31 Days Before Your CCNA Routing & Switching Exam

A Day-By-Day Review Guide for the ICND1/CCENT (100-105), ICND2 (200-105), and CCNA (200-125) Certification Exam

Allan Johnson
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief
Mark Taub

Alliances Manager, Cisco Press
Ron Fligge

Executive Editor
Mary Beth Ray

Managing Editor
Sandra Schroeder

Development Editor
Ellie Bru

Senior Project Editor
Tonya Simpson

Copy Editor
Krista Hansing Editorial Services, Inc.

Technical Editor(s)
Rick McDonald

Editorial Assistant
Vanessa Evans

Cover Designer
Ockomon Haus

Composition
CodeMantra

Indexer
Erika Millen

Proofreader
Larry Sulky
About the Author

Allan Johnson entered the academic world in 1999 after 10 years as a business owner/operator to follow his passion for teaching. He holds both an MBA and an M.Ed. in Occupational Training and Development. Allan taught CCNA courses at the high school level for 7 years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team, providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for Cisco Networking Academy as a Learning Systems Developer.

About the Technical Reviewer

Rick McDonald teaches computer and networking courses via distance from the University of Alaska–Fairbanks campus, where he is a Professor of Information Systems. He holds a BA in English and an M.Ed. in Educational Technology from Gonzaga University in Spokane, Washington. His current academic focus is developing methods for delivering hands-on training in Alaska using web-based teaching tools.
Dedications

For my wife, Becky. Thank you for all your support during this crazy whirlwind of a year. You are the stabilizing force that keeps me grounded.
Acknowledgments

As a technical author, I rely heavily on my technical editor; Rick McDonald had my back for this work. Thankfully, when Mary Beth Ray contacted him, he was willing and able to do the arduous review work necessary to make sure that you get a book that is both technically accurate and unambiguous.

Wendell Odom’s *Cisco CCNA Routing and Switching 200-125 Official Cert Guide and Network Simulator Library* was one of my main sources. These two books and the accompanying simulator activities have the breadth and depth needed to master the CCNA exam topics.

The Cisco Network Academy authors for the online curriculum and series of Companion Guides take the reader deeper, past the CCNA exam topics, with the ultimate goal of preparing the student not only for CCNA certification, but for more advanced college-level technology courses and degrees as well. Thank you especially to Rick Graziani, Bob Vachon, Dan Alberghetti, Cheryl Schmidt, Rodrigo Floriano, Suk-Yi Pennock, Dave Holzinger, Jane Gibbons, Allan Reid, Jane Brooke, Martin Benson, and the rest of the ACE team. Their excellent treatment of the material is reflected throughout this book.

Mary Beth Ray, executive editor, amazes me with her ability to juggle multiple projects simultaneously, steering each from beginning to end. I can always count on her to make the tough decisions. Thank you, Mary Beth, for bringing this project to me.

Thank you to the professional and thorough review of this work by development editor Ellie Bru, project editor Tonya Simpson, and copy editor Krista Hansing. Their combined efforts ensure that what I authored is ready for publication.

And to the rest of the Pearson family who contributes in countless ways to bring a book to the reader, thank you for all your hard work.
Contents at a Glance

Introduction xxviii
Digital Study Guide xxxiii

Day 31: Networking Models, Devices, and Components 1
Day 30: Ethernet Switching 27
Day 29: Switch Configuration Basics 41
Day 28: VLAN and Trunking Concepts and Configurations 57
Day 27: IPv4 Addressing 77
Day 26: IPv6 Addressing 89
Day 25: Basic Routing Concepts 107
Day 24: Basic Router Configuration 121
Day 23: Static and Default Route Configuration 139
Day 22: RIPv2 Implementation 155
Day 21: VTP and Inter-VLAN Routing Configuration 169
Day 20: OSPF Operation 185
Day 19: Single-Area OSPF Implementation 197
Day 18: Multiarea OSPF Implementation 215
Day 17: Fine-Tuning and Troubleshooting OSPF 225
Day 16: EIGRP Operation 239
Day 15: EIGRP Implementation 249
Day 14: Fine-Tuning and Troubleshooting EIGRP 263
Day 13: CDP and LLDP 273
Day 12: LAN Security and Device Hardening 285
Day 11: STP 297
Contents

Introduction xxviii
Digital Study Guide xxxiii

Day 31: Networking Models, Devices, and Components 1
 CCNA 200-125 Exam Topics 1
 Key Points 1
 The OSI and TCP/IP Models 1
 OSI Layers 2
 TCP/IP Layers and Protocols 3
 Protocol Data Units and Encapsulation 4
 The TCP/IP Application Layer 5
 The TCP/IP Transport Layer 5
 TCP Header 6
 Port Numbers 7
 Error Recovery 7
 Flow Control 8
 Connection Establishment and Termination 9
 UDP 10
 The TCP/IP Internet Layer 10
 The TCP/IP Network Access Layer 11
 Data Encapsulation Summary 12
 Devices 13
 Switches 13
 Access Layer Switches 14
 Distribution Layer Switches 14
 Core Layer Switches 14
 Routers 15
 Specialty Devices 15
 Firewalls 16
 IDS and IPS 16
 Access Points and Wireless LAN Controllers 17
 Physical Layer 19
 Network Media Forms and Standards 19
 LAN Device Connection Guidelines 21
 LANs and WANs 22
 Networking Icons 23
Physical and Logical Topologies 23
Hierarchical Campus Designs 24
Study Resources 26

Day 30: Ethernet Switching 27
CCNA 200-125 Exam Topics 27
Key Topics 27
Evolution to Switching 27
Switching Logic 28
Collision and Broadcast Domains 29
Frame Forwarding 29
 Switch Forwarding Methods 29
 Symmetric and Asymmetric Switching 30
 Memory Buffering 30
 Layer 2 and Layer 3 Switching 30
Ethernet Overview 30
Legacy Ethernet Technologies 31
 CSMA/CD 32
 Legacy Ethernet Summary 33
Current Ethernet Technologies 33
UTP Cabling 34
Benefits of Using Switches 35
Ethernet Addressing 36
Ethernet Framing 37
The Role of the Physical Layer 38
Study Resources 39

Day 29: Switch Configuration Basics 41
CCENT 100-101 ICND1 Exam Topics 41
Key Topics 41
Accessing and Navigating the Cisco IOS 41
 Connecting to Cisco Devices 41
 CLI EXEC Sessions 42
 Using the Help Facility 42
 CLI Navigation and Editing Shortcuts 43
 Command History 44
 IOS Examination Commands 44
 Subconfiguration Modes 45
Basic Switch Configuration Commands 46
Half-Duplex, Full-Duplex, and Port Speed 47
 Automatic Medium-Dependent Interface Crossover (auto-MDIX) 48
Verifying Network Connectivity 48
Troubleshoot Interface and Cable Issues 51
 Media Issues 51
 Interface Status and the Switch Configuration 52
 Interface Status Codes 52
 Duplex and Speed Mismatches 52
 Common Layer 1 Problems On “Up” Interfaces 54
Study Resources 54

Day 28: VLAN and Trunking Concepts and Configurations 57
CCENT 100-101 ICND1 Exam Topics 57
Key Points 57
VLAN Concepts 57
 Traffic Types 58
 Types of VLANs 59
 Voice VLAN Example 59
Trunking VLANs 60
 Dynamic Trunking Protocol 61
VLAN Configuration and Verification 62
 Extended VLANs 66
Trunking Configuration and Verification 68
VLAN Troubleshooting 71
 Disabled VLANs 72
Trunking Troubleshooting 73
 Check Both Ends of a Trunk 73
 Check Trunking Operational States 74
Study Resources 75

Day 27: IPv4 Addressing 77
CCENT 100-101 ICND1 Exam Topics 77
Key Topics 77
IPv4 Addressing 77
 Header Format 78
 Classes of Addresses 78
 Purpose of the Subnet Mask 80
Private and Public IP Addressing 81
Subnetting in Four Steps 81
 Determine How Many Bits to Borrow 81
 Determine the New Subnet Mask 82
 Determine the Subnet Multiplier 83
 List the Subnets, Host Ranges, and Broadcast Addresses 83
Subnetting Example 1 83
Subnetting Example 2 84
Subnetting Example 3 84
VLSM 85
Study Resources 87

