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Logic Gates

3.1 Introduction

This chapter concentrates on the design of combinational logic functions. The knowl-
edge gained in the last chapter on fabrication is important for combinational logic
design—technology-dependent parameters for minimum size, spacing, and parasitic
values largely determine how big a gate circuit must be and how fast it can run. We
will start by reviewing some important facts about combinational logic functions. The
first family of logic gate circuits we will consider are static, fully complementary
gates, which are the mainstay of CMOS design. We will analyze the properties of
these gates in detail: speed, power consumption, layout design, testability. We will
also study some more advanced circuit families—pseudo-nMOS, DCVS, domino,
and low-power gates—that are important in special design situations. We will also
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112 Logic Gates

study the delays through wires, which can be much longer than the delays through the
gates. 

3.2 Combinational Logic Functions

First, it is important to distinguish between combinational logic expressions and logic
gate networks. A combinational logic expression is a mathematical formula which is
to be interpreted using the laws of Boolean algebra: given the expression a + b, for
example, we can compute its truth value for any given values of a and b; we can also
evaluate relationships such as a + b = c. A logic gate computes a specific Boolean
function, such as (a + b)’. The goal of logic design or optimization is to find a net-
work of logic gates which together compute the combinational logic function we
want. Logic optimization is interesting and difficult for two reasons:

• We may not have a logic gate for every possible function, or even for every
function of n inputs. It therefore may be a challenge to rewrite our combina-
tional logic expression so that each term represents a gate.

• Not all gate networks that compute a given function are alike—networks
may differ greatly in their area and speed. We want to find a network that sat-
isfies our area and speed requirements, which may require drastic restructur-
ing of our original logic expression.

Figure 3-1 illustrates the relationship between logic expressions and gate networks.
The two expressions are logically equivalent: (a + b)’c = a’b’c. We have shown a
logic gate network for each expression which directly implements each function—
each term in the expression becomes a gate in the network. The two logic networks
have very different structures. Which is best depends on the requirements—the rela-
tive importance of area and delay—and the characteristics of the technology. But we

(a+b)’c a’b’c

Figure 3-1: Two 
logic gate imple-
mentations of a 
Boolean function.
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must work with both logic expressions and gate networks to find the best implemen-
tation of a function, keeping in mind the relationships:

• combinational logic expressions are the specification;

• logic gate networks are the implementation;

• area, delay, and power are the costs.

We will use fairly standard notation for logic expressions: if a and b are variables,
then a’ (or ) is the complement of a,  (or ab) is the AND of the variables, and a
+ b is the OR of the variables. In addition, for the NAND function (ab)’ we will use
the | symbol1, for the NOR function (a + b)’ we will use a NOR b, and for exclusive-
or ( ) we will use the ⊕ symbol. (Students of algebra know
that XOR and AND form a ring.) We use the term literal for either the true form (a)
or complemented form (a’) of a variable. Understanding the relationship between
logical expressions and gates lets us study problems in the model that is simplest for
that problem, then transfer the results. Two problems that are of importance to logic
design but easiest to understand in terms of logical expressions are completeness
and irredundancy. 

A set of logical functions is complete if we can generate every possible Boolean
expression using that set of functions—that is, if for every possible function built
from arbitrary combinations of +, ⋅, and ’, an equivalent formula exists written in
terms of the functions we are trying to test. We generally test whether a set of func-
tions is complete by inductively testing whether those functions can be used to gener-
ate all logic formulas. It is easy to show that the NAND function is complete, starting
with the most basic formulas:

• 1: a|(a|a) = a|a’= 1.

• 0: {a|(a|a)}|{a|(a|a)} = 1|1 = 0.

• a’: a|a = a’.

• ab: (a|b)|(a|b) = ab.

• a + b:(a|a)|(b|b) = a’|b’ = a + b.

1. The Scheffer stroke is a dot with a negation line through it. C program-
mers should note that this character is used as OR in the C language.

a a b⋅

a XOR b ab' a'b+=
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From these basic formulas we can generate all the formulas. So the set of functions
{|} can be used to generate any logic function. Similarly, any formula can be written
solely in terms of NORs. 

The combination of AND and OR functions, however, is not complete. That is fairly
easy to show: there is no way to generate either 1 or 0 directly from any combination
of AND and OR. If NOT is added to the set, then we can once again generate all the
formulas: a + a’ = 1, etc. In fact, both {’, ⋅} and {’,+} are complete sets. 

Any circuit technology we choose to implement our logic functions must be able to
implement a complete set of functions. Static, complementary circuits naturally
implement NAND or NOR functions, but some other circuit families do not imple-
ment a complete set of functions. Incomplete logic families place extra burdens on the
logic designer to ensure that the logic function is specified in the correct form. 

A logic expression is irredundant if no literal can be removed from the expression
without changing its truth value. For example, ab + ab’ is redundant, because it can be
reduced to a. An irredundant formula and its associated logic network have some
important properties: the formula is smaller than a logically equivalent redundant for-
mula; and the logic network is guaranteed to be testable for certain kinds of manufac-
turing defects. However, irredundancy is not a panacea. Irredundancy is not the same
as minimality—there are many irredundant forms of an expression, some of which
may be smaller than others, so finding one irredundant expression may not guarantee
you will get the smallest design. Irredundancy often introduces added delay, which
may be difficult to remove without making the logic network redundant. However,
simplifying logic expressions before designing the gate network is important for both
area and delay. Some obvious simplifications can be done by hand; CAD tools can
perform more difficult simplifications on larger expressions.

3.3 Static Complementary Gates

This section concentrates on one family of logic gate circuits: the static complemen-
tary gate. These gates are static because they do not depend on stored charge for their
operation. They are complementary because they are built from complementary
(dual) networks of p-type and n-type transistors. The important characteristics of a
logic gate circuit are its layout area, delay, and power consumption. We will concen-
trate our analysis on the inverter because it is the simplest gate to analyze and its anal-
ysis extends straightforwardly to more complex gates.
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3.3.1 Gate Structures

A static complementary gate is divided into a pullup network made of p-type tran-
sistors and a pulldown network made of n-type transistors. The gate’s output can be
connected to VDD by the pullup network or VSS by the pulldown network. The two
networks are complementary to ensure that the output is always connected to exactly
one of the two power supply terminals at any time: connecting the output to neither
would cause an indeterminate logic value at the output, while connecting it to both
would cause not only an indeterminate output value, but also a low-resistance path
from VDD to VSS. The structures of an inverter, a two-input NAND gate, and a two-
input NOR gate are shown in Figure 3-2, Figure 3-3, and Figure 3-4, respectively; +
stands for VDD and the triangle stands for VSS. Inspection shows that they satisfy the
complementarity requirement: for any combination of input values, the output value
is connected to exactly one of VDD or VSS. 

Gates can be designed for functions other than NAND and NOR by designing the
proper pullup and pulldown networks. Networks that are series-parallel combinations
of transistors can be designed directly from the logic expression the gate is to imple-
ment. In the pulldown network, series-connected transistors or subnetworks imple-
ment AND functions in the expression and parallel transistors or subnetworks
implement OR functions. The converse is true in the pullup network because p-type
transistors are off when their gates are high. Consider the design of a two-input
NAND gate as an example. To design the pulldown network, write the gate’s logic
expression to have negation at the outermost level: (ab)’ in the case of the NAND.
This expression specifies a series-connected pair of n-type transistors. To design the
pullup network, rewrite the expression to have the inversion pushed down to the

Figure 3-2: Tran-
sistor schematic of 
a static comple-
mentary inverter.

a

+

out
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innermost literals: a’ + b’ for the NAND. This expression specifies a parallel pair of
p-type transistors, completing the NAND gate design of Figure 3-3. Figure 3-5 shows
the topology of a gate which computes [a(b+c)]’: the pulldown network is given by

Figure 3-3: A 
static complemen-
tary NAND gate.

+

ab
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Figure 3-4: A 
static complemen-
tary NOR gate.
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the expression, while the rewritten expression a’ + (b’c’) determines the pullup net-
work.

Figure 3-5: A 
static complemen-
tary gate that com-
putes [a(b+c)]’.
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Figure 3-6: Con-
structing the pullup 
network from the 
pulldown network.
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You can also construct the pullup network of an arbitrary logic gate from its pulldown
network, or vice versa, because they are duals. Figure 3-6 illustrates the dual con-
struction process using the pulldown network of Figure 3-5. First, add a dummy com-
ponent between the output and the VSS (or VDD) terminals. Assign a node in the dual
network for each region, including the area not enclosed by wires, in the non-dual
graph. Finally, for each component in the non-dual network, draw a dual component
which is connected to the nodes in the regions separated by the non-dual component.
The dual component of an n-type transistor is a p-type, and the dual of the dummy is
the dummy. You can check your work by noting that the dual of the dual of a network
is the original network.

Common forms of complex logic gates are and-or-invert (AOI) and or-and-invert
(OAI) gates, both of which implement sum-of-products/product-of-sums expressions.
The function computed by an AOI gate is best illustrated by its logic symbol, shown
in Figure 3-7: groups of inputs are ANDed together, then all products are ORed
together and inverted for output. An AOI-21 gate, like that shown in the figure, has
two inputs to its first product and one input (effectively eliminating the AND gate) to
its second product; an AOI-121 gate would have two one-input products and one two-
input product. 

It is possible to construct large libraries of complex gates with different input combi-
nations. An OAI gate computes an expression in product-of-sums form: it generates
sums in the first stage which are then ANDed together and inverted. An AOI or OAI
function can compute a sum-of-products or product-of-sums expression faster and
using less area than an equivalent network of NAND and NOR gates. Human design-
ers rarely make extensive use of AOI and OAI gates, however, because people have
difficulty juggling a large number of gate types in their heads. Logic optimization pro-
grams, however, can make very efficient use of AOI, OAI, and other complex gates to
produce very efficient layouts.

