
Maximum a Posteriori Decoding of Turbo Codes
by

Bernard Sklar

Introduction
The process of turbo-code decoding starts with the formation of a posteriori
probabilities (APPs) for each data bit, which is followed by choosing the data-bit
value that corresponds to the maximum a posteriori (MAP) probability for that data
bit. Upon reception of a corrupted code-bit sequence, the process of decision-
making with APPs allows the MAP algorithm to determine the most likely
information bit to have been transmitted at each bit time. The metrics needed for
the implementation of a MAP decoder are presented here, along with an example
to illustrate how these metrics are used.

Viterbi Versus MAP
The MAP algorithm is unlike the Viterbi algorithm (VA), where the APP for each
data bit is not available. Instead, the VA finds the most likely sequence to have
been transmitted. However, there are similarities in the implementation of the two
algorithms. When the decoded bit-error probability, PB, is small, there is very little
performance difference between the MAP and Viterbi algorithms. However, at low
values of bit-energy to noise-power spectral density, Eb/N0, and high values of PB,
the MAP algorithm can outperform decoding with a soft-output Viterbi algorithm
called SOVA [1] by 0.5 dB or more [2]. For turbo codes, this can be very
important, since the first decoding iterations can yield poor error performance. The
implementation of the MAP algorithm proceeds somewhat like performing a
Viterbi algorithm in two directions over a block of code bits. Once this bi-
directional computation yields state and branch metrics for the block, the APPs and
the MAP can be obtained for each data bit represented within the block. We
describe here a derivation of the MAP decoding algorithm for systematic
convolutional codes assuming an AWGN channel model, as presented by
Pietrobon [2]. We start with the ratio of the APPs, known as the likelihood ratio

ˆ
kdΛ() , or its logarithm, called the LLR, as shown below.

2 Maximum a Posteriori Decoding of Turbo Codes

1,

0,
ˆ

m
k

m
k m

k
m

d
λ

Λ =
λ

∑
∑

() (1)

1,

0,
ˆ log

m
k

m
k m

k
m

L d
 λ
 =  λ
  

∑
∑

() (2)

where i, m
kλ , the joint probability that data dk = i and state Sk = m conditioned on the

received binary sequence R1
N, observed from time k = 1 through some time N, is

described as

i, m
kλ = P (dk = i, Sk = m | R1

N) (3)

R1
N represents a corrupted code-bit sequence after it has been transmitted through

the channel, demodulated, and presented to the decoder in soft-decision form. In
effect, the MAP algorithm requires that the output sequence from the demodulator
be presented to the decoder as a block of N bits at a time. Let R1

N be written as
follows:

R1
N = {R1

k-1, Rk, RN
k + 1} (4)

To facilitate the use of Bayes’ theorem, Equation (3) is partitioned using the letters
A, B, C, D and Equation (4). Thus, Equation (3) can be written in this form:

{ { {
1

1 1= (, ,)
B C DA

k Ni, m
k k k k k+P d = i, S = m R R R−λ 1442443

(5)

Recall from Bayes’ theorem that

P (B A,C,D) P (A,C,D)P (A,B,C,D)P (A B,C,D)
P (B,C,D) P (B,C,D)

P (B A,C,D) P (D A,C) P (A,C)
P (B,C,D)

= =

=
(6)

Hence, application of this rule to Equation (5) yields

Maximum a Posteriori Decoding of Turbo Codes 3

() ()
() ()

1
1 1

1

k N Ni, m
k k k k k k k k

N
k k k

P R d i, S m, R P R d i, S m, R

P d i, S m, R P R

−
+= = = = =

× = =

λ
(7)

where { }1
N N
k k k+R R , R= . Equation (7) can be expressed in a way that gives greater

meaning to the probability terms contributing to i, m
kλ . In the sections that follow,

the three numerator factors on the right side of Equation (7) will be defined and
developed as the forward state metric, the reverse state metric, and the branch
metric.