Day 26: IPv6 Addressing 89
CCNA 200-125 Exam Topics 89
Key Topics 89
Overview and Benefits of IPv6 89
The IPv6 Protocol 90
IPv6 Address Types 91
 Unicast 92
 Global Unicast Address 92
 Link-Local Address 95
 Loopback Address 96
 Unspecified Address 96
 Unique Local Address 96
 IPv4 Embedded Address 97
 Multicast 98
 Assigned Multicast 98
 Solicited-Node Multicast 98
 Anycast 100
Representing the IPv6 Address 100
 Conventions for Writing IPv6 Addresses 100
 Conventions for Writing IPv6 Prefixes 101
IPv6 Subnetting 102
 Subnetting the Subnet ID 103
 Subnetting into the Interface ID 103
EUI-64 Concept 103
Stateless Address Autoconfiguration 104
Migration to IPv6 105
Study Resources 106
Day 25: Basic Routing Concepts 107
CCNA 200-125 Exam Topics 107
Key Topics 107
Packet Forwarding 107
Path Determination and Switching Function Example 108
Routing Methods 109
Classifying Dynamic Routing Protocols 110
IGP and EGP 110
Distance Vector Routing Protocols 111
Link-State Routing Protocols 111
Classful Routing Protocols 112
Classless Routing Protocols 112
Dynamic Routing Metrics 112
Administrative Distance 113
IGP Comparison Summary 115
Routing Loop Prevention 115
Link-State Routing Protocol Features 116
Building the LSDB 116
Calculating the Dijkstra Algorithm 117
Convergence with Link-State Protocols 118
Study Resources 119

Day 24: Basic Router Configuration 121
CCNA 200-125 Exam Topics 121
Key Topic 121
Basic Router Configuration with IPv4 121
Command Syntax 122
Configuration Example 122
Verification Example 124
Basic Router Configuration with IPv6 130
Command Syntax 130
Configuration Example 130
Verifying IPv4 and IPv6 Network Connectivity 133
Basic IP Addressing Troubleshooting 136
Default Gateway 136
Duplicate IP Addresses 136
Study Resources 137
Day 23: Static and Default Route Configuration 139

CCNA 200-125 Exam Topics 139
Key Topics 139
Static and Default Routing Overview 139
IPv4 Static Route Configuration 140
IPv4 Static Routes Using the Next-Hop Parameter 142
IPv4 Static Routes Using the Exit Interface Parameter 143
IPv4 Default Route Configuration 144
IPv4 Summary Static Route Configuration 147
IPv6 Static Routing 148
IPv6 Static Route Configuration 149
IPv6 Default Route Configuration 150
IPv6 Summary Static Route Configuration 151

Study Resources 152

Day 22: RIPv2 Implementation 155

CCNA 200-125 Exam Topics 155
Key Topic 155
RIP Concepts 155
RIPv1 Message Format 155
RIPv1 Operation 156
RIPv1 Configuration 156
RIPv1 Verification and Troubleshooting 158
Passive Interfaces 161
Automatic Summarization 162
Default Routing and RIPv1 164
RIPv2 Configuration 165
Disabling Autosummarization 167
RIPv2 Verification and Troubleshooting 167

Study Resources 168

Day 21: VTP and Inter-VLAN Routing Configuration 169

CCNA 200-125 Exam Topics 169
Key Topics 169
VTP Concepts 169
VTP Configuration and Verification 171
Inter-VLAN Routing Concepts 175
Legacy Inter-VLAN Routing 175
Router on a Stick 176
Multilayer Switch 177

Router on a Stick Configuration and Verification 177
Multilayer Switch Inter-VLAN Routing Configuration and Verification 180
 Creating Additional SVIs 180
 Configuring a Layer 3 Routed Port 182

Study Resources 182

Day 20: OSPF Operation 185
 CCNA 200-125 Exam Topics 185
 Key Topics 185
 Single-Area OSPF Operation 185
 OSPF Message Format 185
 OSPF Packet Types 186
 Neighbor Establishment 186
 Link-State Advertisements 188
 OSPF DR and BDR 189
 OSPF Algorithm 189
 Link-State Routing Process 190
 OSPFv2 Versus OSPFv3 191
 Similarities Between OSPFv2 and OSPFv3 191
 Differences Between OSPFv2 and OSPFv3 192
 Multiarea OSPF Operation 192
 Multiarea OSPF Design 192
 Multiarea OSPF Improves Performance 194

Study Resources 194

Day 19: Single-Area OSPF Implementation 197
 CCNA 200-125 Exam Topics 197
 Key Topics 197
 Single-Area OSPFv2 Configuration 197
 The router ospf Command 198
 Router ID 198
 The network Command 199
 Passive Interfaces 200
 Modifying the OSPF Metric 200
 Verifying OSPFv2 203
 Single-Area OSPFv3 Configuration 206
The Router ID in OSPFv3 208
Verifying OSPFv3 209
Study Resources 212

Day 18: Multiarea OSPF Implementation 215
CCNA 200-125 Exam Topics 215
Key Topics 215
Multiarea OSPFv2 Implementation 215
Multiarea OSPFv3 Implementation 218
Study Resources 223

Day 17: Fine-Tuning and Troubleshooting OSPF 225
CCNA 200-125 Exam Topics 225
Key Topics 225
OSPFv2 Configuration Example 225
Modifying OSPFv2 227
 Redistributing a Default Route 227
 Modifying Hello and Dead Intervals 228
 OSPF Network Types 228
 DR/BDR Election 229
 Controlling the DR/BDR Election 229
OSPFv3 Configuration Example 231
Modifying OSPFv3 233
 Propagating a Default Route 233
 Modifying the Timers 234
Troubleshooting OSPF 235
 OSPF States 235
 OSPF Adjacency 236
 OSPF Troubleshooting Commands 236
Study Resources 238

Day 16: EIGRP Operation 239
CCNA 200-125 Exam Topics 239
Key Topics 239
EIGRP Overview 239
EIGRP Characteristics 240
 PDMs 240
 RTP 240
Day 15: EIGRP Implementation 249

Key Topics 249

EIGRP for IPv4 Configuration 249
 EIGRP Topology and Addressing Scheme 249
 The network Command 250
 The Router ID 250

EIGRP for IPv4 Verification 251
 Examining the Protocol Details 251
 Examining Neighbor Tables 252
 Examining the Topology Tables 253
 Examining the Routing Table 255

EIGRP for IPv6 Concepts 255

EIGRP for IPv6 Configuration 256

EIGRP for IPv6 Verification 258
 Examining the Protocol Details 258
 Examining the Neighbor Table 259
 Examining the Routing Table 260

Study Resources 261

Day 14: Fine-Tuning and Troubleshooting EIGRP 263

Key Topics 263

Modifying the EIGRP for IPv4 Configuration 263
 Automatic Summarization 263
 EIGRP for IPv4 Topology 264
 Propagating an IPv4 Default Route 265
 Modifying the EIGRP Metric 266
 Modifying Hello Intervals and Hold Times 266
Modifying EIGRP for IPv6 267
 EIGRP for IPv6 Topology 267
 Propagating an IPv6 Default Route 267
 Modifying Bandwidth Utilization 268
 Modifying Hello Intervals and Hold Times 269
EIGRP Troubleshooting Commands 269
Discontiguous Networks 270
Study Resources 271

Day 13: CDP and LLDP 273
 CCNA 200-125 Exam Topics 273
 Key Topics 273
 CDP Overview 273
 CDP Configuration 274
 CDP Verification 277
 LLDP Overview 279
 LLDP Configuration 280
 LLDP Verification 281
 Study Resources 283

Day 12: LAN Security and Device Hardening 285
 CCNA 200-125 Exam Topics 285
 Key Topics 285
 Port Security Configuration 285
 Port Restoration After a Violation 288
 LAN Threat Mitigation 289
 DHCP Snooping 289
 Native and Management VLAN Modification 290
 Switch Port Hardening 291
 AAA 292
 802.1X 293
 SSH Configuration 294
 Study Resources 296

Day 11: STP 297
 CCNA 200-125 Exam Topics 297
 Key Topics 297
STP Concepts and Operation 297
STP Algorithm 298
STP Convergence 299
STP Varieties 300
PVST Operation 301
 Port States 302
 Extended System ID 303
Rapid PVST+ Operation 303
 RSTP Interface Behavior 304
 RSTP Port Roles 305
 Edge Ports 305
Configuring and Verifying Varieties of STP 306
 STP Configuration Overview 306
 Configuring and Verifying the BID 307
 Configuring PortFast and BPDU Guard 309
 Configuring Rapid PVST+ 309
 Verifying STP 310
Switch Stacking 310
Study Resources 312

Day 10: EtherChannel and HSRP 313
CCNA 200-125 Exam Topics 313
Key Topics 313
EtherChannel Operation 313
 Benefits of EtherChannel 314
 Implementation Restrictions 314
EtherChannel Protocols 315
 Port Aggregation Protocol 315
 Link Aggregation Control Protocol 315
Configuring EtherChannel 316
Verifying EtherChannel 317
Troubleshooting EtherChannel 319
First-Hop Redundancy Concepts 319
FHRPs 320
HSRP Operation 321
 HSRP Versions 321
 HSRP Priority and Preemption 322
HSRP Configuration and Verification 322
HSRP Load Balancing 323
Troubleshooting HSRP 326
Study Resources 326