3.3.2 Basic Gate Layouts

Figure 3-8 shows a layout of an inverter, Figure 3-10 shows a layout of a static NAND
gate, and Figure 3-11 shows a layout of a static NOR gate. Transistors in a gate can be
densely packed—the NAND gate is not much larger than the inverter. Layouts can
vary greatly, depending on the requirements of the cell: transistor sizes, positions of
terminals, layers used to route signals. CMOS technology allows few major variations
of the basic cell organization: VDD and VSS lines run in metal along the cell, with n-
type transistors along the VSS rail and p-types along the VDD rail. The input and out-
put signals of the NAND are presented at the cell’s edge on different layers: the inputs
are in poly while the output is in metal 1. If we want to cascade two cells, with the
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output of one feeding an input of another, we will have to add a via to switch layers;
we will also have to add the space between the cells required for the via and make
sure that the gaps in the VDD and VSS caused by the gap are bridged. The p-type tran-
sistors in the NAND and NOR gate were made wide to compensate for their lower
current capability; in practice, the inverter layout would probably have a wider pullup
as well. We routed both input wires of the NAND to the transistor gates entirely in
poly, while we used a metal 1 jumper in one of the NOR inputs.

If you are truly concerned with cell size, many variations are possible. Figure 3-9
shows a very wide transistor. A very wide transistor can create too much white space
in the layout, especially if the nearby transistors are smaller. We have split this tran-
sistor into two pieces, each half as wide, and turned one piece 180 degrees, so that the
outer two sections of diffusions are used as drains and the inner sections become
sources.

logic symbol

topology

Figure 3-7: An 
and-or-invert-21 
(AOI-21) gate.
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Figure 3-8: A 
layout of an 
inverter.
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3.3.3 Logic Levels

Since we must use voltages to represent logic values, we must define the relationship
between the two. As Figure 3-12 shows, a range of voltages near VDD corresponds to
logic 1 and a band around VSS corresponds to logic 0. The range in between is X, the
unknown value. Although signals must swing through the X region while the chip is
operating, no node should ever achieve X as its final value. 

We want to calculate the upper boundary of the logic 0 region and the lower bound-
ary of the logic 1 region. In fact, the situation is slightly more complex, as shown in

Figure 3-9: A 
wide transistor 
split into two 
sections.

current current

sourcedrain drain
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Figure 3-13, because we must consider the logic levels produced at outputs and
required at inputs. Given our logic gate design and process parameters, we can guar-
antee that the maximum voltage produced for a logic 0 will be some value VOL and
that the minimum voltage produced for a logic 0 will be VOH. These same constraints
place limitations on the input voltages which will be interpreted as a logic 0 (VIL) and

Figure 3-10: A layout of a NAND gate.
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logic 1 (VIH). If the gates are to work together, we must ensure that VOL < VIL and
VOH > VIH.

Figure 3-11: A layout of a NOR gate.
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The output voltages produced by a static, complementary gate are VDD and VSS, so
we know that the output voltages will be acceptable. (That isn’t true of all gate cir-
cuits; the pseudo-nMOS circuit of Section 3.5.1 produces a logic 0 level well above
VSS.) We need to compute the values of VIL and VIH and to do the computation, we
need to define those values. A standard definition is based on the transfer characteris-
tic of the inverter—its output voltage as a function of its input voltage, assuming that
the input voltage and all internal voltages and currents are at equilibrium. Figure 3-14
shows the circuit we will use to measure an inverter’s transfer characteristic. We

Figure 3-12: 
How voltages cor-
respond to logic 
levels.
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Figure 3-13: Logic 
levels on cascaded 
gates.
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inverter circuit used 
to measure transfer 
characteristics.
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apply a sequence of voltages to the input and measure the voltage at the output. (We
can also sweep the input voltage if we do at a much slower rate than the circuit’s tran-
sients.) Alternatively, we can solve the circuit’s voltage and current equations to find
Vout as a function of Vin: we equate the drain currents of the two transistors and set
their gate voltages to be complements of each other (since the n-type’s gate voltage is
measured relative to VSS and the p-type’s to VDD).

Figure 3-15 shows a transfer characteristic (simulated using Spice level 3 models)
of an inverter with minimum-size transistors for both pullup and pulldown. We define
VIL and VIH as the points at which the curve’s tangent has a slope of -1. Between
these two points, the inverter has high gain—a small change in the input voltage
causes a large change in the output voltage. Outside that range, the inverter has a gain
less than 1, so that even a large change at the input causes only a small change at the
output, attenuating the noise at the gate’s input. The curve is not symmetric because
the pullup supplies less current than the pulldown when both are minimum size. In
particular, the valid logic 1 range is smaller than the valid logic 0 range because the
pullup’s resistance is too high relative to the pulldown’s. 
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Figure 3-15: Volt-
age transfer curve of 
an inverter with min-
imum-size transis-
tors.
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The difference between VOL and VIL (or between VOH and VIH) is called the noise
margin—the size of the safety zone that prevents production of an illegal X output
value. Since real circuits function under less-than-ideal conditions, adequate noise
margins are essential for ensuring that the chip operates reliably. Noise may be intro-
duced by a number of factors: it may be introduced by off-chip connections; it may be
generated by capacitive coupling to other electrical nodes; or it may come from varia-
tions in the power supply voltage.

3.3.4 Delay and Transition Time

Delay is one of the most important properties of a logic gate—the majority of chip
designs are limited more by speed than by area. An analysis of logic gate delay not
only tells us how to compute the speed of a gate, it also points to parasitics that must
be controlled during layout design to minimize delay. Later, in Section 3.3.7, we will
apply what we have learned from delay analysis to the design of logic gate layouts.

There are two interesting but different measures of combinational logic effort:

• Delay is generally used to mean the time it takes for a gate’s output to arrive
at 50% of its final value. 

• Transition time is generally used to mean the time it takes for a gate to
arrive at 10% (for a logic 0) or 90% (for a logic 1) of its final value; both fall
time tf and rise time tr are transition times.

We will analyze delay and transition time on the simple inverter circuit shown in Fig-
ure 3-16; our analysis easily extends to more complex gates as well as more complex
loads. We will assume that the inverter’s input changes voltage instantaneously; since

Figure 3-16: The 
inverter circuit 
used for delay 
analysis.
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RL

CL

t



Static Complementary Gates 127

the input signal to a logic gate is always supplied by another gate, that assumption is
optimistic, but it simplifies analysis without completely misleading us. 

It is important to recognize that we are analyzing not just the gate delay but delay of
the combination of the gate and the load it drives. CMOS gates have low enough gain
to be quite sensitive to their load, which makes it necessary to take the load into
account in even the simplest delay analysis. The load on the inverter is a single resis-
tor-capacitor (RC) circuit; the resistance and capacitance come from the logic gate
connected to the inverter’s output and the wire connecting the two. We will see in
Section 4.5.1 that other models of the wire’s load are possible. There are two cases to
analyze: the output voltage Vout is pulled down (due to a logic 1 input to the inverter);
and Vout is pulled up. Once we have analyzed the 1→ 0 output case, modifying the
result for the 0→ 1 case is easy. 

While the circuit of Figure 3-16 has only a few components, a detailed analysis of it is
difficult due to the complexity of the transistor’s behavior. We need to further sim-
plify the circuit. A detailed circuit analysis would require us to consider the effects of
both pullup and pulldown transistors. However, our assumption that the inverter’s
input changes instantaneously between the lowest and highest possible values lets us
assume that one of the transistors turns off instantaneously. Thus, when Vout is pulled
low, the p-type transistor is off and out of the circuit; when Vout is pulled high, the n-
type transistor can be ignored.

There are several different models that people use to compute delay and transition
time. The first is the τ model, which was introduced by Mead and Conway [Mea80]
as a simple model for basic analysis of digital circuits. This model reduces the delay

Figure 3-17: 
Current through 
the pulldown dur-
ing a 1→ 0 transi-
tion.I

D

t

saturation

linear
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of the gate to an RC time constant which is given the name τ. As the sizes of the tran-
sistors in the gate are increased, the delay scales as well.

At the heart of the τ model is the assumption that the pullup or pulldown transistor
can be modeled as a resistor. The transistor does not obey Ohm’s law as it drives the
gate’s output, of course. As Figure 3-17 shows, the pulldown spends the first part of
the 1→ 0 transition in the saturation region, then moves into the linear region. But the
resistive model will give sufficiently accurate results to both estimate gate delay and
to understand the sources of delay in a logic circuit.

How do we choose a resistor value to represent the transistor over its entire operating
range? A standard resistive approximation for a transistor is to measure the transis-
tor’s resistance at two points in its operation and take the average of the two values
[Hod83]. We find the resistance by choosing a point along the transistor’s Id vs. Vds
curve and computing the ratio V/I, which is equivalent to measuring the slope of a line
between that point and the origin. Figure 3-18 shows the approximation points for an
n-type transistor: the inverter’s maximum output voltage, VDS = VDD - VSS, where the
transistor is in the saturation region; and the middle of the linear region, VDS = (VDD-
VSS-Vt)/2. We will call the first value Rsat = Vsat/Isat and the second value Rlin =
Vlin/Ilin. This gives the basic formula

Figure 3-18: 
How to approxi-
mate a transistor 
with a resistor.

VDS

VGS  = VDD - VSS
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(EQ 2-1)

for which we must find the Vs and Is.

The current through the transistor at the saturation-region measurement point is

. (EQ 3-2)

The voltage across the transistor at that point is

Vsat = VDD - VSS. (EQ 3-3)

At the linear region point, 

Vlin = (VDD-VSS-Vt)/2, (EQ 3-4)

so the drain current is

(EQ 3-5)

We can compute the effective resistances of transistors in the 0.5 µm process by
plugging in the technology values of Table 2-4. The resistance values for minimum-
size n-type and p-type transistors are shown in Table 3-1 for two power supply volt-
ages: 5V and 3.3V. The effective resistance of a transistor is scaled by L/W. The p-
type transistor has about three-and-a-half times the effective resistance of an n-type
transistor for this set of process parameters, which is what we expect from the ratio

. and the variation in threshold voltages between the two types of transistors.
Note that the effective resistance of the transistors increases as the power supply
voltage goes down.

Rn
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Given these resistance values, we can then analyze the delay and transition time of the
gate.

