
Once or twice a day, I get e-mail sug-
gesting improvements to C++ [1, 2].
Many suggestions are good in the

sense that if one became part of the language
or the Standard Library, it would make life
easier for a large number of programmers.
The suggestions are, of course, not all unique,
so my suggestion collection contains “only”
a hundred or so good ideas. The count de-
pends on how you cluster related suggestions.
You can see an incomplete list of suggested
language features at http://www.research.att
.com/~bs/evol-issues.html, and a wish list for
Standard Library suggestions at http://
lafstern.org/matt/wishlist.html. My basic opin-
ion is that the language wish list is far too
long, and that the libraries wish list is far too
modest.

So, imagine you were the ISO C++
Standards committee and could decree what
the next C++ Standard would look like. What
would you add? What would you remove?
What would you change? Seriously, take a
break from reading right now and make a list.
If you are still happy with your list when you
finish reading this article, add arguments for
your ideas and e-mail me your suggestions.

As we are revising the Standard, what are
we trying to achieve? We can’t expect perfect
agreement on this point; after all, who are
“we”? The C++ community is huge—well
over 3 million programmers according to IDC
last year—and incredibly diverse. We use just

about every computer and operation system
there is, work in just about every application
area there is, and in every country on earth.
This implies a diversity of needs and wishes,
and to me it implies that the further evolution
must be guided by a set of general principles
to avoid accidentally damaging a
subcommunity in the quest for improvements
for some other subcommunity.

In this article, I examine the main principles
we use to guide the development of C++0x,
the next version of the C++ Standard. Clearly,
these principles owe a lot to the “Rules of
Thumb” described in [3]. That is no accident.
My aim is to reinforce C++’s proven strengths
rather than try to use the new Standard to
encourage dramatic innovation. That said, it
is not my aim to leave C++ standing still—
as a living language, C++ must grow and
adapt. It must become a more effective tool
for solving current and future problems facing
the community. I switched to first person
singular here to emphasize that I’m just one
individual member of a committee that
contains many members. A huge range of the
opinions from the C++ community are
represented and what I say here appears to be
backed by a strong consensus. However, the
principles and their application to real
problems are open to much discussion,
interpretation, and experimentation. That is
how it should be.

So, why don’t we just accept all reasonable
suggestions to make everybody happy? There
are too many suggestions to analyze and
adequately specify. If we accepted all
suggestions there would be six or seven ways
of doing anything in C++, rather than just two
or three. There would be far too many features

to teach and most programmers would settle
into a small zone of comfort eschewing most
new features. It would be extremely difficult
to maintain the zero-overhead principle, partly
because the implementation effort would be
immense, partly because the implementation
of different features would interact, and partly
because many suggestions don’t consider
performance and rely on elaborate runtime
mechanisms. This, of course, presupposes that
the implementer community would accept
such a Standard. I wouldn’t bet on that. Please
remember these concerns when you want to
argue for adding “just my two new features.”

Design and Evolution
C++0x will be almost 100-percent compatible
with the existing Standard C++. Your existing
code will, with a very high probability, be
C++0x conforming if it was compliant with
C++98, the existing Standard. The best
guarantee for that is that the members of the
committee are collectively responsible for
much more old code than you are. However,
we care about the future, see the evolution of
C++ as a necessity, and want future code to
be easier to write, more elegant, easier to
maintain, and possibly even better performing
than is currently feasible.

We aim for compatibility but realize that
there may be cases where a large advantage
is worth paying for by small incompatibilities.
An obvious example is a new keyword. We
try to avoid incompatibilities, but the cost of
an absolute “no incompatibilities” rule would
be “no change” or obscure syntax for all new
features. I personally strongly dislike
workarounds, such as a __XXX keyword sup-
plemented by a macro:

Bjarne Stroustrup

The Design of C++0x
Reinforcing C++’s proven strengths,
while moving into the future

May 2005 • C/C++ Users Journal • www.cuj.com • 1

Bjarne Stroustrup is the College of Engineering
Professor in Computer Science at Texas A&M
University. He can be contacted at http://www
.research.att.com/~bs/.

#define XXX __XXX

The extra complexity of the workaround compared to a keyword
XXX serves users who do not want to change code containing an XXX
at the inconvenience of the rest of the community, added complexity
to learners, and the cheap amusement of people who don’t wish C++
well. There are, of course, cases where someone uses XXX and cannot
modify the code, but then there are alternatives—don’t upgrade to a
new compiler or use a backwards-compatibility switch.