Day 9: ACL Concepts 329
CCNA 200-125 Exam Topics 329
Key Topics 329
ACL Operation 329
 Defining an ACL 329
 Processing Interface ACLs 329
 List Logic with IP ACLs 330
Planning to Use ACLs 331
 Types of ACLs 332
 ACL Identification 333
 ACL Design Guidelines 333
Study Resources 334

Day 8: ACL Implementation 335
CCNA 200-125 Exam Topics 335
Key Topics 335
Configuring Standard Numbered IPv4 ACLs 335
 Standard Numbered IPv4 ACL: Permit Specific Network 335
 Standard Numbered IPv4 ACL: Deny a Specific Host 336
 Standard Numbered IPv4 ACL: Deny a Specific Subnet 337
 Standard Numbered IPv4 ACL: Deny Telnet or SSH Access to the Router 337
Configuring Extended Numbered IPv4 ACLs 337
 Extended Numbered IPv4 ACL: Deny FTP from Subnets 338
 Extended Numbered IPv4 ACL: Deny Only Telnet from Subnet 338
Configuring Named IPv4 ACLs 339
 Standard Named IPv4 ACL Steps and Syntax 339
 Standard Named IPv4 ACL: Deny a Single Host from a Given Subnet 340
 Extended Named IPv4 ACL Steps and Syntax 340
 Adding Comments to Named or Numbered IPv4 ACLs 340
Verifying IPv4 ACLs 341
Comparing IPv4 and IPv6 ACLs 343
Configuring IPv6 ACLs 343
Step 1: Name the IPv6 ACL 344
Step 2: Create the IPv6 ACL 344
Step 3: Apply the IPv6 ACL 344
Standard IPv6 ACL: Allow SSH Remote Access 344
Extended IPv6 ACL: Allow Only Web Traffic 345

Verifying IPv6 ACLs 346
Troubleshooting ACLs 348
Study Resources 349

Day 7: DHCP and DNS 351
CCNA 200-125 Exam Topics 351
Key Topics 351
DHCPv4 351
DHCPv4 Configuration Options 352
Configuring a Router as a DHCPv4 Server 352
Configuring a Router to Relay DHCPv4 Requests 356
Configuring a Router as a DHCPv4 Client 357
DHCPv6 358
SLAAC 358
Stateless DHCPv6 360
Stateful DHCPv6 360
Stateless and Stateful DHCPv6 Operation 360
DHCPv6 Configuration Options 361
Configuring a Router as a Stateless DHCPv6 Server 361
Configuring a Router as a Stateful DHCPv6 Server 363
DHCPv6 Troubleshooting 363
Resolve IPv4 Address Conflicts 363
Test Connectivity Using a Static IP Address 364
Verify Switch Port Configuration 364
Test DHCPv4 Operation on the Same Subnet or VLAN 364
DNS Operation 364
Troubleshooting DNS 366
Study Resources 367

Day 6: NAT 369
CCNA 200-125 Exam Topics 369
Key Topics 369
NAT Concepts 369
 A NAT Example 371
 Dynamic and Static NAT 372
 NAT Overload 372
 NAT Benefits 373
 NAT Limitations 373

Configuring Static NAT 374
 Configuring Dynamic NAT 375
 Configuring NAT Overload 376

Verifying NAT 377
Troubleshooting NAT 378

NAT for IPv6 379
 IPv6 Private Address Space 379
 Purpose of NAT for IPv6 379

Study Resources 380

Day 5: WAN Overview 381

CCNA 200-125 Exam Topics 381
Key Topics 381
WAN Topologies 381

WAN Connection Options 382
 Dedicated Connection Options 383
 Circuit-Switched Connection Options 384
 Packet-Switched Connection Options 385
 Metro Ethernet 385
 MPLS 386
 Internet Connection Options 386
 DSL 386
 Cable Modem 387
 Wireless 388
 Choosing a WAN Link Option 388

VPN Technology 389
 VPN Benefits 389
 Types of VPN Access 389

Study Resources 391

Day 4: WAN Implementation 393

CCNA 200-125 Exam Topics 393
Key Topics 393
PPP Concepts 393
 The PPP Frame Format 393
 PPP Link Control Protocol (LCP) 394
 Looped-Link Detection 394
 Enhanced Error Detection 395
 PPP Multilink 395
 PPP Authentication 395
PPP Configuration and Verification 396
 Basic PPP 396
 CHAP 397
 PAP 398
PPP Troubleshooting 398
PPPoE Concepts 399
PPPoE Configuration 399
 PPPoE Configuration Example 400
 PPPoE Troubleshooting 400
GRE Tunneling 401
 GRE Characteristics 401
 GRE Configuration and Verification 401
 GRE Troubleshooting 403
BGP Concepts 403
 eBGP Configuration and Verification 404
Study Resources 407

Day 3: QoS, Cloud, and SDN 409
 CCNA 200-125 Exam Topics 409
 Key Topics 409
 QoS 409
 Classification and Marking 410
 DSCP and IPP 411
 EF and AF 412
 Congestion Management 413
 Policing, Shaping, and TCP Discards 413
 QoS and TCP 415
 Cloud Computing 416
 Server Virtualization 416
 Cloud Computing Services 418
 Virtual Network Infrastructure 419
Software-Defined Networking 419
 Data, Control, and Management Planes 419
 Controllers 421
 SDN Examples 421
 Open SDN and OpenFlow 421
 The Cisco Application Centric Infrastructure 422
 The Cisco APIC Enterprise Module (APIC-EM) 423
 APIC-EM and ACLs 424

Study Resources 426

Day 2: Device Monitoring, Management, and Maintenance 427

CCNA 200-125 Exam Topics 427

Key Topics 427

SNMP Operation 427
 SNMP Components 427
 SNMP Messages 427
 SNMP Versions 428
 The Management Information Base 428

Configuring SNMP 430

Verifying SNMP 430

Syslog 432
 Syslog Operation 432
 Syslog Configuration and Verification 434

Network Time Protocol 436

Cisco IOS File System and Devices 437
 IFS Commands 437
 URL Prefixes for Specifying File Locations 440
 Commands for Managing Configuration Files 440

Manage Cisco IOS Images 442
 Backing Up a Cisco IOS Image 442
 Restoring a Cisco IOS Image 443

Managing Cisco IOS Licenses 444

Password Recovery 448

Study Resources 449

Day 1: Troubleshooting Methodologies and Tools 451

CCNA 200-125 Exam Topics 451

Key Topics 451
Icons Used in This Book

- Router
- Wireless Router
- Wireless Access Point
- Hub
- Hub (alternate)
- Multilayer Switch
- Switch
- ATM Switch Relay Switch
- WAN Switch
- PBX Switch
- Cisco ASA
- Router with Firewall
- PIX Firewall
- Firewall
- VPN Concentrator
- DSLAM
- CSU/DSU
- Access Server
- Voice-Enabled Access Server
- Modern
- IP Phone
- Phone
- Server
- IP/TV Broadcast Server
- Network Management Server
- Web Server
- Laptop
- PC
- Network Cloud
- Ethernet Connection
- Serial Line Connection
- Wireless Connection
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([[]]) indicate a required choice within an optional element.

Reader Services

Register your copy at www.ciscopress.com/title/9781587205903 for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9781587205903 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

If you’re reading this introduction, you’ve probably already spent a considerable amount of time and energy pursuing your CCNA certification. You’re taking one of two paths. Either you are planning on taking the two exams, Interconnecting Cisco Network Devices, Part 1 (ICND1 100-105) and ICND2 200-105, or you are planning on taking the full Cisco Certified Network Associate Exam (CCNA 200-125). Regardless of how you got to this point in your travels through your CCNA studies, 31 Days Before Your CCNA Routing & Switching Exam most likely represents the last leg of your journey on your way to the destination: to become a Cisco Certified Network Associate. However, if you are like me, you might be reading this book at the beginning of your studies. If so, this book provides an excellent overview of the material you must now spend a great deal of time studying and practicing. But I must warn you: unless you are extremely well versed in networking technologies and have considerable experience configuring and troubleshooting Cisco routers and switches, this book will not serve you well as the sole resource for your exam preparations. Therefore, let me spend some time discussing my recommendations for study resources.

Study Resources

Cisco Press and Pearson IT Certification offer an abundance of CCNA-related books to serve as your primary source for learning how to install, configure, operate, and troubleshoot small to medium-size routed and switched networks.

Safari Books Online

All the resources I reference in the book are available with a subscription to Safari Books Online (https://www.safaribooksonline.com). If you don’t have an account, you can try it free for ten days.

Primary Resources

First on the list must be Wendell Odom’s CCNA Routing and Switching 200-125 Official Cert Guide and Network Simulator Library (ISBN: 9781587206108). If you do not buy any other books, buy this one. Wendell’s method of teaching, combined with his technical expertise and down-to-earth style, is unsurpassed in our industry. As you read through his books, you sense that he is sitting right there next to you walking you through the material. The practice exams and study materials on the DVD in the back of the book, plus the online resources, are worth the price of the book. There is no better resource on the market for a CCNA candidate.