We can now develop the τ model that helps us compute delay and transition time. Fig-
ure 3-19 shows the circuit model we use: Rn is the transistor’s effective resistance
while RL and CL are the load. The capacitor has an initial voltage of VDD. The transis-
tor discharges the load capacitor from VDD to VSS; the output voltage as a function of
time is

. (EQ 3-6)

We typically use RL to represent the resistance of the wire which connects the inverter
to the next gate; in this case, we’ll assume that RL = 0, simplifying the total resistance
to R = Rn. 

To measure delay, we must calculate the time required to reach the 50% point. Then

type VDD-VSS = 5V VDD-VSS = 3.3V

Rn 3.9 kΩ 6.8 kΩ

Rp 14 kΩ 25 kΩ

Table 3-1  
Effective 
resistance values 
for minimum-size 
transistors in our 
0.5 µm process.

RL

CLRn Vout

+

-

Figure 3-19:  
The circuit model 
for τ model 
delay.

Vout t( ) VDDe
-t Rn RL+( )CL[ ]⁄

=



Static Complementary Gates 131

, (EQ 3-7)

. (EQ 3-8)

We generally measure transition time as the interval between the time at which Vout =
0.9VDD and Vout = 0.1VDD; let’s call these times t1 and t2. Then

. (EQ 3-9)

The next example illustrates how to compute delay and transition time using the τ
model.

Example 3-1: Inverter delay and transition time using the τ 
model

Once the effective resistance of a transistor is known, delay calculation is easy. What
is a minimum inverter delay and fall time with our 0.5 µm process parameters?
Assume a minimum-size pulldown, no wire resistance, and a capacitive load equal to
two minimum-size transistors’ gate capacitance. First, the τ model parameters:

Then delay is

0.5 e
-td Rn RL+( )CL[ ]⁄

=

td - Rn RL+( )CLln 0.5 0.69 Rn RL+( )CL= =

tf t2-t1 - Rn RL+( )CLln0.1
0.9
------- 2.2 Rn RL+( )CL= = =

Rn 3.9kΩ=

CL 0.9 fF

µm
2

---------- 3λ 2λ 0.0625µm
2

λ2
---------------------------××

 
 
 

× 2×=

0.68fF=

td 0.69 3.9kΩ 0.68
-15×10⋅⋅ 1.8ps= =
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and fall time is

If the transistors are not minimum size, their effective resistance is scaled by L/W. To
compute the delay through a more complex gate, such as a NAND or an AOI, com-
pute the effective resistance of the pullup/pulldown network using the standard Ohm’s
law simplifications, then plug the effective R into the delay formula.

If we decrease the supply voltage to 3.3 V, the load capacitance does not change but
the effective resistance of the transistor does:

,

,

This simple RC analysis tells us two important facts about gate delay. First, if the pul-
lup and pulldown transistor sizes are equal, the 0→ 1 transition will be about one-half
to one-third the speed of the 1→ 0 transition. That observation follows directly from
the ratio of the n-type and p-type effective resistances. Put another way, to make the
high-going and low-going transition times equal, the pullup transistor must be twice
to three times as wide as the pulldown. Second, complex gates like NANDs and
NORs require wider transistors where those transistors are connected in series. A
NAND’s pulldowns are in series, giving an effective pulldown resistance of 2Rn. To
give the same delay as an inverter, the NAND’s pulldowns must be twice as wide as
the inverter’s pulldown. The NOR gate has two p-type transistors in series for the pul-
lup network. Since a p-type transistor must be two to three times wider than an n-type
transistor to provide equivalent resistance, the pullup network of a NOR can take up
quite a bit of area.

tf 2.2 3.9kΩ 0.68
-15×10⋅⋅ 5.8ps= =

Rn 6.8kΩ=

td 0.69 6.8kΩ 0.68
-15×10⋅⋅ 3.1ps= =

tf 2.2 6.8kΩ 0.68
-15×10⋅⋅ 10ps= =
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A second model is the current source model, which is sometimes used in
power/delay studies because of its tractability. If we assume that the transistor acts as
a current source whose  is always at the maximum value, then the delay can be
approximated as

. (EQ 3-10)

A third type of model is the fitted model. This approach measures circuit character-
istics and fits the observed characteristics to the parameters in a delay formula. This
technique is not well-suited to hand analysis but it is easily used by programs that
analyze large numbers of gates.

How accurate are the RC and current source approximations? Figure 3-20 shows the
results of Spice simulation of three circuits: a resistance discharging a capacitance
equal to the gate capacitance of an inverter with minimum-size transistors, a full
inverter discharging the same capacitance, and the current source approximation. The
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Figure 3-20: Comparison of inverter delay to the RC and current source approximations.



134 Logic Gates

results show that, for these process parameters, the resistance value calculated by the
two-step method is somewhat optimistic and the current source approximation is even
more so. We can use Spice simulation to generate a more accurate model of an
inverter for a particular process, but you should always remember that the RC delay
model is meant as only a rough approximation. RC and current source delay are best

used as relative measures of delay, not absolute measures.

The RC model assumes that the gate’s input is a step, but the input in fact comes from
another gate which may generate a relatively slow signal. Figure 3-21 shows the
results of Spice simulation of one inverter driving another; the first is driven by a
square wave, but the second is driven by the output of the first inverter. The second
inverter’s output response is somewhat slower than the first’s.

The fundamental reason for developing an RC model of delay is that we often can’t
afford to use anything more complex. Full circuit simulation of even a modest-size
chip is infeasible: we can’t afford to simulate even one waveform, and even if we
could, we would have to simulate all possible inputs to be sure we found the worst-
case delay. The RC model lets us identify sections of the circuit which probably limit
circuit performance; we can then, if necessary, use more accurate tools to more
closely analyze the delay problems of that section.
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Body effect, as we saw in Section 2.3.5, is the modulation of threshold voltage by a
difference between the voltage of the transistor’s source and the substrate—as the
source’s voltage rises, the threshold voltage also rises. This effect can be modeled by
a capacitor from the source to the substrate’s ground as shown in Figure 3-22. To
eliminate body effect, we want to drive that capacitor to 0 voltage as soon as possible.
If there is one transistor between the gate’s output and the power supply, body effect
is not a problem, but series transistors in a gate pose a challenge. Not all of the gate's
input signals may reach their values at the same time—some signals may arrive ear-
lier than others. If we connect early-arriving signals to the transistors nearest the
power supply and late-arriving signals to transistors nearest the gate output, the early-
arriving signals will discharge the body effect capacitance of the signals closer to the
output. This simple optimization can have a significant effect on gate delay [Hil89].

3.3.5 Power Consumption

Analyzing the power consumption of an inverter provides an alternate window into
the cost and performance of a logic gate. Circuits can be made to go faster—up to a
point—by causing them to burn more power. Power consumption always comes at the
cost of heat which must be dissipated out of the chip. Static, complementary CMOS
gates are remarkably efficient in their use of power to perform computation.

Once again we will analyze an inverter with a capacitor connected to its output. How-
ever, to analyze power consumption we must consider both the pullup and pulldown
phases of operation. The model circuit is shown in Figure 3-23. The first thing to note
about the circuit is that it has almost no steady-state power consumption. After the
output capacitance has been fully charged or discharged, only one of the pullup and
pulldown transistors is on. The following analysis ignores the leakage current; we
will look at techniques to combat leakage current in Section 3.6.

Figure 3-22: 
Body effect and 
signal ordering.

body effect
capacitance

early-arriving
signal
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Power is consumed when gates drive their outputs to new values. Surprisingly, the
power consumed by the inverter is independent of the sizes/resistances of its pullup
and pulldown transistors—power consumption depends only on the size of the capac-
itive load at the output and the rate at which the inverter’s output switches. To under-
stand why, consider the energy required to drive the inverter’s output high calculated
two ways: by the current through the load capacitor CL and by the current through the
pullup transistor, represented by its effective resistance Rp. 

The current through the capacitor and the voltage across it are:

, (EQ 3-11)

. (EQ 3-12)

So, the energy required to charge the capacitor is:

(EQ 3-13)

Figure 3-23:  
Circuit used for 
power consump-
tion analysis.
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This formula depends on the size of the load capacitance but not the resistance of the
pullup transistor. The current through and voltage across the pullup are:

, (EQ 3-14)

. (EQ 3-15)

The energy required to charge the capacitor, as computed from the resistor’s point of
view, is

(EQ 3-16)

Once again, even though the circuit’s energy consumption is computed through the
pullup, the value of the pullup resistance drops from the energy formula. (That holds
true even if the pullup is a nonlinear resistor.) The two energies have the same value
because the currents through the resistor and capacitor are equal.

The energy consumed in discharging the capacitor can be calculated the same way.
The discharging energy consumption is equal to the charging power consumption:

CL(VDD-VSS)2. A single cycle requires the capacitor to both charge and dis-
charge, so the total energy consumption is CL(VDD-VSS)2.

Power is energy per unit time, so the power consumed by the circuit depends on how
frequently the inverter’s output changes. The worst case is that the inverter alternately
charges and discharges its output capacitance. This sequence takes two clock cycles.
The clock frequency is f = . The total power consumption is

. (EQ 3-17)

Power consumption in CMOS circuits depends on the frequency at which they oper-
ate, which is very different from nMOS or bipolar logic circuits. Power consumption
depends on clock frequency because most power is consumed while the outputs are
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changing; most other circuit technologies burn most of their power while the circuit is
idle. Power consumption depends on the sizes of the transistors in the circuit only in
that the transistors largely determine CL. The current through the transistors, which is
determined by the transistor W/Ls, doesn’t determine power consumption, though the
available transistor current does determine the maximum speed at which the circuit
can run, which indirectly determines power consumption. 

Does it make sense that CMOS power consumption should be independent of the
effective resistances of the transistors? It does, when you remember that CMOS cir-
cuits consume only dynamic power. Most power calculations are made on static cir-
cuits—the capacitors in the circuit have been fully charged or discharged, and power
consumption is determined by the current flowing through resistive paths between
VDD and VSS

 
in steady state. Dynamic power calculations, like those for our CMOS

circuit, depend on the current flowing through capacitors; the resistors determine only
maximum operating speed, not power consumption.

