
Creating a Logical
Data Model

Terms you’ll need to understand:
✓ Entity Relationship Model
✓ Entity
✓ Kernel entity
✓ Associative entity
✓ Characteristic entity
✓ Attribute
✓ Identifier
✓ Dependency
✓ Primary key
✓ Foreign key
✓ Normalization
✓ Denormalization
✓ Normal forms
✓ Relationship
✓ Cardinality

Techniques you’ll need to master:
✓ Entity Relationship Modeling
✓ Database normalization/denormalization
✓ Key and relationship definition

. .

2

02 0789731061 CH02 5/10/05 3:54 PM Page 29

. .Chapter 230

Introduction
Designing a logical data model is all about preparing for the physical data
design. Whether physical elements end up being a simple database, a com-
plex data warehouse, or some other data store, the ideas behind the logical
design remain the same. In this stage of development, try not to gear any
design to a specific physical structure. It is important to keep in mind that we
are still just planning things out, and the decisions regarding the physical ele-
ments have yet to be made.

Even though the physical elements have yet to be determined, there is a def-
inite correlation between what you see in the logical model and what will end
up being present when the model takes on a physical form. There is almost
a one-to-one mapping between the objects that we discuss in the logical stage
of development and similar objects in the physical databases, tables, files, and
other physical articles.

Though there are many data storage possibilities, the largest percentage of
these will be databases—the storage mechanism of choice for most systems.
Relational databases are databases in which data is organized into related
objects. Each of the objects contained in a database is related to the others in
some way.

Relational databases, based on the paper written by Dr. E. F. Codd in 1970,
store sets of data in relations, called tables. The tables are often related to one
another through dependencies, but this is not required. In all the time that
has passed since then, the modeling of data structures has remained based on
this concept.

Data Modeling and
Logical Data Design
Most individuals in the technology arena understand the physical compo-
nents of a database system. It is easy to recognize data in a columnar format
from spreadsheets, tables, data files, and other common data storage tech-
niques. In a structured data storage system, however, much planning goes
into the makeup of the storage system before any physical forms are taken.
Long before a combination of files containing records and fields along with
tables containing rows and columns form a database, the data content is ana-
lyzed and a concept of the data, or logical structure is formed. This is an

02 0789731061 CH02 5/10/05 3:54 PM Page 30

. .Creating a Logical Data Model 31

involved process that takes much practice before a database professional can
become competent. Logical modeling is an integral part of database imple-
mentation. For this reason, logical data modeling encompasses many of the
objectives of the exam.

It is difficult to discuss the data modeling exam objectives without looking at
some of the physical elements in the database itself. This chapter mentions
and defines some of the physical components of a database system. However,
in this chapter our focus will be the logical design of the database. In most
business problems the physical database itself would not be considered until
a logical model had been drawn. For this reason, the physical elements men-
tioned in this chapter are discussed in full in Chapter 3, “Implementing the
Physical Database,” so we can concentrate here on drawing logical data
models.

Logical data modeling in practice involves identifying important elements of
data and recognizing how these elements interact. It is also important to be
knowledgeable about the business process being analyzed. This knowledge
will aid in determining data flows and processing required to pull
meaningful information out of reams of raw data.

In designing a database, to meet a given business need, the logical data model
most used is the Entity Relationship Model, or ER Model. In determining the
ER model, you define the elements of data used in the business process and
how they relate to each other. In looking at any logical implementation, you
must understand the nature and use of the data. Knowing how the data is
used helps you understand the relationships between the separate data
elements.

Source documents, reports, and other samplings from an existing business
process, together with information gathered through interviews, will assist in
collecting data examples. With this information you can begin designing a
data model in accordance with the current business situation. It is important
that in gathering information, the data samples collected and drawn up be as
complete as possible. Accompanying these data samples, full descriptions of
all procedures that interact with the data would also be used as an aid to the
development of a model.

For those heading down the path to becoming a database administrator, data mod-
eling plays an important role in the MCDBA 70-229 Exam, but for those attempting
the MCSD certification, similar information may be tested in the MCSD Exam 70-300
.NET Solutions Architecture Exam.

02 0789731061 CH02 5/10/05 3:54 PM Page 31

. .Chapter 232

Data Modeling
To develop a data model, various application architectures can be considered.
During logical modeling, variations in implementations do not need to be
known. In meeting a specific business need, the data needs to be modeled in
a pristine fashion. If you have a tendency toward one implementation or
another, you could hamper this design goal. It is best to design the model as
a generic data model before taking that model into future phases. In subse-
quent stages of development, the database will take on its physical attributes
and will be adjusted as applications take shape; yet these stages should not be
stepped into prematurely. Focus first on the raw information as a base for the
logical model.

Relational database design modeling was first developed by the database engineer
Charles Bachman, in 1960, and then in 1976, database design modeling became the
ER Model by Peter Chen. An ER Model allows a database to be defined in a simple and
organized manner. Other modeling techniques have come and gone over the years,
but the ER Model is the preferred technique used by most experienced database
developers.

Modeling with the ER Data Model
As mentioned previously, the ER data model is one of the most popular data
models in use. An ER data model consists of three main components that are
present in any model format: entities, attributes, and relationships.

➤ An entity is a discernible thing about which data is kept. In data model-
ing, entities can be closely compared to the physical element of a table
in a database. An entity is a collection of related data elements or attrib-
utes and usually represents a major facet of the business problem.
Supplier, product, employee, and order are all good examples of
entities.

➤ Attributes are the characteristics given to an entity, such as ProductNumber
and FirstName. Attributes of an entity represent a set of properties, each
property being a data element within an entity. They will become the
columns or fields in the physical database.

➤ Relationships show a logical link between two or more entities. Where
two entities have a direct affiliation, a relationship is used to define the
connection between the entities. A supplier entity may be related to
orders; a product entity may be related to purchases. Relationships will
normally establish constraints within the physical database.

02 0789731061 CH02 5/10/05 3:54 PM Page 32

. .Creating a Logical Data Model 33

Entities represent the primary elements of the ER Model. Each entity will
represent a person, place, thing, or concept involved in a business process. It
is usually easiest to determine the entities of a process by isolating the impor-
tant players. When a customer places an order containing one or more prod-
ucts, the process utilizes at least three major entities: customer, order, and
product.