If you are a Cisco Networking Academy student, you are blessed with access to the online version of the CCNA Routing and Switching curriculum and the wildly popular Packet Tracer network simulator. The Cisco Network Academy curriculum has four courses. To learn more about CCNA Routing and Switching courses and to find an Academy near you, visit http://www.netacad.com.

However, if you are not an Academy student but want to benefit from the extensive authoring done for these courses, you can buy any or all of CCNA Routing and Switching Companion Guides (CGs) and Labs & Study Guides (LSGs) of the Academy’s popular online curriculum. Although you will not have access to the Packet Tracer files, you will have access to the tireless work of an outstanding team of Cisco Academy instructors dedicated to providing students with
comprehensive and engaging CCNA preparation course material. The titles and ISBNs for the CCNA Routing and Switching CGs and LSGs follow:

You can find these books at http://www.ciscopress.com by clicking the Cisco Networking Academy link.

Supplemental Resources

In addition to the book you hold in your hands, I recommend three supplemental resources to augment your final 31 days of review and preparation.

First is Scott Empson’s very popular CCNA Routing and Switching Portable Command Guide (ISBN: 9781587205880). This guide is much more than just a listing of commands and what they do. Yes, it summarizes all the CCNA certification-level IOS commands, keywords, command arguments, and associated prompts. But it also provides you with tips and examples of how to apply the commands to real-world scenarios. Configuration examples throughout the book provide you with a better understanding of how these commands are used in simple network designs.

Second, Kevin Wallace’s CCNA Routing and Switching 200-125 Premium Edition Complete Video Course (ISBN: 9780134580708) is a comprehensive training course that brings Cisco CCNA exam topics to life through the use of real-world demonstrations, animations, live instruction, and configurations, making learning these foundational networking topics easy and fun. Kevin’s engaging style and love for the technology is infectious. The course contains more than 25 hours of instruction in more than 300 videos. The course also includes excellent practice tests.

Third, Wendell Odom and Sean Wilkins have created more than 400 structured labs that are available in the CCNA Routing and Switching 200-125 Network Simulator (ISBN: 9780789757760). These simulations map precisely to chapters in Wendell’s book, but they are also a great practice resource for anyone.

The Cisco Learning Network

Finally, if you have not done so already, you should register with The Cisco Learning Network at https://learningnetwork.cisco.com. Sponsored by Cisco, The Cisco Learning Network is a free social learning network where IT professionals can engage in the common pursuit of enhancing and advancing their IT careers. Here you can find many resources to help you prepare for your CCNA exam, in addition to a community of like-minded people ready to answer your questions, help you with your struggles, and share in your triumphs.
So which resources should you buy? The answer to that question depends largely on how deep your pockets are or how much you like books. If you’re like me, you must have it all! I admit it; my bookcase is a testament to my Cisco “geekness.” But if you are on a budget, choose one of the primary study resources and one of the supplemental resources (such as Wendell Odom’s certification library and Scott Empson’s command guide). Whatever you choose, you will be in good hands. Any or all of these authors will serve you well.

Goals and Methods
The main goal of this book is to provide you with a clear and succinct review of the CCNA objectives. Each day’s exam topics are grouped into a common conceptual framework and use the following format:

- A title for the day that concisely states the overall topic
- A list of one or more CCNA 200-125 exam topics to be reviewed
- A “Key Topics” section to introduce the review material and quickly orient you to the day’s focus
- An extensive review section consisting of short paragraphs, lists, tables, examples, and graphics
- A “Study Resources” section to give you a quick reference for locating more in-depth treatment of the day’s topics

The book counts down starting with Day 31 and continues through exam day to provide post-test information. Inside this book is also a calendar and checklist that you can tear out and use during your exam preparation.

Use the calendar to enter each actual date beside the countdown day and the exact day, time, and location of your CCNA exam. The calendar provides a visual for the time you can dedicate to each CCNA exam topic.

The checklist highlights important tasks and deadlines leading up to your exam. Use it to help you map out your studies.

Who Should Read This Book?
The audience for this book is anyone finishing preparation for taking the CCNA 200-125 exam. A secondary audience is anyone needing a refresher review of CCNA exam topics—possibly before attempting to recertify or sit for another certification for which the CCNA is a prerequisite.

Getting to Know the CCNA 200-125 Exam
For the current certifications (announced in May 2016), Cisco created the ICND1 (100-105) and ICND2 (200-105) exams, along with the CCNA (200-125) exam. To become CCENT certified, you need to pass just the ICND1 exam. To become CCNA Routing and Switching certified, you must pass both the ICND1 and ICND2 exams, or just the CCNA exam. The CCNA exam simply covers all the topics on the ICND1 and ICND2 exams, giving you two options for gaining your CCNA Routing and Switching certification. The two-exam path gives people with less experience a chance to study for a smaller set of topics at one time. The one-exam option provides a more cost-effective certification path for those who want to prepare for all the topics at once. This book focuses on the entire list of topics published for the CCNA 200-125 exam.
Currently for the CCNA exam, you are allowed 90 minutes to answer 50–60 questions. Use the following steps to access a tutorial at home that demonstrates the exam environment before you go to take the exam:

Step 1. Visit http://www.vue.com/cisco.

Step 2. Look for a link to the certification tutorial. Currently, it appears on the right side of the web page under the heading “Related Links.”

Step 3. Click the Certification Tutorial link.

When you get to the testing center and check in, the proctor verifies your identity, gives you some general instructions, and then takes you into a quiet room containing a PC. When you’re at the PC, you have a few things to do before the timer starts on your exam. For instance, you can take the tutorial to get accustomed to the PC and the testing engine. Every time I sit for an exam, I go through the tutorial even though I know how the test engine works. It helps me settle my nerves and get focused. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

When you start the exam, you are asked a series of questions. Each question is presented one at a time and must be answered before moving on to the next question. The exam engine does not let you go back and change your answer. The exam questions can be in one of the following formats:

- Multiple choice
- Fill in the blank
- Drag and drop
- Testlet
- Simlet
- Simulation

The multiple-choice format simply requires that you point and click a circle or check box next to the correct answer(s). Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many or too few.

Fill-in-the-blank questions usually require you only to type numbers. However, if words are requested, the case does not matter unless the answer is a command that is case sensitive (such as passwords and device names, when configuring authentication).

Drag-and-drop questions require you to click and hold, move a button or icon to another area, and release the mouse button to place the object somewhere else—usually in a list. For some questions, to get the question correct, you might need to put a list of five things in the proper order.

Testlets contain one general scenario and several multiple-choice questions about the scenario. These are ideal if you are confident in your knowledge of the scenario’s content because you can leverage your strength over multiple questions.

A simlet is similar to a testlet, in that you are given a scenario with several multiple-choice questions. However, a simlet uses a network simulator to allow you access to a simulation of the command line of Cisco IOS Software. You can then use `show` commands to examine a network’s current behavior and answer the question.
A simulation also uses a network simulator, but you are given a task to accomplish, such as implementing a network solution or troubleshooting an existing network implementation. You do this by configuring one or more routers and switches. The exam then grades the question based on the configuration you changed or added. A newer form of the simulation question is the GUI-based simulation, which simulates a graphical interface such as that found on a Linksys router or the Cisco Security Device Manager.

What Topics Are Covered on the CCNA Exam

Table I-1 summarizes the seven domains of the CCNA 200-125 exam:

<table>
<thead>
<tr>
<th>Domain</th>
<th>% of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Network Fundamentals</td>
<td>15%</td>
</tr>
<tr>
<td>2.0 LAN Switching Technologies</td>
<td>21%</td>
</tr>
<tr>
<td>3.0 Routing Technologies</td>
<td>23%</td>
</tr>
<tr>
<td>4.0 WAN Technologies</td>
<td>10%</td>
</tr>
<tr>
<td>5.0 Infrastructure Services</td>
<td>10%</td>
</tr>
<tr>
<td>6.0 Infrastructure Security</td>
<td>11%</td>
</tr>
<tr>
<td>7.0 Infrastructure Management</td>
<td>10%</td>
</tr>
</tbody>
</table>

Although Cisco outlines general exam topics, not all topics might appear on the CCNA exam; likewise, topics that are not specifically listed might appear on the exam. The exam topics that Cisco provides and this book covers are a general framework for exam preparation. Be sure to check Cisco's website for the latest exam topics.

Registering for the CCNA 200-125 Exam

If you are starting your 31 Days Before Your CCNA Routing & Switching Exam today, register for the exam right now. In my testing experience, there is no better motivator than a scheduled test date staring me in the face. I’m willing to bet the same holds true for you. Don’t worry about unforeseen circumstances. You can cancel your exam registration for a full refund up to 24 hours before taking the exam. So if you’re ready, gather the following information in Table I-1 and register right now!