The idea of language evolution is often contrasted to that of language
design. That’s a false dichotomy. Language evolution is design. It
differs from supposedly “from scratch” design by being more
constrained by respect for existing code and by benefiting from more
direct application of experience (feedback). In return for the difficulties
imposed by compatibility, we gain the advantages of relative ease of
adoption by a huge community and the smooth interoperation of old
and new features. By choosing evolution, we also avoid the problem
of accidentally eliminating useful programming techniques that just
happened to be outside our experience or focus.

Language design can become obsessed with minor notational issues.
However, a language feature is most significant if it makes a new
style of programming effective to its users. In the context of C++,
that means that the aim of language and Standard Library changes
must be to bring new programming and design techniques into
mainstream (industrial and educational) use. Only features that change
the way we think are really worth providing.

To sum up: The aim for C++0x is evolution constrained by a strong
need for compatibility. That aim of that evolution is to provide major
real-world improvements.

Generality and Specialization
Requests for specialized facilities and minor notational improvements
are very common. When provided, they rarely fail to win applause.
After all, if a feature is a direct solution to a problem and doesn’t
significantly interact with other facilities, it is easy to explain, often
easy to implement, and typically has a logically minimal expression
leading to very concise pieces of code. People comparing languages
using lists love such features. The snag is that the problems we face
are essentially infinite, so we need an infinity of such specialized

features. Examples are Pascal procedure parameters and C# delegates.
The alternative traditionally offered by C++ (and before that by K&R
C) is to provide very general features from which good programmers
can construct solutions to a wide variety of problems. Examples are
pointers and classes.

C++’s emphasis on general features (notably classes) has been its
main strength, and often its lack of specialized features (such as
“properties” and threads) has been seen as its main weakness.
Obviously, both observations can be simultaneously true. Nevertheless,
we must keep the focus on general features aimed at efficient
abstraction; the huge diversity of the C++ community requires that.
Features specifically tailored for, say, Windows application building
or embedded systems programming, would become a huge liability
if they did only what they were specialized for. C++0x will not be a
“Windows language” or a “web language” or even an “embedded
systems language.” It will be a general-purpose language that supports
those applications’ areas—and more—using a common set of facilities.

One important reason to favor general mechanisms over specialized
solutions to specific current problems is that the general mechanisms
are likely to help with yet-un-thought-of problems: They are insurance
against nasty surprises in the future. I don’t want a language that can
express only what I specifically designed it for.

The obvious areas where C++ could be improved for greater
generality is through better support for generic programming and
more flexible initialization/construction mechanisms (see example
section). It is also obvious that some support for concurrency is needed
as many forms of concurrent, parallel, and distributed programming
are becoming common. The diversity of such approaches and
techniques implies that no single mechanism can adequately cover
all applications. Thus, the obvious approach is to provide very simple
language mechanisms supported by libraries (built generic and object-
oriented techniques).

To sum up: The aim for C++0x is to supply general language
mechanisms that can be used freely in combination and to deliver
more specialized features as Standard Library facilities built from
language features available to all.

Experts and Novices
C++ has drifted towards becoming an “expert friendly” language. In
a gathering (in person or on the Web) of experts, it is hard to build a
consensus (or even interest) for something that “just” helps novices.
The general opinion (in such a gathering) is typically that the best we
can do for novices is to help them become experts. But it takes time
to become an expert and most people need to be reasonably productive
during the time it takes. More interesting, many C++ novices have
no wish or need to become experts in C++. If you are a physicist
needing to do a few calculations a week, an expert in some business
processes involving software, or a student learning to program, you
want to learn only as many language facilities as you need to get your
job done. You don’t want to become a language expert—you want
to be (or become) an expert in your own field and know just enough
of some programming language to get your work done. When
supported by suitable libraries, C++ can be used like that—it is widely
used like that. However, there are traps, pitfalls, and educational
approaches that make such “occasional use” of C++ unnecessarily
difficult. With a modest effort, C++0x can do much better in this area.