Static complementary gates can operate over a wide range of voltages, allowing us to
trade delay for power consumption. To see how performance and power consumption
are related, let’s consider changing the power supply voltage from its original value V
to a new V’. It follows directly from Equation 3-17 that the ratio of power consump-
tions  is proportional to . When we compute the ratio of rise times

 the only factor to change with voltage is the transistor’s equivalent resistance R,
so the change in delay depends only on . If we use the technique of
Section 3.3.4 to compute the new effective resistance, we find that . So
as we reduce power supply voltage, power consumption goes down faster than does
delay.

3.3.6 The Speed-Power Product

The speed-power product, also known as the power-delay product, is an impor-
tant measure of the quality of a logic circuit family. Since delay can in general be
reduced by increasing power consumption, looking at either power or delay in isola-
tion gives an incomplete picture.

The speed-power product for static CMOS is easy to calculate. If we ignore leakage
current and consider the speed and power for a single inverter transition, then we find
that the speed-power product SP is

. (EQ 3-18)
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The speed-power product for static CMOS is independent of the operating frequency
of the circuit. It is, however, a quadratic function of the power supply voltage. This
result suggests an important method for power consumption reduction known as volt-
age scaling: we can often reduce power consumption by reducing the power supply
voltage and adding parallel logic gates to make up for the lower performance. Since
the power consumption shrinks more quickly than the circuit delay when the voltage
is scaled, voltage scaling is a powerful technique. We will study techniques for low-
power gate design in Section 3.6. 

3.3.7 Layout and Parasitics

How do parasitics affect the performance of a single gate? Answering this question
tells us how to design the layout of a gate to maximize performance and minimize
area. 

Example 3-2: Parasitics and performance

To answer the question, we will consider the effects of adding resistance and capaci-
tance to each of the labeled points of this layout:

• a

a

b c
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Adding capacitance to point a (or its conjugate point on the VSS wire) adds
capacitance to the power supply wiring. Capacitance on this node doesn’t
slow down the gate’s output.

Resistance at a can cause problems. Resistance in the VSS line can be mod-
eled by this equivalent circuit:

The power supply resistance is in series with the pulldown. That differential
isn’t a serious problem in static, complementary gates. The resistance slows
down the gate, but since both the transistor gates of the pullup and pulldown
are connected to the same electrical node, we can be sure that only one of
them will be on in steady state. However, the dynamic logic circuits we will
discuss in Section 3.5 may not work if the series power supply resistance is
too high, because the voltages supplied by the gate with resistance may not
properly turn on succeeding transistor gates.

The layout around point a should be designed to minimize resistance. A
small length of diffusion is required to connect the transistors to the power
lines, but power lines should be kept in metal as long as possible. If the diffu-
sion wire is wider than a via (to connect to a wide transistor), several parallel
vias should be used to connect the metal and diffusion lines. 

• b

Capacitance at b adds to the load of the gate driving this node. However, the
transistor gate capacitances are much larger than the capacitance added by
the short wire feeding the transistor gates. Resistance at b actually helps iso-
late the previous gate from the load capacitance, as we will see when we dis-
cuss the π model in Section 4.5.1 Gate layouts should avoid making big
mistakes by using large sections of diffusion wire or a single via to connect
high-current wires.

+

R1 R2

+
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• c

Capacitance and resistance at c are companions to parasitics at b—they form
part of the load that this gate must drive, along with the parasitics of the b
zone of the next gate. But if we consider a more accurate model of the para-
sitics, we will see that not all positions for parasitic R and C are equally bad.

Up to now we have modeled the resistance and capacitance of a wire as single com-
ponents. But now consider the inverter’s load as two RC sections:

One RC section is contributed by the wires at point c, near the output; the RC section
comes from the long wire connecting this gate to the next one. How does the voltage
at point x—the input to the next gate—depend on the relative values of the R’s? The
simplified circuit shows how a large value for Rx, which is supplied by the parasitics
at point c, steals current from RLCL. As Rx grows relative to RL, the voltage drop
across Rxincreases, increasing the current through Rx while decreasing the current
through RL. As a result, more of the current supplied by the gate will go through Cx;
only after it is fully charged will CL get the full current supplied by the gate. Since CL
is almost certainly significantly larger than Cx, since it includes both the transistor
gate capacitances and the long-wire capacitance, it is more important to charge CL to
switch the next gate as quickly as possible. But charging/discharging of CL has been
delayed while Rx diverts current into Cx. 

The moral is that resistance close to the gate output is worse than resistance farther
away—close-in resistance must charge more capacitors, slowing down the signal
swing at the far end of the wire. Therefore, the layout around c should be designed to
minimize resistance. That requires:

• using as little diffusion as possible—diffusion should be connected to metal
(or perhaps poly) as close to the channel as possible;

Rx

Cx

x RL

CLix iL
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• using parallel vias at the diffusion/metal interface to minimize resistance.

3.3.8 Driving Large Loads

Logic delay increases as the capacitance attached to the logic’s output becomes larger.
In many cases, one small logic gate is driving an equally small logic gate, roughly
matching drive capability to load. However, there are several situations in which the
capacitive load can be much larger than that presented by a typical gate:

• driving a signal connected off-chip;

• driving a long signal wire;

• driving a clock wire which goes to many points on the chip.

The obvious answer to driving large capacitive loads is to increase current by making
wider transistors. However, this solution begs the question—those large transistors
simply present a large capacitive load to the gate which drives them, pushing the
problem back one level of logic. It is inevitable that we must eventually use large tran-
sistors to drive the load, but we can minimize delay along the path by using a
sequence of successively larger drivers.

pullup: Wp/Lp

pulldown: Wn/Ln

Cbig

pullup: αWp/Lp

pulldown: αWn/Ln

pullup: α2Wp/Lp

pulldown: α2Wn/Ln

n stages

Figure 3-24: Cascaded inverters driving a large capacitive load.
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The driver chain with the smallest delay to drive a given load is exponentially
tapered—each stage supplies e times more current than the last [Jae75]. In the chain
of inverters of Figure 3-24, each inverter can produce α times more current than the
previous stage (implying that its pullup and pulldown are each α times larger). If Cg
is the minimum-size load capacitance, the number of stages n is related to α by the
formula . The time to drive a minimum-size load is tmin. We
want to minimize the total delay through the driver chain:

. (EQ 3-19)

To find the minimum, we set , which gives

. (EQ 3-20)

When we substitute the optimal number of stages back into the definition of α, we
find that the optimum value is at α = e. Of course, n must be an integer, so we will not
in practice be able to implement the exact optimal circuit. However, delay changes
slowly with n near the optimal value, so rounding n to the floor of nopt gives reason-
able results.

3.4 Switch Logic

How do we build switches from MOS transistors? One way is the transmission gate
shown in Figure 3-25, built from parallel n-type and p-type transistors. This switch is
built from both types of transistors so that it transmits logic 0 and 1 from drain to
source equally well: when you put a VDD or VSS at the drain, you get VDD or VSS at
the source. But it requires two transistors and their associated tubs; equally damning,
it requires both true and complement forms of the gate signal. 

An alternative is the n-type switch—a solitary n-type transistor. It requires only one
transistor and one gate signal, but it is not as forgiving electrically: it transmits a logic
0 well, but when VDD is applied to the drain, the voltage at the source is VDD - Vtn.
When switch logic drives gate logic, n-type switches can cause electrical problems.
An n-type switch driving a complementary gate causes the complementary gate to run
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slower when the switch input is 1: since the n-type pulldown current is weaker when a
lower gate voltage is applied, the complementary gate’s pulldown will not suck cur-
rent off the output capacitance as fast. When the n-type switch drives a pseudo-nMOS
gate, disaster may occur. A pseudo-nMOS gate’s ratioed transistors depend on logic 0
and 1 inputs to occur within a prescribed voltage range. If the n-type switch doesn’t
turn on the pseudo-nMOS pulldown strongly enough, the pulldown may not divert
enough current from the pullup to force the output to a logic 0, even if we wait for-
ever. Ratioed logic driven by n-type switches must be designed to produce valid out-
puts for both polarities of input.

Both types of switch logic are sensitive to noise—pulling the source beyond the
power supply (above VDD or below VSS) causes the transistor to start conducting. We
will see in Section 4.7 that logic networks made of switch logic are prone to errors
introduced by parasitic capacitance.

3.5 Alternative Gate Circuits

The static complementary gate has several advantages: it is reliable, easy to use in
large combinational logic networks, and does not require any separate precharging
steps. It is not, however, the only way to design a logic gate with p-type and n-type
transistors. Other circuit topologies have been created that are smaller or faster (or
both) than static complementary gates. Still others use less power.

In this section we will review the design of several important alternative CMOS gate
topologies. Each has important uses in chip design. But it is important to remember
that they all have their limitations and caveats. Specialized logic gate designs often
require more attention to the details of circuit design—while the details of circuit and
layout design affect only the speed at which a static CMOS gate runs, circuit and lay-
out problems can cause a fancier gate design to fail to function correctly. Particular

a

a'

Figure 3-25: A 
complementary 
transmission gate.
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care must be taken when mixing logic gates designed with different circuit topologies
to ensure that one’s output meets the requirements of the next’s inputs. A good, con-
servative chip design strategy is to start out using only static complementary gates,
then to use specialized gate designs in critical sections of the chip to meet the
project’s speed or area requirements.

3.5.1 Pseudo-nMOS Logic

The simplest non-standard gate topology is pseudo-nMOS, so called because it
mimics the design of an nMOS logic gate. Figure 3-26 shows a pseudo-nMOS NOR
gate. The pulldown network of the gate is the same as for a fully complementary gate.
The pullup network is replaced by a single p-type transistor whose gate is connected
to V

SS
, leaving the transistor permanently on. The p-type transistor is used as a resis-

tor: when the gate’s inputs are ab = 00, both n-type transistors are off and the p-type
transistor pulls the gate’s output up to VDD. When either a or b is 1, both the p-type
and n-type transistor are on and both are fighting to determine the gate’s output volt-
age.