- Legal name
- Social Security or passport number
- Company name
- Valid email address
- Method of payment

You can schedule your exam at any time by visiting www.pearsonvue.com/cisco/. I recommend that you schedule it for 31 days from now. The process and available test times vary based on the local testing center you choose.

Remember, there is no better motivation for study than an actual test date. Sign up today.
Digital Study Guide

Cisco Press offers this book in an online digital format that includes enhancements such as interactive activities and Check Your Understanding questions, plus Packet Tracer activities and a full-length exam.

31 Days Before Your CCNA Routing & Switching Exam Digital Study Guide is available for a discount for anyone who purchases this book. Details about redeeming this offer are found in the back of the book.

- **Read** the complete text of the book on any web browser that supports HTML5, including mobile.
- **Reinforce** key concepts with more than 31 dynamic and interactive hands-on exercises, and see the results with the click of a button. Also included are more than 25 Packet Tracer activities.
- **Test** your understanding of the material at the end of each day with more than 300 fully interactive online quiz questions. You also get a full-length final quiz of 60 questions that mimic the type of questions you will see in the CCNA Routing and Switching Composite certification exam.

To get your copy of Packet Tracer software, go to the companion website for instructions. To access this companion website, follow these steps:

Step 1. Go to http://www.ciscopress.com/register and log in or create a new account.

Step 2. Enter the ISBN 9781587205903.

Step 3. Answer the challenge question as proof of purchase.

Step 4. Click the Access Bonus Content link in the Registered Products section of your account page, to be taken to the page where your downloadable content is available.

This book contains references to the Digital Study Guide enhancements that look like this:

Activity: Identify the Encapsulation Layer
Refer to the Digital Study Guide to complete this activity.

Packet Tracer Activity: Configure Routing Protocol Authentication
Refer to the Digital Study Guide to access the PKA file for this activity. You must have Packet Tracer software to run this activity.

Check Your Understanding
Refer to the Digital Study Guide to take a 10-question quiz covering the content of this day.

When you are at these points in the Digital Study Guide, you can start the enhancement.
Day 24

Basic Router Configuration

CCNA 200-125 Exam Topics

- Configure, verify, and troubleshoot IPv4 addressing and subnetting
- Configure, verify, and troubleshoot IPv6 addressing

Key Topic

Today we review basic router configuration. First, we focus on configuring and verifying initial settings, including IPv4 addressing. Then we review IPv6 addressing and network connectivity verification. Most of this should be very familiar at this point in your studies because these skills are fundamental to all other router configuration tasks.

Basic Router Configuration with IPv4

Figure 24-1 shows the topology and IPv4 addressing scheme that we use to review basic router configuration and verification tasks.

Figure 24-1 IPv4 Example Topology

<table>
<thead>
<tr>
<th>Device</th>
<th>Interface</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Default Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>G0/0</td>
<td>192.168.1.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/0</td>
<td>192.168.2.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td>R2</td>
<td>G0/0</td>
<td>192.168.3.1</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>S0/0/0</td>
<td>192.168.2.2</td>
<td>255.255.255.0</td>
<td>N/A</td>
</tr>
<tr>
<td>PC1</td>
<td>N/A</td>
<td>192.168.1.10</td>
<td>255.255.255.0</td>
<td>192.168.1.1</td>
</tr>
<tr>
<td>PC2</td>
<td>N/A</td>
<td>192.168.3.10</td>
<td>255.255.255.0</td>
<td>192.168.3.1</td>
</tr>
</tbody>
</table>

When configuring a router, certain basic tasks are performed:

- Naming the router
- Setting passwords
- Configuring interfaces
- Configuring a banner
- Saving changes on a router
- Verifying basic configuration and router operations
Command Syntax

Table 24-1 shows the basic router configuration command syntax used to configure R1 in the following example.

<table>
<thead>
<tr>
<th>Configuration Task</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naming the router</td>
<td><code>Router(config)# hostname name</code></td>
</tr>
<tr>
<td>Setting passwords</td>
<td><code>Router(config)# enable secret password</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# line console 0</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-line)# password password</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-line)# login</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# line vty 0 15</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-line)# transport input ssh</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-line)# login local</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# username name password</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# banner motd # message #</code></td>
</tr>
<tr>
<td>Configuring an interface</td>
<td><code>Router(config)# interface type number</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip address address mask</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# description description</code></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# no shutdown</code></td>
</tr>
<tr>
<td>Saving changes on a router</td>
<td><code>Router# copy running-config startup-config</code></td>
</tr>
<tr>
<td>Examining the output of <code>show</code></td>
<td><code>Router# show running-config</code></td>
</tr>
<tr>
<td></td>
<td><code>Router# show ip route</code></td>
</tr>
<tr>
<td></td>
<td><code>Router# show ip interface brief</code></td>
</tr>
<tr>
<td></td>
<td><code>Router# show interfaces</code></td>
</tr>
</tbody>
</table>

Configuration Example

Let's walk through a basic configuration for R1. First, enter privileged EXEC mode and then global configuration mode:

```
Router> enable
Router# config t
```

Next, name the router and enter the encrypted password for entering privileged EXEC mode. This command overrides the older `enable password password` command, so we are not entering that one:

```
Router(config)# hostname R1
R1(config)# enable secret class
```
Next, configure the console password and require that it be entered with the login password:

```conf
R1(config)# line console 0
R1(config-line)# password cisco
R1(config-line)# login
```

Configuring SSH and disabling Telnet are security best practices, so configure the vty lines to use only SSH.

NOTE: SSH configuration is not shown here; assume that it is already configured.
To review SSH configuration, refer to Day 12, “LAN Security.”

```conf
R1(config)# line vty 0 15
R1(config-line)# transport input ssh
R1(config-line)# login local
R1(config-line)# exit
R1(config)# username admin password cisco
```

Encrypt all the clear-text passwords in the running configuration using the `service-password encryption` command:

```conf
R1(config)# service-password encryption
```

Configure the message-of-the-day (MOTD) banner. A delimiting character such as a # is used at both the beginning and the end of the message. At a minimum, a banner should warn against unauthorized access. A good security policy prohibits configuring a banner that welcomes an unauthorized user:

```conf
R1(config)# banner motd #
Enter TEXT message. End with the character '#'.
******************************************************************************
WARNING!! Unauthorized Access Prohibited!!
******************************************************************************
#
```

Now configure the individual router interfaces with IP addresses and other information. First, enter interface configuration mode by specifying the interface type and number. Next, configure the IP address and subnet mask:

```conf
R1(config)# interface Serial0/0/0
R1(config-if)# ip address 192.168.2.1 255.255.255.0
```

It is good practice to configure a description on each interface to help document the network information:

```conf
R1(config-if)# description Circuit#VBN32696-123 (help desk:1-800-555-1234)
```

Activate the interface:

```conf
R1(config-if)# no shutdown
```
Assuming that the other side of the link is activated on R2, the serial interface is now up. Finish R1 by configuring the GigabitEthernet 0/0 interface:

R1(config-if)# interface GigabitEthernet0/0
R1(config-if)# ip address 192.168.1.1 255.255.255.0
R1(config-if)# description R1 LAN
R1(config-if)# no shutdown

Assume that R2 is fully configured and can route back to the 192.168.1.0/24 LAN attached to R1. We need to add a static route to R1 to ensure connectivity to R2’s LAN. Static routing is reviewed in more detail on Day 25, “Basic Routing Concepts.” For now, enter the following command to configure a directly attached static route to R2’s LAN:

R1(config)# ip route 192.168.3.0 255.255.255.0 Serial 0/0/0

To save the configuration, enter the copy running-config startup-config command or the copy run start command.

Verification Example

You can use the show running-config command to verify the full current configuration on the router. However, a few other basic commands can help you not only verify your configuration, but also begin troubleshooting any potential problems.

First, make sure that the networks for your interfaces are now in the routing table by using the show ip route command (see Example 24-1).