An ER Model is drawn out using an Entity Relationship Diagram (ERD). A
rough diagram can be constructed using pencil and paper and a few simple
shapes. For a more polished look a drawing tool is recommended, such as
Microsoft Paint, or better yet a tool specifically used for the modeling
process, such as Microsoft Visio. The actual tool used for drawing the dia-
gram can vary, and you will find that different developers have their own
preferences and reasons for preferring one tool over another. Most of the
diagrams throughout this book have been developed using the two previous-
ly mentioned programs, along with SQL Server’s own built-in tools. To illus-
trate the concepts of the ER modeling process, we will be using a fictional
company, Northwind Traders. This company will be familiar to many
Microsoft Access users and it is also supplied with SQL Server as a sample
database.

Entity Selection
To begin the modeling process, you need to first isolate the entities required
for the business process. A standard documentation technique is to draw
entities as rectangular boxes with enough space to hold many attributes. An
entity is the basic division of a database. In the logical design, entities are rep-
resentative of the tables that will be present when the database development
process moves into the physical design phase. Each entity exists as a separate
individual data collection, unique from all the other entities.

Entities are generally the people, places, and things that make up a process.
They can be qualified as one of three basic types: kernel entities, associative
entities, and characteristic entities. These entity types are described further in
the following list:

➤ A kernel entity exists on its own; it doesn’t define or provide descriptive
information for other entities. An example of a kernel entity would be a
product listing in an inventory model. The information contained in
each kernel entity of a table represents the heart of the database model.

➤ Associative entities are needed to allow multiple kernel entities to be tied
together. In the inventory system, a sales entity would be needed to tie a
customer kernel entity to the products they have purchased. This same
sales entity could be tied to another kernel entity, such as salespeople.

02 0789731061 CH02 5/10/05 3:54 PM Page 33

. .Chapter 234

➤ A characteristic entity provides additional information for a respective ker-
nel or associative entity. Information contained in characteristic entities
can be updated independently of the related entity. A product entity
could have a characteristic parts entity. A given product could be made
up of a number of parts. A part that becomes unavailable could affect the
product’s availability. Changes over time to parts information could be
made more easily if a parts entity existed, instead of your having to make
changes against the products kernel.

Some entities stand out within a process and are easily recognized, particu-
larly those that represent people or organizations. Entities such as customer,
supplier, employee, and shipper are all relatively easy to identify, whereas
other entities are more difficult to identify. Careful thought about a business
process will help flush them out. Let’s look at the process used when a cus-
tomer orders merchandise and use it as an example.

A customer will order products from one of our salespeople. The order is
recorded on an invoice on which each line item represents the quantity of a
single product ordered. Any products not currently in stock will be back-
ordered. Ordering the needed products from the supplier will fill backorders.
When an order is ready, the company can ship it to the customer using one
of the available shipping methods. This simple process indicates that a few
other entities are needed. Order, product, and order detail will be needed to
fulfill the order process and track the data accordingly.

This process will allow for the initial sketch of entities to be drawn, as shown
in Figure 2.1.

Figure 2.1 A rough draft of Northwind’s entities.

02 0789731061 CH02 5/10/05 3:54 PM Page 34

. .Creating a Logical Data Model 35

With further knowledge of the business process, other entities may come to
light. In the case of the Northwind process, products all fall into separate cat-
egories and the product categories are also tracked. This would require the
addition of an additional entity, and the beginnings of the ER diagram would
look similar to the example shown in Figure 2.2.

Figure 2.2 Northwind’s entities in an ER Model.

Entity structuring accommodates the initial stages of database design. When
you’re designing an appropriate logical model, the data must be organized
into these separate elements that will later make up the physical database
tables. An entity is characterized by its attributes. Attributes are used to
define the data elements of an entity. After the initial entities have been
defined, the process of describing each entity through its characteristic prop-
erties begins.

Attribute Definition
Identifying attributes is the next step in ensuring a successful data modeling
process. In defining attributes you are setting out to define entity composi-
tion. Each entity will have descriptive elements that pertain solely to that
element. An attribute is a descriptive element or property of an entity. Fields
will represent the attributes when the logical design progresses to the phys-
ical design stage.

Attributes are characteristics or properties defined within a single entity, and
they correspond to real-world properties of a place, thing, or concept.

02 0789731061 CH02 5/10/05 3:54 PM Page 35

. .Chapter 236

Attributes such as names and addresses are almost always present for people
and organizations. Other attributes provide further information for the enti-
ty as required for the business process being defined.

Deciphering attributes from written descriptions and reports is more of a real-world
scenario. The exam will provide the attributes; you will be expected to pick appropri-
ate entities.

Try to find out the attributes that fit each of the entities. More attributes may
have to be added later as the model becomes more complete. If you missed
an attribute or added extra attributes at this time, they will likely be pointed
out when the model is normalized. The normalization of a data model will
be discussed later in this chapter, in the section “Data Normalization with
Normal Forms.” Attribute decisions will vary from person to person,
depending on your business scenario perspective for which the data is being
modeled.

The identification and creation of attributes is a developed skill; there is no
true method for defining all attributes of an entity. Each business problem
will require a variation of entity content, so the business process itself will
lead to a lot of attribute choices.

A few guidelines to use in the identification, creation, and naming of attrib-
utes will help ease this process. The first is how you name your entities. A
good name makes an attribute look professional and helps in its readability.
Appropriate naming conventions are often developed as a corporate or
development standard within an organization. Often mechanisms for short-
ening names or using common prefixing or suffixing is part of a program-
ming team’s standard. Here are some good guidelines that help in naming
entities. Consistently following these guidelines will help to keep all of your
designs up to the same standard:

➤ An entity or an attribute should be named in its singular form, thereby
implying that it is only a single instance. An instance is a single occur-
rence of an entity.

➤ The use of underscores (_), spaces, and other special characters is not a
good habit because special characters have particular meanings in some
software packages, and the mixture of text and other characters is diffi-
cult to type. Try to distinguish a word from another by using mixed
case, as in LastName instead of Last_Name.

02 0789731061 CH02 5/10/05 3:54 PM Page 36

. .Creating a Logical Data Model 37

➤ Entity (and all other object name) identification should be kept small
while still providing a description of the object. Names should be kept as
small as possible but should still provide a meaningful object title.

