
Ordering Information:
Python How to Program
The Complete Python Training Course

• View the complete Table of Contents

• Read the Preface

• Download the Code Examples

To view all the Deitel products and services available, visit the Deitel Kiosk on
InformIT at www.informIT.com/deitel.

To follow the Deitel publishing program, sign-up now for the DEITEL™ BUZZ ON-
LINE e-mail newsletter at www.deitel.com/newsletter/subscribeinformIT.html.

To learn more about our Python programming courses or any other Deitel in-
structor-led corporate training courses that can be delivered at your location, visit
www.deitel.com/training, contact our Director of Corporate Training Programs
at (978) 461-5880 or e-mail: christi.kelsey@deitel.com.

Note from the Authors: This article is an excerpt from Chapter 6, Sections 6.1 and
6.3 of Python How to Program. This article discusses the Common Gateway In-
terface (CGI), which allows Web servers to execute programs that generate dy-
namic content. We discuss the difference between client-side scripting and
server-side scripting and the difference between static and dynamic Web content.
We present the discussion in the context of two Python CGI programs. Readers
should be familiar with basic python programming (e.g., functions, dictionaries
and models) and XHTML. The code examples included in this article show read-
ers programming examples using the DEITEL™ signature LIVE-CODE™ Ap-
proach, which presents all concepts in the context of complete working programs
followed by the screen shots of the actual inputs and outputs.

informITheaderpage.fm Page 39 Friday, June 14, 2002 10:02 AM

http://www.informit.com/deitel
http://www.informit.com/isapi/product_id~{EC7AB4B5-873F-426D-8F08-D6CCAA0C1C1F}/content/index.asp
http://www.informit.com/content/index.asp?product_id={14E4C51D-889B-490E-B966-C464360A55D6}
http://www.deitel.com/books/downloads.html#python
http://www.deitel.com/newsletter/subscribeinformIT.html
http://www.deitel.com/training/offerings.html#python
http://www.deitel.com/training
http://www.deitel.com/books/pythonHTP1/pythonHTP1_toc.pdf
http://www.deitel.com/books/pythonHTP1/pythonHTP1_preface.pdf
mailto:christi.kelsey@deitel.com

308 Introduction to the Common Gateway Interface (CGI) Chapter 6

6.3 Simple CGI Script
Two types of scripting are used in Web-based applications: server-side and client-side. CGI
scripts are an example of server-side scripts because they run on the server. Programmers
have greater control over Web-page content when using server-side scripts, because server-
side scripts can manipulate databases and other server resources. An example of client-side
scripting is JavaScript. Client-side scripts can access the browser’s features, manipulate
browser documents, validate user input and much more.

Scripts executed on the server usually generate custom responses for clients. For
example, a client might connect to an airline’s Web server and request a list of all flights
from Boston to San Antonio between September 19th and November 5th. The server que-
ries the database, dynamically generates XHTML content containing the flight list and
sends the XHTML to the client. This technology allows clients to obtain the most current
flight information from the database by connecting to an airline’s Web server.

Server-side scripting languages have a wider range of programmatic capabilities than
their client-side equivalents. For example, server-side scripts can access the server’s file
directory structure, whereas client-side scripts cannot access the client’s file directory
structure.

Server-side scripts also have access to server-side software that extends server func-
tionality. These pieces of software are called COM components for Microsoft Web servers
and modules for Apache Web servers. Components and modules range from programming
language support to counting the number of times a Web page has been visited (known as
the number of hits).

Software Engineering Observation 6.1
Server-side scripts are not visible to the client; only the content the server delivers is visible
to the client. 6.1

As long as a file on the server remains unchanged, its associated URL will display the
same content in clients’ browsers each time the file is accessed. For the content in the file
to change (e.g., to include new links or the latest company news), someone must alter the
file manually (probably with a text editor or Web-page design software) then load the
changed file back onto the server.

Manually changing Web pages is not feasible for those who want to create interesting
and dynamic Web pages. For example, if you want your Web page always to display the
current date or weather, the page would require continuous updating. The alternative is to
use server-side scripting to generate content dynamically, as the user visits the site. We can
accomplish this with the Common Gateway Interface (CGI).