The State Metrics and the Branch Metric
We define the first numerator factor on the right side of Equation (7) as the
forward state metric at time k and state m, and denote it as m

kα . Thus, for i = 1, 0:

() ()1 1
1 1
k N k

k k k kP R d i, S m, R P R S m− −= = = = m
kα (8)

Notice that dk = i and N
kR are designated as irrelevant, since the assumption that

Sk = m implies that events before time k are not influenced by observations after
time k. In other words, the past is not affected by the future, hence ()1

1
kP R − is

independent of the fact that dk = i and the sequence N
kR . However, since the

encoder has memory, the encoder state Sk = m is based on the past, so this term is
relevant and must be left in the expression. The form of Equation (8) is intuitively
satisfying, since it presents the forward state metric m

kα at time k as being a
probability of the past sequence; that is, dependent only on the current state
induced by this sequence, and nothing more. This should be familiar from the
convolutional encoder and its state representation as a Markov process [3].

Similarly, the second numerator factor on the right side of Equation (7) represents
a reverse state metric, m

kβ , at time k and state m, described below

() ()1 1 1
N N
k k k k k kP R d i, S m, R P R S f i, m+ + + == = = () 1

f i, m
k+β () (9)

where f (i, m) is the next state, given an input i and state m, and 1
f i, m
k+β () is the reverse

state metric at time k + 1 and state f (i, m). The form of Equation (9) is intuitively
satisfying since it presents the reverse state metric, 1

m
k+β , at future time k + 1, as

being a probability of the future sequence, which depends on the state (at future

IRRELEVANTIRRELEVANT

4 Maximum a Posteriori Decoding of Turbo Codes

time k + 1), which in turn is a function of the input bit and the state (at current time
k). This should be familiar because it engenders the basic definition of a finite-state
machine [3].

We define the third numerator factor on the right side of Equation (7) as the branch
metric at time k and state m, denoted ,i m

kδ . Thus, we write

()k k kP d = i, S = m, R i,m
kδ (10)

Substituting Equations (8) through (10) into Equation (7) yields the following more
compact expression for the joint probability:

1

1

m i, m f i, m
i, m k k k
k NP R

+δ βλ = α ()

()
(11)

Equation (11) can be used to express Equations (1) and (2) as follows:
1 1

1

0 0
1

ˆ
m , m f , m
k k k

m
k m , m f , m

k k k
m

d
+

+

δ β
Λ =

δ β

α
α

∑
∑

()

()() (12)

1 1
1

0 0
1

ˆ log

m , m f , m
k k k

m
k m , m f , m

k k k
m

L d
+

+

 δ β
 =  δ β
  

α
α

∑
∑

()

()() (13)

where ˆ
kdΛ() is the likelihood ratio of the kth data bit, and ˆ)kL d(, the logarithm of

ˆ
kdΛ() , is the LLR of the kth data bit, where the logarithm is generally taken to the

base e.

Calculating the Forward State Metric
Starting from Equation (8), m

kα can be expressed as the summation of all possible
transition probabilities from time k-1, as follows:

()
1

1
1 1 1

0

m k
k k k k

m j

P d j, S m , R S m−
− −

′ =

′α = = = =∑ ∑ (14)

We can rewrite 1
1
kR − as { }2

1 1,k
kR R−

− , and from Bayes’ theorem,

Maximum a Posteriori Decoding of Turbo Codes 5

()
()

1
2

1 1 1 1
0

1 1 1

m k
k k k k k

m j

k k k k

P R S m, d j, S m , R

P d j, S m , R S m

−
− − −

′ =

− − −

′α = = = =

′× = = =

∑ ∑
(15a)

() ()
1

2
1 1 1 1 1

0
() ()k

k k k k
j

P R S b j, m P d j, S b j, m , R−
− − − −

=

= = = =∑ (15b)

where b(j, m) is the state going backward in time from state m, via the previous
branch corresponding to input j. Equation (15b) can replace Equation (15a) since
knowledge about the state m′ and the input j, at time k-1, completely defines the
path resulting in state Sk = m. Using Equations (8) and (10) to simplify the notation
of Equation (15) yields the following:

1
(,) ()
1 1

0

m b j m j,b j, m
k k k

j
− −

=

α = α δ∑ (16)

Equation (16) indicates that a new forward state metric at time k and state m is
obtained by summing two weighted state metrics from time k - 1. The weighting
consists of the branch metrics associated with the transitions corresponding to data
bits 0 and 1. Figure 1a illustrates the use of two different types of notation for the
parameter alpha. We use (,)

1
b j m
k−α for the forward state metric at time k - 1, when

there are two possible underlying states (depending upon whether j = 0 or 1). And
we use m

kα for the forward state metric at time k, when the two possible transitions
from the previous time terminate on the same state m at time k.