➤ Entity names should be unique.

➤ Reserved words, though permitted in the context of SQL names, should
be minimized to ease development. Later this will also add to the per-
formance of procedures.

Keep in mind that many of these guidelines refer to all object naming, and
when developing the names for attributes, you should still be providing a
descriptive name that is concise and unique within the entity. Attribute
names should be consistent across entities. For example, if you name an
attribute LastName within one entity, you should not name a similar attribute
Surname in other entities.

Decomposing an Attribute
Many attributes can be handled as a single attribute. It is also common for
some attributes to be broken down into other, smaller attributes. This
process is commonly known as decomposing attributes. Decomposing an
attribute takes an attribute from its original form and divides it into its com-
ponents. A good example of this is the breaking down of the Address attrib-
ute. An Address attribute can easily be broken down into attributes that store
data as shown here:

Street Stores the street address of the user

City Stores where the user lives

Region Stores the state or province the user lives in

Postal Code Stores the user’s zip code or other postal code

Country Stores the user’s nation

The process of decomposing an attribute helps to develop a normalized
structure, as defined later in this chapter. Decomposing is a function of usage
as well. If, for example, a person’s name is needed only in its full form, then
a decision may be made to not break it up into the separate attributes of first
name and last name. This is common for a ContactPerson attribute in an enti-
ty that relates to a corporation.

Decomposing an attribute provides many benefits, in contrast to generic
compound attributes that are not decomposed. Data integrity is improved.
Data integrity is a measurement of how well data is kept consistent and

02 0789731061 CH02 5/10/05 3:54 PM Page 37

. .Chapter 238

flawless throughout the whole ER Model. When attributes are decomposed,
different methods of ensuring data integrity can be applied to the broken-
down segments rather than the attribute as a whole. It can be difficult to
check the validity of an entire address, but when decomposed, the elements
can be more easily checked.

Decomposing also aids in the sorting of data for use in specific business
processes, such as mass mailing. You will, in most cases, also be improving
data retrieval performance when decomposed attributes are used. A generic
attribute, Address, contains the street, city, region, postal code, and country.
To get just the region of a customer in Washington, you have to select the
whole Address attribute and parse it to find Washington, thereby degrading per-
formance because of the redundant data retrieved. If you have four separate
attributes, you can select the Region column and get your results more quick-
ly. This same rule applies to updating data. It’s easier to update a single part
of an Address than to parse and then update the whole Address attribute.

As shown by the example provided in Figure 2.3, the Address has been fully
decomposed for all entities, but the name has been decomposed only for the
Employee entity.

Figure 2.3 Northwind’s entities with attributes.

Key Attributes
The use of an attribute can vary from system to system, but some attributes
will be present in most systems to help sort data and perform relationship ties

02 0789731061 CH02 5/10/05 3:54 PM Page 38

. .Creating a Logical Data Model 39

between one entity and another. A key attribute is almost always present
within an entity to act as an identifier, much as a person’s name identifies that
person as being a unique individual. Entities are usually interdependent:
Each holds information that relates to other entities. These relationships can
be defined by their correlated dependencies. Key attributes are also therefore
used for the purpose of relating one entity to another.

Recognizing Key Attributes
After all attributes have been defined and keys have begun to be recognized,
the modeling process will be completed with the application of relationships
and the normalization of data. These two processes are closely related, as you
will see later, but before they can begin, key attributes must be recognized.
These are specialized attributes referred to as identifiers. An identifier is an
attribute or a set of attributes that defines one unique element of an entity.
The use of identifiers allows for the individual selection of records from an
entity. As the design progresses to the physical stage, identifiers will become
the primary and foreign keys, allowing entities to be tied together through
association or relationships. For Example, a product’s identifying attribute is
usually a unique product ID.

Identification of Primary and Foreign Keys
A primary key is a specialized attribute that is generally defined for each enti-
ty. The primary key is almost always defined, though is not necessarily
required for all entities in a data model. However, the provision of a primary
key does allow for a considerable number of benefits and should be
considered in every instance. When defining a primary key, you should keep
various factors in mind. The primary key normally defines uniqueness in an
entity in that every record of a table has its own unique primary key. Also,
when defined, a primary key should not be permitted to be empty. If a
primary key is empty, you have a situation in which data integrity is difficult
(if not impossible) to maintain.

A primary key should be defined as a single attribute that doesn’t allow for
duplicates or empty content. The primary key should be as small as possible.
It is possible to create a compound primary key that uses multiple attributes
or a key that contains a large number of bytes, but in the physical design this
will increase the overhead and response time associated with data retrieval. A
compound primary key consisting of multiple attributes is used in instances
in which a singular attribute by itself does not enforce uniqueness within an
entity. As we move through the modeling process, we will discover the need
to use such a compound structure in some instances.

02 0789731061 CH02 5/10/05 3:54 PM Page 39

. .Chapter 240

In most cases, an attribute is identified for each entity that will act as a key.
This attribute could be a customer number, a product number, or simply an
attribute to serve no other purpose than to act as a key identifier. When an
attribute is added solely for the sake of being an identifier, it is known as a
surrogate key. Whether you use a natural or surrogate key, that key will rep-
resent an important part in establishing relationships. In most circles surro-
gate keys are preferred because there is never a need to have this surrogate
key change. The process of altering a key value can have repercussions on the
business process and can also effect many elements of the database system.

A foreign key is used to tie one entity to the primary key or unique data value
of another entity. The relationship is created for the purpose of creating a
dependency between the entities. A single attribute or combination of attrib-
utes can act as a foreign key depending on the makeup of the referenced pri-
mary key. A foreign key doesn’t have to be unique. In fact, foreign keys are
often in a many-to-one relationship with a primary key in another entity.
Foreign key values* should be copies of the primary key values. No value in
the foreign key, except a null value, should ever exist unless the same value
exists in the primary key of the referenced entity.

A foreign key works in conjunction with a primary key or some other unique
attribute to enforce referential integrity among entities. A relationship is cre-
ated to enforce referential integrity between these two related entities.
Foreign key connections may not be fully recognized for the model until you
begin to look at the interrelationships of the entities. After a relationship is
defined, the connection developed for the relationship will contain the for-
eign key pointing to the correlated primary key attribute.