CGI describes a set of protocols through which applications (commonly called CGI
programs or CGI scripts) interact with Web servers and indirectly with Web browsers (e.g.,
client applications). A Web server is a specialized software application that responds to
client application requests by providing resources (e.g. Web pages). CGI programs often
generate Web content dynamically. A Web page is dynamic if a program on the Web server
generates that page’s content each time a user requests the page. For example, a form in a
Web page could request that a user enter a zip code. When the user types and submits the
zip code, the Web server can use a CGI program to create a page that displays information
about the weather in that client’s region. In contrast, static Web page content never changes
unless the Web developer edits the document.

pythonhtp1_CGI_Article.fm Page 308 Friday, June 14, 2002 10:06 AM

Chapter 6 Introduction to the Common Gateway Interface (CGI) 309

CGI is “common” because it is not specific to any operating system (e.g., Linux or
Windows), to any programming language or to any Web server software. CGI can be used
with virtually any programming or scripting language, such as C, Perl and Python.

The CGI protocol was developed in 1993 by the National Center for Supercomputing
Applications (NCSA—www.ncsa.uiuc.edu), for use with its HTTPd Web server.
NCSA developed CGI to be a simple tool to produce dynamic Web content. The simplicity
of CGI resulted in its widespread use and in its adoption as an unofficial worldwide pro-
tocol. CGI was quickly incorporated into additional Web servers, such as Microsoft
Internet Information Services (IIS) and Apache (www.apache.org).

Figure 6.3 illustrates the full program listing for a simple CGI script. Line 1

#!c:\Python\python.exe

is a directive (sometimes called the pound-bang or sh-bang) that specifies the location of
the Python interpreter on the server. This directive must be the first line in a CGI script. The
examples in this chapter are for Window users. For UNIX- or Linux-based machines, the
directive typically is one of the following:

#!/usr/bin/python
#!/usr/local/bin/python
#!/usr/bin/env python

depending on the location of the Python interpreter. [Note: If you do not know where the
Python interpreter resides, contact the server administrator.]

pythonhtp1_CGI_Article.fm Page 309 Friday, June 14, 2002 10:06 AM

310 Introduction to the Common Gateway Interface (CGI) Chapter 6

Common Programming Error 6.1
Forgetting to put the directive (#!) in the first line of a CGI script is an error if the Web serv-
er running the script does not understand the .py filename extension. 6.1

Line 5 imports module time. This module obtains the current time on the Web
server and displays it in the user’s browser. Lines 7–17 define function printHeader.
This function takes argument title, which corresponds to the title of the Web page. Line
8 contains the HTTP header. Notice that line 9 is blank, which denotes the end of the HTTP
headers. The line that follows the last HTTP header must be a blank line, otherwise Web
browsers cannot render the content properly. Lines 10–14 contain the XML declaration,
document type declaration and opening <html> tag. For more information on XML, see
Chapter 15 of the book Python How to Program, First Edition. Lines 15–17 contain the
XHTML document header and title and begin the XHTML document body.

1 #!c:\Python\python.exe
2 # Fig. 6.3: fig06_03.py
3 # Displays current date and time in Web browser.
4
5 import time
6
7 def printHeader(title):
8 print """Content-type: text/html
9

10 <?xml version = "1.0" encoding = "UTF-8"?>
11 <!DOCTYPE html PUBLIC
12 "-//W3C//DTD XHTML 1.0 Strict//EN"
13 "DTD/xhtml1-strict.dtd">
14 <html xmlns = "http://www.w3.org/1999/xhtml">
15 <head><title>%s</title></head>
16
17 <body>""" % title
18
19 printHeader("Current date and time")
20 print time.ctime(time.time())
21 print "</body></html>"

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 CGI script displaying the date and time.

pythonhtp1_CGI_Article.fm Page 310 Friday, June 14, 2002 10:06 AM

Chapter 6 Introduction to the Common Gateway Interface (CGI) 311

Common Programming Error 6.2
Failure to place a blank line after an HTTP header is an error. 6.2

Line 19 begins the main portion of the program by calling function printHeader
and passing as an argument the title of the Web page. Line 20 calls two functions in module
time to print the current time. Function time.time returns a floating-point value that
represents the number of seconds since midnight, January 1, 1970 (called the epoch). Func-
tion time.ctime takes as an argument the number of seconds since the epoch and returns
a human-readable string that represents the current time. We conclude the program by
printing the XHTML body and document closing tags. For a complete list of functions in
module time, visit

www.python.org/doc/current/lib/module-time.html

Note that the program consists almost entirely of print statements. The default target
for print is standard output—an information stream presented to the user by an applica-
tion. Typically, standard output is displayed on the screen, but it may be sent to a printer,
written to a file, etc. When a Python program executes as a CGI script, the server redirects
the standard output to the client Web browser. The browser interprets the headers and tags
as if they were part of a normal server response to an XHTML document request.