6 Maximum a Posteriori Decoding of Turbo Codes

••

•

••

•

0
1

b , m
k-α ()

1
1

b , m
k-α ()

0 0
1

,b ,m
k−δ ()

1 1
1

,b ,m
k−δ ()

m
kα m

kβ
0 ,m
kδ

1,m
kδ

0
1

f ,m
k+β ()

1
1

f ,m
k+β ()1j =

0j =

1k − k k 1k +

1j =

0j =

(a) Forward State Metric: (b) Reverse State Metric:

(0) 0 (0) (1) 1 (1)
1 1 1 1

m b , m , b , m b , m , b , m
k k k k k− − − −α = α δ + α δ 0 0 1 1

1 1
m f , m ,m f , m ,m
k k k k k+ +β = β δ + β δ() ()

Where b(j, m) is the state going backward
in time corresponding to an input j

Where f (j, m) is the next state
given an input j and state m

Branch Metric:

()expi, m i i i, m
k k k k k kx u y vδ = π +

Figure 1

Graphical representation for calculating m
kα and m

kβ [2].

Calculating the Reverse State Metric

Starting from Equation (9), where (,)
1 1 1 (,)f i m N

k k kP R S f i m+ + + β = =  , we show m
kβ as

follows:

() ()1
m N N
k k k k k kP R S m P R , R S m+= = = =β (17)

We can express m
kβ as the summation of all possible transition probabilities to time

k + 1, as follows:

()
1

1 1
0

m N
k k k k k k

m j
P d j, S m , R , R S m+ +

′ =

′= = = =β ∑ ∑ (18)

Using Bayes’ theorem,

Maximum a Posteriori Decoding of Turbo Codes 7

()
()

1

1 1
0

1

m N
k k k k k k

m j

k k k k

P R S m, d j,S m , R

P d j, S m , R S m

+ +
′ =

+

′β = = = =

′× = = =

∑ ∑
(19)

Sk = m and dk = j in the first term on the right side of Equation (19) completely
defines the path resulting in Sk + 1 = f (j, m), the next state given an input j and state
m. Thus, these conditions allow replacing Sk + 1 = m′ with Sk = m in the second term
of Equation (19), yielding the following:

() ()
1

1 1
0

m N
k k k k k k

j
P R S f j, m P d j, S m, R+ +

=

= = = =β ∑ ()

1

1
0

j, m f j, m
k k

j
+

=

= δ β∑ () (20)

Equation (20) indicates that a new reverse state metric at time k and state m is
obtained by summing two weighted state metrics from time k + 1. The weighting
consists of the branch metrics associated with the transitions corresponding to data
bits 0 and 1. Figure 1b illustrates the use of two different types of notation for the
parameter beta. We use 1

f j, m
k+β () for the reverse state metric at time k + 1, when

there are two possible underlying states (depending on whether j = 0 or 1). And, we
use m

kβ for the reverse state metric at time k, where the two possible transitions
arriving at time k + 1 stem from the same state m at time k. Figure 1 presents a
graphical illustration for calculating the forward and reverse state metrics.

Implementing the MAP decoding algorithm has some similarities to implementing
the Viterbi decoding algorithm [3]. In the Viterbi algorithm, we add branch metrics
to state metrics. Then we compare and select the minimum distance (maximum
likelihood) in order to form the next state metric. The process is called add-
compare-select (ACS). In the MAP algorithm, we multiply (add, in the logarithmic
domain) state metrics by branch metrics. Then, instead of comparing them, we sum
them to form the next forward (or reverse) state metric, as seen in Figure 1. The
differences should make intuitive sense. With the Viterbi algorithm, the most likely
sequence (path) is being sought; hence there is a continual comparison and
selection to find the best path. With the MAP algorithm, a soft number (likelihood
or log-likelihood) is being sought; hence the process uses all the metrics from all
the possible transitions within a time interval, in order to come up with the best
overall statistic regarding the data bit associated with that time interval.