For a foreign key to be created, a primary key must first be properly defined.
Once defined, this primary key can be referenced by the foreign key. To
quickly summarize the use of primary keys, keep the following in mind:

➤ Primary keys consist of sets of attributes whose values uniquely identify
the rows in an entity.

➤ Primary keys give an ID to a row. They make the row unique through-
out the entity. This means that rows can easily be located by this
identifier.

A longtime favorite answer on Microsoft database exams is to use surrogate keys in
all entities. As mentioned previously, there are several benefits to doing this.

02 0789731061 CH02 5/10/05 3:54 PM Page 40

. .Creating a Logical Data Model 41

➤ Primary keys can be used only for columns or attributes that don’t allow
empty entries. Allowing empty values would mean that a row would not
be uniquely identified.

➤ The attribute chosen to hold a primary key must have values unique
throughout the entity.

Foreign keys help in the relational process between two entities. When a pri-
mary key is created on a parent entity, it is connected to another entity by
linking to the other entity’s foreign key. For example, in an invoice situation,
there are usually two entities: one for invoice general information and the
other for invoice details. The invoice details would contain a hook on
to the invoice general entity through the use of a foreign key, potentially the
invoice number or a surrogate key.

Before we are ready to draw all relationships into the model, the data model
should begin a process of normalization. Some of the relationships can no
doubt already be seen; however, when normalization standards are applied to
the model, more relationships may be found. Only after the model has been
fully normalized will you have a complete view of the entity relationships.

Data Normalization
The process of normalization is the division of entities in an attempt to pro-
vide the most efficient use of data storage. At times, denormalization is
planned redundancy that is subsequently performed to improve response
time and better use of resources. The process of designing the logical
structure of a database is an attempt to provide a degree of normalization
combined with aspects of denormalization to produce optimum storage
efficiency while still providing acceptable levels of performance and resource
utilization. In most instances, data is fully normalized before any aspects of
denormalization are considered. In fact, denormalization usually is not
approached until the physical model is in development.

Normalization is usually applied in practice from the outset of data model-
ing. After you’re comfortable with all the modeling concepts, you will find
yourself implementing normalized structures as a form of good practice. As

Keys are usually created as part of the table creation process, but they can be added
to the table after the initial generation. The syntax for the creation of keys and their
association to tables are discussed in Chapter 3.

02 0789731061 CH02 5/10/05 3:54 PM Page 41

. .Chapter 242

with all other good development habits, you must first work through the
concepts at a granular level before they begin to become second nature.

Normalization in general refers to how you implement and store data.
Normalization is a design process intended to eliminate duplicate data. In a
normalized entity, the redundant data is removed and the entity is simplified
to its most basic form. This usually leads to a more involved entity structure
with more entities. In the same way, the process of database normalization
and planned denormalization is the process of simplifying data and data
design to achieve maximum performance and simplicity. This denormaliza-
tion process involves the planned addition of redundant data.

Although both normalization and denormalization are valid, necessary
processes, the two achieve opposite goals. They don’t by themselves achieve
maximum performance and simplicity, though they do strive for a perfect
balance between performance (denormalization) and simplicity (normaliza-
tion). Normalization means no duplicate data.

Data Normalization with Normal Forms
In 1970, Dr. E. F. Codd designed three regulations a relational database
adheres to, known as normal forms. Today they are known as the first, second,
and third normal forms. (Normal forms do exceed three, but the first three
are the only ones widely used.) The goal of the initial database design is to
simplify the database into the third normal form.

Using normal forms provides these basic advantages:

➤ No data redundancy contributing to data integrity

➤ Index columns for faster sorting and searching

➤ Smaller entities that reduce table locking and data contention

➤ Query optimization

Although in most cases a data model is taken only to the third normal form, it is worth
noting that there are actually five forms. Because development to the fourth and fifth
normal forms is not a requirement for the exam, we mentioned those forms here only
for completeness.

The rules provided by these normal forms are discussed in the following
sections.

02 0789731061 CH02 5/10/05 3:54 PM Page 42

. .Creating a Logical Data Model 43

First Normal Form
The first normal form, or 1NF, defines the foundation for the relational data-
base system. An attribute that is represented only once, and thus is not
repeating, is known as an atomic value. Attributes should be atomic, which
means that they cannot (or should not) be further broken down, based on the
business needs for the use of the attribute. The first normal form defines that
all attributes be atomic, which is to say they cannot be decomposed and must
be nonrepeating.

In relational database terms, an attribute of an entity shouldn’t have more
than one definable piece of data or repeating groups. 1NF states that all
attributes must be defined in their most singular form, which means that
attributes must be decomposed and not further divisible.

A full name should never be used. For example, a field called customer name
could be divided into first name and last name and would therefore break the
first normal form rule. The first name is a piece of data that is independent
from the last name and therefore it should be a separate attribute.

Second Normal Form
The purpose behind the second normal form is to ensure that each attribute
belongs in the entity. Any non-key attribute of an entity must depend on the
entire primary key, not just a portion of the key. For example, if the primary
key of an orders entity contained two fields, customer id and product id, the
attribute field product description wouldn’t belong, because it has no con-
nection to the customer id, only the product id. This would break the second
normal form rule.

Third Normal Form
The third normal form states that a non-key field must not depend on
another non-key field. The most obvious example of this rule is in the case
of address information. The zip code is dependent on the address area; the
city is dependent on the address itself. A large corporation or government
agency may choose to have zip code information stored in a separate table
and not within the base data to a perfect normalized form. Although in most
table designs this situation is denormalized, in a pure normal form a separate
entity would be used to provide additional address information such as city
and zip code based on the address.

Two other normal forms do exist but aren’t commonly implemented. It’s entirely pos-
sible that by adhering to a third normal form, you may actually accomplish the fourth
and fifth forms.

02 0789731061 CH02 5/10/05 3:54 PM Page 43

. .Chapter 244

Fourth and Fifth Normal Forms
The fourth normal form dictates that a third normal form has no multival-
ued dependencies. In other words, every value of an attribute must appear in
at least one row with every other value of the other attribute.

The fifth normal form is intended to eliminate joint dependency constraints.
This is a theoretical consideration that is thought to have no practical value.
If you disregard these forms, the design of the database might be less than
perfect, but it should have no loss of functionality.

