Ordering Information:
Per|l How to Program
The Complete Perl Training Course

* View the complete Table of Contents

« Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informl T.com/deitel.

Tofollow the Deitel publishing program, sign-up now for the DEITEL™ Buzz ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformlI T.html.

To learn more about our Per| programming cour ses or any other Deitel instruc-
tor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 15, Sections 15.5
and 15.6 of Perl How to Program. This article introduces manipulating databases
using the Perl programming language. Readers should be familiar with Perl pro-
gramming and SQL. In the article we provide an example of using Perl to select
information from a database created in M S Access. The code examples included
in this article show readers programming examples using the DEITEL™ signature
Live-CobE™ Approach, which presents all concepts in the context of complete
working programs followed by the screen shots of the actual inputs and outputs.

http://www.informit.com/deitel
http://www.informit.com/content/index.asp?product_id={74CCB11E-1185-49CE-AFB4-5D5C8C2BDF90}
http://www.informit.com/content/index.asp?product_id={0ADE24C6-35B4-4AF6-AE88-3A02293B9348}
http://www.deitel.com/books/downloads.html#perl
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#perl
http://www.deitel.com/training
http://www.deitel.com/books/perlHTP1/perlHTP1_toc.html
mailto:christi.kelsey@deitel.com

é perlhtpl_15.fm Page 1 Friday, June 14,2002 10:01 AM

A

.

@ﬁ

1 Databases: SQL and Perl Database Interface (DBI) Chapter 15

15.5 Introduction to DBI

Many of today’s Web sites provide their users with services such as the ability to purchase
items online, store files remotely and access e-mail. These Web sites require databases to
authenti cate the usersthat access the sites and to maintain data about those users. Databases
have become a crucial part of distributed applications. A distributed application is a pro-
gram that divides the work needed to be done across multiple computer systems. For in-
stance, one computer might be responsible for managing a Web site and another for a
database management system. A distributed application uses both computersto perform the
task of retrieving aresult set from a database and displaying those results on another com-
puter—typically called aclient.

The Perl Database Interface (DBI) provides ameans of accessing relational databases
from Perl programs. There are many different implementations of relational databases (e.g.,
MySQL, Microsoft Access, Oracle, etc.). A software program—called adriver—helps pro-
grams access a database. Each database implementation requires its own driver and each
driver can have different syntax for its use in a program. To make using all these different
databases easier, an interface was created to provide uniform access to all databases. This
interface is known as DBI. The database vendors create drivers for their databases that can
receive interactions through DBI and process those interactions in a database-specific
manner. DBI is database independent, so it allows for easy migration from one DBMS to
another. While DBI is not the only interface available for database connectivity in Perl, it
isthe most widely used.

DBI uses an object-oriented interface. The DBI objects are known as handles. There
are three different handle types—driver handles, database handles and statement handles.
Driver handles encapsulate the driver for the database; they are rarely used in ascript. Data-
base handles encapsul ate a specific connection to adatabase. They can be used to send SQL
statements to a database. Statement handles encapsulate specific SQL statements and the
results returned from them. Any number of database handles can be created with a driver
handle and any number of statement handles can be created with a database handle.

% DBI functions do not use the standard predefined Per| error variables. Generally, when DBI
function callsfail they returnundef and storetheerror stringin $DBI : : errstr. Theer-
ror number is stored in $DBI : : er r . Each handle also storesits error information, which
can be accessed through method callser r st r and er r on the handle.

15.6 Working with DBI

In this article, we demonstrate a basic example using DBI. We will be accessing an ODBC
database, specifically, a Microsoft Access database, Enpl oyee. mdb, which contains
data about various employees at acompany. Note that this database needs to be registered
asavaid ODBC sourcefirst. Also, the DBl . pmmodule and the ODBC driver must bein-
stalled before the programs that interact with Microsoft Access databases can be executed.
The Perl resources posted at our Web site, ww. dei t el . com include step-by-step in-
structions on registering a Microsoft Access database as an ODBC data source on a Win-
dows system, installing the DBI . pm module and installing the ODBC database driver

© Copyright 1992-2002 by Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

ﬁ%

—

*ﬁ%

@g perlhtpl_15.fm Page 2 Friday, June 14,2002 10:01 AM

A

.

@ﬁ

Chapter 15

(DBD: : ODBC). You can find the resources for all our books by clicking the Downloads/
Resources link.