8 Maximum a Posteriori Decoding of Turbo Codes

Calculating the Branch Metric
We start with Equation (10), which is rewritten below:

()i, m
k k k kP d i, S m, Rδ = = =

() () ()k k k k k kP R d i, S m P S m d i P d i= = = = = = (21)

where Rk = xk, yk, xk is the noisy received data bit, and yk is the corresponding noisy
received parity bit. Since the noise affecting the data and the parity are
independent, the current state is independent of the current input, and can therefore
be any one of the 2υ states, where υ is the number of memory elements in the
convolutional code system. That is, the constraint length, K, of the code is equal to
υ + 1. Hence,

() 1
2k kP S m d i υ= = =

and

() ()
2

i
i,m k
k k k k k k kP x d i, S m P y d i, S m υ

πδ = = = = = (22)

where i
kπ is defined as P(dk = i), the a priori probability of dk.

The probability P(Xk = xk) of a random variable, Xk taking on the value xk, is related
to the probability density function (pdf) ()

kX kp x as follows [3]:

() ()
kk k X k kP X x p x dx= = (23)

For notational convenience, the random variable Xk, which takes on values xk, is
often termed “the random variable xk”, which represents the meanings of xk and ky
in Equation (22). Thus, for an AWGN channel where the noise has zero mean and
variance σ2, we use Equation (23) in order to replace the probability terms in
Equation (22) with their pdf equivalents, and we write

2 21 1 1exp exp
2 22 2 2

i i i, m
i,m k k k k k
k k k

x u y vdx dy
υ

      π − −   δ = − −      σ σπ σ π σ      
(24)

Maximum a Posteriori Decoding of Turbo Codes 9

where uk and vk represent the transmitted data bits and parity bits, respectively (in
bipolar form), and dxk and dyk are the differentials of xk and yk, and get absorbed
into the constant Ak, below. Note that the parameter i

ku represents data that has no
dependence on the state m. However, the parameter ,i m

kv represents parity, which
does depend on the state m, since the code has memory. Simplifying the notation
by eliminating all terms that will appear in both the numerator and denominator of
the likelihood ratio resulting in cancellation, we can write

()2

1expi, m i i i, m
k k k k k k kA x u y v δ = π + σ 

(25)

If we substitute Equation (25) into Equation (1), we obtain

Λ(ˆ
kd) =

1,
1

12

2 0,
0

12

exp
2exp

exp

m
m f , mk k
k k

mk
k m

m f , mk k
k k

m

y v
x

y v

+

+

  β σ   π  σ    β σ 

α

α

∑

∑

()

()
(26a)

2

2exp ek
k k

x = π π σ  (26b)

and

ˆ()kL d = L(dk) + Lc(xk) + ˆ()e kL d (26c)

where πk = π1/π0 is the input a priori probability ratio (prior likelihood), and e
kπ is

the output extrinsic likelihood, each at time k. In Equation (26b), one can think of
e
kπ as a correction term (due to the coding) that changes the input prior knowledge

about a data bit. In a turbo code, such correction terms are passed from one
decoder to the next, in order to improve the likelihood ratio for each data bit, and
thus minimize the probability of decoding error. Thus, the decoding process entails
the use of Equation (26b) to compute Λ(ˆ

kd) for several iterations. The extrinsic
likelihood, e

kπ , resulting from a particular iteration replaces the a priori likelihood
ratio, πk + 1, for the next iteration. Taking the logarithm of Λ(ˆ

kd) in Equation (26b)
yields Equation (26c) which shows that the final soft number $

kL d() is made up of

10 Maximum a Posteriori Decoding of Turbo Codes

three LLR terms—the a priori LLR, the channel-measurement LLR, and the
extrinsic LLR [3].

The MAP algorithm can be implemented in terms of a likelihood ratio Λ(ˆ
kd) as

shown in Equations (26a) and (26b). However, implementation using likelihood
ratios is very complex because of the multiplication operations that are required.
By operating the MAP algorithm in the logarithmic domain [2, 4] as described by
the LLR in Equation (26c), the complexity can be greatly reduced by eliminating
the multiplication operations.