Normalizing a database is seemingly good but it can hamper performance. In
many cases a designer has to consider denormalizing a database. Planned
redundancy or denormalization is often brought into the design to provide
for better performance or to clarify data.

Denormalization
Purposely adding redundant data and other fields that disobey normal forms
is denormalization. Denormalizing as a process is more part of the physical
design and will also be revisited during the implementation to improve per-
formance. The concept is covered here for continuity and also to show the
contrast with data normalization. After you have a logical design completely
normalized, rarely will you keep it in that state as you proceed to the physi-
cal design of the actual database.

Although normalization gives you a great deal of storage efficiency and might result
in increased performance in some situations, there are some drawbacks to a com-
pletely normalized database. You should consider the trade-offs in storage efficiency,
performance, and maintainability in your final design.

If you go too far with the normalization process, you might actually reverse
the effect you’re trying to achieve. Although normalization will reduce data
redundancy, result in smaller tables with fewer rows, and provide a logical
and consistent form, it will also require table joins for the implementation
and will not allow for summary, duplicate, or other data that a user might
expect to find in a single table. Normalizing a database design too far can
decrease performance and make it difficult to alter the underlying table
structure, and might make it harder to work with the data.

Denormalization may occur at any number of levels. At the absolute
extreme, a database schema can be completely duplicated to a number of
servers across the network by implementing replication. This could be
warranted if you need to distribute the access to the data across slow network

02 0789731061 CH02 5/10/05 3:54 PM Page 44

. .Creating a Logical Data Model 45

links or to multiple remote locations. Many advantages are gained through
database replication, because the data is more easily available at the locations
where it will be used. The drawback of this is increased maintenance of a
number of servers. Also, if database replication isn’t configured properly, it
could monopolize a WAN. In addition, if there are network problems or
there is a poor setup, the data might not be synchronized to a level that keeps
it up-to-date. Data can be maintained as an exact duplication against a num-
ber of servers, but this would require a high-speed network and the configu-
ration of a two-phase commit.

Other, simpler examples of planned denormalization would be to maintain
complete address information for customers, suppliers, employees, and so on
in the tables with the rest of their general information. This is what most
users expect, and it is difficult to maintain a separate address table. There are
no defined rules for denormalization, but some definite guidelines will help
you understand what level might be appropriate in a given situation.

Data warehousing schemas often use a denormalized approach referred to as
a star or snowflake schema. This schema structure takes advantage of typical
decision support queries by using one central “fact” table for the subject area
and many dimension tables containing denormalized descriptions of the
facts.

There are also several other situations to consider. If a join requires the
implementation of more than three tables, denormalization should be con-
sidered. In some situations in which the number of columns in a table can
grow very large, a denormalized structure would split the table into more
easily handled portions and use a one-to-one relationship to connect the
information.

The completed structure will have to be modified over time as the live use of
the database warrants. Never consider a database design to be perfect or
complete. It often takes several years of actual use to determine the best lev-
els of normalization and denormalization to use.

Some forms of replication and data transfer accommodate redundancy by allowing
the data to be on two servers simultaneously. If so, one server is usually treated as
a read-only server and is used for offloading query processing from the updatable
server. This is discussed in depth later in the book and is definitely an exam topic to
be prepared for.

Relationships Between Entities
Relationships are the final component in an ER Model, allowing for a logical
linkage between one entity and another. A relationship in an ER Model

02 0789731061 CH02 5/10/05 3:54 PM Page 45

. .Chapter 246

connects the data elements of two entities that contain information about the
same element. The primary entity in a relationship provides some of the
data, and other entities provide further related data. A relationship definition
states how two entities are connected.

In the modeling process, we attempt to discover which things are related to
one another, and how they are related, within the business problem we are
modeling. They are usually defined as a link connecting the entities togeth-
er based on the number of data elements in one entity that are related to one
or more elements in the other entity. This is known as the cardinality of a
relationship.

The cardinality of a relationship is used to define how many elements in one
entity match up with elements of another entity. Relationships are usually
defined as a numeric link connecting the entities together based on the num-
ber of data elements in one entity that are related to one or more full ele-
ments in another entity. It can be described as how many of one thing can
relate to how many of something else.

Relationships cause a situation known in data modeling as a dependency. A
dependency is a circumstance in which one entity either can’t exist or has lit-
tle meaning without at least one other entity in the database. When a
dependency exists, it becomes a table relationship in the physical database
design. There are three basic types of entity dependencies, and these
dependencies are based on element cardinality. They are discussed in the
points that follow:

➤ One-to-one dependency—A one-to-one dependency is the rarest form,
because each record in one entity correlates to exactly one record in the
other.

➤ One-to-many dependency—A one-to-many dependency is the most com-
mon form of relationship. One record in a primary entity has ties to
many records in a secondary entity.

➤ Many-to-many dependency—A many-to-many dependency exists when
many records in one entity can relate to many records in another entity.

Relationships are implemented as parent and child entities. In all cases in the
ER Model, a key attribute from a child entity is attached to a related key
value in a parent. All cardinality of relationships is implemented in this way,
meaning that whether you have a one-to-one, one-to-many, or many-to-
many relationship, you always maintain integrity by having the key of the
child related to a parent.

02 0789731061 CH02 5/10/05 3:54 PM Page 46

. .Creating a Logical Data Model 47

Identification of Relationships
Setting up the relationships will finalize a draft of the ER Model. This draft
will undergo modifications as the database approaches a physical design.
Because at this stage of design all the basic elements of data model have been
completed using the Entity Relationship approach, we now have a working
model allowing us to proceed further into development. A general listing of
attributes for each entity and the relationships between these entities is an
important springboard to use to progress through the database design to the
eventual completed system.

Implementing the relationships and applying normalization principles are
often performed as parallel processes because decisions made in one process
effect the other process and vice versa. Normalization helps in determining
cardinality and the cardinality is a requirement of each relation. The three
basic cardinality types, one-to-one, one-to-many, and many-to-many, are
partially a result of knowing the business scenario being modeled and par-
tially derived from applying normal forms.

