMM = calcSMM1(t,tr,r,balance);

“London” — 2006/11/26 — 12:10 — page 139 — #161
�

�

�

�

�

�

�

�

Section 3.8 CMO Implementation in C++ 139

double SP = calcSP(t,tr,r,balance);

return SMM*(balance - SP);

}
inline double calcMM(int t) {

double MM[12] = { 0.94, 0.76, 0.74, 0.95, 0.98, 0.92, 0.98,
1.10, 1.18, 1.22, 1.23, 0.98};

int rem = t % 12;

if (t == 1)
rem = 1;

return MM[rem-1];

}
inline double calcCPR1(int t, Tranche tr, double r,

double balance) {

double RI = calcRefinance(r);
double age = calcAge(t);
double MM = calcMM(t);
double BM = calcBurnout(t,tr,balance);

return RI*age*MM*BM;

}
inline double calcAge(int t) {

return min((double)t/30,1);
}
inline double calcSMM1(int t,Tranche tr, double r,

double balance) {

double CPR = calcCPR1(t,tr,r,balance);

return (1 - pow((1 - CPR),(double)1/12));
}
inline double calcSP(int t, Tranche tr, double r,

double balance) {

double MP = calcMP(t,tr,balance);
double IP = calcIP(t,tr,r,balance);

return MP - IP;
}
void calcCashFlows(double initRate, double financeRate, int N,

int M);
private:

MBS mbs;
vector<Tranche> tranche;
vector<double> collateral_;

};

#endif

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 140 --- #162
�

�

�

�

�

�

�

�

140 Mortgage-Backed Securities Chapter 3

Here are the method definitions:

CMO.cpp
#include "CMO.h"
#include "Utility.h"

void CMO::calcCashFlows(double initRate, double financeRate, int N, int M)
{

Utility util;
int i, t = 0;
double r = 0.0715;
const double kappa = 0.29368;
const double vol = 0.11;
const double theta = 0.08;
double deviate = 0;
long seed = 0;
long* idum = 0;
double balance = 0;
double sum = 0;
double S[4] = {0};
double sum1 = 0;
double sum2 = 0;
double sum3 = 0;
double sumA = 0;
double sumB = 0;
double sumC = 0;
double sumD = 0;
double CPR = 0;
double interest = 0.0;
double mbsPrice = 0;
double stdErr = 0;
double stdDev = 0;
double totalsum = 0;
double totalsumA = 0;
double totalsumB = 0;
double totalsumC = 0;
double totalsumD = 0;
double totalsum2 = 0;
double schedulePrincipal = 0;
double prepaidPrincipal = 0;
double discount = 0;
double principal = 0;
double pay = 0.0;
double r1 = 0.0;
double rr = 0.0;
int cnt = 0;
double trancheBal = 0.0;
double T = mbs.getMaturity();
double WAM = mbs.getWAM();
double OAS = mbs.getOAS();
double dt = (double) T/N;
double interest1 = 0;
vector<double> disc(0.0);
vector<double> time1;
TNT::Array1D<double> CF(SIZE_X); // cash_flow

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 141 --- #163
�

�

�

�

�

�

�

�

Section 3.8 CMO Implementation in C++ 141

vector<double> p;

srand(unsigned(time(0)));
seed = (long) rand() % 100;
idum = &seed;

for (t = 1; t <= N; t++)
time1.push_back((double)(t-1)/12);

for (i = 0; i < M; i++)
{

r = initRate;
sum = 0;
sumA = 0;
sumB = 0;
sumC = 0;
sumD = 0;
schedulePrincipal = 0;
prepaidPrincipal = 0;
balance = 1000000;
cnt = 1;
disc.clear();
disc.empty();
disc.push_back(r);
p.clear();
p.push_back(0);

for (int j = 0; j < tranche.size(); j++)
{

tranche[j].balance_ = collateral_[j];
tranche[j].inter_.clear();
tranche[j].principal_.clear();
trancheBal = calcPP(0,tranche[j],r,tranche[j].balance_) +

calcMP(0,tranche[j],tranche[j].balance_);
tranche[j].principal_.push_back(trancheBal);
tranche[j].interest_ = calcIP(0,tranche[j],r,tranche[j].balance_);
tranche[j].inter_.push_back(tranche[j].interest_);
S[j] = 0;

}

for (t = 1; t <= N; t++)
{

balance = balance - (schedulePrincipal + prepaidPrincipal);
deviate = util.gasdev(idum);
r = r + kappa*(theta - r)*dt + vol*r*sqrt(dt)*deviate;
disc.push_back(r);
interest = calcIP(t,tranche[cnt-1],r,balance);
schedulePrincipal = calcMP(t,tranche[cnt-1],balance);
prepaidPrincipal = calcPP(t,tranche[cnt-1],r,balance);
tranche[cnt-1].balance_ = tranche[cnt-1].balance_ -

schedulePrincipal - prepaidPrincipal;
principal = schedulePrincipal + prepaidPrincipal;
tranche[cnt-1].principal_.push_back(principal);
tranche[cnt-1].princip_ = principal;
p.push_back(principal);

if (tranche[cnt-1].balance_ > 0)

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 142 --- #164
�

�

�

�

�

�

�

�

142 Mortgage-Backed Securities Chapter 3

interest1 = calcIP(t,tranche[cnt-1],r,tranche[cnt-1].balance_);
else

interest1 = 0;

tranche[cnt-1].inter_.push_back(interest1);
tranche[cnt-1].interest_ = interest1;

for (int k = 1; k <= tranche.size(); k++)
{

if (k != cnt)
{

interest1 = calcIP(t,tranche[k-1],r,tranche[k-1].balance_);

if (tranche[k-1].balance_ != 0)
{

tranche[k-1].inter_.push_back(interest1);
tranche[k-1].interest_ = interest1;