We need to determine the relationship between the W/L ratios of the pullup and the
pulldowns which provide reasonable output voltages for the gate. For simplicity,
assume that only one of the pulldown transistors is on; then the gate circuit’s output
voltage depends on the ratio of the effective resistances of the pullup and the operat-
ing pulldown. The high output voltage of the gate is VDD, but the output low voltage
VOL will be some voltage above VSS. The chosen VOL must be low enough to acti-
vate the next logic gate in the chain. For pseudo-nMOS gates which feed static or
pseudo-nMOS gates, a value of  is a reasonable value,
though others could be chosen. To find the transistor sizes which give reasonable out-
put voltages, we must consider the simultaneous operation of the pullup and pull-

Figure 3-26: A 
pseudo-nMOS 
NOR gate.
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down. When the gate’s output has just switched to a logic 0, the n-type pulldown is in
saturation with Vgs,n = Vin. The p-type pullup is in its linear region: its Vgs,p = VDD -
VSS and its Vds,p = Vout - (VDD - VSS). We need to find Vout in terms of the W/Ls of
the pullup and pulldown. To solve this problem, we set the currents through the satu-
rated pulldown and the linear pullup to be equal: 

. (EQ 3-21)

The simplest way to solve this equation is to substitute the technology and circuit val-
ues. Using the 0.5 µm values and assuming a 3.3V power supply and a full-swing
input , we find that

. (EQ 3-22)

The pulldown network must exhibit this effective resistance in the worst case combi-
nation of inputs. Therefore, if the network contains series pulldowns, they must be
made larger to provide the required effective resistance.

The pseudo-nMOS gate consumes static power, unlike the fully complementary gate.
When both the pullup and pulldown are on, the gate forms a conducting path from
VDD to VSS, which must be kept on to maintain the gate’s logic output value. The
choice of VOL determines whether the gate consumes may consume static power
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when its output is logic 1. If pseudo-nMOS feeds pseudo-nMOS and VOL is chosen
to be greater than Vt,n, then the pulldown will remain on. Whether the pulldown is in
the linear or saturation region depends on the exact transistor characteristics, but in
either case, its drain current will be low since Vgs,n is low. As shown in Figure 3-27,
so long as the pulldown drain current is significantly less than the pullup drain cur-
rent, there will be enough current to charge the output capacitance and bring the gate
output to the desired level.

The ratio of the pullup and pulldown sizes also ensures that the times for 0→ 1 and
1→ 0 transitions are asymmetric. Since the pullup transistor has about three times the
effective resistance of the pulldown, the 0→ 1 transition occurs much more slowly
than the 1→ 0 transition and dominates the gate’s delay. The long pullup time makes
the pseudo-nMOS gate slower than the static complementary gate. 

Why use a pseudo-nMOS gate? The main advantage of the pseudo-nMOS gate is the
small size of the pullup network, both in terms of number of devices and wiring com-
plexity. The pullup network of a static complementary gate can be large for a complex
function. Furthermore, the input signals do not have to be routed to the pullup, as in a
static complementary gate. The pseudo-nMOS gate is used for circuits where the size
and wiring complexity of the pullup network are major concerns but speed and power
are less important. We will see two examples of uses of pseudo-nMOS circuits in
Chapter 6: busses and PLAs. In both cases, we are building distributed NOR
gates—we use pulldowns spread over a large physical area to compute the output,
and we do not want to have to run the signals which control the pulldowns around this
large area. Pseudo-nMOS circuits allow us to concentrate the logic gate’s functional-
ity in the pulldown network.

3.5.2 DCVS Logic

Differential cascode voltage switch logic (DCVSL) is a static logic family that,
like pseudo-nMOS logic, does not have a complementary pullup network, but it has a
very different structure. It uses a latch structure for the pullup which both eliminates
static power consumption and provides true and complement outputs.

The structure of a generic DCVSL gate is shown in Figure 3-28. There are two pull-
down networks which are the duals of each other, one for each true/complement out-
put. Each pulldown network has a single p-type pullup, but the pullups are cross-
coupled. Exactly one of the pulldown networks will create a path to ground when the
gate’s inputs change, causing the output nodes to switch to the required values. The
cross-coupling of the pullups helps speed up the transition—if, for example, the com-
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plementary network forms a path to ground, the complementary output goes toward
VSS, which turns on the true output’s pullup, raising the true output, which in turn
lowers the gate voltage on the complementary output’s pullup. This gate consumes no
DC power (except due to leakage current), since neither side of the gate will ever have
both its pullup and pulldown network on at once.

+

pulldown
network

complementary
pulldown
network

out out'

inputs complementary
inputs

Figure 3-28: 
Structure of a 
DCVSL gate.
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Figure 3-29: An 
example DCVSL 
gate circuit.
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Figure 3-29 shows the circuit for a particular DCVSL gate. This gate computes a+bc
on one output and (a+bc)’ = a’b’+a’c’ on its other output.

3.5.3 Domino Logic

Precharged circuits offer both low area and higher speed than static complementary
gates. Precharged gates introduce functional complexity because they must be oper-
ated in two distinct phases, requiring introduction of a clock signal. They are also
more sensitive to noise; their clocking signals also consume power and are difficult to
turn off to save power.

The canonical precharged logic gate circuit is the domino circuit [Kra82]. A domino
gate is shown in Figure 3-30, along with a sketch of its operation over one cycle. The
gate works in two phases, first to precharge the storage node, then to selectively dis-
charge it. The phases are controlled by the clock signal φ:

• Precharge. When φ goes low, the p-type transistor starts charging the pre-
charge capacitance. The pulldown transistors controlled by the clock keep
that precharge node from being drained. The length of the φ = 0 phase is
adjusted to ensure that the storage node is charged to a solid logic 1.

• Evaluate. When φ goes high, precharging stops (the p-type pullup turns off)
and the evaluation phase begins (the n-type pulldowns at the bottom of the
circuit turn on). The logic inputs a and b can now assume their desired value
of 0 or 1. The input signals must monotonically rise—if an input goes from 0
to 1 and back to 0, it will inadvertently discharge the precharge capacitance.
If the inputs create a conducting path through the pulldown network, the pre-
charge capacitance is discharged, forcing its value to 0 and the gate’s output
(through the inverter) to 1. If neither a nor b is 1, then the storage node
would be left charged at logic 1 and the gate’s output would be 0.

The gate’s logic value is valid at the end of the evaluation phase, after enough time
has been allowed for the pulldown transistors to fully discharge the storage node. If
the gate is to be used to compute another value, it must go through the precharge-
evaluate cycle again.

Figure 3-31 illustrates the phenomenon which gave the domino gate its name. Since
each gate is precharged to a low output level before evaluation, the changes at the pri-
mary inputs ripple through the domino network from one end to another. Signals at
the far end of the network change last, with each change to a gate output causing a
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change to the next output. This sequential evaluation resembles a string of falling
dominos.

Why is there an inverter at the output of the domino gate? There are two reasons: log-
ical operation and circuit behavior. To understand the logical need for an output
inverter, consider the circuit of Figure 3-32, in which the output of one domino gate is
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Figure 3-30: A 
domino OR gate 
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fed into an input of another domino gate. During the precharge phase, if the inverter
were not present, the intermediate signal would rise to 1, violating the requirement
that all inputs to the second gate be 0 during precharging. 

However, the more compelling reason for the output inverter is to increase the reli-
ability of the gate. Figure 3-33 shows two circuit variations: one with the output
inverter and one without. In both cases, the storage node is coupled to the output of
the following gate by the gate-to-source/drain capacitances of the transistors in that

in1

in2

in3

in4

t t t t

Figure 3-31: 
Successive 
evaluations in 
a domino logic 
network.
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Figure 3-32: Why domino gate input values must monotonically increase.
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gate. This coupling can cause current to flow into the storage node, disturbing its
value. Since the coupling capacitance is across the transistor, the Miller effect magni-
fies its value. When the storage node is connected to the output inverter, the inverter’s
output is at least correlated to the voltage on the storage node and we can design the
circuit to withstand the effects of the coupling capacitance. However, when the stor-
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age node is connected to an arbitrary gate, that gate’s output is not necessarily corre-
lated to the storage node’s behavior, making it more difficult to ensure that the storage
node is not corrupted. The fact that the wire connecting the domino gate’s pulldown
network to the next gate (and the bulk of the storage node capacitance) may be long
and subject to crosstalk generated by wire-to-wire coupling capacitances only makes
this circuit less attractive.

Domino gates are also vulnerable to errors caused by charge sharing. Charge shar-
ing is a problem in any network of switches, and we will cover it in more detail in
Section 4.7. However, we need to understand the phenomenon in the relatively simple
form in which it occurs in domino gates. Consider the example of Figure 3-34. Csd,
the stray capacitance on the source and drain of the two pulldown transistors, can
store enough charge to cause problems. In the case when the a input is 1 and the b
input is 0, the precharge node should not be discharged. However, since a is one, the
pulldown connected to the storage node is turned on, draining charge from the storage
node into the parasitic capacitance between the two pulldowns. In a static gate, charge
stored in the intermediate pulldown capacitances does not matter because the power
supply drives the output, but in the case of a dynamic gate that charge is lost to the
storage node. If the gate has several pulldown transistors, the charge loss is that much
more severe. The problem can be averted by precharging the internal pulldown net-
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Figure 3-34: 
Charge sharing 
in a domino cir-
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work nodes along with the precharge node itself, although at the cost of area and com-
plexity.

Because dynamic gates rely on stored charge, they are vulnerable to charge leakage
through the substrate. The primary threat comes from designs which do not evaluate
some dynamic gates on every clock cycle; in these cases, the designer must verify that
the gates are always re-evaluated frequently enough to ensure that the charge stored in
the gates has not leaked away in sufficient quantities to destroy the gate’s value.

Domino gates cannot invert, and so this logic family does not form a complete logic,
as defined in Section 3.2. A domino logic network consists only of AND, OR, and
complex AND/OR gates. However, any such function can be rewritten using De Mor-
gan’s laws to push all the inverters to the forward outputs or backward to the inputs;
the bulk of the function can be implemented in domino gates with the inverters imple-
mented as standard static gates. However, pushing back the inversions to the primary
inputs may greatly increase the number of gates in the network.

3.6 Low-Power Gates

There are several different strategies for building low-power gates. Which one is
appropriate for a given design depends on the required performance and power as
well as the fabrication technology. In very deep submicron technologies leakage cur-
rent has become a major consumer of power.

