Ordering Information: Python How to Program

* View the complete Table of Contents
* Readthe Preface
* Download the Code Examples

To view al the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informl T.com/deitel.

Tofollow the Deitel publishing program, sign-up now for the DEITEL™ Buzz ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformI T.html
To learn more about Deitel instructor-led corporate training delivered at your lo-
cation, visit www.deitel.com/training or contact Christi Kelsey at (978) 461-
5880 or e-mail: christi.kelsey@deitel.net.

Note from the Authors: This article is an excerpt from Chapter 9, Section 9.12.5
of Python How to Program. This article describes how to implement properties
for aclass. Properties are new to the Python language--they were added in version
2.2. Properties enable the programmer to provide access methods on a per-at-
tribute basis. We discuss how to define get, set and delete methods for a private
attribute and how to create properties that use these methods to manipulate the at-
tributes. Readers should be familiar OOP (constructors, the object reference argu-
ment, private attributes, class customization) and raising exceptions. The code
examplesincluded in this article show readers examples using the Deitel ™ signa-
ture LIve-CoDE™ Approach, which presents al concepts in the context of com-
plete working programs followed by the screen shots of the actual inputs and
outputs.

http://www.informit.com/isapi/product_id~{EC7AB4B5-873F-426D-8F08-D6CCAA0C1C1F}/content/index.asp
http://www.deitel.com/training
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
http://www.informIT.com/deitel
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/books/downloads.html#python
mailto: christi.kelsey@deitel.net

é pythonhtpl_09_article.fm Page 476 Friday, April 19, 2002 1:58 PM

A

.

476 Object-Oriented Programming: Inheritance Chapter 9

9.13 Properties

In versions of Python before 2.2, classes and types were two distinct programming ele-
ments. The differences between types and classes contradicts the notion that classes are
programmer-defined types. Many Python programmers, as well as the developers of the
language, also disliked the limitations of this needless difference between classes and
types. For example, because types are not classes, programmers cannot inherit from built-
in types to take advantage of Python’s high-level data manipulation capabilities provided
by lists, dictionaries and other objects.

Beginning with Python 2.2, the nature and behavior of classeswill change, to removethe
difference between types and classes. In all future 2.x releases, a programmer can distinguish
between two kinds of classes—so-called “ classic” classes that behave in the same manner as
the classes in previous versions of Python, and “new” classes that exhibit new behavior.
Python 2.2 providestype obj ect to define new classes. Any classthat directly or indirectly
inheritsfrom obj ect exhibitsal the behaviorsdefined for anew class, which include many
advanced object-oriented features. In this article, we investigate properties—a new ability
that allows programmers to define access methods on a per-attribute basis.

Properties describe object attributes. A program accesses an object’ s properties using
object-attribute syntax. However, a class definition creates a property by specifying up to
four components—a get method that executes when a program accesses the property’s
value, a set method that executes when aprogram setsthe property’ svalue, adelete method
that executes when a program del etes the value (e.g., with keyword del) and a docstring
that describesthe property. The get, set and delete methods can perform the tasksthat main-
tain an object’s data in a consistent state. Thus, properties provide an additional way for
programmers to control access to an object’ s data.

Figure 9.17 defines class Ti nme to contain attributes hour , mi nut e and second as
properties. The constructor (lines 7-12) creates private attributes __hour, __ m nute
and __second. Typically, classes that use properties define their attributes to be private,
to hidethe datafrom clients of the class. The clients of the classthen access the public prop-
erties of that class, which get and set the values of the private attributes.

1

2

3

4 class Time(object):

5

6

7 def __init__(self, hourVal ue, mnuteVal ue, secondVal ue):
8

9

10 sel f.__hour = hourVal ue

11 self. __mnute = m nuteVal ue
12 sel f.__second = secondVal ue

Fig. 9.17 Properties—class Ti me. (Part 1 of 3.)

1. Other waysto control attribute access include programmer-defined access methods, special meth-
ods _ getattr__, _ setattr__ and _ _delattr__ and speciad method
__getattribute__ (for classesthat inherit from obj ect). Chapters 7-9 of Python How to
Program cover these, and other, object-oriented subjects.