}
else
{

tranche[k-1].inter_.push_back(0.0);
tranche[k-1].interest_ = 0.0;

}

tranche[k-1].principal_.push_back(0.0);
tranche[k-1].princip_ = 0.0;

}

rr = mbs.computeZeroRates(t-1,disc);
S[k-1] = (tranche[k-1].interest_ + tranche[k-1].princip_)/

(pow(1+rr+OAS,(double)(t-1)/12));

if (k == 1)
sumA = sumA + S[k-1];

else if (k == 2)
sumB = sumB + S[k-1];

else if (k == 3)
sumC = sumC + S[k-1];

else
sumD = sumD + S[k-1];

}

if (tranche[cnt-1].balance_ > 0)
{

if (balance >= schedulePrincipal)
{

if (t != N)
CF[t-1] = schedulePrincipal + interest + prepaidPrincipal;

else
CF[t-1] = interest + balance;

rr = mbs.computeZeroRates(t-1,disc);
sum = sum + CF[t-1]/(pow(1+rr+OAS,(double)(t-1)/12));

}
else

goto x;
}

‘‘London’’ --- 2006/11/26 --- 12:10 --- page 143 --- #165
�

�

�

�

�

�

�

�

Section 3.8 CMO Implementation in C++ 143

else
{
tranche[cnt-1].balance_ = 0;
cnt++;

}
}
x:
totalsum = totalsum + sum;
totalsumA = totalsumA + sumA;
totalsumB = totalsumB + sumB;
totalsumC = totalsumC + sumC;
totalsumD = totalsumD + sumD;
totalsum2 = totalsum2 + sum*sum;

}

calcTrancheCF();
for (int j = 0; j < tranche.size(); j++)
{

sum1 = 0;
sum2 = 0;
for (i = 0; i < tranche[j].principal_.size(); i++)
{
sum1 = sum1 + (time1[i])*(tranche[j].principal_[i]);
sum2 = sum2 + tranche[j].principal_[i];

}
tranche[j].averageLife_ = sum1/sum2;

}
sum1 = 0;
sum = accumulate(p.begin(),p.end(),0);
for (j = 0; j < p.size(); j++)

sum1 = sum1 + time1[j]*p[j];

std::cout << endl;
std::cout << "collateral price = " << totalsum/M << " " << "Ave.Life = "

<< sum1/sum << endl;
std::cout << "Tranche A price = " << totalsumA/M << " " << "Ave.Life = "

<< tranche[0].averageLife_ << endl;
std::cout << "Tranche B price = " << totalsumB/M << " " << "Ave.Life = "

<< tranche[1].averageLife_ << endl;
std::cout << "Tranche C price = " << totalsumC/M << " " << "Ave.Life = "

<< tranche[2].averageLife_ << endl;
std::cout << "Tranche Z price = " << totalsumD/M << " " << "Ave.Life = "

<< tranche[3].averageLife_ << endl;

T = mbs.getMaturity();
stdDev = sqrt(totalsum2 - (double)(totalsum*totalsum)/M)*

(exp(-2*initRate*T)/(M-1));
stdErr = (double) stdDev/sqrt(M);

}

void CMO::calcTrancheCF()
{

vector<Tranche>::iterator iter;
vector<double>::iterator iter1;
vector<double>::iterator iter2;
int cnt = 1;

“London” — 2006/11/26 — 12:10 — page 144 — #166
�

�

�

�

�

�

�

�

144 Mortgage-Backed Securities Chapter 3

for (iter = tranche.begin(); iter != tranche.end(); iter++)
{

iter2 = iter->inter_.begin();
cnt = 1;
for (iter1 = iter->principal_.begin(); iter1 !=

iter->principal_.end(); iter1++)
{

std::cout << "Mo." << cnt << " Class: " << iter->clas_
<< " " << "Principal= " << *iter1
<< " " << "Coupon= " << *iter2 << endl;

iter2++;
cnt++;

}
}

}

The main method is as follows:

Main.cpp
void main()
{

std::cout.precision(7);
double principal = 1000000; // underlying principal notional)

// of MBS
double coupon = 0.08; // coupon rate
double WAC = 0.08; // weighted average coupon rate
double WAM = 10; // weighted average maturity
double OAS = 0.02; // option adjusted spread
double initSpotRate = 0.06; // spot rate
double initRefinanceRate = 0.08; // refinance rate
int N = 10; // number of time steps in tree
long int M = 100000; // number of simulation paths

MBS mbs(principal,coupon,WAC,WAM,OAS);

vector<Tranche> tranche;
Tranche trA('A',500000,0.06);
tranche.push_back(trA);
Tranche trB('B',300000,0.065);
tranche.push_back(trB);
Tranche trC('C',200000,0.07);
tranche.push_back(trC);
Tranche trZ('Z',100000, 0.075);
tranche.push_back(trZ);

std::cout << endl;
std::cout << "Pricing CMO Tranches..." << endl << endl;
CMO cmo(mbs,tranche);
cmo.calcCashFlows(initSpotRate,initRefinanceRate,N,M);

}

“London” — 2006/11/26 — 12:10 — page 145 — #167
�

�

�

�

�

�

�

�

Section 3.8 CMO Implementation in C++ 145

The output is as follows:

Pricing CMO Tranches...