Of course, the simplest way to reduce the operating voltage of a gate is to connect it to
a lower power supply. We saw the relationship between power supply voltage and
power consumption in Section 3.3.5:

• For large Vt, Equation 3-10 tells us that delay changes linearly with power
supply voltage.

• Equation 3-17 tells us that power consumption varies quadratically with
power supply voltage. 

This simple analysis tells us that reducing the power supply saves us much more in
power consumption than it costs us in gate delay. Of course, the performance penalty
incurred by reducing the power supply voltage must be taken care of somewhere in
the system. One possible solution is architecture-driven voltage scaling, which we
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will study in Section 8.5, which replicates logic to make up for slower operating
speeds.

It is also possible to operate different gates in the circuit at different voltages: gates on
the critical delay path can be run at higher voltages while gates that are not delay-crit-
ical can be run at lower voltages. However, such circuits must be designed very care-
fully since passing logic values between gates running at different voltages may run
into noise limits.

+

n-type
tree

Q Q'

clk

done

Figure 3-35: A DCSL gate.
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After changing power supply voltages, the next step is to use different logic gate
topologies. An example of this strategy is the differential current switch logic (DCSL)
gate [Roy00] shown in Figure 3-35 is related to the DCVS gate of Section 3.5.2. Both
use nMOS pulldown networks for both logic 0 and logic 1. However, the DCSL gate
disconnects the n-type networks to reduce their power consumption. This gate is pre-
charged with Q and Q’ low. When the clock goes high, one of Q or Q’ will be pulled
low by the n-type evaluation tree and that value will be latched by the cross-coupled
inverters.

After these techniques have been tried, two techniques can be used: reducing leakage
current and turning off gates when they are not in use. Leakage current is becoming
increasingly important in very deep submicron technologies. We studied leakage cur-
rents in Section 2.3.6. One simple approach to reducing leakage currents in gates is to
choose, whenever possible, don’t-care conditions on the inputs to reduce leakage cur-
rents. Series chains of transistors pass much lower leakage currents when both are off
than when one is off and the other is on. If don’t-care conditions can be used to turn
off series combinations of transistors in a gate, the gate’s leakage current can be
greatly reduced.

The key to low leakage current is low threshold voltage. Unfortunately, there is an
essential tension between low leakage and high performance. Remember from Equa-
tion 2-17 that leakage current is an exponential function of Vgs - Vt. As a result,
increasing Vt decreases the subthreshold current when the transistor is off. However,
a high threshold voltage increases the gate’s delay since the transistor turns on later in
the input signal’s transition. One solution to this dilemma is to use transistors with
different thresholds at different points in the circuit.

Turning off gates when they are not used saves even more power, particularly in tech-
nologies that exhibit significant leakage currents. Care must be used in choosing
which gates to turn off, since it often takes 100 µs for the power supply to stabilize
after it is turned on. We will discuss the implications of power-down modes in
Section 8.5. However, turning off gates is a very useful technique that becomes
increasingly important in very deep submicron technologies with high leakage cur-
rents.

The leakage current through a chain of transistors in a pulldown or pullup network is
lower than the leakage current through a single transistor [De01]. It also depends on
whether some transistors in the stack are also on. Consider the pulldown network of a
NAND gate shown in Figure 3-36. If both the a and b inputs are 0, then both transis-
tors are off. Because a small leakage current flows through transistor Ma, the parasitic
capacitance between the two transistors is charged, which in turns holds the voltage at
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that node above ground. This means that Vgs for is Ma is negative, thus reducing the
total leakage current. The leakage current is found by simultaneously solving for the
currents through the two transistors. The leakage current through the chain can be an
order of magnitude lower than the leakage current through a single transistor. But the
total leakage current clearly depends on the gate voltages of the transistors in the
chain; if some of the gate’s inputs are logic 1, then there may not be chains of transis-
tors that are turned off and thus have reduced input voltages. Algorithms can be used
to find the lowest-leakage input values for a set of gates; latches can be used to hold
the gates’ inputs at those values in standby mode to reduce leakage.

Figure 3-37 shows a multiple-threshold logic (MTCMOS) [Mut98] gate that can
be powered down. This circuit family uses low-leakage transistors to turn off gates
when they are not in use. A sleep transistor is used to control the gate’s access to
the power supply; the gated power supply is known as a virtual VDD. The gate uses
low-threshold transistors to increase the gate’s delay time. However, lowering the
threshold voltage also increases the transistors’ leakage current, which causes us to
introduce the sleep transistor. The sleep transistor has a high threshold to minimize
its leakage. The fabrication process must be able to build transistors with low and
high threshold voltages.

The layout of this gate must include both VDD and virtual VDD: virtual VDD is used to
power the gate but VDD connects to the pullup’s substrate. The layout must include
The sleep transistor must be properly sized. If the sleep transistor is too small, its
impedance would cause virtual VDD to bounce. If the sleep transistor is too large, the
sleep transistor would occupy too much area and it would use more energy when
switched.

out

a

b

Ma

Mb

Vx

Figure 3-36:  
Leakage through 
transistor stacks.



158 Logic Gates

It is important to remember that some other logic must be used to determine when a
gate is not used and control the gate’s power supply. This logic must be watch the
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state of the chip’s inputs and memory elements to know when logic can safely be
turned off. It may also take more than one cycle to safely turn on a block of logic.

Figure 3-39 shows an MTCMOS flip-flop. The storage path is made of high Vt tran-
sistors and is always on. The signal is propagated from input to output through low Vt
transistors. The sleep control transistors on the second inverter in the forward path to
prevent a short-circuit path between VDD and virtual VDD that could flow through the
storage inverter’s pullup and the forward chain inverter’s pullup.

A more aggressive method is variable threshold CMOS (VTCMOS) [Kur96],
which actually can be implemented in several ways. Rather than fabricating fixed-
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clk'

clk'
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storage path
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sleep'

Figure 3-39: An MTCMOS flip-flop.
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threshold voltage transistors, the threshold voltages of the transistors in the gate are
controlled by changing the voltages on the substrates. Figure 3-38 shows the structure
of a VTCMOS gate. The substrates for the p- and n-type transistors are each con-
nected to their own threshold supply voltages, VBB,p and VBB,n. VBB is raised to put
the transistor in standby mode and lowered to put it into active mode. Rather sophisti-
cated circuitry is used to control the substrate voltages.

VTCMOS logic comes alive faster than it falls asleep. The transition time to sleep
mode depends on how quickly current can be pulled out of the substrate, which typi-
cally tens to hundreds of microseconds. Returning the gate to active mode requires
injecting current back into the substrate, which can be done 100 to 1000 times faster
than pulling that current out of the substrate. In most applications, a short wake-up
time is important—the user generally gives little warning that the system is needed.

3.7 Delay Through Resistive Interconnect

In this section we analyze the delay through resistive (non-inductive) interconnect. In
many modern chips, the delay through wires is larger than the delay through gates, so
studying the delay through wires is as important as studying delay through gates. We
will build a suite of analytical models, starting from the relatively straightforward
Elmore model for an RC transmission line through more complex wire shapes. We
will also consider the problem of where to insert buffers along wires to minimize
delay.

3.7.1 Delay Through an RC Transmission Line

An RC transmission line models a wire as infinitesimal RC sections, each repre-
senting a differential resistance and capacitance. Since we are primarily concerned
with RC transmission lines, we can use the transmission line model to compute the
delay through very long wires. We can model the transmission line as having unit
resistance r and unit capacitance c. The standard schematic for the RC transmission
line is shown in Figure 3-40. The transmission line’s voltage response is modeled by a
differential equation:

. (EQ 3-23)1
r
---d

2
V

dx
2

--------- cdV
dt
-------=
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This model gives the voltage as a function of both x position along the wire and time.

The raw differential equation, however, is unwieldy for many circuit design tasks.
Elmore delay [Elm48] is the most widely used metric for RC wire delay and has
been shown to sufficiently accurately model the results of simulating RC wires on
integrated circuits [Boe93]. Elmore defined the delay through a linear network as the
first moment of the impulse response of the network:

. (EQ 3-24)

It is because only the first moment is used that Elmore delay is not sufficiently accu-
rate for inductive interconnect. However, in overdamped RC networks, the first
moment is sufficiently accurate.

Elmore modeled the transmission line as a sequence of n sections of RC, as shown in
Figure 3-41. In the case of a general RC network, the Elmore delay can be computed
by taking the sum of RC products, where each resistance R is multiplied by the sum
of all the downstream capacitors (a special case of the RC tree formulas we will intro-
duce in Section 3.7.2). Since all the transmission line section resistances and capaci-
tances in an n-section are identical, this reduces to

Figure 3-40: 
Symbol for a 
distributed RC 
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Figure 3-41: An RC transmission line for Elmore delay calculations.
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. (EQ 3-25)

One consequence of this formula is that wire delay grows as the square of wire length,
since n is proportional to wire length. Since the wire’s delay also depends on its unit
resistance and capacitance, it is imperative to use the material with the lowest RC
product (which will almost always be metal) to minimize the constant factor attached
to the n2 growth rate.

Although the Elmore delay formula is widely used, we will need some results from
the analysis of continuous transmission lines for our later discussion of crosstalk. The
normalized voltage step response of the transmission line can be written as

, (EQ 3-26)

where R and C are the total resistance and capacitance of the line. We will define
as the internal resistance of the driving gate and  as the load capacitance at the

opposite end of the transmission line.

Sakurai [Sak93] estimated the required values for the first-order estimate of the step
response as:

, (EQ 3-27)

, (EQ 3-28)

where RT and CT are  and , respectively.

So far, we have assumed that the wire has constant width. In fact, tapered wires pro-
vide lower delay. Consider the first resistance element in the transmission line—the
current required to charge all the capacitance of the wire must flow through this resis-
tance. In contrast, the resistance at the end of the wire handles only the capacitance at
the end. Therefore, if we can decrease the resistance at the head of the wire, we can
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decrease the delay through the wire. Unfortunately, increasing the resistance by wid-
ening the wire also increases its capacitance, making this a non-trivial problem to
solve.