Example 24-1 The show ip route Command

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
       + - replicated route, % - next hop override

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, GigabitEthernet0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0
L 192.168.2.0/24 is directly connected, GigabitEthernet0/0
C 192.168.2.0/24 is directly connected, Serial0/0/0
L 192.168.2.1/32 is directly connected, Serial0/0/0
S 192.168.3.0/24 is directly connected, Serial0/0/0

R1#
```
If a network is missing, check your interface status with the `show ip interface brief` command (see Example 24-2).

Example 24-2 The show ip interface brief Command

```plaintext
R1# show ip interface brief
Interface                      IP-Address    OK? Method Status                  Protocol
Embedded-Service-Engine0/0   unassigned    YES unset administratively down down down
GigabitEthernet0/0           192.168.1.1    YES manual up                    up
GigabitEthernet0/1            unassigned           YES       unset                administratively down              down
Serial0/0/0                   192.168.2.1    YES   manual up                        up
Serial0/0/1                   unassigned        YES  unset      administratively down              down
R1#
```

The output from the `show ip interface brief` command provides you with three important pieces of information:

- **IP address**
- **Line status (column 5)**
- **Protocol status (column 6)**

The IP address should be correct, and the status codes should be up and up. Table 24-2 summarizes the two status codes and their meanings.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>General Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line status</td>
<td>First status code</td>
<td>Refers to the Layer 1 status—for example, is the cable installed, is the right/wrong cable, is the device on the other end powered on?</td>
</tr>
<tr>
<td>Protocol status</td>
<td>Second status code</td>
<td>Refers generally to the Layer 2 status. It is always down if the line status is down. If the line status is up, a protocol status of down is usually caused by mismatched data link layer configuration.</td>
</tr>
</tbody>
</table>

Four combinations of settings are possible for the status codes when troubleshooting a network. Table 24-3 lists the four combinations, along with an explanation of the typical reasons why an interface is in that state.

<table>
<thead>
<tr>
<th>Line and Protocol Status</th>
<th>Typical Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively down, down</td>
<td>The interface has a shutdown command configured on it.</td>
</tr>
<tr>
<td>down, down</td>
<td>The interface has a no shutdown command configured, but the physical layer has a problem. For example, no cable has been attached to the interface (or with Ethernet), the switch interface on the other end of the cable is shut down, or the switch is powered off.</td>
</tr>
</tbody>
</table>
Line and Protocol Status | Typical Reasons
---|---
up, down | This almost always refers to data link layer problems, most often configuration problems. For example, serial links have this combination when one router was configured to use PPP and the other defaults to use HDLC. However, a clocking or hardware issue can also be to blame.
up, up | All is well and the interface is functioning.

If necessary, use the more verbose `show interface` command if you need to track down a problem with an interface, to get the output for every physical and virtual interface. You can also specify one interface. Example 24-3 shows the output for GigabitEthernet 0/0.

Example 24-3 The show interface gigabitethernet 0/0 Command

```
R1# show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
    Hardware is CN Gigabit Ethernet, address is 30f7.0da3.0da0 (bia 30f7.0da3.0da0)
    Description: R1 LAN
    Internet address is 192.168.1.1/24
    MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full Duplex, 100Mbps, media type is RJ45
    output flow-control is unsupported, input flow-control is unsupported
    ARP type: ARPA, ARP Timeout 04:00:00
    Last input 00:00:00, output 00:00:01, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
    Queuing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
    387 packets input, 59897 bytes, 0 no buffer
    Received 252 broadcasts (0 IP multicasts)
    0 runs, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 watchdog, 86 multicast, 0 pause input
    281 packets output, 35537 bytes, 0 underruns
    0 output errors, 0 collisions, 1 interface resets
    56 unknown protocol drops
    0 babbles, 0 late collision, 0 deferred
    0 lost carrier, 0 no carrier, 0 pause output
    0 output buffer failures, 0 output buffers swapped out

R1#
```

This command has a lot of output. However, sometimes this is the only way to find a problem.
Table 24-4 parses and explains each important part of the *show interface* output.

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet...is {up</td>
<td>down</td>
</tr>
<tr>
<td>line protocol is {up</td>
<td>down}</td>
</tr>
<tr>
<td>Hardware</td>
<td>Hardware type (for example, MCI Ethernet, serial communications interface [SCI], cBus Ethernet) and address.</td>
</tr>
<tr>
<td>Description</td>
<td>Text string description configured for the interface (max 240 characters).</td>
</tr>
<tr>
<td>Internet address</td>
<td>IP address followed by the prefix length (subnet mask).</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit (MTU) of the interface.</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth of the interface, in kilobits per second. The bandwidth parameter is used to compute routing protocol metrics and other calculations.</td>
</tr>
<tr>
<td>DLY</td>
<td>Delay of the interface, in microseconds.</td>
</tr>
<tr>
<td>rely</td>
<td>Reliability of the interface as a fraction of 255 (255/255 is 100 percent reliability), calculated as an exponential average over 5 minutes.</td>
</tr>
<tr>
<td>load</td>
<td>Load on the interface as a fraction of 255 (255/255 is completely saturated), calculated as an exponential average over 5 minutes.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation method assigned to an interface.</td>
</tr>
<tr>
<td>Loopback</td>
<td>Whether loopback is set. Can indicate a problem with the carrier.</td>
</tr>
<tr>
<td>Keepalive</td>
<td>Whether keepalives are set.</td>
</tr>
<tr>
<td>ARP type</td>
<td>Type of Address Resolution Protocol (ARP) assigned.</td>
</tr>
<tr>
<td>Last input</td>
<td>Number of hours, minutes, and seconds since the last packet was successfully received by an interface. Useful for knowing when a dead interface failed.</td>
</tr>
<tr>
<td>output</td>
<td>Number of hours, minutes, and seconds since the last packet was successfully transmitted by an interface. Useful for knowing when a dead interface failed.</td>
</tr>
<tr>
<td>output hang</td>
<td>Number of hours, minutes, and seconds (or never) since the interface was last reset because of a transmission that took too long. When the number of hours in any of the previous fields exceeds 24 hours, the number of days and hours is printed. If that field overflows, asterisks are printed.</td>
</tr>
<tr>
<td>Last clearing</td>
<td>Time at which the counters that measure cumulative statistics shown in this report (such as number of bytes transmitted and received) were last reset to 0. Note that variables that might affect routing (for example, load and reliability) are not cleared when the counters are cleared. Asterisks indicate elapsed time too large to be displayed. Reset the counters with the clear interface command.</td>
</tr>
<tr>
<td>Output</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Output queue, input queue, drops queue</td>
<td>Number of packets in output and input queues. Each number is followed by a slash (/), the maximum size of the queue, and the number of packets dropped because of a full queue.</td>
</tr>
<tr>
<td>Five minute input rate, Five minute output rate</td>
<td>Average number of bits and packets transmitted per second in the last 5 minutes. If the interface is not in promiscuous mode, it senses network traffic that it sends and receives (instead of all network traffic). The 5-minute input and output rates should be used only as an approximation of traffic per second during a given 5-minute period. These rates are exponentially weighted averages with a time constant of 5 minutes. A period of four time constants must pass before the average will be within 2 percent of the instantaneous rate of a uniform stream of traffic over that period.</td>
</tr>
<tr>
<td>packets input</td>
<td>Total number of error-free packets the system received.</td>
</tr>
<tr>
<td>bytes input</td>
<td>Total number of bytes, including data and MAC encapsulation, in the error-free packets received by the system.</td>
</tr>
<tr>
<td>no buffers</td>
<td>Number of received packets discarded because the main system had no buffer space. Compare with ignored count. Broadcast storms on Ethernet are often responsible for no input buffer events.</td>
</tr>
<tr>
<td>Received...broadcasts</td>
<td>Total number of broadcast or multicast packets received by the interface. The number of broadcasts should be kept as low as practicable. An approximate threshold is less than 20 percent of the total number of input packets.</td>
</tr>
<tr>
<td>runts</td>
<td>Number of Ethernet frames that are discarded because they are smaller than the minimum Ethernet frame size. Any Ethernet frame that is less than 64 bytes is considered a runt. Runts are usually caused by collisions. If more than one runt per million bytes is received, it should be investigated.</td>
</tr>
<tr>
<td>giants</td>
<td>Number of Ethernet frames that are discarded because they exceed the maximum Ethernet frame size. Any Ethernet frame that is larger than 1518 bytes is considered a giant.</td>
</tr>
<tr>
<td>input error</td>
<td>Runts, giants, no buffer, cyclic redundancy check (CRC), frame, overrun, and ignored counts. Other input-related errors can also increase the input error count, and some datagrams can have more than one error. Therefore, this sum might not balance with the sum of enumerated input error counts.</td>
</tr>
<tr>
<td>CRC</td>
<td>CRC generated by the originating LAN station or far-end device not matching the checksum calculated from the data received. On a LAN, this usually indicates noise or transmission problems on the LAN interface or the LAN bus itself. A high number of CRCs is usually the result of collisions or a station transmitting bad data.</td>
</tr>
</tbody>
</table>
Output Description

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame</td>
<td>Number of packets received as incorrectly having a CRC error and a noninteger number of octets. On a LAN, this is usually the result of collisions or a malfunctioning Ethernet device.</td>
</tr>
<tr>
<td>overrun</td>
<td>Number of times the receiver hardware could not hand-receive data to a hardware buffer because the input rate exceeded the capability of the receiver to handle the data.</td>
</tr>
<tr>
<td>ignored</td>
<td>Number of received packets ignored by the interface because the interface hardware ran low on internal buffers. These buffers are different from the system buffers mentioned in the buffer description. Broadcast storms and bursts of noise can cause the ignored count to increase.</td>
</tr>
<tr>
<td>input packets with dribble condition detected</td>
<td>Dribble bit error indicates that a frame is slightly too long. This frame error counter is incremented just for informational purposes; the router accepts the frame.</td>
</tr>
<tr>
<td>packets output</td>
<td>Total number of messages transmitted by the system.</td>
</tr>
<tr>
<td>bytes</td>
<td>Total number of bytes, including data and MAC encapsulation, transmitted by the system.</td>
</tr>
<tr>
<td>underruns</td>
<td>Number of times that the transmitter has been running faster than the router can handle. This might never be reported on some interfaces.</td>
</tr>
<tr>
<td>output errors</td>
<td>Sum of all errors that prevented the final transmission of datagrams out of the interface being examined. Note that this might not balance with the sum of the enumerated output errors because some datagrams might have more than one error and others might have errors that do not fall into any of the specifically tabulated categories.</td>
</tr>
<tr>
<td>collisions</td>
<td>Number of messages retransmitted because of an Ethernet collision. This is usually the result of an overextended LAN (too-long Ethernet or transceiver cable, more than two repeaters between stations, or too many cascaded multiport transceivers). A packet that collides is counted only once in output packets.</td>
</tr>
<tr>
<td>interface resets</td>
<td>Number of times an interface has been completely reset. This can happen if packets queued for transmission were not sent within several seconds. On a serial line, this can be caused by a malfunctioning modem that is not supplying the transmit clock signal, or it can be caused by a cable problem. If the system notices that the carrier detect line of a serial interface is up but the line protocol is down, it periodically resets the interface in an effort to restart it. Interface resets can also occur when an interface is looped back or shut down.</td>
</tr>
</tbody>
</table>

Activity: Order the Steps for IPv4 Router Configuration

Refer to the Digital Study Guide to complete this activity.
Basic Router Configuration with IPv6

In this section, we use the topology in Figure 24-2 to review the basic commands for enabling IPv6 on a router.

Figure 24-2 IPv6 Example Topology

![IPv6 Example Topology Diagram]

Command Syntax

First, you must enable IPv6 routing using the following command in global configuration mode:

```
R1(config)# ipv6 unicast-routing
```

Among other actions, this command configures the router to begin listening for and responding to Neighbor Discovery (ND) messages on all active IPv6 interfaces.

To configure an IPv6 address on a router's interface, you have one of several options:

- Configure the interface to use the EUI-64 method of addressing:

  ```
  Router(config)# ipv6 address ipv6-prefix/prefix-length eui-64
  ```

- Configure the full global unicast address. To manually configure a full IPv6 address, use the following command syntax:

  ```
  Router(config)# ipv6 address ipv6-address/prefix-length
  ```

- Configure the interface as unnumbered (see Day 26, “IPv6 Addressing”).

- Configure the interface as a DHCPv6 client (see Day 7, “DHCP and DNS”).

NOTE: To manually configure an interface’s link-local address, use the following command syntax:

```
Router(config)# ipv6 address ipv6-address/prefix-length link-local
```

Configuration Example

The preferred method often is to manually configure the full IPv6 address because you can control the number of hexadecimal digits you must type when testing connectivity or troubleshooting a problem. You can see this by comparing the EUI-64 method to a full configuration. In Example 24-4, the interfaces on R1 are all configured using the EUI-64 method.
Example 24-4 Configuring Interfaces Using the EUI-64 Method

Notice the number of hexadecimal digits in the IPv6 addresses highlighted in the output from the `show ipv6 interface brief` command. Imagine having to ping the GigabitEthernet 0/0 address 2001:DB8:ACAD:1:2D0:97FF:FE20:A101.

Furthermore, notice that the link-local addresses are also rather complex. To reduce the complexity of the router's configuration, verification, and troubleshooting, it is a good practice to manually configure the link-local address as well as the IPv6 global unicast address. In Example 24-5, R1 is reconfigured with simpler IPv6 addresses and with FE80::1 as the link-local address on all interfaces. Remember, the link-local address needs to be unique only on that interface's link.

Example 24-5 Full IPv6 Address and Link-Local Address Configuration
NOTE: If you do not remove the previous IPv6 address configuration, each interface will have two IPv6 global unicast addresses. This is different than in IPv4, where simply configuring another IPv4 address with the `ip address` command overwrites any previous configuration. However, only one link-local address can exist per interface.

Compare the highlighted output from the `show ipv6 interface brief` command in Example 24-5 with the output in Example 24-4. You can see that simplifying the IPv6 addressing implementation can make your verification and troubleshooting job much easier.

To verify the full configuration of an interface, use the `show ipv6 interface` command. Example 24-6 shows the output for R1’s GigabitEthernet 0/0 interface.

Example 24-6 The show ipv6 interface gigabitethernet 0/0 Command

```
R1# show ipv6 interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::1
No Virtual link-local address(es):
Global unicast address(es):
    2001:DB8:ACAD:1::1, subnet is 2001:DB8:ACAD:1::/64
Joined group address(es):
    FF02::1
    FF02::1:FF00:1
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```
Focus on the highlighted output. IPv6 is enabled on this interface with a nice, short link-local address. The global unicast address and its subnet are listed, as is the address of multicast groups that this interface automatically joined. Do you remember what the FF02::1 and FF02::1:FF00:1 addresses are used for? If not, revisit Day 26.

That’s all the IPv6 configurations for today. As we continue to review the exam topics in the upcoming days, we will incorporate IPv6 topics.

Activity: Order the Steps for IPv6 Router Configuration

Refer to the Digital Study Guide to complete this activity.

Verifying IPv4 and IPv6 Network Connectivity

As reviewed on Day 29, “Switch Configuration Basics,” ping and traceroute are helpful tools for verifying network connectivity. Example 24-7 demonstrates successful ping output on the router.

Example 24-7 Successful ping Output on a Router

```
R1# ping 192.168.3.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

R1# ping 2001:db8:acad:1:290:dff:fee5:8095

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:1:290:CFF:FEF5:8095, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/9/46 ms
```

Unsuccessful ping output shows periods (.) instead of exclamation points (!), as Example 24-8 demonstrates. The output would be the same in IPv6.

Example 24-8 Unsuccessful ping Output on a Router

```
R1# ping 192.168.3.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.3.2, timeout is 2 seconds:
......
Success rate is 0 percent (0/5)
```

Example 24-9 shows output from a successful traceroute command.

Example 24-9 Successful traceroute Output on a Router

```bash
R1# traceroute 192.168.3.10
Type escape sequence to abort.
Tracing the route to 192.168.3.10

1  192.168.2.2   71 msec   70 msec   72 msec
2  192.168.3.10  111 msec  133 msec  115 msec
R1#

!Tracing to an IPv6 destination.
R2# traceroute 2001:db8:acad:1:290:cff:fee5:8095
Type escape sequence to abort.
Tracing the route to 2001:DB8:ACAD:1:290:CFP:FEES:8095

1   2001:DB8:ACAD:3::11 msec    1 msec    1 msec
2   2001:DB8:ACAD:1:290:CFP:FEES:8095 1 msec    1 msec    0 msec
R2#
```

Unsuccessful traces show the last successful hop and the asterisks for each attempt until the user cancels. To cancel the traceroute command on a router, use the key combination Ctrl-Shift-6 and then press the x key. Example 24-10 shows unsuccessful traceroute output. The output would be the same with IPv6.

Example 24-10 Unsuccessful traceroute Output on a Router

```bash
R1# traceroute 192.168.3.2
Type escape sequence to abort.
Tracing the route to 192.168.3.2

1  192.168.2.2   71 msec   70 msec   72 msec
2   *     *     *     *
3   *     *     *     *
4   *     *     *     *
5   *
R1#
```

Using Telnet or SSH to remotely access another device also tests connectivity. More important, these remote access methods test whether a device has been correctly configured so that you can access it for management purposes. This can be important when a device is truly remote (for example, across town or in another city). Day 12 reviews SSH configuration and verification in greater detail.

During the basic configuration tasks earlier, we entered the commands to properly configure the vty lines for SSH remote access. If you are accessing a device configured with SSH from a PC, you use the SSH setting in your terminal client. However, you can use the ssh command on a router or switch to access another device configured with SSH. Example 24-11 shows how to use SSH to remotely access R2 from R1.
Example 24-11 Remote Access Using SSH

```
R1# ssh?
-c  Select encryption algorithm
-l  Log in using this user name
-m  Select HMAC algorithm
-o  Specify options
-p  Connect to this port
-v  Specify SSH Protocol Version
-vrf Specify vrf name
WORD  IP address or hostname of a remote system

R1# ssh -l?
WORD  Login name

R1# ssh -l admin?
-c  Select encryption algorithm
-m  Select HMAC algorithm
-o  Specify options
-p  Connect to this port
-v  Specify SSH Protocol Version
-vrf Specify vrf name
WORD  IP address or hostname of a remote system

R1# ssh -l admin 192.168.2.2
Password:

******************************************
WARNING!! Unauthorized Access Prohibited!!
******************************************

R2>
```

NOTE: During your CCNA studies and lab practice, you most likely used a Telnet configuration to remotely access your lab equipment. Although Telnet is easier to use than SSH, remember that SSH is considered best practice. Therefore, during the CCNA exam, be ready to use SSH to remotely access devices on simulation questions because Telnet might not be configured or allowed.