Consider a couple of trivial examples. Have you ever written
something like this:

2 • C/C++ Users Journal • www.cuj.com • May 2005

The Design of C++0x Bjarne Stroustrup

C++’s emphasis on general
features (notably classes) has

been its main strength

vector<vector<double>> v;

or this:

int i = extract_int(s); // s is a string, e.g. "12.37"

or this:

vector<int>::iterator p =
find(tbl.begin(),tbl.end(),x); // tbl is a const vector<int>

If not, I suspect you have either been using a different style of C++
with its own problems, or written very little C++. Admitting >> as the
end of two template argument lists solves the first problem. Providing
a Standard Library operation of parse a numeric value in a string
would save a novice the (significant) bother of discovering the (obvious
to experts) definition of a function such as extract_int(). Allowing
the type of p to be deduced from its initializer would solve the third
problem:

auto p = find(tbl.begin(),tbl.end(),x);
// tbl is a const vector<int>
// p becomes a vector<int>::const_iterator

The >> and auto solutions have been approved in principle for
C++0x. Attacking the problem of supporting “novices of all
backgrounds” requires work on both the language and the Standard
Library. Concerns for education will be central; see, for example, [4].

Overloading based on concepts (see example section), would allow
a further simplification:

auto p = find(tbl,x);
// tbl is a const vector<int>
// p becomes a vector<int>::const_iterator

Features added for novices (of all levels of expertise) should not
be isolated from the rest of the language, creating some sort of “novice’s
ghetto.” Like all features, they should scale to use in major systems,
interact smoothly with other features, and provide a path for learning
the complete language and Standard Library.

To sum up: C++0x must support novices of all backgrounds much
better than does current C++—both through less error-prone language
features and through more supportive libraries.

Type Safety
The key to elegant and efficient code is type safety using a flexible
and extensible type system. C++0x will not be able to make C++
completely type safe—that would require banning arrays, uninitialized
pointers, unions, narrowing conversions, C-style linking, and much
more. Doing so would also cause problems with hardware access as
needed in many embedded-systems applications. So what can we do?
Lack of type safety is the root cause of many problems with correctness
and with performance. For example:

void get_input(char* p)
{

char ch;
while (cin.get(ch) && !iswhite(ch)) *p++ = ch;
*p = 0;

}

That should send chills down your spine; it really is scary. Similarly,
if you are concerned with performance, you should be most unhappy
with this style of generic linked list:

struct Link {
Link* link;
void* data;

};
void my_clear(Link* p, int sz) // clear data of size sz
{

for (Link* q = p; q!=0; q = q->link) memset(q->data,0,sz);
}

What can we do? Basically, all we can do is to provide alternatives
to the unsafe practices and rely on tools (à la lint, but with better
knowledge of the C++ type system) to detect unsafe (“traditional”)
use. For example:

string s;
cin >> s;

This alternative completely bypasses the problems of that low-
level and sloppy get_input(), while being easier to use and (at least
potentially) as fast. Similarly:

template<class In> void my_stl_clear(In first, In last)
{

while (first!=last) *first++ = 0;
}

This is a complete alternative to my_clear(). What’s wrong with
my_clear()? It is a bit longer than my_stl_clear(), but that’s not the
point when we consider performance. The problem is a lack of type
information. Link::data is a void*, so it may point to any memory
location. This means that the compiler must assume that the write to
q->data (in memset()) may change the contents of *(q->link) or even
q->link itself. That basically disables the optimizer. Had link and
data had different static types, the compiler would have assumed
that they weren’t aliases. So, given a reasonable optimizer,
my_stl_clear() runs several times faster than my_clear(). In addition,
the use of memset() is an example of the workarounds that we must
use to access data through a void*: We often end up using a function

May 2005 • C/C++ Users Journal • www.cuj.com • 3

The Design of C++0x Bjarne Stroustrup

The most direct way of
addressing the problems caused

by lack of type safety is to
provide a range-checked

Standard Library based on
statically typed containers and

base the teaching of C++
on that

or even an indirectly called function. That, too, can be very
expensive [4].

The most direct way of addressing the problems caused by lack
of type safety is to provide a range-checked Standard Library based
on statically typed containers and base teaching of C++ on that.
This will not eliminate type errors—there will always be
programmers who decide to use the “hand-coded primitive” style,
programmers who must (for a variety of reasons) turn off checking
when they ship, and there will always be many, many areas that
are not covered by the Standard Library. The last problem will be
addressed by the Standard Library, setting a standard for other
libraries to meet.

A systematic use of range checking for a version of the Standard
Library implies the systematic use of exceptions, but that’s okay for
code that doesn’t involve hard real time. By now we know how to
deal with exceptions (for example, see “Appendix E” of [5]).