%

—

W2

Chapter 9

72
| é pythonhtpl_09_article.fm Page 477 Friday, April 19, 2002 1:58 PM

Object-Oriented Programming: Inheritance

a77

14 def _ str__(self):

17 return
18 (self.__hour,

20 def del eteVal ue(sel

23 rai se TypeError,

% \
self.__mnute, self.__second)

f):

25 def setHour(self, value):

28 i f <= val ue <
29 self. _hour =
30 el se:

val ue

31 rai se ValueError, \

34 def getHour(self):

% val ue

37 return self.__hour

40 hour = property(getHour, setHour, del eteVal ue,

42 def setMnute(self,

45 i f <= val ue <
46 self. __mnute
47 el se:

val ue):

= val ue

48 rai se Val ueError, \

51 def getM nute(self

):

54 return self.__mnute

57 m nute = property(getM nute, setM nute, deleteVal ue,

59 def set Second(self,

62 if <= val ue <
63 sel f.__second

val ue):

= val ue

% val ue

Fig. 9.17 Properties—class Ti me. (Part 2 of 3.)

%

%

é pythonhtpl_09_article.fm Page 478 Friday, April 19, 2002 1:58 PM

478 Object-Oriented Programming: Inheritance Chapter 9

64 el se:
65 rai se Val ueError, \
66 % val ue

68 def get Second(self):

71 return self.__second

74 second = property(getSecond, set Second, del eteVal ue,)

Pyt hon 2. 2b2 (#26, Nov 16 2001, 11:44:11) [MSC 32 bit (Intel)] on w n32

Type "hel p*, "copyright", "credits" or "license" for nore information
>>>

>>> from Ti meProperty inmport Tine

>>>

>>> timel = Time(5 27, 19)
>>> print tinel

05: 27: 19
>>> print tinmel. hour, tinel.mnnute, tinel.second
5 27 19
>>>
>>> tinel. hour, tinel. mnute, tinel.second = 16, 1, 59
>>> print timel
16: 01: 59
>>>
>>> tinel. hour = 25
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "TimeProperty. py", line 31, in setHour

rai se Val ueError, \
Val ueError: hour (25) nust be in range 0-23, inclusive
>>>

>>> timel. mnute = -3
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "TineProperty. py", line 48, in setMnute

rai se Val ueError, \
Val ueError: mnute (-3) nust be in range 0-59, inclusive
>>>
>>> tinel.second = 99

Traceback (nost recent call last):
File "<stdin>", line 1, in ?
File "TineProperty. py", line 65, in setSecond

rai se Val ueError, \
Val ueError: second (99) nmust be in range 0-59, inclusive

Fig. 9.17 Properties—class Ti me. (Part 3 of 3.)

Method del et eVal ue (lines 20-23) raises an exception to prevent a client from
deleting an attribute. We use this method to create properties that the client cannot delete.
Each property (hour , mi nut e and second) defines corresponding get and set methods.

ﬂ%

é pythonhtpl_09_article.fm Page 479 Friday, April 19, 2002 1:58 PM

A

Chapter 9 Object-Oriented Programming: Inheritance 479

Each get method takes only the object reference (sel f) as an argument and returns the
property’s value. Each set method takes two arguments—the object-reference argument
and the new vaue for the property. Lines 25-32 define the set method (set Hour) for the
hour property. If the new value is within the appropriate range, the method assigns the
new value to the property; otherwise, the method raises an exception. Method get Hour

(lines34-37) isthehour property’ s get method, which simply returnsthe value of the cor-
responding private attribute (__hour)Built-in function property (line 40) takes as
arguments a get method, a set method, a delete method and a docstring and returns a prop-
erty for the class. Line 40 creates the hour property by passing to function pr operty
methods get Hour, set Hour and del et eVal ue and the string " hour " . Clients
access properties, using the dot (.) access operator. When the client uses a property as an
rvalue, the property’ s get method executes. When the client uses the property as an Ivalue,
the property’s set method executes. When the client deletes the property with keyword
del , the property’s delete method executes. The remainder of the class definition (lines
42—74) defines get and set methods for properties i nut e (created in line 57) and
second (created in line 74).

Function pr oper t y does not require that the caller pass all four arguments. Instead, the
caller can pass values for keyword arguments f get , f set , f del and doc to specify the
property’ s get, set and del ete methods and the docstring, respectively.

Theinteractive sessionin Fig. 9.17 highlightsthe benefits of properties. A client of the
class can access an object’ s attributes, using the dot access operator, but the class author
also can ensure data integrity. Properties have added advantages over implementing
methods __setattr__, getattr__ and _ delattr__. For example, class
authors can state explicitly the attributes for which the client may use the dot access nota-
tion. Additionally, the class author can write separate get, set and delete methods for each
attribute, rather than using i f /el se logic to determine which attribute to access.

—