One-To-One Relationship
The one-to-one type of relationship occurs when one row or data element of
an entity is associated with only one row or element in the second entity.
This type is used mostly when an entity has an extraordinarily large number
of attributes so the entity is split in two to make it easier to manage. Also, an
extra entity might be desired when developing the physical storage locations
of the data. By separating seldom-used data from more frequently used infor-
mation, you can accommodate faster data retrieval and updates. It is for this
reason that these types of relationships are pulled into the model until the
physical design of the database has begun.

In modeling a one-to-one relationship, a common key must be present in
each of the entities being related. This common key allows for the collective
attributes of both entities to be retrieved using a single value. Consider, for
example, a product that has many descriptive attributes. Two product entities
could be used to separate the different properties. Each entity would use a
product number or similar value as a key. This is illustrated in the model seg-
ment shown in Figure 2.4.

In the preceding example the ProductCommon entity is used to store the attrib-
utes that are most readily used, and the ProductAtypical entity contains other
attributes that, though still needed, are less frequently used. It is much more
common to find relationships existing in a one-to-many cardinality.

02 0789731061 CH02 5/10/05 3:54 PM Page 47

. .Chapter 248

Figure 2.4 Two product entities in a one-to-one relationship.

One-To-Many Relationship
One-to-many relationships exist when a single instance of an entity (the parent
entity) relates to many instances of another entity (the child entity). One-to-
many dependencies are a natural occurrence in the real world—for example,
a customer will have many orders, and a manufactured product could have
many components.

This relationship is a classic parent-child dependency. A foreign key in a child
entity will point to the associated primary key of the parent. When this rela-
tionship is related, removal of a parent could cause orphaning of the child
because of its dependency. There are many examples of this type of rela-
tionship in the Northwind order process. The following list represents those
seen in the diagram to this point:

➤ One supplier to many products

➤ One order to many order details

➤ One product exists within many order details

➤ One employee has many orders

➤ One customer has many orders

➤ One shipper is used in many orders

➤ One category will contain many products

Although one-to-many usually establishes “many” as the normal numerical
component, you can have zero or only one child row. Customers can have

One-to-many relationships can be expressed as many-to-one as well, though one-to-
many is a common standard. It depends on how the relationship is being viewed.

02 0789731061 CH02 5/10/05 3:54 PM Page 48

. .Creating a Logical Data Model 49

zero or one order as well. In fact, cardinality notation allows for this with
0..*. As we complete more of the information in the business scenario for
Northwind, we will see more of these dependencies occur. One-to-many
relationships are also a facet of implementing many-to-many relationships,
as discussed in the next section.

Many-to-Many Relationship
A modeling differentiation is made in preparing the many-to-many type of
relationship. Many-to-many relationships exist when many elements of one
entity are related to many elements of another. For this reason, many-to-
many relationships are implemented a bit differently in a database environ-
ment. In itself, this relationship is not solely one entity to another. In the ER
model and database design, a third, joining entity is used to complete two
one-to-many relations.

This type of relationship is not uncommon in the real world. As stated, a
many-to-many relationship is implemented using three entities. The two
main entities are connected together using a third entity. The third entity
contains keys connected to the other two entities. In our basic data model the
Order Detail entity is just such an entity. In the Northwind example this enti-
ty, however, also exists in its own right and contains additional attributes of
its own.

In many models the third entity is created for the purpose of joining two
other entities and has no other attributes except for those needed as key val-
ues to connect to the original entities. Consider, if you will, an educational
scenario in which a teacher instructs several different bodies of students and
a student has several different teachers. A third entity, TeacherStudent, could
be created to connect the main entities.

This new entity that is created is known as an associate entity or a join entity.
Resolving many-to-many relationships involves creating two one-to-many
relationships from each of the original entities onto the associative entity.
Take the many-to-many relationship between student and teacher. A student
can have many teachers while a teacher has many students. A many-to-many
relationship will need to be resolved by creating an associative entity and
then linking a one-to-many relationship from the Teacher and Student entities
to the TeacherStudent entity, as shown in Figure 2.5.

Along with these very standard relationships, you will find in some occur-
rences that a relationship is made within a single entity. In the case of a rela-
tionship in which an entity is related to itself, you have a unique situation,
which in modeling terms is called a unary or a self-referencing entity. In a phys-
ical implementation this relationship is implemented through a self-join.

02 0789731061 CH02 5/10/05 3:54 PM Page 49

. .Chapter 250

Figure 2.5 A teacher/student many-to-many relationship.

An example of this type of relationship is present within the Northwind sys-
tem. Within the Employee entity, the ReportsTo attribute will hold the value of
an Employee Identifier. This identifier refers to another employee element
that is the boss or some other responsible person. The ReportsTo element will
be a foreign key that refers to the primary key of the Employee entity. The
modeling of this type of relationship is shown in Figure 2.6.

Figure 2.6 A unary relationship.

A unary relationship will constitute a very small percentage of the relation-
ships defined in any given model. These relationships can be defined using a

02 0789731061 CH02 5/10/05 3:54 PM Page 50

. .Creating a Logical Data Model 51

one-to-one or one-to-many cardinality. In an employee scenario a manager
can have a single assistant (one-to-one) or any number of employees can
report to the same manager (one-to-many).

Relationships will continue to be added to the model as elements in the sys-
tem evolve. A potential model for the Northwind Trader order process can
now be assembled and is provided in Figure 2.7.

Figure 2.7 The completed Northwind model.

02 0789731061 CH02 5/10/05 3:54 PM Page 51

. .Chapter 252

Exam Prep Questions
1. You are a database developer for Northwind Traders. A system that

you are developing for your company’s SQL Server 2000 will store an
online transaction-processing database. Many of the entities are expect-
ed to have a very large number of data elements, and these elements
will contain a large number of attributes. You want to develop a model
for optimal performance. What should you do? (Choose one.)
❑ A. Develop a fully normalized structure to minimize the number of joins

used to process data.
❑ B. Develop a fully normalized structure and then split entities in half,

placing the same number of attributes into each entity. Create one-to-
one relationships between the two entities.

❑ C. Develop a fully normalized structure and then split entities in half
based on frequently and infrequently used attributes. Use appropriate
relationships to connect the entities.

❑ D. Develop a fully normalized structure and then split entities in logical
divisions based on commonalities within data element sets to minimize
the number of records in each entity.

❑ E. Develop a denormalized structure that limits the number of attributes
and records in any entity. Create many entities that will have smaller
content and apply appropriate relationships.