In this DBI program (Fig. 15.18), the contents of the employee database are outpuit.
The use DBl statement on line 7 loads the DBl module and line 8 loads the database
driver, DBD: : ODBC.

To create a connection to a database, we pass a data source name (DSN) to method
connect (line10). A data source nametellsconnect whereto find the database and is

Databases: SQL and Perl Database Interface (DBI)

constructed in the following format for ODBC databases:

interface name: database driver: data source name

1
2
3
4
5 use
6 use
7 use
8 use
9

10 ny $dbh = DBI->connect (

war ni ngs;
strict;

DBI ;

DBD: : CDBC,

13 ny $sth =

di e(" Cannot

16 $sth->execute() or

19 ny @rray;

21 while (@rray = $sth->fetchrow array()) {
wite();

23 }

26 warn($DBI::errstr)

27 $dbh->di sconnect ();
28 $sth->finish();

30 fornat
31 OR<<<KL@ELLKLLKL LKL @KLK LKL L L @ LLLL @B LLLLLLLLLL

32 Sarray[0], S$array[1], $Sarray[2], $array[3], Sarray[4]

0004
0001
0002
0003

Fig. 156.18 Using DBI to query a database.

© Copyright 1992-2002 by Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

M chael
Jim
Kat e
Wendy

STDOUT =

Bl ack
Bl ue

G een
Wi te

di e("Cannot execute statement:

1965
1943
1977
1959

" DBI : ODBC: enpl oyeeDB",
di e("Could not make connection to database:

$dbh- >prepare(g{ SELECT * FROM enpl oyee }) or
prepare statenent: ", $dbh->errstr(),

if $DBl::err;

222-44-8888
999- 85- 3698
111-21- 7454
000- 84- 3196

ﬁ%

$bBI::errstr")

$sth->errstr(),

ﬁ

é perlhtpl_15.fm Page 3 Friday, June 14,2002 10:01 AM

A

.

3 Databases: SQL and Perl Database Interface (DBI) Chapter 15

In this program, the interface name is DBI , the database driver is ODBC and the data
source name is enpl oyeeDB. Method connect returns a database handle that is as-
signed to $dbh. The second and third argumentsto connect represent the username and
password. We use empty strings here, because the database does not have a username and
password. As with every DBI method call, the remainder of the statement (line 11) deter-
mines if the connection was successful and prints an error message and terminates the pro-
gram if not.

Line 13 creates a statement handle by calling the database handle’ spr epar e method.
This method prepares the database driver for a statement. which can be executed multiple
times later. The SQL query is passed to the pr epar e statement as a string. The SQL in
this case is selecting all the fields from the table. The statement handle returned by method
pr epar e isassigned to $st h.

After astatement has been prepared, and before the results can be processed, the state-
ment must be executed. Thisis done by calling the statement handle' s execut e method
(linel6). Theresult set generated by the query is stored with the statement handle. Each row
of the result set is retrieved from the object and placed into an array by calling method
fetchrow_ array (line21). We use functionwr i t e to print each row using the format
defined on lines 30-33. Method f et chr ow_ar r ay returns false after al the rows have
been read, thusending thewhi | e loop. Other functionsfor extracting theresults of aquery
are shown in Fig. 15.19.

Because f et chr ow_ar r ay returns false when there are no more rows and when
there isan error fetching data, we need to check for an error after the end of the loop (line
26). If an error occurs during the fetching of the data, $DBI : : er r isdefined. So, wewarn
the user that an error did occur on line 26. Once we are finished with a database connection,
wecloseit by using method di sconnect (line27). If you do not need to fetch all the data
from a statement handle, you should call method f i ni sh to indicate when you are done.
When all the data of aresult set isfetched, method f i ni sh iscalled automatically.

Good Programming Practice 15.1

@ Per| will close statement and database handles for you when they go out of scope. It is, how-
ever, best to close themexplicitly by using thef i ni sh or di sconnect method when you

are done using them.
Return
Function Name Type Description
fetchrow_ array array Returns asingle row in an array.
fetchrow arrayref array ref Returns asingle row in an array reference.
f et chrow_hashr ef hash ref Returns asingle row in a hash reference with
fieldname value pairs.
fetchal | _arrayref array ref Returns the whole result set in areference to an

array. The array consists of referencesto arrays
that hold the rows of data.

Fig. 156.19 Functions for extracting the results of a query.

© Copyright 1992-2002 by Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

ﬁ%

—

*ﬁ%