MAP Decoding Example
Figure 2 illustrates a MAP decoding example. Figure 2a shows a simple systematic
convolutional encoder, with constraint length K = 3 and rate ½. The input data
consists of the sequence d = {1, 0, 0}, corresponding to the times k = 1, 2, 3. The
output code-bit sequence, being systematic, is formed by consecutively taking one
bit from the sequence u = {1, 0, 0} followed by one bit from the parity-bit
sequence v = {1, 0, 1}. In each case, the leftmost bit is the earliest bit. Thus, the
output sequence is 1 1 0 0 0 1, or in bipolar form the sequence is +1 +1 -1 -1 -1 +1.
Figure 2b shows the results of some postulated noise vectors, nx and ny, having
corrupted sequences u and v, so they are now designated as x = u + nx and
y = v + ny. As shown in Figure 2b, the demodulator outputs arriving at the decoder
corresponding to the times k = 1, 2, 3 have values of 1.5, 0.8, 0.5, 0.2, -0.6, 1.2.
Also shown are the a priori probabilities of a data bit being 1 or 0, designated as π1

and π0, respectively, and assumed to be equally likely for all k times. For this
example, all information is now available to calculate the branch metrics and the
state metrics, and enter their values onto the decoder trellis diagram of Figure 2c.
On the trellis diagram, each transition occurring between times k and k + 1
corresponds to a data bit, dk, that appears at the encoder input at the transition-start
time k. At time k, the encoder will be in some state m, and at time k + 1 it
transitions to a new state (possibly the same state). When such a trellis diagram is
used to depict a sequence of code bits (representing N data bits), the sequence is
characterized by N transition intervals and N + 1 states (from start to finish).

Maximum a Posteriori Decoding of Turbo Codes 11

CHANNEL

k= 1 k= 2 k= 3

 x = {1.5, 0.5, -0.6}

 y = {0.8, 0.2, 1.2}

π1 = π0 = {0.5, 0.5, 0.5}

u = {1,0,0}

v = {1,0,1}

d = 1,0,0

(a) Systematic Convolutional Encoder
(K = 3, Rate ½)

(b) Received Channel Bits
(bipolar) plus Noise

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

STATE

a = 00

b = 10

c = 01

d = 11

k = 1 k = 2 k = 3 k = 4

α = 1.0
β = 3.75

α = 0
β = 5.56

α = 0
β = 0.77

α = 0
β = 1.14

α = 0.05
β = 0.07

α = 5.0
β = 0.75

α = 0
β = 0.1

α = 0
β = 1.11

α = 0.01
β = 0.27

α = 0.05
β = 0

α = 1.25
β = 3.0

α = 5.0
β = 0

α = 3.75
β = 1.0

α = 0.11
β = 0

α = 15.01
β = 0

α = 0.45
β = 0

0.05 0.25 0.27

1.0 0.67 0.08

5.0 1.0 0.91

0.2
5

0.3
7 3.0

1.0 0.67 0.08

0.05
0.25 0.27

5.0
1.0

0.91

0.25 0.37 3.0

00

00

11

11

01

10

10

01

()1
3 75ˆ log 3 03

0 0035
.L d .

.
 = =  

 ()2
0ˆ log

3 75
L d

.
 = = −∞  

 ()3
0ˆ log

3 75
L d

.
 = = −∞  

(c) Decoder Trellis Diagram

Figure 2
Example of MAP decoding (K = 3, rate ½, systematic).