Answer: C. Answer A is incorrect because a fully normalized structure
will not usually provide for optimum performance. B is not the best
approach to provide for performance because there is no measure for
usage of attributes or other reasoning for the entity divisions. D,
although minimizing the number of rows, does nothing to limit the
number of attributes. E is taking the approach too far and will end up
with more entities than desired, which will also detract from perform-
ance. C is the best approach because it addresses the entity size and
performance issues and does so based on sound reasoning.

2. You are a database developer for Northwind Traders. The company is
planning to put in place a training facility for employee enrichment
purposes. The single room will be scheduled based on the three shifts
currently worked by the employees. A senior employee on that shift
will teach each course. The entity design, which will also utilize the
Employee entity, has been roughly sketched and will contain the
following:
Schedule Entity
. ScheduleID
. CourseID
. EmployeeID
. CourseTime
Course Entity
. CourseID
. CourseTitle
. Description

02 0789731061 CH02 5/10/05 3:54 PM Page 52

. .Creating a Logical Data Model 53

. InstructorLastName

. InstructorFirstName

. InstructorTitle

You want to promote quick response times for queries and minimize
redundant data. What should you do? (Choose one.)
❑ A. Create a new table named Instructors. Include InstructorID,

InstructorFirstName, InstructorLastName, and InstructorTitle attributes.
Remove these elements from the Course entity and replace them with
an InstructorID attribute.

❑ B. Move all the columns from the Course entity and place them in the
Schedule entity, creating just a single entity.

❑ C. Remove the InstructorFirstName, InstructorLastName, and InstructorTitle
attributes from the Course entity. Replace them with an EmployeeID
attribute.

❑ D. Remove the CourseTime attribute from the Schedule entity and place it
into the Course entity.

Answer: C. Answer A would be an appropriate answer if the instructors
for the courses were external to the company. Because these instructors
are internal, the personal information can be drawn from the Employee
entity, making C a better choice. Making a singular entity as suggested
in B would provide far too much redundant storage of data. D is incor-
rect because the CourseTime attribute is a function of the Schedule not of
the Course.

3. You are designing a database model for Northwind Traders that will be
used in a customer order process. Customers will be able to order mul-
tiple products each time they place an order. You review the model to
date, shown here:
Customer
.CustomerID
.OrderID
.CompanyName
.ContactName
.Address
.City
.Region
.PostalCode
Order
.OrderID
.ProductID
.OrderDate
.Quantity
.Discount
Product
.ProductID
.Description
.UnitPrice

02 0789731061 CH02 5/10/05 3:54 PM Page 53

. .Chapter 254

You want good performance while removing redundant data. What
should you do? (Each correct answer presents part of a correct solu-
tion; choose three.)
❑ A. Create a new entity named OrderDetail. Add OrderID, ProductID,

Quantity, and Discount attributes to this entity.
❑ B. Ensure that a composite primary key on the OrderID and ProductID

attributes is defined on the Orders entity.
❑ C. Remove the ProductID and Quantity attributes from the Order entity.
❑ D. Decompose the ContactName attribute of the Customer entity to pro-

vide for FirstName and LastName attributes.
❑ E. Move the UnitPrice attribute from the Product entity to the Order entity.
❑ F. Remove the OrderID attribute from the Customer entity and place a

CustomerID attribute into the Order entity.
Answer: A, C, and F. Both A and C are part of the same principle in
data modeling and remove the redundant storage of Discount informa-
tion. Because a customer can make many orders, the relationship needs
to be made such that an Order refers to a Customer and not the other way
around. The UnitPrice attribute is a property of a Product and for that
reason should stay in that entity. Though the ContactName could con-
ceivably be decomposed, there is nothing in the problem statement
that would indicate this as a requirement.

4. You are a database consultant for Northwind Traders and you have
been hired to develop a database design. This design will be used to
develop a database system to be used by a brick-and-mortar store. The
information to be maintained in the database will track product cate-
gories and suppliers. You create an entity named Product that contains
the following:
Product
.ProductID
.CategoryID
.SupplierID
.QuantityPerUnit
.UnitPrice
.UnitsInStock
.UnitsOnOrder
.ReorderLevel
.Discontinued

You must ensure that each product has a valid value for the Category
and Supplier attributes. What should you do? (Choose one.)
❑ A. Define the Product entity to have a compound primary key that uses

the ProductID, CategoryID, and SupplierID attributes.
❑ B. Create two relationships in which the SupplierID and CategoryID attrib-

utes each refer to other kernel entities.

02 0789731061 CH02 5/10/05 3:54 PM Page 54

. .Creating a Logical Data Model 55

❑ C. Create a CategorySupplier entity and relate the Product table to this
entity using both the CategoryID and the SupplierID.

❑ D. Remove the CategoryID and SupplierID attributes from this entity and
move them to a more valid kernel entity.

Answer: B. The CategoryID and SupplierID attributes represent foreign
keys that will refer to primary keys within a kernel entity. They are in
the correct entity for this purpose and should be referencing the
Category and Supplier entities, respectively.

5. You are designing a portion of the database model that will be used by
Northwind Traders for its order process. A quick sketch of the model
has been made and is shown here:
Product
.ProductID
.Description
.QuantityPerUnit
.UnitsInStock
.Unitprice
.SupplierName
OrderDetail
.OrderID
.ProductID
.CustomerID
.Quantity
.Discount
Order
.OrderID
.OrderDate
.Freight
Customer
.CustomerID
.CompanyName
.ContactName
.Address
.City
.Region
.Phone
.Fax

You want to obtain speed and efficiency within the model. What
changes should be made? (Choose one.)
❑ A. Decompose the ContactName attribute so that there are FirstName and

LastName attributes.
❑ B. Remove the SupplierName attribute from the Product entity and place

it into the Order entity.
❑ C. Remove the ProductID from the OrderDetail entity and place it into the

Order entity.
❑ D. Remove the CustomerID attribute from the OrderDetail entity and place

it into the Order entity.
❑ E. Remove the Quantity attribute from the OrderDetail entity. Add a

Quantity column to the Order entity.

