
Ordering Information:
Python How to Program
The Complete Python Training Course

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.

To learn more about our Python programming courses or any other Deitel in-
structor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 16, Section 16.5 of
Python How to Program. In this article, we discuss how to process an XML doc-
ument using the Simple API for XML (SAX). We present a small XML document
and implement a Python class that can parse the document with the SAX, using
features from the Python standard library. The Python program enables the user to
enter the filename of an XML document and a tag name and then searches the
document for any matching tags. Readers should be familiar with basic python,
exception handling, object-oriented programming (e.g., classes and inheritance)
and XML. The code examples included in this article show readers programming
examples using the DEITEL™ signature LIVE-CODE™ Approach, which presents
all concepts in the context of complete working programs followed by the screen
shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, June 7, 2002 3:53 PM

http://www.informit.com/deitel
http://www.informit.com/isapi/product_id~{F56702E9-6C18-44EF-B80C-274DD87A1233}/content/index.asp
http://www.informit.com/isapi/product_id~{F56702E9-6C18-44EF-B80C-274DD87A1233}/content/index.asp
http://www.informit.com/content/index.asp?product_id={14E4C51D-889B-490E-B966-C464360A55D6}
http://www.deitel.com/books/downloads.html#python
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#python
http://www.deitel.com/training
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
mailto:christi.kelsey@deitel.com

530 Python XML Processing Chapter 16

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 6/7/02

16.5 Parsing XML with xml.sax
In this section, we discuss the xml.sax package,1 which provides a set of modules for
SAX-based parsing. With SAX-based parsing, the parser reads the input to identify the
XML markup. As the parser encounters markup, the parser calls event handlers (i.e., meth-
ods). For example, when the parser encounters a start tag, the startElement event han-
dler is called; when the parser encounters character data, the characters event handler
is called. Programmers override event handlers to provide specialized processing of the
XML. Some common SAX event handlers are shown in Fig. 16.15.

Good Programming Practice 16.1
Review the Python on-line documentation for a complete listing of xml.sax event handlers.
This information can be found at:
www.python.org/doc/current/lib/content-handler-objects.html 16.1

Figure 16.16 demonstrates SAX-based parsing. This program allows the user to
specify a tag name to search for in an XML document. When the tag name is encountered,
the program outputs the element’s attribute-value pairs. Methods startElement and
endElement are overriden to handle the events generated when start tags and end tags
are encountered. Figure 16.17 contains the XML document used by this program.

1. Included in the standard library for Python versions 2.0 and higher.

Event Handler Description

characters(content) Called when the parser encounters character data. The
character data is passed as content to the event handler.

endDocument() Called when the parser encounters the end of the docu-
ment.

endElement(name) Called when the parser encounters an end tag. The tag
name is passed as an argument to the event handler.

startDocument() Called when the parser encounters the beginning of the
document.

startElement(name, attrs) Called when the parser encounters a start tag. The tag
name and its attributes (attrs) are passed as arguments to
the event handler.

Fig. 16.15Fig. 16.15Fig. 16.15Fig. 16.15 xml.sax event-handler methods.

1 # Fig. 16.16: fig16_16.py
2 # Demonstrating SAX-based parsing.
3
4 from xml.sax import parse, SAXParseException, ContentHandler
5
6 class TagInfoHandler(ContentHandler):
7 """Custom xml.sax.ContentHandler"""

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 SAX-based parsing example. (Part 1 of 3.)

pythonhtp1_SAX_article.fm Page 530 Friday, June 7, 2002 3:59 PM

Chapter 16 Python XML Processing 531

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 6/7/02

8
9 def __init__(self, tagName):

10 """Initialize ContentHandler and set tag to search for"""
11
12 ContentHandler.__init__(self)
13 self.tagName = tagName
14 self.depth = 0 # spaces to indent to show structure
15
16 # override startElement handler
17 def startElement(self, name, attributes):
18 """An Element has started"""
19
20 # check if this is tag name for which we are searching
21 if name == self.tagName:
22 print "\n%s<%s> started" % (" " * self.depth, name)
23
24 self.depth += 3
25
26 print "%sAttributes:" % (" " * self.depth)
27
28 # check if element has attributes
29 for attribute in attributes.getNames():
30 print "%s%s = %s" % (" " * self.depth, attribute,
31 attributes.getValue(attribute))
32
33 # override endElement handler
34 def endElement(self, name):
35 """An Element has ended"""
36
37 if name == self.tagName:
38 self.depth -= 3
39 print "%s</%s> ended\n" % (" " * self.depth, name)
40
41 def main():
42 file = raw_input("Enter a file to parse: ")
43 tagName = raw_input("Enter tag to search for: ")
44
45 try:
46 parse(file, TagInfoHandler(tagName))
47
48 # handle exception if unable to open file
49 except IOError, message:
50 print "Error reading file:", message
51
52 # handle exception parsing file
53 except SAXParseException, message:
54 print "Error parsing file:", message
55
56 if __name__ == "__main__":
57 main()

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 SAX-based parsing example. (Part 2 of 3.)

pythonhtp1_SAX_article.fm Page 531 Friday, June 7, 2002 3:59 PM

532 Python XML Processing Chapter 16

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 6/7/02

Lines 42–43 obtain the name of the XML document to parse and the tag name to locate.
Line 46 invokes xml.sax function parse, which creates a SAX parser object. Function
parse’s first argument is either a Python file object or a filename. The second argument
passed to parse must be an instance of class xml.sax.ContentHandler (or a
derived class of ContentHandler, such as TagInfoHandler), which is the main
callback handler in xml.sax. Class ContentHandler contains the methods
(Fig. 16.15) for handling SAX events.

If an error occurs during the opening of the specified file, an IOError exception
is raised, and line 50 displays an error message. If an error occurs while parsing the file
(e.g., if the specified XML document is not well-formed), parse raises a SAX-
ParseException exception, and line 54 displays an error message.

Our example overrides only two event handlers. Methods startElement and
endElement are called when start tags and end tags are encountered. Method start-
Element (lines 16–31) takes two arguments—the element’s tag name as a string and the
element’s attributes. The attributes are passed as an instance of class AttributesImpl,
defined in xml.sax.reader. This class provides a dictionary-like interface to the ele-
ment’s attributes.

Line 21 determines whether the element received from the event contains the tag name
that the user specified. If so, line 22 prints the start tag, indented by depth spaces, and line
24 increments depth by 3 to ensure that the next tag printed indented further.

Enter a file to parse: boxes.xml
Enter tag to search for: box

<box> started
 Attributes:
 size = big

 <box> started
 Attributes:
 size = medium
 </box> ended

 <box> started
 Attributes:
 type = small

 <box> started
 Attributes:
 type = tiny
 </box> ended

 </box> ended

</box> ended

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 SAX-based parsing example. (Part 3 of 3.)

pythonhtp1_SAX_article.fm Page 532 Friday, June 7, 2002 3:59 PM

Chapter 16 Python XML Processing 533

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 6/7/02

Lines 29–31 print the element’s attributes. The for loop first obtains the attribute
names by invoking the getNames method of attributes. The loop then prints each
attribute name and its corresponding value—obtained by passing the current attribute name
to the getValue method of attributes.

Method endElement (lines 34–39) executes when an end tag is encountered and
receives the end tag’s name as an argument. If name contains the tag name specified by the
user, line 38 decreases the indent by decrementing depth. Line 39 prints that the specified
end tag was found.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 16.17: boxes.xml -->
4 <!-- XML document used in Fig. 16.16 -->
5
6 <boxlist>
7
8 <box size = "big">
9 This is the big box.

10
11 <box size = "medium">
12 Medium sized box
13 <item>Some stuff</item>
14 <thing>More stuff</thing>
15 </box>
16
17 <parcel />
18 <box type = "small">
19 smaller stuff
20 <box type = "tiny">tiny stuff</box>
21 </box>
22
23 </box>
24
25 </boxlist>

Fig. 16.17Fig. 16.17Fig. 16.17Fig. 16.17 XML document used in Fig. 16.16.

pythonhtp1_SAX_article.fm Page 533 Friday, June 7, 2002 3:59 PM