Executing the program requires a properly configured server. [Note: In this book, we
use the Apache Web server. For information on obtaining and configuring Apache, refer to
our Python Web resources at www.deitel.com.] Once a server is available, the Web
server site administrator specifies where CGI scripts can reside and what names are allowed
for them. In our example, we place the Python file in the Web server’s cgi-bin directory.
For UNIX and Linux users, it also is necessary to set the permissions before executing the
program. For example, UNIX and Linux command

chmod 755 fig06_03.py

gives the client the permission to read and execute fig06_03.py.
Assuming that the server is on the local computer, execute the program by typing

http://localhost/cgi-bin/fig06_03.py

in the browser’s Address or Location field. If the server resides on a different computer,
replace localhost with the server’s hostname or IP address. [Note: The IP address of
localhost is always 127.0.0.1.] Requesting the document causes the server to exe-
cute the program and return the results.

Figure 6.4 illustrates the process of calling a CGI script. First, the client requests the
resource named fig06_03.py from the server (Step 1). If the server has not been con-
figured to handle CGI scripts, it might return the Python code as text to the client.

A properly configured Web server, however, recognizes that certain resources need to
be processed differently. For example, when the resource is a CGI script, the script must be
executed by the Web server. A resource usually is designated as a CGI script in one of two
ways—either it has a special filename extension (such as .cgi or .py), or it is located in
a specific directory (often cgi-bin). In addition, the server administrator must grant
explicit permission for remote access and CGI-script execution.

pythonhtp1_CGI_Article.fm Page 311 Friday, June 14, 2002 10:06 AM

312 Introduction to the Common Gateway Interface (CGI) Chapter 6

The server recognizes that the resource is a Python script and invokes Python to exe-
cute the script (Step 2). The program executes, and the text sent to standard output is
returned to the Web server (Step 3). Finally, the Web server prints an additional line to the
output that indicates the status of the HTTP transaction (such as HTTP/1.1 200 OK, for
success) and sends the whole body of text to the client (Step 4).

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Step 1: The GET request, GET /cgi-bin/fig06_02.py HTTP/
1.1. (Part 1 of 4.)

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Step 2: The Web server starts the CGI script. (Part 2 of 4.)

1 2

CGI Python application

Internet

Web server
Client

The get request is sent
from the client to the
Web server.

After it receives the
request, the Web
server searches
through its system of
resources.

CGI Python application

Internet

Web server
Client

The CGI script is run, creating
the output to be sent back to
the client.

pythonhtp1_CGI_Article.fm Page 312 Friday, June 14, 2002 10:06 AM

Chapter 6 Introduction to the Common Gateway Interface (CGI) 313

The browser on the client side then processes the XHTML output and displays the
results. It is important to note that the browser does not know about the work the server has
done to execute the CGI script and return XHTML output. As far as the browser is con-
cerned, it is requesting a resource like any other and receiving a response like any other.
The client computer is not required to have a Python interpreter installed, because the script
executes on the server. The client simply receives and processes the script’s output.

We now consider a more involved CGI program. Figure 6.5 organizes all CGI environ-
ment variables and their corresponding values in an XHTML table, which is then displayed
in a Web browser. Environment variables contain information about the execution environ-
ment in which script is being run. Such information includes the current user name and the
name of the operating system. A CGI program uses environment variables to obtain infor-
mation about the client (e.g., the client’s IP address, operating system type, browser type,
etc.) or to obtain information passed from the client to the CGI program.

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Step 3: The output of the script is sent to the Web server. (Part 3 of 4.)

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Step 4: The HTTP response, HTTP/1.1 200 OK. (Part 4 of 4.)

CGI Python application

Internet

Web server
Client

The output produced from
the script is sent back to the
Web server

CGI Python application

Internet

Web server
Client

The server responds to the
request with an appropriate
message along with the
results of the CGI script.

pythonhtp1_CGI_Article.fm Page 313 Friday, June 14, 2002 10:06 AM

314 Introduction to the Common Gateway Interface (CGI) Chapter 6

Line 6 imports module cgi. This module provides several CGI-related capabilities,
including text-formatting, form-processing and URL parsing. In this example, we use
module cgi to format XHTML text.