02 0789731061 CH02 5/10/05 3:54 PM Page 55

. .Chapter 256

Answer: D. The CustomerID present within the OrderDetail entity would
be repeated several times per Order when it is needed only once. It is
therefore more appropriate for the CustomerID to be in the Order entity.

6. You are a database developer for Northwind Traders. The company is
planning a major expansion and desires to begin tracking sales infor-
mation on a regional basis. Employees of the company will be assigned
to a region and are permitted to perform sales only within their desig-
nated area. To accommodate this facet of the Order process, a rough
sketch has been created of two entities that are to be used. These two
entities are illustrated here:
RegionSale
.RegionSaleID
.OrderID
.RegionID
Region
.RegionID
.RegionTitle
.EmployeeID

You would like the new entities to exist within the system as already
defined. You would also like to have the system operate quickly with as
little redundant information as possible. You would also like key usage
to remain consistent with the rest of the system. What should you do?
(Select two answers; each answer represents a part of the correct
solution.)
❑ A. Create only a single entity for the process, combining the attributes

from the two sketched entities.
❑ B. Create a third new entity, RegionEmployee, to connect the Region enti-

ty to the Employee entity.
❑ C. Remove the EmployeeID attribute and add a RegionID attribute to the

Employee entity.
❑ D. Remove the RegionSaleID attribute from the RegionSale entity.
❑ E. Move the EmployeeID from the Region entity to the RegionSale entity.
❑ F. Remove the OrderID attribute from the RegionSale entity.
Answer: C and D. To remain consistent with the other many-to-many
relationships in the system, the RegionSaleID should be removed and a
compound primary key should be based on the OrderID and the
RegionID. The employee should have an attribute for region and not
vice versa.

7. You are a database developer for Northwind Traders. You are creating
a database model that includes an entity named Order. The Order entity
contains attributes as indicated in the following sketch:
Order
.OrderDate
.RequiredDate
.ShipDate
.Freight

02 0789731061 CH02 5/10/05 3:54 PM Page 56

. .Creating a Logical Data Model 57

Employees take orders from the customers and receive a commission
on each fulfilled order. Orders can be taken only from the listing of
existing customers. Shippers can be selected only from a set of existing
shippers. Which additional attributes should be included to complete
the entity design? (Choose one.)
❑ A. OrderID, CustomerID, ShipperID
❑ B. OrderID, CustomerID, ShipperID, EmployeeID
❑ C. OrderID, ShipperID, EmployeeID
❑ D. OrderID, CustomerID, EmployeeID

Answer: B. The Order entity as defined by the order process relates to
the Customer, Shipper, and Employee entities and should for that reason
have foreign keys for each of those kernel entities.

8. You are a database developer for Northwind Traders. The company
heads would like to track customer demographics so that they can tar-
get advertising budgets and promotions. It is desired to have all budg-
ets based on the past purchases of existing customers. The idea is to
target buying patterns by one or more demographics. The demograph-
ics to be tracked are the following:
gender
age
postal code
region

To implement this, area management has sketched the following enti-
ties:
CustomerDemo
.DemographicID
.DemographicDescription
CustCustomerDemo
.CustomerID
.DemographicID

What should you do? (Choose one.)
❑ A. Leave the entities as they are to represent an appropriate many-to-

many relationship.
❑ B. Combine the entities to form one singular entity.
❑ C. Add additional attributes to the CustCustomerDemo entity.
❑ D. Add additional attributes to the CustomerDemo entity.
Answer: A. This is a proper many-to-many relationship in which each
customer can fit into many demographic categories and any demo-
graphic can apply to a number of customers.

02 0789731061 CH02 5/10/05 3:54 PM Page 57

. .Chapter 258

9. You are a database developer for Northwind Traders. You are designing
a entity to record information about potential new products. A rough
sketch of the entity is shown here:
TestProduct
.TestProductID
.CategoryID
.SupplierName
.SupplierPhone
.Rating

You would like the new entity to be consistent with the remaining sys-
tem while still storing data in an efficient manner. What should you
do? (Choose one.)
❑ A. Relate the TestProduct entity to the Product entity.
❑ B. Define a compound primary key that uses both the TestProductID

attribute and the CategoryID attribute.
❑ C. Ensure that the TestProductID is unique from an existing ProductID.
❑ D. Replace the SupplierName and SupplierPhone attributes with a

SupplierID.
Answer: D. There is already a Supplier entity in the system that could
easily be used in a relationship with the newly defined TestProduct enti-
ty. Placement of the SupplierName and SupplierPhone attributes into this
new entity is therefore redundant.

10. As part of the preparation for the database model for Northwind
Traders, you have sketched out a set of entities. The sketch as it stands
is shown here:
Order
.OrderID
.CustomerID
.EmployeeID
.OrderDate
.RequiredDate
.ShippingDate
.Shipvia
.Freight
.Shipname
.ShipAddress
.ShipCity
.ShipRegion
.ShipPostalCode
.ShipCountry
.ShipperID
OrderDetail
.OrderID
.ProductID
.UnitPrice
.Quantity
Product
.ProductID
.ProductName
.SupplierID
.CategoryID

02 0789731061 CH02 5/10/05 3:54 PM Page 58

. .Creating a Logical Data Model 59

.QuantityPerUnit

.UnitPrice

.UnitsInStock

.UnitsOnOrder

.ReorderLevel

.Discontinued
Supplier
.SupplierID
.CompanyName
.ContactName
.ContactTitle
.Address
.City
.Region
.PostalCode
.Country
.Phone
.Fax
.HomePage

You are now setting up the relationships for the entities. How should
these be applied? (Each correct answer represents part of the solution;
choose three.)
❑ A. Create a one-to-many relationship on the Product entity that references

the OrderDetail entity.
❑ B. Create a many-to-one relationship on the Product entity that references

the OrderDetail entity.
❑ C. Create a one-to-many relationship on the Product entity that references

the Supplier entity.
❑ D. Create a many-to-one relationship on the Product entity that references

the Supplier entity.
❑ E. Create a one-to-many relationship on the Order entity that references

the OrderDetail entity.
❑ F. Create a many-to-one relationship on the Order entity that references

the OrderDetail entity.
Answer: A, D, and E. There will be many OrderDetail elements for each
Order, many products to a supplier, and many OrderDetail elements that
refer to any product.

02 0789731061 CH02 5/10/05 3:54 PM Page 59