Mo.1 Class: A Principal= 51851.6 Coupon= 2500
Mo.2 Class: A Principal= 115430 Coupon= 1922.85
Mo.3 Class: A Principal= 114668.5 Coupon= 1349.507
Mo.4 Class: A Principal= 113798.2 Coupon= 780.5165
Mo.5 Class: A Principal= 113024 Coupon= 215.3967
Mo.6 Class: A Principal= 111815.5 Coupon= 0
Mo.7 Class: A Principal= 0 Coupon= 0
Mo.8 Class: A Principal= 0 Coupon= 0
Mo.9 Class: A Principal= 0 Coupon= 0
Mo.10 Class: A Principal= 0 Coupon= 0
Mo.1 Class: B Principal= 31110.96 Coupon= 1625
Mo.2 Class: B Principal= 0 Coupon= 1625
Mo.3 Class: B Principal= 0 Coupon= 1625
Mo.4 Class: B Principal= 0 Coupon= 1625
Mo.5 Class: B Principal= 0 Coupon= 1625
Mo.6 Class: B Principal= 0 Coupon= 1625
Mo.7 Class: B Principal= 110373.5 Coupon= 1027.143
Mo.8 Class: B Principal= 108932.9 Coupon= 437.0903
Mo.9 Class: B Principal= 107334.2 Coupon= 0
Mo.10 Class: B Principal= 0 Coupon= 0
Mo.1 Class: C Principal= 20740.64 Coupon= 1166.667
Mo.2 Class: C Principal= 0 Coupon= 1166.667
Mo.3 Class: C Principal= 0 Coupon= 1166.667
Mo.4 Class: C Principal= 0 Coupon= 1166.667
Mo.5 Class: C Principal= 0 Coupon= 1166.667
Mo.6 Class: C Principal= 0 Coupon= 1166.667
Mo.7 Class: C Principal= 0 Coupon= 1166.667
Mo.8 Class: C Principal= 0 Coupon= 1166.667
Mo.9 Class: C Principal= 0 Coupon= 1166.667
Mo.10 Class: C Principal= 105320.6 Coupon= 552.2968
Mo.1 Class: Z Principal= 10370.32 Coupon= 625
Mo.2 Class: Z Principal= 0 Coupon= 625
Mo.3 Class: Z Principal= 0 Coupon= 625
Mo.4 Class: Z Principal= 0 Coupon= 625
Mo.5 Class: Z Principal= 0 Coupon= 625
Mo.6 Class: Z Principal= 0 Coupon= 625
Mo.7 Class: Z Principal= 0 Coupon= 625
Mo.8 Class: Z Principal= 0 Coupon= 625
Mo.9 Class: Z Principal= 0 Coupon= 625
Mo.10 Class: Z Principal= 0 Coupon= 625

collateral price = 682754.6 Ave.Life = 0.4104376
Tranche A price = 564751.1 Ave.Life = 0.2279203
Tranche B price = 321741.6 Ave.Life = 0.5318972
Tranche C price = 108757.8 Ave.Life = 0.6266037
Tranche Z price = 5460.491 Ave.Life = 0

“London” — 2006/11/26 — 12:10 — page 146 — #168
�

�

�

�

�

�

�

�

146 Mortgage-Backed Securities Chapter 3

3.9 PLANNED AMORTIZATION CLASSES (PACS)
Planned amortization classes (PACs) (also called planned redemption obligations) are

tranches set up such that they have zero (or at least minimum) prepayment risk. PACs are
set up by applying low and high PSA speeds to the collateral. The PAC bond then receives a
promise of the minimum CF each month, with a support bond created that receives the rest.
These support classes, sometimes referred to as companions, absorb principal payments
and pay off sooner if the PSA exceeds the PAC range. If the PSA is below the range, the
companion classes have a longer life and amortization schedule. In either case, the PAC
classes experience less volatility than they would in a sequential-pay structure because of
the stability provided by the companions.

PACs are much less sensitive to prepayment risk than standard pass-throughs as long as
the PSA speed falls between the low and high PSA thresholds used. Suppose one applied 90
and 300 PSA models to the collateral of a $100M mortgage pool with a WAC = 8.125%,
WAM = 357 months, and PT rate = 7.5%. This would yield two different monthly princi-
pals over the 357-month period. We also need to factor in a seasoning factor, a factor that
accounts for the prepayment based on the season, which we assume to be 3. Table 3.22
shows the cash flows for a PAC with the above features.

To show how these calculations were made, we know that in the first month (period 1),
the PAC balance is $100,000,000. The computed interest for this first month is:

I1 = (0.075/12) ∗ (100, 000, 000) = $625, 000

The computed PAC principal payment is:

p =
(0.08125/12)(100, 000, 000)
1 − (1/(1 + 0.08125/12))357

= $743, 967.06

The PAC scheduled principal payment is:

743, 967.06− (0.085/12)(100, 000, 000) = 66, 883.73

The low PAC PSA speed is assumed to be 90. We compute the PAC adjuster seasoning
factor, which we take to be:

Min

(
month + seasoning factor

number of months until fixed CPR
, 1
)

Thus, in the first month, this value is:

Min

(
1 + 3
30

, 1
)

= 0.13333

The PAC adjuster seasoning factor is then applied to the PAC CPR:(
PSA
100

)
(Fixed CPR)(adjuster seasoning factor) =

(
90
100

)
(0.06)(0.1333)

= 0.0072

“London” — 2006/11/26 — 12:10 — page 147 — #169
�

�

�

�

�

�

�

�

Section 3.9 Planned Amortization Classes (PACS) 147

T
a
b
le

3
.2

2

So
ur

ce
:J

oh
ns

on
,S

.(
20

04
)

“London” — 2006/11/26 — 12:10 — page 148 — #170
�

�

�

�

�

�

�

�

148 Mortgage-Backed Securities Chapter 3

The SMM is:

SMM = (1 − (1 − PAC CPR)1/357 = (1 − (1 − 0.0072)1/357 = 0.00060199

The PAC prepaid principal is:

SMM(balance − scheduled principal) ·
0.00060199(100, 000, 000− 66, 883.73) = $60, 158.65

The PAC cash flow is:

PAC Interest + PAC Scheduled Principal +
PAC Prepaid Principal = 625, 000 + 66, 883.73 + 60, 148.65

= $752, 042.38

We can now compute the PAC low PSA total prepayment amount:

PAC Scheduled Principal + PAC Prepaid Principal = 66, 883.72+ 60, 158.65
= $127, 042.38

The same computations are then made for the high PSA level of 300. The main differ-
ence is that the PAC CPR in this case is:(

PSA

100

)
(Fixed CPR)(adjuster seasoning factor) =

(
300
100

)
(0.06)(0.1333)

= 0.024

The PAC bond has an average life of 7.26 years. Moreover, between PSA speeds of 90
and 300, the PAC bond’s average life is 7.26 years, implying no prepayment risk. Table
3.23 shows average life for the PAC and support bond for various PSA assumptions.

Table 3.23
PSA Speed PAC Support Collateral

0 10.36 23.84 20.36

50 8.04 21.69 15.36

90 7.26 20.06 12.26

100 7.26 18.56 11.67

150 7.26 12.56 9.33

200 7.26 8.36 7.69

250 7.26 5.35 6.52

300 7.26 3.11 5.64

350 6.61 2.91 4.98

400 6.06 2.74 4.45

“London” — 2006/11/26 — 12:10 — page 149 — #171
�

�

�

�

�

�

�

�

Section 3.10 Principal- and Interest-Only Strips 149

The PAC bond can be broken into other PAC tranches. The most common is a sequential-
pay PAC. For example, one can form six sequential-pay PACs using the previous collateral.
The average life for the PAC classes will be stable within the 90–300 PSA range; 90–300
is referred to as the collar. Some PACs will move outside that range. This is referred to as
the effective collar. The more classes you have, the more narrow you make the windows,
making the PAC resemble a bullet bond. Such PACs could be sold to liability-management
funds to meet liabilities with certain liabilities or durations—cash flow matching. In the
1980s, one could find CMOs (especially PACs) with as many as 70 tranches; in the early
1990s, the average number of tranches was 24. Like the PACs, the support bond also can
be divided into different classes: sequential-pay, floaters, accrual bonds, and so on.

Targeted amortization classes (TACs) also offer prepayment protection within a defined
PSA range, but not below the PSA used to price the CMO. This could result in a lengthening
of average life if prepayments slow down, and for this reason, TACs offer higher yields in
relation to comparable PACs.

Figure 3.7 shows the cash flows paid to a hypothetical GNMA PAC 100/300.

$100,000 par value 30-year 8% bond priced at PSA 165

Residual Amount for Companions

1400

1200

C
as

h
F

lo
w

s
($

)

1000

800

600

400

200

0
1 30 60 90 120 150 180

Months

PAC 100/300 Principal Payment
Schedule

300 PSA

100 PSA

Prepayment Rate > PAC Range
Companions get paid faster.

Prepayment Rate < PAC Range
Companions provide support to pay the

amount to PAC bonds.

Figure 3.7 GNMA PAC 100/300 Cash Flows.

3.10 PRINCIPAL- AND INTEREST-ONLY STRIPS

Stripped MBSs were introduced by FNMA in 1986. Any MBS can be “stripped” and
sold separately by directing a collateral’s cash flows into principal-only (PO) or interest-
only (IO) securities. IO classes receive just the interest on the mortgages. PO classes receive
just the principal payments. The yield on PO bonds depends on the speed of prepayment.
The faster the prepayment, the greater the yield. For instance, PO investors who paid $75
million for a mortgage portfolio with a principal of $100 million would receive a higher

“London” — 2006/11/26 — 12:10 — page 150 — #172
�

�

�

�

�

�

�

�

150 Mortgage-Backed Securities Chapter 3

yield if the $100 million were paid early (e.g., first years) than if it were spread out. POs
have an inverse price-interest rate sensitivity relationship: If interest rates decrease, then
prepayments increase so that the PO (yield) return increases and its price (value) increases.
Analogously, if interest rates increase, then prepayments decrease so that the PO (yield)
return decreases and its price (value) decreases.

Because IO investors receive interest on the outstanding principal, they want prepay-
ments to be slow. For example, IO investors holding an IO claim on a $400 million 7.5%
pool would receive $30 million (= $400 ∗ 0.075) if the principal were paid immediately.
By contrast, if the principal were paid off by equal increments over four years, the return
would be $75 million (see Table 3.24).

Table 3.24
Year 1 ($400M)(0.75) = $30.0M

Year 2 ($300M)(0.75) = $22.5M

Year 3 ($200M)(0.75) = $15.0M

Year 4 ($100M)(0.75) = $7.5M

Total $75M

Because a rate decrease augments speed, it lowers the return on an IO bond, causing
its value to decrease. Whether IO bonds decrease in response to a rate decrease depends
on whether this effect dominates the effect of lower discount rates on increasing value. In
other words, when interest rates decrease, the prepayments increase, which decreases the
return, and the value of the IO must be balanced against the increase in value from the
effect of lower discount rates. The two effects may offset one another so that it is possible
that there is a direct relationship between value and return for an IO bond.