Calculating the Branch Metrics
We start with Equation (25), with 0.5i

k =π (for this exercise, data bits are assumed
equally likely for all time), and for simplicity assume that Ak = 1 for all time, and
that σ2 = 1. Thus i, m

kδ becomes

()0.5 expi, m i i, m
k k k k kx u y vδ = + (27)

12 Maximum a Posteriori Decoding of Turbo Codes

What basic receiver function does Equation (27) resemble? The expression “looks”
somewhat like a correlation process. At the decoder, a pair of receptions (data-bit
related xk and parity-bit related yk) arrive at each time k. The branch metric is
calculated by taking the product of the received xk with each of the prototype
signals uk, and similarly the product of the received yk with each of the prototype
signals vk. For each trellis transition, the magnitude of the branch metric will be a
function of how good a match there is between the pair of noisy receptions and the
code-bit meaning of that trellis transition. For k = 1, Equation (27) is used with the
data in Figure 2b for evaluating eight branch metrics (a transition from each state
m and for each data value i), as shown below. For notational simplicity, we
designate the trellis states as follows: a = 00, b = 10, c = 01, d = 11. Note that the
code-bit meaning, uk, vk, of each trellis transition is written on the transition in
Figure 2c (for k = 1 only) and was obtained from the encoder structure in the usual
way [3]. Also, for the trellis transitions of Figure 2c, the convention is used that
dashed lines and solid lines correspond to the underlying data bits 1 and 0,
respectively.

[]1 1
1 1 0.5 exp (1.5) (1) (0.8) (1) 5.0, m a , m b

k k
= =

= =δ = δ = + =

[]0 0
1 1 0 5 exp 1 5 1 0 8 1 0.05, m a , m b

k k . . .= =
= =δ = δ = + =() (-) () (-)

[]1 1
1 1 0 5 exp 1 5 1 0 8 1 1 0, m c , m d

k k= =
= =δ = δ = + =() () () (-)

[]0 0
1 1 0 5 exp 1 5 1 0 8 1 0.25, m c , m d

k k . . .= =
= =δ = δ = + =() (-) () ()

Next, we repeat these calculations using Equation (27) for the eight branch metric
values at time k = 2.

[]1 1
2 2 0.5 exp (0.5) (1) (0.2) (1) 1.0, m a , m b

k k
= =

= =δ = δ = + =

[]0 0
2 2 0.5 exp (0.5) (1) (0.2) (1) 0.25, m a , m b

k k
= =

= =δ = δ = − + − =

[]1 1
2 2 0.5 exp (0.5) (1) (0.2) (1) 0.67, m c , m d

k k
= =

= =δ = δ = + − =

[]0 0
2 2 0.5 exp (0.5) (-1) (0.2) (1) 0.37, m c , m d

k k
= =

= =δ = δ = + =

Again, we repeat the calculations for the eight branch metric values at time k = 3.

Maximum a Posteriori Decoding of Turbo Codes 13

[]1 1
3 3 0.5 exp (-0.6) (1) (1.2) (1) 0.91, m a , m b

k k
= =

= =δ = δ = + =

[]0 0
3 3 0.5 exp (-0.6) (-1) (1.2) (-1) 0.27, m a , m b

k k
= =

= =δ = δ = + =

[]1 1
3 3 0.5 exp (-0.6) (1) (1.2) (-1) 0.08, m c , m d

k k
= =

= =δ = δ = + =

[]1 1
3 3 0.5 exp (-0.6) (-1) (1.2) (1) 3.0, m c , m d

k k
= =

= =δ = δ = + =

Calculating the State Metrics
Once the eight values of ,i m

kδ are computed for each k, the forward state metrics m
kα

can be calculated with the help of Figures 1 and 2c and Equation (16), rewritten
below:

1
, (,) (,)

1
0

m j b j m b j m
k k k

j
+

=

α = δ α∑

Assume that the encoder starting state is a = 00. Then,

1 1 1 11.0 and 0m a m b m c m d
k k k k

= = = =
= = = =α = α = α = α =

2 (0.05)(1.0) (0.25)(0) 0.05m a
k

=
=α = + =

2 (5.0)(1.0) (1.0)(0) 5.0m b
k

=
=α = + =

2 2 0m c m d
k k

= =
= =α = α =

and so forth, as shown on the trellis diagram of Figure 2c. Similarly, the reverse
state metric m

kβ can be calculated with the help of Figures 1 and 2c and Equation
(20), rewritten below:

1
, (,)

1
0

m j m f j m
k k k

j
+

=

β = δ β∑

The data sequence and the code in this example was purposely chosen so that the
final state of the trellis at time k = 4 is the a = 00 state. Otherwise, it would be
necessary to use tail bits to force the final state into such a known state. Thus, for