To sum up: C++0x will not be able to close all the loopholes in
the C++ type system, but it will not introduce new holes and it will
provide ways of avoiding inherently unsafe facilities—primarily
through the Standard Library providing (compile-time or runtime)
type-safe alternatives.

Performance and Machine Model
Performance based on a simple mapping of language features to
hardware has been crucial for C++’s success (as it was for C). With
the notable exception of exceptions, C++ requires minimal runtime
support. Support for RTTI (dynamic_cast and typeid) and free store
(new and delete) needs to be included only if you directly or indirectly
use those facilities. The possibility of eliminating potentially expensive
features is important in many application areas, notably embedded-
systems programming. Exception handling is getting quite efficient
these days, but unfortunately it is not predictable enough for hard
real-time programs. Where necessary, exception handling can be
disabled through compiler switches.

Nothing in C++0x will change this state of affairs. C++ is and
C++0x will remain directly applicable to the most performance and
resource-critical applications [6]. If C++0x adds facilities that require
runtime support, those features will be designed to ensure that the
additional support is required only by code that actually uses them.
That is, the zero-overhead principle: “what you don’t use, you don’t
pay for” and “what you use can be implemented without overhead
compared with hand coding” is still the bedrock of C++.

The C++ model of hardware is simple: Basic types map directly
to entities recognized by hardware, such as bytes, words, and registers.
Sequences of objects map directly into the hardware’s. Operations
directly reflect machine instructions and just about everything can be
done without spurious allocation, indirection, or circumlocution. The
challenge will be to fit concurrency into this picture.

To sum up: C++0x will follow the zero-overhead principle and
preserve a machine model that allows direct and efficient use of
essentially all hardware.

Language and Libraries
A language cannot support everything, but conceivably, a large set of
libraries could. Not every library should be standard. The C++ community
has ample room for both a large Standard Library and a libraries industry
(both commercial and open source). The committee’s libraries technical
report [7] raises the bar by providing facilities such as regular expression
matching and hash tables. The Boost community shows other examples
of what might become standard. However, even a reasonable portion of
that is not enough for my taste. I’d like to see the C++ Standard Library
become a much more extensive platform for systems programming,
including concurrency and support for geographical distribution.
“Distribution” is quite possibly beyond the committee’s capacity—we
are, after all, a group of volunteers with day jobs and without funds to
sustain development. However, we can and must dream.

“Libraries” is an area where the committee can afford to be
aggressive and opportunistic. Here, the community can provide
significant (and essential) support. A library differs from a language
feature in the crucial respect that it is not exclusive: If you don’t like
a library, you can use another. Also, a library can be developed, tested,
and even deployed without the involvement of compiler vendors.
C++’s mechanisms for expressing libraries—even in performance-
critical and resource-constrained areas—should not be underestimated.
For current examples, see Boost [8]. C++0x should be even more
effective for library building.

The most commonly requested new feature for C++ is a standard
GUI. The technical, economical, and political odds against that
happening are immense. However, so were the odds against a good
container and algorithms library for C++98. Then the STL appeared.
I hope for a miracle and dream of a simple and elegant standardized
interface to a variety of commercial and open-source GUI facilities.
This is not a reasonable dream, but (as many have pointed out) the
world is not changed by reasonable people.

To sum up: Library extensions will be preferred to language
extensions. Whereas we’ll be cautious and skeptical about language
extensions, we’ll be aggressive and opportunistic when it comes to
new libraries—especially for libraries that extend the range of portable
support for systems programming.

The Standard and the Real World
The ISO Standard is important to the C++ community, but it is
obviously just a small part of what influences C++ program
development. I don’t mention other languages here, but coexistence
with a huge number of systems and libraries is part of C++’s nature.
That influences our considerations about language features and libraries.
Furthermore, most suggestions for language and library extensions
start out as more or less disguised requests to “do what language X
does.” I guess that every good feature in any language has, at some

4 • C/C++ Users Journal • www.cuj.com • May 2005

The Design of C++0x Bjarne Stroustrup

Not every library should be
standard

point in time, been suggested for C++. As professionals, most
committee members are quite familiar with a wide range of languages
and our experiences do guide our design decisions. For the particularly
tricky issue of C++’s relationship to ISO C, see [9].

The development of C++0x must be timely and to gain acceptance
from vendors, new language features must be easier to implement
than the most difficult C++98 features [ISO, 1998].

As programmers—and especially as programmers of many
systems—we dislike dialects. However, there always has been and
there always will be dialects. Bindings to operating systems, databases,
middleware, and the like are a major source of nonstandard features.
Support for prestandard facilities is another. A third source is support
for “minority” needs; that is, facilities that are essential to a small
community, but irrelevant to a large majority of the C++ community.
My suggestion is for programmers to avoid nonstandard features
whenever possible. When that is not possible—as is the case in parts
of most major systems—I suggest localizing the use of the nonstandard
features and accessing them through interfaces written in ISO Standard
C++. One of the aims of improving the general abstraction mechanisms
of C++ is exactly to make such encapsulation of nonstandard code
easier. The alternative is vendor lock-in.

To sum up: We can’t do everything. What we do will be guided
by practical software-development concerns as well as compatibility
and language-design constraints.

An Example:
Supporting Generic Programming
Consider this code:

template<class T> class vector {
// ...
void push_back(const T&) { /* _ */ }
// ...

};

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

which is basically an example of the use of templates and the STL.
From extensive real-world use and many experiments, we can
consider the language facilities and programming techniques
involved successful and amazingly flexible; see the STL and Boost
for examples. In particular, the use of templates has become standard
where performance is essential. So, how can we do better for C++0x?
By “better” I mean extending what can be elegantly expressed
without loss of performance compared to C++98 and which remedies
problems with current use. In particular, can that vendor example
be improved? The repeated push_back() is verbose and ugly, the
lack of specification of the element type is a weakness leading to
spectacularly bad error messages, and ideally, I don’t want to expose
the implementation of push_back(). A better version of that code
would read:

template<Value_type T> class vector {
// ...
void push_back(const T&); // just the declaration
// ...

};

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

The Value_type used to specify the element type T is a “concept”;
it specifies what the vector assumes about T. Given that we can verify
that double is a Value_type, we can type check the definition of v
without seeing the definition of push_back(). We would need the
definition of push_back() if we wanted to inline, but that now becomes
an implementation detail. Concepts could give us separate checking
of translation units without imposing type hierarchies on template
arguments or performance penalties on template users.

How could we eliminate the repeated call of push_back()? We could
allow a vector to take an initializer list as its argument. That would
require the definition of a constructor taking such an initializer list.
For example:

template<Value_type T> class vector {
// ...
vector(const T*, const T*); // sequence constructor
// ...

};

vector<double> v = { 1.2, 2.3, 3.4 };

The detailed design of concepts and generalized use of initializer
lists are still under intense discussion. The point here is not the details,
but that I consider such facilities within the realistic grasp of C++0x.

Will This Happen?
I think C++0x will clearly reflect the rules of thumb outlined here.
Lack of resources (time, people, and the like) limit what we can
do and obviously (given such a large and complex task), we’ll
make a few mistakes. Also, some “random extensions” will slip
through the net and become “odd and isolated” features in the
language (much as enumerations are in C and C++). However,
there is reason to expect that C++0x will be a significant
improvement over current C++ for essentially all of its users and
for many more users still to come.

References
[1] “Standard for the C++ Programming Language,” ISO/IEC 14882.
[2] The C++ Standard (ISO/IEC 14882:2002), Wiley, 2003. ISBN 0-470-

84674-7.
[3]Stroustrup, B. The Design and Evolution of C++, Addison-

Wesley, 1994. ISBN 0-201-54330-3.
[4] Stroustrup, B. “Learning Standard C++ as a New Language,” C/C++

Users Journal, May 1999 (http://www.research.att.com/~bs/ papers.html).
[5] Stroustrup, B. The C++ Programming Language, Special Edition,

Addison-Wesley, 2000. ISBN 0-201-70073-5.
[6] “Technical Report on C++ Performance,” ISO.IEC PDTR 18015

(http://www.research.att.com/~bs/C++.html).
[7] “Technical Report on C++ Standard Library Extensions,” ISO/IEC

PDTR 19768.
[8] http://www.boost.org/.
[9] Stroustrup, B. “C and C++: Siblings,” “C and C++: A Case for Com-

patibility,” and “C and C++: Case Studies in Compatibility,” C/C++
Users Journal, July/August/September, 2002 (http://www.research
.att.com/~bs/papers.html). ❑

May 2005 • C/C++ Users Journal • www.cuj.com • 5

Bjarne Stroustrup The Design of C++0x