Like CMOS, stripped MBSs are a derivative product. Both strips are extremely volatile
and, as stated, dependent on prepayment rates. POs perform well in high prepayment envi-
ronments when the principal purchased at a discount is returned at par, faster than expected,
making them a bullish investment with a large, positive duration. IOs perform better if pre-
payments are slow because the principal remains outstanding for a longer period and in-
terest payments continue, making them an investment with a negative duration—i.e., their
price increases as interest rates increase and vice versa. IOs are often used to hedge interest
rate risks in MBS or CMO portfolios. Portfolio losses that are caused by an increase in rates
are partially or fully offset by a corresponding appreciation in the IO position, depending
on the structure of the hedge.

Consider a stripped MBS with a collateral pool of $100 million, WAM = 357 months,
WAC = 0.08125, PT rate = 0.075, and a PSA = 165. The cash flows are given as shown
in Table 3.25.

“London” — 2006/11/26 — 12:10 — page 151 — #173
�

�

�

�

�

�

�

�

Section 3.12 Dynamic Hedging of MBS 151

Table 3.25

3.11 INTEREST RATE RISK

The MBS interest rate risk is similar to that of other fixed-income securities: When
interest rates fall, price goes up and vice versa. However, the prepayment optionality “em-
bedded” in MBS impacts the degree of price movement based on the relationship between
the security’s coupon rate and current mortgage rates. When a pass-through coupon is either
at or above current mortgage rates, homeowners are more likely to exercise the prepayment
option. As the likelihood of prepayment increases, the price of the MBS pass-through does
not go up as much as that of an otherwise identical security with no optionality due to the
increased prepayment risk. This is known as negative convexity.

When a pass-through coupon is below current mortgage rates, or “out of the money,”
homeowners are unlikely to exercise the prepayment option. Although the prepayment op-
tion is less likely to be exercised, the price of the pass-through still exhibits negative con-
vexity because investors maintain their principal investment at lower levels than the current
market rate for longer periods of time. This is known as extension risk. Figure 3.8 shows
the inverse relationship between the price of a regular fixed-income security and interest
rates. Figure 3.9 shows the negative convexity of an MBS.

3.12 DYNAMIC HEDGING OF MBS

Institutions hold significant positions in mortgage-backed securities (MBSs) for a vari-
ety of reasons. Hedging interest rate risk of MBSs is an important concern whether the po-
sitions reflect trades on relative value or inventory holdings due to main businesses. MBSs
hedging is complicated by the fact that the timing of the cash flows is dependent on the
prepayment behavior of the pool. In particular, mortgagors are more likely to prepay given
the incentive to refinance when interest rates fall. Thus, fixed-rate investors are implicitly
writing a call option on the corresponding fixed-rate bond.26 Though other factors influence

“London” — 2006/11/26 — 12:10 — page 152 — #174
�

�

�

�

�

�

�

�

152 Mortgage-Backed Securities Chapter 3

With fixed-income securities, there is an inverse
relationship between interest rates and price.

Fixed Income Securities
115

105

95

85

75

65
–3%

P
ric

e
(�

)

–2% –1% 0% 1% 2% 3%

Figure 3.8 Inverse relationship between the price of a regular fixed income security and interest

rates.

prepayments—e.g., seasonality and burnout—interest rates are the predominant factor in
valuing MBSs. Because of this predominance, U.S. Treasury securities, or more specifi-
cally, Treasury note (T-note) futures, are often used to hedge MBSs. There are two reasons:
(1) T-note futures are very liquid instruments; and (2) the prices of those instruments are
determined by the underlying term structure of interest rates and thus relate directly to the
value of MBSs.27 We follow the work of Boudoukh, Richardson, Stanton, and Whitelaw
(1995) in the following discussion.

There are two common approaches to hedging MBSs using T-note futures. The first is
purely empirical and involves the regression of past returns on MBSs against past returns
on T-note futures. The estimated regression coefficient from the resulting relation can then
be used to hedge the interest rate risk of MBSs using the risk in T-notes. The advantage of

The price of a security with prepayment optionality does not go up as much
as that of an otherwise identical security, and drops further.

Mortgage-Backed Securities

–3%

95

85

75

65

P
ric

e
(�

)

–2% –1% 0% 1% 2% 3%

MBS prepayments
increase in a falling
rate environment.

MBS principal maintained at lower rates in
rising interest rate environment.

Figure 3.9 Negative convexity of a MBS.

“London” — 2006/11/26 — 12:10 — page 153 — #175
�

�

�

�

�

�

�

�

Section 3.12 Dynamic Hedging of MBS 153

this method is that it does not involve strong assumptions regarding the underlying model
for the evolution of interest rates or prepayments.28 The disadvantage is that the method
is static in nature. It does not explicitly adjust the hedge ratio for changes in interest rates
and mortgage prepayments, which can potentially be detrimental from mishedging a large
portfolio exposure.29 Consequently, the observations used in the regression represent an
average of the relation between MBSs and T-note futures only over the sample period,
which may or may not be representative of the current period.

As an alternative, a second approach is model-based. It involves specification of the
interest rate process and a prepayment model. The assumptions then help map an MBS
pricing functional to interest rates and possibly other factors.30 The approach represents a
dynamic method for determining co-movements between MBS prices and T-note futures
prices. These co-movements are completely specified by conditioning on current values
of the relevant economic variables and on particular parameter values. The basic idea is
to estimate a conditional hedge ratio between returns on an MBS and returns on a T-note
futures. This is important for MBSs because, as interest rates change, expected future pre-
payments change, and thus the timing of the future prepayments change, and thus timing
of the future cash flows also changes.