1 #!c:\Python\python.exe
2 # Fig. 6.5: fig06_05.py
3 # Program displaying CGI environment variables.
4
5 import os
6 import cgi
7
8 def printHeader(title):
9 print """Content-type: text/html

10
11 <?xml version = "1.0" encoding = "UTF-8"?>
12 <!DOCTYPE html PUBLIC
13 "-//W3C//DTD XHTML 1.0 Strict//EN"
14 "DTD/xhtml1-strict.dtd">
15 <html xmlns = "http://www.w3.org/1999/xhtml">
16 <head><title>%s</title></head>
17
18 <body>""" % title
19
20 rowNumber = 0
21 backgroundColor = "white"
22
23 printHeader("Environment Variables")
24 print """<table style = "border: 0">"""
25
26 # print table of cgi variables and values
27 for item in os.environ.keys():
28 rowNumber += 1
29
30 if rowNumber % 2 == 0: # even row numbers are white
31 backgroundColor = "white"
32 else: # odd row numbers are grey
33 backgroundColor = "lightgrey"
34
35 print """<tr style = "background-color: %s">
36 <td>%s</td><td>%s</td></tr>""" % (backgroundColor,
37 cgi.escape(item), cgi.escape(os.environ[item]))
38
39 print """</table></body></html>"""

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 CGI program to display environment variables. (Part 1 of 2.)

pythonhtp1_CGI_Article.fm Page 314 Friday, June 14, 2002 10:06 AM

Chapter 6 Introduction to the Common Gateway Interface (CGI) 315

Lines 8–18 define function printHeader, which is identical to the function we
defined in the previous example. The main program prints an XHTML table that contains
the environment variables (lines 24–39). The os.environ data member holds all the
environment variables (line 27). This data member acts like a dictionary; therefore, we can
access its keys via the keys method and its values via the [] operator. Lines 30–33 set the
background color for each row. For each environment variable, lines 35–37 create a new
row in the table containing that key and the corresponding value.

Note that line 37 calls function cgi.escape and passes as values each environment
variable name and value. This function takes a string and returns a properly formatted
XHTML string. Proper formatting means that special XHTML characters, such as the less-
than and greater-than signs (< and >), are “escaped.” For example, function escape
returns a string where “<” is replaced by “<”, “>” is replaced by “>” and “&” is
replaced by “&”. The replacement signifies that the browser should display a char-
acter instead of treating the character as markup. After we have printed all the environment
variables, we close the table, body and html tags.

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 CGI program to display environment variables. (Part 2 of 2.)

pythonhtp1_CGI_Article.fm Page 315 Friday, June 14, 2002 10:06 AM

	6
	Introduction to the Common Gateway Interface (CGI)
	Objectives
	• To understand the Common Gateway Interface (CGI) protocol.
	• To understand the Hypertext Transfer Protocol (HTTP).
	• To implement CGI scripts.
	• To use XHTML forms to send information to CGI scripts.
	• To understand and parse query strings.
	• To use module cgi to process information from XHTML forms.
	This is the common air that bathes the globe.
	Walt Whitman
	The longest part of the journey is said to be the passing of the gate.
	Marcus Terentius Varro
	Railway termini...are our gates to the glorious and unknown. Through them we pass out into advent...
	E. M. Forster
	There comes a time in a man’s life when to get where he has to go—if there are no doors or window...
	Bernard Malamud

	6.3�� Simple CGI Script
	Two types of scripting are used in Web-based applications: server-side and client-side. CGI scrip...
	Scripts executed on the server usually generate custom responses for clients. For example, a clie...
	Server-side scripting languages have a wider range of programmatic capabilities than their client...
	Server-side scripts also have access to server-side software that extends server functionality. T...
	Software Engineering Observation 6.1
	Server-side scripts are not visible to the client; only the content the server delivers is visibl...