Fishburn and Schevon [Fis95] proved that the optimum-shaped wire has an exponen-
tial taper. If the source resistance is R0, the sink capacitance is C0, and the unit resis-
tance and capacitance are Rs and Cs, the width of the wire as a function of distance is

, (EQ 3-29)

where W is the function that satisfies the equality . The advantage
of optimal tapering is noticeable. Fishburn and Schevon calculate that, for one exam-
ple, the optimally tapered wire has a delay of 3.72 ns while the constant-width wire
with minimum delay has a delay of 4.04 ns. In this example, the optimally tapered
wire shrinks from 30.7 µm at the source to 7.8 µm at the sink. 

Of course, exponentially-tapered wires are impossible to fabricate exactly, but it turns
out that we can do nearly as well by dividing the wire into a few constant width sec-
tions. Figure 3-42 shows that a few segments of wire can be used to approximate the
exponential taper reasonably well. This result also suggests that long wires which can
be run on several layers should run on the lowest-resistance layer near the driver and
can move to the higher-resistance layers as they move toward the signal sink.

3.7.2 Delay Through RC Trees

While analyzing a straight transmission line is straightforward, analyzing more com-
plex networks is harder. We may not always need an exact answer, either—a good
approximation is often enough considering the other uncertainties in IC design and
manufacturing. In the case of RC trees, as shown in Figure 3-43, we can quickly com-
pute accurate bounds on the delay through the wire [Rub83]. The wiring can be bro-
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164 Logic Gates

ken into an RC tree either by representing each branch by one RC lump or by
breaking a branch into several lumps.

When analyzing the RC tree, we assume the network has one input, which provides a
voltage step, and several outputs. We can find the delay through the wire by analyzing
the voltages at the output nodes and measuring the time between the 10% and 90%
points. While an exact solution for the output voltages for an arbitrary RC network is
complex, we can find accurate upper and lower bounds on the output voltage, and
from those voltage bounds we can compute delay bounds. We won’t perform a
detailed derivation of the bounds formulas, but will only try to provide an intuitive
explanation of their form. 

The capacitance at a node k is called C
k
. We are primarily concerned with resistances

along paths, notably the resistances along shared paths. If o is an output node and k is
an internal node, the resistance along the intersection of the paths from the input to o
and to k is called Rk0. In Figure 3-43,  because R

1
 is the only resistor

shared by the paths to 1 and O
1
. R00 is the total resistance from input to the output o

and similarly, Rkk is the total resistance from input to the internal node k. The simplest
time constant for the tree is

. (EQ 3-30)
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Each term in the summation is the time constant of the simple RC circuit built from
the capacitance at k and all the resistance from the input to k. Two other time con-
stants relative to the output o are important to the bounds:

; (EQ 3-31)

. (EQ 3-32)

The terms of TD0 compute the time constant of the capacitance at each node and the
resistance shared by the paths to k and o available to charge Ck. The terms of TR0
weight the terms of TD0 against the total resistance along the path to the output,
squaring Rk0 to ensure the value has units of time. Although we won’t prove it here,
these inequalities relate the voltage at each output, v0(t), and the voltage at an interior
node, vk(t), using the path resistances:

R
oo

[1-v
k
(t)] ≥ R

ko
[1-v

o
(t)] (EQ 3-33)
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[1-v
k
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kk
[1-v

o
(t)] (EQ 3-34)

Some intermediate steps are required to find the v
o
(t)’s; we will skip to the resulting

bounds, shown in Table 3-2. The bounds are expressed both as the voltage at a given
time and as the time required for the output to assume a specified voltage; the two for-
mulas are, of course, equivalent.

Do these bounds match our intuition about the circuit’s behavior? At t=0, the upper
bound for the output voltage is v

o
(0) = 1 - TD0. TD0 is formed by the time constants of

RC sections formed by all the resistance along the path to o that are also connected to
the kth capacitor, such as the highlighted resistors at a in the figure. Some of the cur-
rent through those resistors will go to outputs other than o, and so are not available to
charge the capacitors closest to o; the upper bound assumes that all their current will
be used to charge capacitors along the path from input to o. The lower bound is dom-
inated by TR0, which compares Rk0 

to the total resistance from the input to o; the ratio
Rk0/R00 gives a minimum resistance available to charge the capacitor Ck.

TDo RkoCk
k
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k
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Table 3-2  Rubinstein-Penfield-Horowitz voltage and time bounds for RC trees.
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3.7.3 Buffer Insertion in RC Transmission Lines

We do not obtain the minimum delay through an RC transmission line by putting a
single large driver at the transmission line’s source. Rather, we must put a series of
buffers equally spaced through the line to restore the signal. Bakoglu [Bak90] derived
the optimal number of repeaters and repeater size for an RC transmission line. As
shown in Figure 3-44, we want to divide the line into k sections, each of length l.
Each buffer will be of size h.

Let’s first consider the case in which h=1 and the line is broken into k sections. Rint
and Cint are the total resistance and capacitance of the transmission line. R0 is the
driver’s equivalent resistance and C0 its input capacitance. Then the 50% delay for-
mula is

(EQ 3-35)

The various coefficients are due to the distributed nature of the transmission line. We
find the minimum delay by setting . This gives the number of repeaters
as

. (EQ 3-36)

When we free the size of the repeater to be an arbitrary value h, the delay equation
becomes
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Figure 3-44: An RC transmission line with repeaters.
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. (EQ 3-37)

We solve for minimum delay by setting  and . This gives the optimal
values for k and h as

, (EQ 3-38)

. (EQ 3-39)

The total delay at these values is

. (EQ 3-40)

Example 3-3: Buffer insertion in an RC line

Let’s calculate the buffers required when a minimum-size inverter drives a metal 1
wire that is 2000 λ x 3 λ. In this case, R0 = 3.9kΩ and C0 = 0.68 fF while Rint = 53.3
Ω and Cint = 15 fF + 90.1 fF = 105.1 fF. The optimal number of buffers is

.

The optimal buffer size is

.

The 50% delay is
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.

If we increase the size of the driver by a factor of 4, reducing its resistance by 4X and
increasing its capacitance by 4X, what happens? k and T50% remain unchanged, but
the buffer size drops by a factor of 4.

3.7.4 Crosstalk Between RC Wires

Crosstalk is important to analyze because it slows down signals—the crosstalk noise
increases the signal’s settling time. Crosstalk can become a major component of delay
if wiring is not carefully designed.

Figure 3-45 shows the basic situation in which crosstalk occurs. Two nets are coupled
by parasitic capacitance. One net is the aggressor net that interferes with a victim
net through that coupling capacitance. A transition in the aggressor net is transmitted
to the victim net causing the victim to glitch. The glitch causes the victim net to take
longer to settle to its final value. In static combinational logic, crosstalk increases the

T50% 2.5 3900 0.68
-15×10 53.33 105.1

-15×10××× 9.64
-12×10= =

aggressor net

victim net

Figure 3-45: Aggressor and victim nets.
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delay across a net; in dynamic logic, crosstalk can cause the state of a node to flip,
causing a permanent error.

In this section we will develop basic analytical models for crosstalk; in Section 4.5.4
we will learn how to minimize crosstalk through routing techniques. The simplest
case to consider is a set of three wires [Sak93], as shown in Figure 3-46. The middle
wire carries the signal of interest, while the other two capactively inject crosstalk
noise. Each wire is of height T and width W, giving an aspect ratio of W/T. Each wire
is height H above the substrate and the wires are spaced a distance S apart. We must
consider three capacitances: C20 between the signal wire and the substrate, and two
capacitances of equal value, C21, to the two interfering wires. We denote the sum of
these three capacitances as C3. Sakurai estimates the RC delay through the signal wire
in arbitrary time units as

. (EQ 3-41)

Using this simple model, Figure 3-47 shows Sakurai’s calculation of relative RC
delay in arbitrary units for a 0.5 µm technology for the signal wire. This plot assumes
that T/H = 1 and that the aspect ratio varies from near 0 through 4; the delay is shown
for four different spacings between the wires, as given by the P/H ratio. This plot
clearly shows two important results. First, there is an optimum wire width for any
given wire spacing, as shown by the U shape of each curve. Second, the optimum
width increases as the spacing between wires increases.

That analysis assumes that the signals on the surrounding wires are stable, which is
the best case. In general, we must assume that the surrounding wires are in transition.
Consider the model of Figure 3-48, in which we have two RC transmission lines with
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Figure 3-46: A 
simple crosstalk 
model (after 
Sakurai 
[Sak93],  
1993 IEEE).
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a coupling capacitance Cc between them. A step is applied to each wire at t=0, result-
ing in response waveforms at the opposite ends of the transmission lines [Sak93]. We
assume that the unit resistances and capacitances of the two transmission lines are
equal. Defining differential voltages between the two wires helps simplify the voltage
response equations:

. (EQ 3-42)

The voltage responses of the transmission lines can then be written as
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, (EQ 3-43)

. (EQ 3-44)

If we let , , and , then the voltage responses V1 and V2 at
the ends of the transmission lines can be written as

, (EQ 3-45)

. (EQ 3-46)

3.8 Delay Through Inductive Interconnect

Copper wiring provides much better performance, particularly for long wires. How-
ever, copper wires have significant inductance. Analyzing inductive wiring is more
complicated than is analyzing RC transmission lines. RLC transmission lines have a
more complex response that requires more subtle interpretation as well as more effort.
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3.8.1 RLC Basics

First, let’s review the basics of RLC circuits. A single RLC section is shown in Figure
3-49. The poles of the RLC section are at 

(EQ 3-47)

where the damping factor  is defined as

. (EQ 3-48)

If the damping factor is greater than 1, the circuit is overdamped and responds to an
impulse or step by monotonically approaching the final voltage. If the damping factor
is less than 1, the circuit is underdamped and oscillates as it converges to the steady-
state voltage. Underdamped circuits create a new challenge for digital circuit analysis
because it is harder to find their rise times. For an underdamped circuit, we simply
have to find the first time the waveform crosses the desired voltage threshold, know-
ing that it will always remain above that level. To determine the rise time of an under-
damped circuit, we must find the last time at which the waveform falls below the
threshold.