To estimate the conditional hedge ratio, a structural model is usually required (as with
model-based MBS valuation approaches). There are two drawbacks: First, there is no con-
sensus regarding what is a reasonable specification of how the term structure moves through
time, and how these movements relate to prepayment behavior. The model price is going to
be closely related to these possibly ad-hoc assumptions, which may be reasonable or unrea-
sonable.31 Second, and more subtle, is the recognition that the parameter values themselves
may often be “chosen” or estimated from a static viewpoint.32 For instance, empirical pre-
payment models often reflect ad hoc prepayment rates on data sets housing and interest
rate factors. But any of the well-documented MBS-hedging fiascoes would imply that the
resulting regression coefficients, which present an average of the relation of the past, do
not have the same link to the variable factors describing the current period. In other words,
static in-sample regression estimated coefficients are not accurate estimators of future out-
of-sample coefficients.

One method that has worked well in reducing the error between in-sample and out-of-
sample estimators is the probability density estimation method.

The Multivariable Density Estimation Method

Multivariate density estimation (MDE) is a method for estimating the joint density of a
set of variables. Given the joint and marginal densities of these variables, the corresponding
distributions and conditional moments, such as the mean, can be calculated. The estimation
relates the expected return on an MBS to the return on a T-note futures, conditional on rel-
evant information available at any point in time. We have T observations, z1, z2, . . . , zT ,
where each zt is an m-dimensional vector that might include the MBS and T-note futures
returns, as well as several variables describing the state of the economy. One popular con-
sistent measure of the joint density is the Parzen (fixed window width) density estimator:

“London” — 2006/11/26 — 12:10 — page 154 — #176
�

�

�

�

�

�

�

�

154 Mortgage-Backed Securities Chapter 3

f̂(z∗) =
1

Thm

T∑
t=1

K

(
z∗ − zt

h

)

where K(·) is called the kernel function (with the property that it integrates to unity) and
is often chosen to be a density function, h is window or smoothing parameter (which helps
determine how tight the kernel function is), and f̂(z∗) is the estimate of the probability
density at z∗. The density at any point z∗ is estimated as the average of densities centered
at the actual data points zt. The further a data point is away from the estimation point, the
less it contributes to the estimated density. Consequently, the estimate is highest near high
concentrations of data points and lowest when observations are sparse.33 A commonly used
kernel is the multivariate normal density:

K(z) =
1

(2π)m/2
e−

1
2 z′z

Let zt = (Rmbs
t+1 , RTN

t+1, xt), where Rmbs
t+1 and RTN

t+1 are the one-period returns on the MBS
and T-note futures from t and t+1, respectively, and xt is an (m−2)-dimensional vector of
factors known at time t. We can then obtain the conditional mean, E

[
Rmbs

t+1 |RTN
t+1, xt

]
—

i.e., the expected MBS return given movements in the T-note return—conditional on the
current economic state as described by xt. Specifically,

E
[
Rmbs

t+1 |RTN
t+1, xt

]
=
∫

Rmbs
t+1

f(Rmbs
t+1 , RTN

t+1, xt)
f1(RTN

t+1, xt)
dRmbs

=

t∑
i=1

Rmbs
t+1−iK

t−i
1 (·, ·)

t∑
i=1

Kt−i
i (·, ·)

(3.13)

where Kt−i
1 (·, ·) = K1((RTN

t+1−i − RTN
t+1)/hTN), (xt−i − xt)/h)).

K1(·, ·) is the marginal density,
∫

K(z)dRmbs, which is also a multivariate normal
density. The expected return in equation (3.13) is simply a weighted average of past returns
where the weights depend on the levels of the conditioning variables relative to their levels
in the past.

Given E
[
Rmbs

t+1 |RTN
t+1, xt

]
, a hedge ratio can be formed by estimating how much the

return on the MBS changes as a function of changes in the T-note futures return, conditional
on currently available information xt. That is

“London” — 2006/11/26 — 12:10 — page 155 — #177
�

�

�

�

�

�

�

�

Section 3.12 Dynamic Hedging of MBS 155

∂E
[
Rmbs

t+1 |RTN
t+1, xt

]
∂RTN

t+1

=

t∑
i=1

Rmbs
t+1−i

∂Kt−i
1 (·,·)

∂RT N
t+1

t∑
i=1

Kt−1
1 (·, ·)

−

t∑
i=1

Rmbs
t+1−iK

t−i
1 (·, ·)

t∑
i=1

∂Kt−1
1 (·,·)

∂RTN
t+1[

t∑
i=1

Kt−i
1 (·, ·)

]2

(3.14)

where

∂Kt−i
1 (·, ·)

∂RTN
t+1

= −
[
(RTN

t+1−i − RTN
t+1)

(hTN)2

]
Kt−i

1 (·, ·).

A couple of points can be made. First, equation (3.14) provides a formula for the hedge ratio

between an investor’s MBS position and T-note futures. For example, if
∂E[Rmbs

t+1 |RT N
t+1,xt]

∂RTN
t+1

equals 0.5, then for every $1 of an MBS held, the investor should short $0.50 worth of
T-note futures. Second, the hedge ratio will change dynamically, depending on the current
economic state described by xt. For example, suppose xt is an m − 2 vector of term
structure variables. As these variables change, whether they are the level, slope, or curvature
of the term structure, the hedge ratio may change in response. Thus, the appropriate position
in T-note futures will vary over time. Third, the hedge ratio is a function of the unknown
return on the T-note futures. If the conditional relation between MBS returns and T-note
futures returns is always linear, then the same hedge ratio will be appropriate, regardless of
how T-note futures move. If the relation is not linear, then the investor must decide what
type of T-note moves to hedge. For example, the investor might want to form the MBS
hedge in the neighborhood of the conditional mean of the T-note futures return because
many of the potential T-note futures will lie in that region. On the other hand, it may be
the case that the investor is concerned about the tails of the distribution T -note futures
returns, and thus adjusts the hedge ratio to take account of potential extreme moves in
interest rates and T-note futures. Fourth, the hedge ratio is horizon specific. In contrast to the
instantaneous hedge ratio, the method’s implied hedge ratio directly reflects the distribution
of MBS returns over the relevant horizon. Thus, different hedge ratios may be appropriate
for daily, weekly, or monthly horizons.