	As long as a file on the server remains unchanged, its associated URL will display the same conte...
	Manually changing Web pages is not feasible for those who want to create interesting and dynamic ...
	CGI describes a set of protocols through which applications (commonly called CGI programs or CGI ...
	CGI is “common” because it is not specific to any operating system (e.g., Linux or Windows), to a...
	The CGI protocol was developed in 1993 by the National Center for Supercomputing Applications (NC...
	Figure�6.3 illustrates the full program listing for a simple CGI script. Line 1
	is a directive (sometimes called the pound-bang or sh-bang) that specifies the location of the Py...
	depending on the location of the Python interpreter. [Note: If you do not know where the Python i...
	2 # Fig. 6.3: fig06_03.py
	3 # Displays current date and time in Web browser.
	4
	5 import time
	6
	7 def printHeader(title):
	8 print """Content-type: text/html
	9
	10 <?xml version = "1.0" encoding = "UTF-8"?>
	11 <!DOCTYPE html PUBLIC
	12 "-//W3C//DTD XHTML 1.0 Strict//EN"
	13 "DTD/xhtml1-strict.dtd">
	14 <html xmlns = "http://www.w3.org/1999/xhtml">
	15 <head><title>%s</title></head>
	16
	17 <body>""" % title
	18
	19 printHeader("Current date and time")
	20 print time.ctime(time.time())
	21 print "</body></html>"
	Fig. 6.3 CGI script displaying the date and time.�
	Common Programming Error 6.1
	Forgetting to put the directive (#!) in the first line of a CGI script is an error if the Web ser...

	Line 5 imports module time. This module obtains the current time on the Web server and displays i...
	Common Programming Error 6.2
	Failure to place a blank line after an HTTP header is an error.

	Line 19 begins the main portion of the program by calling function printHeader and passing as an ...
	Note that the program consists almost entirely of print statements. The default target for print ...
	Executing the program requires a properly configured server. [Note: In this book, we use the Apac...
	gives the client the permission to read and execute fig06_03.py.
	Assuming that the server is on the local computer, execute the program by typing
	in the browser’s Address or Location field. If the server resides on a different computer, replac...
	Figure�6.4 illustrates the process of calling a CGI script. First, the client requests the resour...
	A properly configured Web server, however, recognizes that certain resources need to be processed...
	The server recognizes that the resource is a Python script and invokes Python to execute the scri...
	Fig. 6.4 Step 1: The GET request, GET /cgi-bin/fig06_02.py HTTP/ 1.1. (Part 1 of 4.)
	Fig. 6.4 Step 2: The Web server starts the CGI script. (Part 2 of 4.)
	Fig. 6.4 Step 3: The output of the script is sent to the Web server. (Part 3 of 4.)
	Fig. 6.4 Step 4: The HTTP response, HTTP/1.1 200 OK. (Part 4 of 4.)

	The browser on the client side then processes the XHTML output and displays the results. It is im...
	We now consider a more involved CGI program. Figure�6.5 organizes all CGI environment variables a...
	Line 6 imports module cgi. This module provides several CGI-related capabilities, including text-...
	2 # Fig. 6.5: fig06_05.py
	3 # Program displaying CGI environment variables.
	4
	5 import os
	6 import cgi
	7
	8 def printHeader(title):
	9 print """Content-type: text/html
	10
	11 <?xml version = "1.0" encoding = "UTF-8"?>
	12 <!DOCTYPE html PUBLIC
	13 "-//W3C//DTD XHTML 1.0 Strict//EN"
	14 "DTD/xhtml1-strict.dtd">
	15 <html xmlns = "http://www.w3.org/1999/xhtml">
	16 <head><title>%s</title></head>
	17
	18 <body>""" % title
	19
	20 rowNumber = 0
	21 backgroundColor = "white"
	22
	23 printHeader("Environment Variables")
	24 print """<table style = "border: 0">"""
	25
	26 # print table of cgi variables and values
	27 for item in os.environ.keys():
	28 rowNumber += 1
	29
	30 if rowNumber % 2 == 0: # even row numbers are white
	31 backgroundColor = "white"
	32 else: # odd row numbers are grey
	33 backgroundColor = "lightgrey"
	34
	35 print """<tr style = "background-color: %s">
	36 <td>%s</td><td>%s</td></tr>""" % (backgroundColor,
	37 cgi.escape(item), cgi.escape(os.environ[item]))
	38
	39 print """</table></body></html>"""
	Fig. 6.5 CGI program to display environment variables. (Part 1 of 2.)

	Lines 8–18 define function printHeader, which is identical to the function we defined in the prev...
	Note that line 37 calls function cgi.escape and passes as values each environment variable name a...