The simplest form of an RLC transmission is the lossless LC line with zero resis-
tance. A signal propagates along an LC transmission line [Ram65] with velocity

. (EQ 3-49)

ω0 ξ ξ2
-1±

ξ

ξ R
2
--- C

L
----=

Vout

+

-

t

underdamped

overdamped

L

C

R Figure 3-49: 
An RLC circuit 
and its behav-
ior.

v 1

LC
-----------=



174 Logic Gates

Therefore, the propagation delay through an LC transmission line of length l is
. This value is a lower bound on the delay introduced by an RLC trans-

mission line.

3.8.2 RLC Transmission Line Delay

In today’s technology the resistance of the copper wiring cannot be ignored. Because
we are designing digital systems, we are interested in an RLC transmission line that is
being driven by a gate at one end and is connected to a receiving gate at the other end
[Ism00]. We will model the driving gate as a resistance Rtr and the load gate as a
capacitance CL. We will use R, L and C for the unit resistance, inductance, and capac-
itance and Rt, Lt, and Ct for the total resistance, inductance, and capacitance of the
line. The complete system is shown in Figure 3-50.

We can simplify our analysis by scaling time using the factor

. (EQ 3-50)

We normalize time by substituting . We also need two additional values:

, (EQ 3-51)
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Figure 3-50: An RLC transmission line with a driver and load.
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. (EQ 3-52)

where l is once again the length of the transmission line.

The complete derivation of the transmission line’s response is rather complex, but we
are most interested in the propagation delay through the wire to the load capacitance.
Ismail and Friedman showed that propagation delay is primarily a function of ,
which is defined as

. (EQ 3-53)

They used numerical techniques to approximate the 50% propagation delay of our
RLC transmission line as

. (EQ 3-54)

Figure 3-51 compares the response of RLC and RC wires for different values of .
These plots show that ignoring inductance results in very poor results for small values
of .

Figure 3-52 compares RC and RLC models for wires driven by inverters in a 0.25 µm
technology. This figure shows that ignoring inductance results in serious errors in
estimating delay for a variety of wire and driver configurations.

3.8.3 Buffer Insertion in RLC Transmission Lines

Ismail and Friedman also showed where to place buffers in an RLC transmission line
[Ism00]. The circuit is shown in Figure 3-53. The transmission line is divided into k
sections, each of length l/k. All the buffers are of the same size and are h times larger
than a minimum-size buffer; we use R0 and C0 to represent the source resistance and
load capacitance of a minimum-size buffer.

We can define
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. (EQ 3-55)

As in the RC case, we are interested in determining the optimum drive per stage hopt
and the optimum length of each stage’s wire kopt. This optimization problem cannot

RLC

RC

ζ = 0.20

Time (ps)

ζ = 0.44

Time (ps)

ζ = 0.94

Time (ps)

ζ = 1.31

Time (ps)

ζ = 1.68

Time (ps)

ζ = 2.62

Time (ps)

Figure 3-51: RC vs. RLC models for interconnect for various values of  (from Ismail and Friedman 
[Ism00]). © 2000 IEEE.
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be solved analytically, but Ismail and Friedman fitted curves to the functions to pro-
vide these formula:

, (EQ 3-56)

. (EQ 3-57)

3.9 References

Claude Shannon first described the relationship between Boolean logic and switching
functions for his Master’s thesis; his paper [Sha38] is still interesting reading. Hodges
and Jackson [Hod83] give an excellent introduction to device characteristics and dig-
ital circuit design, showing how to analyze CMOS logic gates as well as design more
complex digital circuits. Books by Rabaey [Rab96] and Uyemura [Uye92] are
detailed presentations of digital logic circuits; Rabaey’s book also covers bipolar cir-
cuits in detail. Geiger, Allen, and Strader [Gei90] give a good introduction to circuit
simulation as well as a number of important topics in circuit and logic design. Shoji
[Sho88] gives a very thorough analysis of delay through CMOS gates. Domino logic
was introduced by Krambeck, Lee, and Law [Kra82]. De et al [De01] concentrate on
leakage currents in CMOS logic.
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RLC

RC

l = 1 mm
w = 0.9 µm
h = 150
error = 11.4%

(a) Time (ps)

l = 2 mm
w = 3.35 µm
h = 150
error = 9.2%

(b) Time (ps)

l = 2 mm
w = 3.35 µm
h = 150
error = 22.2%

(c) Time (ps)

l = 4 mm
w = 3.35 µm
h = 150
error = 28%

(d) Time (ps)
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w = 3.35 µm
h = 300
error = 41%

(g) Time (ps)

l = 10 mm
w = 22.5 µm
h = 600
error = 58%
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l = 6 mm
w = 3.35 µm
h = 150
error = 29%

(e) Time (ps)

l = 10 mm
w = 3.35 µm
h = 150
error = 24%

(f) Time (ps)

Figure 3-52: CMOS gate driving a copper wire, using RC and RLC models (from Ismail and 
Friedman [Ism00]). © 2000 IEEE.



Problems 179

3.10 Problems

Use the parameters for the 0.5 µm process of Table 2-4 whenever process parameters
are required, unless otherwise noted.

3-1. Design the static complementary pullup and pulldown networks for these logic
expressions:

a)  (a + b + c)’.

b)  [(a + b)c]’.

c)  (a + b)(c + d).

3-2. Write the defining logic equation and transistor topology for each complex gate
below:

a)  AOI-22.

b)  OAI-22.

c)  AOI-212.

d)  OAI-321.

e)  AOI-2222.

3-3. Draw a layout for a two-input NOR gate using a static complementary circuit.
The gate should have its inputs in metal on the cell’s left hand side and its output in
metal on the right hand side.

3-4. Size the transistors in a three-input, static complementary NOR gate such that the
circuit’s rise and fall times are approximately equal.

3-5. What is the difference in fall time of a two-input, static complementary NOR
gate (assuming a minimum-size load capacitance) when one pulldown and when two
pulldowns are activated?

3-6. Compute the low-to-high transition time and delay (at a power supply voltage of
3.3V) using the τ model through a two-input NAND gate which drives one input of a
three-input NOR gate (both static complementary gates):

a)  Compute the load capacitance on the NAND gate, assuming the NOR
gate’s transistors all have W=6λ, L=2λ.

b)  Compute the equivalence resistance of appropriate transistors for the
low-to-high transition, assuming the pulldown transistors have W=6λ, L=2λ
and the pullups have W=6λ, L=2λ.
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c)  Compute the transition time and delay.

3-7. Compute, using the τ model, the high-to-low transition time and delay (at a
power supply voltage of 3.3V) of a two-input, static complementary NOR gate with
minimum-sized transistors driving these loads:

a)  An inverter with minimum-sized pullup and pulldown.

b)  An inverter whose pullup and pulldown are both of size W=10λ, L=10λ.

c)  A 2000λ × 2λ poly wire connected to an inverter with minimum-sized
pullup and pulldown (lump the wire and inverter parasitics into a single RC
section).

d)  Size the transistors in a two-input NOR gate such that the gate’s rise time
and fall time are approximately equal.

3-8. Redesign the layout of Figure 3-8 so that the inverter’s output displays roughly
symmetric rise and fall times.

3-9. Design a three-input, static complementary NAND gate, which implements this
function:

a)  Draw a switch-level schematic.

b)  Draw a stick diagram.

a  b  c  NAND(a,b,c)

0  0  0  1

0  0  1  1

0  1  0  1

0  1  1  1

1  0  0  1

1  0  1  1

1  1  0  1

1  1  1  0
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3-10. Here is a partial schematic for a two-input XOR gate:

The gate’s output is 1 when exactly one of its inputs is 1. The schematic is partial
because transistors in the diagram require both the true (a) and complement (a’) form
of the inputs, but the inverters which generate a’ and b’ from a and b are not shown.

a)  Write the truth table for the two-input XOR.

b)  Complete the schematic for this gate—compute the complement of the
inputs using inverters.

c)  Draw a stick diagram for the partial XOR schematic.

d)  Draw a stick diagram for the complete XOR schematic.

3-11. Draw a stick diagram for a three-input NOR gate.

3-12. Draw the stick diagram for a one-bit multiplexer cell built from static, comple-
mentary gates. The stick diagram should show the detail of the component NAND
gates—don’t draw the NAND gates as cells.

3-13. A two-input NAND gate drives a set of parallel inverters; all the logic gates use
minimum-sized transistors. Compare the NAND gate driving n inverters to the delay

+

a

b'

a

b

+

a'

b

a'

b'

out
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through a two-stage network, in which two inverters each drive n/2 fanout inverters.
What is the smallest value of n for which the buffered network has smaller delay than
the unbuffered network?

3-14. At what length does a minimum-width poly wire present a capacitive load equal
to a minimum-sized inverter? A minimum-width metal-1 wire?

3-15. Draw the circuit topology of a three-input NOR gate designed in pseudo-nMOS.

3-16. Design a two-input AND gate in domino logic:

a)  Draw a transistor schematic.

b)  Draw a stick diagram. 

3-17. For a pseudo-nMOS inverter:

a)  What VOL must be chosen such that the pulldown transistor of a subse-
quent pseudo-nMOS gate will be off when the inverter’s output is logic 1?

b)  What is the ratio Wp/Lp/Wn/Ln required to achieve this output voltage?

3-18. Draw a schematic for a 2-input NAND in MTCMOS logic.

3-19. Draw a schematic for these gates in DCVSL:

a)  2 input NAND;

b)  2 input NOR;

c)  3 input NAND.

3-20. Draw schematic for these gates in DCSL:

a)  2 input NAND;

b)  2 input NOR;

c)  3 input NAND;

3-21. Plot the Elmore delay for a metal 1 wire of size  using

a)  2 sections;

b)  4 sections;

c)  8 sections.

3-22. Plot the Elmore delay for a metal 2 wire of size  using

a)  2 sections;

b)  4 sections;

2000λ 3λ×

3000λ 4λ×
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c)  8 sections.

3-23. Compute the optimal number of buffers and buffer sizes for these RC (non-
inductive) wires when driven by a minimum-size inverter:

a)  metal 1 .

b)  metal 1 .

c)  metal 2 .

d)  metal 2 .

3000λ 3λ×
5000λ 3λ×
3000λ 4λ×
4000λ 4λ×