The static OLS regression coefficient, or hedge ratio, is given by

β =

t∑
i=1

Rmbs
t+1−iR

TN
t+1−i − TµmbsµTN

t∑
i=1

(RTN
t+1−i − µTN)2

(3.15)

where µmbs = 1
T

t∑
i=1

Rmbs
t+1−i and µTN = 1

T

t∑
i=1

RTN
t+1−i.

“London” — 2006/11/26 — 12:10 — page 156 — #178
�

�

�

�

�

�

�

�

156 Mortgage-Backed Securities Chapter 3

In contrast, the dynamic hedging method explicitly takes into account the current eco-
nomic state. Equation (3.14) can be rewritten as

∂E
[
Rmbs

t+1 |RTN
t+1, xt

]
∂RTN

t+1

=
t∑

i=1

Rmbs
t+1−i

[
(RTN

t+1−i − RTN
t+1)

(hTN)2

]
wi(t) −[

t∑
i=1

Rmbs
t+1−iwi(t)

]
·[

t∑
i=1

(
(RTN

t+1−i − RTN
t+1)

(hTN)2

)
wi(t)

] (3.16)

where wi(t) = Kt−i
1 (·,·)

t�
i=1

Kt−i
1 (·,·)

.

The hedge ratio in (3.16) is constructed by taking past pairs of MBS and T-note futures
returns, and then differentially weighting these pairs’ co-movements by determining how
“close” (RTN

t+1−i, xt−i) pairs are to a chosen value of RTN
t+1 and current information xt. The

dynamic hedge ratio is similar in spirit to a regression hedge, except that the weights are no
longer constant, but instead depend on current information. wi(t) puts little weight on the
observation pair (Rmbs

t+1−i, R
TN
t+1−i) if the current information xt is not close to xt−i in a

distributional sense. The hedge ratio adjusts to current economic conditions. For example,
if interest rates are currently high, but the term structure is inverted, then more weight will
be given to past co-movements between MBS and T-note futures in that type of interest rate
environment.

Boudoukh, Richardson, Stanton, and Whitelaw (1995) apply the method to weekly 30-
year fixed-rate GNMA MBS (with 8%, 9%, and 10% coupons) and T-note futures data over
the period January 1987 to May 1994. The GNMA prices represent dealer-quoted prices
on X% coupon-bearing GNMAs traded for forward delivery on a to be announced (TBA)
basis.34 Performing an out-of-sample analysis, their research shows that the dynamic hedg-
ing method performs considerably better than the static regression method. For instance, in
hedging weekly returns on 10% GNMA, the dynamic method reduces the volatility of the
GNMA return from 41 to 24 basis points, whereas a static method manages only 29 basis
points of residual volatility. Furthermore, only 1 basis point of the volatility of the dynam-
ically hedged return can be attributed to risk associated with U.S. Treasuries in contrast to
14 basis points of interest rate risk in the statically hedged return.

The results of Boudoukh, Richardson, Stanton, and Whitelaw (1995) shown in Table
3.26 compares the mean, volatility, and autocorrelation of unhedged returns on GNMA
TBAs and hedged returns using two different approaches. The approaches involve hedging
GNMAs with T-note futures, resulting in the hedged return, Rmbs

t+1 −βt+RTN
t+1, where Rmbs

t+1

and RTN
t+1 are the out-of-sample returns on GNMAs and T-note futures respectively, and

the hedge ratio, is estimated using the prior 150 weeks of data in one of two ways: (1) a
linear hedge based on a regression of past Rmbs

t+1 on RTN
t+1, and (2) a MDE hedge using the

distribution of Rmbs
t+1 and RTN

t+1, conditional on the 10-year yield at time t. The estimation is
performed on a rolling basis and covers the out-of-sample period, December 1989 to May
1994. Results are reported for both weekly and overlapping monthly returns.

“London” — 2006/11/26 — 12:10 — page 157 — #179
�

�

�

�

�

�

�

�

Section 3.12 Dynamic Hedging of MBS 157

Table 3.26

Source: Boudoukh, Richardson, Stanton, and Whitelaw (1995)

Figure 3.10 shows hedge ratios for hedging weekly 10% (top) and 8% (bottom) GNMA
returns using the 10-year T-note futures. Hedge ratios are estimated on a 150-week rolling
basis using both a linear regression and MDE. The MDE hedge ratios condition on the level
of the 10-year T-note yield.

Figure 3.11 shows the expected weekly return on a 10% (top) and an 8% (bottom)
GNMA as a function of the contemporaneous 10-year T-note futures return, conditional on
three different levels of the 10-year T-note yield. The relation is estimated using MDE over
the period January 1987 to May 1994. Returns are in percent per week.

“London” — 2006/11/26 — 12:10 — page 158 — #180
�

�

�

�

�

�

�

�

158 Mortgage-Backed Securities Chapter 3

1989–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1990 1991 1992

LinearG
N

M
A

 1
0

H
ed

ge
 R

at
io

 (1
 w

ee
k)

MDE

Date
1993 1994 1995

1989–0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1990 1991 1992

LinearG
N

M
A

 8
 H

ed
ge

 R
at

io
 (1

 W
ee

k)

MDE

Date

1993 1994 1995

Figure 3.10 Hedge ratios for hedging weekly 10% (top) and 8% (bottom) GNMA returns

using the 10-year T-note futures. Source: Boudoukh, Richardson, Stanton, and Whitelaw (1995).

