
Ordering Information:
C How to Program, 3/e

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.

To learn more about our C/C++ training courses or any other Deitel instructor-
led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 3, Section 3.12 of
C How to Program, 3/e. In this article, we discuss unary increment and decrement
operators in the C language. This is an introductory-level article and readers
should be familiar with basic C concepts. The code examples included in this ar-
ticle show readers examples using the DEITEL™ signature LIVE-CODE™ Ap-
proach, which presents all concepts in the context of complete working programs
followed by the screen shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, June 28, 2002 9:51 AM

http://www.informit.com/deitel
http://www.informit.com/isapi/product_id~{F56702E9-6C18-44EF-B80C-274DD87A1233}/content/index.asp
http://www.informit.com/content/index.asp?product_id={B2AB0348-1602-4DFD-B258-AEDCE5F4F776}
http://www.deitel.com/books/downloads.html#cpp
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#cpp
http://www.deitel.com/training
http://www.deitel.com/books/cHTP3/cHTP3_toc.pdf
http://www.deitel.com/books/cHTP3/cHTP3_preface.pdf
mailto:christi.kelsey@deitel.com

Chapter 3 Structured Program Development in C 1

©2001 Prentice Hall. All Rights Reserved.

3.12 Increment and Decrement Operators
C also provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 3.12. If a variable c is incremented by 1, the increment op-
erator ++ can be used rather than the expressions c = c + 1 or c += 1. If increment or dec-
rement operators are placed before a variable, they are referred to as the preincrement or
predecrement operators, respectively. If increment or decrement operators are placed after
a variable, they are referred to as the postincrement or postdecrement operators, re-
spectively. Preincrementing (predecrementing) a variable causes the variable to be incre-
mented (decremented) by 1, then the new value of the variable is used in the expression in
which it appears. Postincrementing (postdecrementing) the variable causes the current val-
ue of the variable to be used in the expression in which it appears, then the variable value
is incremented (decremented) by 1.

Figure 3.13 demonstrates the difference between the preincrementing and the postin-
crementing versions of the ++ operator. Postincrementing the variable c causes it to be
incremented after it is used in the printf statement. Preincrementing the variable c
causes it to be incremented before it is used in the printf statement..

Operator Sample expression Explanation

++ ++a Increment a by 1 then use the new value of a in
the expression in which a resides.

++ a++ Use the current value of a in the expression in
which a resides, then increment a by 1.

-- --b Decrement b by 1 then use the new value of b in
the expression in which b resides.

-- b-- Use the current value of b in the expression in
which b resides, then decrement b by 1.

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 The increment and decrement operators

1 /* Fig. 3.13: fig03_13.c
2 Preincrementing and postincrementing */
3 #include <stdio.h>
4
5 int main()
6 {
7 int c = 5;
8
9 printf("%d\n", c);

10 printf("%d\n", c++); /* postincrement */
11 printf("%d\n\n", c);
12
13 c = 5;
14 printf("%d\n", c);

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 Showing the difference between preincrementing and postincrementing.
(part 1 of 2)

2 Structured Program Development in C Chapter 3

©2001 Prentice Hall. All Rights Reserved.

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

Good Programming Practice 3.10
Unary operators should be placed directly next to their operands with no intervening spaces. 3.10

The three assignment statements in Fig. 3.10

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect. It is
only when a variable appears in the context of a larger expression that preincrementing and
postincrementing have different effects (and similarly for predecrementing and post-
decrementing).

Only a simple variable name may be used as the operand of an increment or decrement
operator.

15 printf("%d\n", ++c); /* preincrement */
16 printf("%d\n", c);
17
18 return 0; /* successful termination */
19 }

 5
 5
 6

 5
 6
 6

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 Showing the difference between preincrementing and postincrementing.
(part 2 of 2)

Chapter 3 Structured Program Development in C 3

©2001 Prentice Hall. All Rights Reserved.

Common Programming Error 3.10
Attempting to use the increment or decrement operator on an expression other than a simple
variable name, e.g., writing ++(x + 1) is a syntax error. 3.10

Good Programming Practice 3.11
The ANSI standard generally does not specify the order in which an operator’s operands will
be evaluated (although we will see exceptions to this for a few operators in Chapter 4). There-
fore the programmer should avoid using statements with increment or decrement operators in
which a particular variable being incremented or decremented appears more than once. 3.11