14 Maximum a Posteriori Decoding of Turbo Codes

the example illustrated in Figure 2, knowing that the final state is a = 00, the
reverse state metrics can be calculated as follows:

4 4 4 41.0 and 0m a m b m c m d
k k k k

= = = =
= = = =β = β = β = β =

3 (0.27)(1.0) (0.91)(0) 0.27m a
k

=
=β = + =

3 3 0m b m d
k k

= =
= =β = β =

3 (3.0)(1.0) (0.08)(0) 3.0m c
k

=
=β = + =

and so forth. All the reverse state metric values are shown on the trellis of Figure
2c.

Calculating the Log-Likelihood Ratio
Now that the metrics δ, α, and β have all been computed for the code-bit sequence
in this example, the turbo decoding process can use Equations (12), (13), or (26)
for finding a soft decision, Λ(ˆ

kd) or $
kL d() , for each data bit. When using turbo

codes, this process can be iterated several times to improve the reliability of that
decision. This is generally accomplished by using the extrinsic likelihood
parameter of Equation (26b) to compute and recompute the likelihood ratio, Λ(ˆ

kd),
for several iterations. The extrinsic likelihood, e

kπ , of the last iteration replaces the
a priori likelihood ratio πk + 1 for the next iteration.

For this example, let’s use the metrics calculated above (with a single pass through
the decoder). We choose Equation (13) to compute the LLR for each data bit in the
sequence {dk}, and then to transform the resulting soft numbers into hard
decisions, we use the following decision rules:

ˆ 1kd = if ˆ) 0kL d >(, and ˆ 0kd = if ˆ) 0kL d <((28)

For k = 1, omitting some of the zero factors, we obtain

1
1.0 5.0 0.75 3.75ˆ log log 3.03

1.0 0.05 0.07 0.0035
L d

   = = =     
() x x

x x

For k = 2, again omitting some of the zero factors, we obtain

Maximum a Posteriori Decoding of Turbo Codes 15

2
(0.05 1.0 0) (5.0 1.0 0) 0ˆ log log

(0.05 0.25 0.27) (5.0 0.25 3.0) 3.75
L d

 +  = = = − ∞  +   
() x x x x

x x x x

For k = 3, we obtain

3
(0.01 0.91 0) (0.05 0.91 0) (1.25 0.08 0) (5.0 0.08 0)ˆ log
(0.01 0.27 1.0) (0.05 0.27 0) (1.25 3.0 1.0) (5.0 3.0 0)

0log
3.75

L d
 + + +=  + + + 

 = = − ∞  

() x x x x x x x x

x x x x x x x x

Using Equation (28) to make the final decisions about the bits at times k = 1, 2, 3,
the sequence is decoded as {1 0 0}. This is clearly correct, given the specified
input to the encoder.

Conclusion
We used basic statistical measures and techniques, such as joint probability, Bayes’
theorem, a priori and a posteriori probability, and likelihood, for describing how
the MAP algorithm is applied to turbo decoding. We then used a numerical
example to show how the trellis diagram is traversed in two directions, resulting in
soft-decision outputs.

References
[1] Hagenauer, J. and Hoeher, P., “A Viterbi Algorithm with Soft-Decision

Outputs and Its Applications,” Proc. GLOBECOM ’89, Dallas, Texas,
November 1989, pp. 1680-1686.

[2] Pietrobon, S. S., “Implementation and Performance of a Turbo/MAP
Decoder,” Int’l. J. Satellite Communications, vol. 15, Jan-Feb 1998, pp.
23-46.

[3] Sklar, B., Digital Communications: Fundamentals and Applications, Second
Edition (Upper Saddle River, NJ: Prentice-Hall, 2001).

[4] Robertson, P, Villebrun, E., and Hoeher, P., “A Comparison of Optimal and
Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain,”
Proc. of ICC ’95, Seattle, Washington, June 1995, pp. 1009-1013.

16 Maximum a Posteriori Decoding of Turbo Codes

About the Author
Bernard Sklar is the author of Digital Communications: Fundamentals and
Applications, Second Edition (Prentice-Hall, 2001, ISBN 0-13-084788-7).