“London” — 2006/11/26 — 12:10 — page 159 — #181
�

�

�

�

�

�

�

�

Section 3.12 Dynamic Hedging of MBS 159

i10yr=6.0%
i10yr=7.5%
i10 yr=9.0%

T-Note Return

E
(G

N
M

A
 1

0
R

et
ur

n)

–1.5–1
.5

–1
.0

–0
.5

0.
0

0.
5

1.
0

1.
5

–1.0 –0.5 0.5 1.0 1.50.0

i10yr=6.0%
i10yr=7.5%
i10yr=9.0%

T-Note Return

E
(G

N
M

A
 8

 R
et

ur
n)

–1.5–1
.5

–1
.0

–0
.5

0.
0

0.
5

1.
0

1.
5

–1.0 –0.5 0.5 1.0 1.50.0

Figure 3.11 Expected weekly return on a 10% (top) and an 8% (bottom) GNMA as a function

of the contemporaneous 10-year T-note futures return, conditional on three different levels of the

10-year T-note yield. Source: Boudoukh, Richardson, Stanton, and Whitelaw (1995).

“London” — 2006/11/26 — 12:10 — page 160 — #182
�

�

�

�

�

�

�

�

160 Mortgage-Backed Securities Chapter 3

ENDNOTES

1. Throughout this chapter, we follow the direct work of Dr. Stafford Johnson, Professor of
Finance at Xavier University, at http://www.academ.xu.edu/johnson/.

2. Obazee, P. (2002), pp. 338–339. See “Understanding the Building Blocks for OAS Models”
in Interest Rate, Term Structure, and Valuation Modeling. Edited by Frank J. Fabozzi, Wiley
& Sons.

3. Id., pp. 338–339.
4. Id., pp. 338–339.
5. In practice, one would use a more sophisticated term structure model than the binomial

model such as the Hull-White, Black-Derman-Toy, Black-Karasinski, or Cox-Ingersoll-
Ross interest rate models.

6. We give the C++ code later in the chapter.
7. Hull, J. (1996), pg. 391.
8. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pp. 445. “Monte Carlo Simulation/OAS

Approach to Valuing Residential Real Estate-Backed Securities” in Interest Rate, Term
Structure, and Valuation Modeling, Wiley & Sons.

9. Id., pp. 445–446.
10. Id., pp. 445–446.
11. Id., pg. 446.
12. Id., pg. 453.
13. Obazee, P. (2002), pp. 315–344. See “Understanding the Building Blocks for OAS Models”

in Interest Rate, Term Structure, and Valuation Modeling. Edited by Frank J. Fabozzi, Wiley
& Sons.

14. Id., pg. 317.
15. Id., pg. 318.
16. Id., pg. 319.
17. Bandic, I., pg. 11.
18. The refinancing incentive and seasoning factor were previously discussed, but are now

given analytical formula specifications based on Richard and Roll’s (1989) empirical ob-
servations.

19. Formulas from Davidson/Herskovitz (1996).
20. Monthly parameters were taken from Figure 3 in Richard Roll (1989).
21. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pg. 459. “Monte Carlo Simulation/OAS

Approach to Valuing Residential Real Estate-Backed Securities” in Interest Rate, Term
Structure, and Valuation Modeling, Wiley & Sons.

22. Id., pg. 454.
23. Fabozzi, F., Richard, S., and Horwitz, D. (2002), pg. 454.
24. Id., pg. 455.
25. The one-factor model has the capacity to describe the burnout effect of prepayment by

embedding heterogeneity of prepayment behavior into the MBS valuation as a function of
mortgage rates. In contrast, the three-factor model is based on discrete-time, no-arbitrage
pricing theory, making an association between prepayment behavior and cash flow patterns
where prepayment behavior is due to refinancing(caused by changes in interest rates) and

“London” — 2006/11/26 — 12:10 — page 161 — #183
�

�

�

�

�

�

�

�

Endnotes 161

rising housing prices by incentive response functions. (See Kariya and Kabayashi, 2000,
and Kariya, Ushiyama, and Pliska, 2002.)

26. Boudoukh, Richardson, Stanton, and Whitelaw (1995), pg. 1.
27. Id., pg. 1.
28. Id., pg. 1.
29. For a discussion of some of the problems associated with static hedges, see, for example,

Breeden (1991) and Breeden and Giarla (1992). With respect to linear regression hedges in
particular, Batlin (1987) discusses the effect of the prepayment option on the hedge ratio
between MBSs and T-note futures.

30. Davidson and Herkowitz (1992) provide an analysis of the various theoretical methodolo-
gies for valuing MBSs in practice. The advantages and disadvantages of each approach are
discussed in detail. With respect to the particular issue of hedging MBSs, Roberts (1987)
gives an analysis, focusing primarily on model-based approaches to MBS valuation.

31. Id.
32. Id., pg. 2.
33. Id., pg. 3.
34. The TBA market is most commonly employed by mortgage originators who have a given

set of mortgages that have not yet been pooled. However, trades can also involve existing
pools, on an unspecified basis. This means that, at the time of the agreed-upon transac-
tion, the characteristics of the mortgage pool to be delivered (e.g., the age of the pool, its
prepayment history, and so on) are at the discretion of the dealer. Nonetheless, as long as
new mortgages with the required coupon are being originated, these pools are likely to be
delivered because seasoned pools are more valuable in the interest rate environment that
characterizes a sample period. Thus, GNMA TBAs are best viewed as forward contracts
on generic, newly issued, securities.

“London” — 2006/11/26 — 12:10 — page 162 — #184
�

�

�

�

�

�

�

�

