
Ordering Information: Python How to Program

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html
To learn more about Deitel instructor-led corporate training delivered at your lo-
cation, visit www.deitel.com/training or contact Christi Kelsey at (978) 461-
5880 or e-mail: christi.kelsey@deitel.net.

Note from the Authors: This article is an excerpt from Chapter 9, Section 9.12.5
of Python How to Program. This article describes how to implement properties
for a class. Properties are new to the Python language--they were added in version
2.2. Properties enable the programmer to provide access methods on a per-at-
tribute basis. We discuss how to define get, set and delete methods for a private
attribute and how to create properties that use these methods to manipulate the at-
tributes. Readers should be familiar OOP (constructors, the object reference argu-
ment, private attributes, class customization) and raising exceptions. The code
examples included in this article show readers examples using the Deitel™ signa-
ture LIVE-CODE™ Approach, which presents all concepts in the context of com-
plete working programs followed by the screen shots of the actual inputs and
outputs.

informITheaderpage.fm Page 39 Thursday, April 25, 2002 11:31 AM

http://www.informit.com/isapi/product_id~{EC7AB4B5-873F-426D-8F08-D6CCAA0C1C1F}/content/index.asp
http://www.deitel.com/training
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
http://www.informIT.com/deitel
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/books/downloads.html#python
mailto: christi.kelsey@deitel.net

476 Object-Oriented Programming: Inheritance Chapter 9

9.13 Properties
In versions of Python before 2.2, classes and types were two distinct programming ele-
ments. The differences between types and classes contradicts the notion that classes are
programmer-defined types. Many Python programmers, as well as the developers of the
language, also disliked the limitations of this needless difference between classes and
types. For example, because types are not classes, programmers cannot inherit from built-
in types to take advantage of Python’s high-level data manipulation capabilities provided
by lists, dictionaries and other objects.

Beginning with Python 2.2, the nature and behavior of classes will change, to remove the
difference between types and classes. In all future 2.x releases, a programmer can distinguish
between two kinds of classes—so-called “classic” classes that behave in the same manner as
the classes in previous versions of Python, and “new” classes that exhibit new behavior.
Python 2.2 provides type object to define new classes. Any class that directly or indirectly
inherits from object exhibits all the behaviors defined for a new class, which include many
advanced object-oriented features. In this article, we investigate properties—a new ability
that allows programmers to define access methods on a per-attribute basis.

Properties describe object attributes. A program accesses an object’s properties using
object-attribute syntax. However, a class definition creates a property by specifying up to
four components—a get method that executes when a program accesses the property’s
value, a set method that executes when a program sets the property’s value, a delete method
that executes when a program deletes the value (e.g., with keyword del) and a docstring
that describes the property. The get, set and delete methods can perform the tasks that main-
tain an object’s data in a consistent state. Thus, properties provide an additional way for
programmers to control access to an object’s data1.

Figure 9.17 defines class Time to contain attributes hour, minute and second as
properties. The constructor (lines 7–12) creates private attributes __hour, __minute
and __second. Typically, classes that use properties define their attributes to be private,
to hide the data from clients of the class. The clients of the class then access the public prop-
erties of that class, which get and set the values of the private attributes.

1. Other ways to control attribute access include programmer-defined access methods, special meth-
ods __getattr__, __setattr__ and __delattr__ and special method
__getattribute__ (for classes that inherit from object). Chapters 7–9 of Python How to
Program cover these, and other, object-oriented subjects.

1 # Fig. 9.17: TimeProperty.py
2 # Class Time with properties
3
4 class Time(object):
5 """Class Time with hour, minute and second properties"""
6
7 def __init__(self, hourValue, minuteValue, secondValue):
8 """Time constructor, takes hour, minute and second"""
9

10 self.__hour = hourValue
11 self.__minute = minuteValue
12 self.__second = secondValue

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Properties—class Time. (Part 1 of 3.)

pythonhtp1_09_article.fm Page 476 Friday, April 19, 2002 1:58 PM

Chapter 9 Object-Oriented Programming: Inheritance 477

13
14 def __str__(self):
15 """String representation of an object of class Time"""
16
17 return "%.2d:%.2d:%.2d" % \
18 (self.__hour, self.__minute, self.__second)
19
20 def deleteValue(self):
21 """Delete method for Time properties"""
22
23 raise TypeError, "Cannot delete attribute"
24
25 def setHour(self, value):
26 """Set method for hour attribute"""
27
28 if 0 <= value < 24:
29 self.__hour = value
30 else:
31 raise ValueError, \
32 "hour (%d) must be in range 0-23, inclusive" % value
33
34 def getHour(self):
35 """Get method for hour attribute"""
36
37 return self.__hour
38
39 # create hour property
40 hour = property(getHour, setHour, deleteValue, "hour")
41
42 def setMinute(self, value):
43 """Set method for minute attribute"""
44
45 if 0 <= value < 60:
46 self.__minute = value
47 else:
48 raise ValueError, \
49 "minute (%d) must be in range 0-59, inclusive" % value
50
51 def getMinute(self):
52 """Get method for minute attribute"""
53
54 return self.__minute
55
56 # create minute property
57 minute = property(getMinute, setMinute, deleteValue, "minute")
58
59 def setSecond(self, value):
60 """Set method for second attribute"""
61
62 if 0 <= value < 60:
63 self.__second = value

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Properties—class Time. (Part 2 of 3.)

pythonhtp1_09_article.fm Page 477 Friday, April 19, 2002 1:58 PM

478 Object-Oriented Programming: Inheritance Chapter 9

Method deleteValue (lines 20–23) raises an exception to prevent a client from
deleting an attribute. We use this method to create properties that the client cannot delete.
Each property (hour, minute and second) defines corresponding get and set methods.

64 else:
65 raise ValueError, \
66 "second (%d) must be in range 0-59, inclusive" % value
67
68 def getSecond(self):
69 """Get method for second attribute"""
70
71 return self.__second
72
73 # create second property
74 second = property(getSecond, setSecond, deleteValue, "second")

Python 2.2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from TimeProperty import Time
>>>
>>> time1 = Time(5, 27, 19)
>>> print time1
05:27:19
>>> print time1.hour, time1.minute, time1.second
5 27 19
>>>
>>> time1.hour, time1.minute, time1.second = 16, 1, 59
>>> print time1
16:01:59
>>>
>>> time1.hour = 25
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "TimeProperty.py", line 31, in setHour
 raise ValueError, \
ValueError: hour (25) must be in range 0-23, inclusive
>>>
>>> time1.minute = -3
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "TimeProperty.py", line 48, in setMinute
 raise ValueError, \
ValueError: minute (-3) must be in range 0-59, inclusive
>>>
>>> time1.second = 99
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "TimeProperty.py", line 65, in setSecond
 raise ValueError, \
ValueError: second (99) must be in range 0-59, inclusive

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Properties—class Time. (Part 3 of 3.)

pythonhtp1_09_article.fm Page 478 Friday, April 19, 2002 1:58 PM

Chapter 9 Object-Oriented Programming: Inheritance 479

Each get method takes only the object reference (self) as an argument and returns the
property’s value. Each set method takes two arguments—the object-reference argument
and the new value for the property. Lines 25–32 define the set method (setHour) for the
hour property. If the new value is within the appropriate range, the method assigns the
new value to the property; otherwise, the method raises an exception. Method getHour
(lines 34–37) is the hour property’s get method, which simply returns the value of the cor-
responding private attribute (__hour)Built-in function property (line 40) takes as
arguments a get method, a set method, a delete method and a docstring and returns a prop-
erty for the class. Line 40 creates the hour property by passing to function property
methods getHour, setHour and deleteValue and the string "hour". Clients
access properties, using the dot (.) access operator. When the client uses a property as an
rvalue, the property’s get method executes. When the client uses the property as an lvalue,
the property’s set method executes. When the client deletes the property with keyword
del, the property’s delete method executes. The remainder of the class definition (lines
42–74) defines get and set methods for properties minute (created in line 57) and
second (created in line 74).

Software Engineering Observation 9.1
Function property does not require that the caller pass all four arguments. Instead, the
caller can pass values for keyword arguments fget, fset, fdel and doc to specify the
property’s get, set and delete methods and the docstring, respectively. 9.1

The interactive session in Fig. 9.17 highlights the benefits of properties. A client of the
class can access an object’s attributes, using the dot access operator, but the class author
also can ensure data integrity. Properties have added advantages over implementing
methods __setattr__, __getattr__ and __delattr__. For example, class
authors can state explicitly the attributes for which the client may use the dot access nota-
tion. Additionally, the class author can write separate get, set and delete methods for each
attribute, rather than using if/else logic to determine which attribute to access.

pythonhtp1_09_article.fm Page 479 Friday, April 19, 2002 1:58 PM