Packet Tracer Activity: Dual-Stack Router Address Configuration

Refer to the Digital Study Guide to access the PKA file for this activity. You must have Packet Tracer software to run this activity. See the Introduction for details.
Basic IP Addressing Troubleshooting

If you are sure you manually configured the correct IP address and subnet mask (IPv4) or network prefix (IPv6), then basic IP addressing issues are usually the result of a misconfigured default gateway or duplicate addresses.

Default Gateway

A misconfigured default gateway is one of the most common problems in either a static or dynamically assigned IP addressing scheme. For a device to communicate across multiple networks, it must be configured with an IP address, a subnet mask or network prefix, and a default gateway.

The default gateway is used when the host wants to send a packet to a device on another network. The default gateway address is generally the router interface address attached to the local network to which the host is connected.

To resolve a default gateway that was manually configured incorrectly, consult the topology and addressing documentation to verify what the device’s default gateway should be—normally, a router attached to the same LAN.

NOTE: A misconfigured DHCP server can also cause a default gateway issue. Some DHCP server configurations, such as the Easy IP IOS feature, might require the administrator to manually configure the default gateway address. If this is configured incorrectly, no devices will have access beyond the LAN. DHCP is reviewed on Day 7.

Duplicate IP Addresses

Under some circumstances, duplicate IP address conflicts can occur between a statically configured network device and a PC obtaining automatic IP addressing information from the DHCP server. To resolve such an IP addressing conflict, you can do one of the following:

- Convert the network device with the static IP address to a DHCP client
- On the DHCP server, exclude the static IP address of the end device from the DHCP pool of addresses

The first solution is a quick fix that you can do in the field. However, the device more than likely needs a static configuration. The second solution might be the better long-term choice. However, it requires that you have administrative privileges to configure the DHCP server.

You might also encounter IP addressing conflicts when manually configuring IP on an end device in a network that uses only static IP addresses. In this case, you must determine which IP addresses are available on the particular IP subnet and configure accordingly. This case illustrates why it is so important for a network administrator to maintain detailed documentation, including IP address assignments and topologies, for end devices.
Study Resources

For today’s exam topics, refer to the following resources for more study.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing and Switching Essentials</td>
<td>1</td>
<td>Router Initial Configuration</td>
</tr>
<tr>
<td>ICND1 Official Cert Guide</td>
<td>17</td>
<td>Enabling IPv4 Support on Cisco Router Interfaces</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Implementing Unicast IPv6 Addresses on Routers</td>
</tr>
<tr>
<td>Supplemental Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNA Portable Command Guide</td>
<td>11</td>
<td>All</td>
</tr>
<tr>
<td>CCNA Video Series</td>
<td>3</td>
<td>Lesson 2: Basic Router Configuration and Verification</td>
</tr>
<tr>
<td>CCNA Network Simulator</td>
<td>ICND1</td>
<td>Chapter 17: New Job I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 17: Rebuild a Configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 17: Router CLI Exec Mode I-II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 17: Router CLI Configuration Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 17: Setting Router Passwords</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 30: IPv6 Configuration I-II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 30: IPv6 Address Configuration I-IX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 30: IPv6 EUI-64 Calculation Drills I-X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 30: IPv6 Addressing Troubleshooting</td>
</tr>
</tbody>
</table>

Check Your Understanding

Refer to the Digital Study Guide to take a short quiz covering the content of this day.
Index

Symbols
* (asterisk), 165, 438
? command, 42–43
3–1–4 Rule, 92
3G connections, 388
3-tiered campus design, 24–26
4G connections, 388
10BASE-T, 21, 27, 34
10GBASE-LX4, 21
10GBASE-SX4, 21
10GBASE-T, 21
10GigE, 34
100BASE-FX, 21
100BASE-TX, 21
802.1D. See STP (Spanning Tree Protocol)
802.1x, 293–294
1000BASE-LX, 21
1000BASE-SX, 21
1000BASE-T, 21
1000BASE-TX, 21

A
A record (DNS), 365
AAA (Authentication, Authorization, and Accounting) framework, 292
AAAA record (DNS), 365
access control lists. See ACLs (access control lists)
access layer, 24
access layer switches, 14
access points, 17–19
access-list command, 336, 337–338, 375
ACI (Application Centric Infrastructures), 422–423
Acknowledgment field (TCP), 7–8
Acknowledgment packets (EIGRP), 241
ACL Analysis tool (APIC-EM), 424–425
ACL Path Trace tool (APIC-EM), 424–425
ACLs (access control lists), 337–339
APIC-EM (Application Policy Infrastructure Controller Enterprise Module) and, 424–425
defining, 329
design guidelines, 333–334
identification numbers, 333
interface processing ACLs, 329–330
IPv4 ACLs
comments, 340–341
compared to IPv6 ACLs, 343
extended named IPv4 ACLs, 340
extended numbered IPv4 ACLs, 337–339
standard named IPv4 ACLs, 339–340
standard numbered IPv4 ACLs, 335–337
verification, 341–343
IPv6 ACLs
applying, 344
compared to IPv4 ACLs, 343
creating, 344
extended IPv6 ACLs, 345
naming, 343–344
standard IPv6 ACLs, 344–345
troubleshooting, 348–349
verification, 346–348
list logic with, 330–331
operation, 329
planning for, 331
types of, 332
Active mode (LACP), 316
AD (administrative distance), 113–115, 244–245
AD (advertised distance), 245
address conflicts, resolving, 363–364
Address Resolution Protocol (ARP), 4, 364
addresses, MAC, 11, 28
addressing, Ethernet, 36
addressing, IPv4, 77
binary and alphanumeric representations, 90–91
classes of addresses, 78–80
conventions for writing, 100–102
header format, 78
IPv4-mapped IPv6 address, 97
NAT (network address translation)
benefits of, 373
concepts, 369–371
dynamic NAT, 371, 375–376
addressing, IPv4

- example, 371
- limitations of, 373
- overloading, 372–373, 376
- static NAT, 371, 374–375
- troubleshooting, 378–379
- verification, 377

addressing, IPv6

- anycast addresses, 100
- assigned multicast addresses, 98
- benefits of, 89–90
- binary and alphanumeric representations, 90–91
- EUI-64 concept, 103–104
- global unicast addresses, 92–95
- IPv4 embedded addresses, 97
- link-local addresses, 95–96
- loopback addresses, 96
- migration to, 105–106
- NAT (network address translation)
 - private address space, 379
 - purpose of, 379–380
- prefixes, 101–102
- solicited-node multicast addresses, 98–100
- stateless address autoconfiguration, 104–105
- subnetting, 102–103
- troubleshooting, 136
- ULAs (unique local addresses), 96–97
- unspecified addresses, 96

addressing schemes

EIGRP (Enhanced Interior Gateway Routing Protocol)
 - for IPv4, 249
 - for IPv6, 257
- IPv4 static routing, 141
- IPv6 static routing, 148–149
- OSPF (Open Shortest Path First), 197
 - multiarea OSPFv2 implementation, 216
 - multiarea OSPFv3 implementation, 219
- OSPFv2, 226
- OSPFv3, 232

adjacency (OSPF), 228, 236
administrative distance (AD), 113–115, 244–245
advertised distance (AD), 245
advertisements (VTP), 170
AF (Assured Forwarding), 412–413

algorithms

- Dijkstra Shortest Path First (SPF) algorithm, 117–118
- DUAL (Diffusing Update Algorithm), 245–246
- OSPF (Open Shortest Path First), 189–190
- Pseudo-Random Global ID Algorithm, 96
- STP (Spanning Tree Protocol), 298–299

alphanumeric representation (IP addresses), 90–91
anycast addresses, 100
 applied ACLs (access control lists), 344
 APs (access points), 17–19
 ARP (Address Resolution Protocol), 4, 364
 assigned multicast addresses, 98
 assigning VLANs (virtual local-area networks), 65–66
 Assured Forwarding (AF), 412–413
 asterisk (*), 165, 438
 asymmetric switching, 30
authentication
AAA (Authentication, Authorization, and Accounting) framework, 292
authentication servers, 293
PPP (Point-to-Point Protocol), 395–396
Auto mode (PAgP), 315
auto-cost reference-bandwidth command, 201, 208
automatic medium-dependent interface crossover (auto-MDIX), 48
automatic summarization
EIGRP (Enhanced Interior Gateway Routing Protocol), 263–264
RIPv1 (Routing Information Protocol version 1), 162–164
RIPv2 (Routing Information Protocol version 2), 167
auto-MDIX (automatic medium-dependent interface crossover), 48
autonomous system (AS), 110
Autonomous System Number field (EIGRP), 243
auto-summary command, 264

B
backing up
IOS images, 442–443
licenses, 447
backup designated routers (BDR), 189
balancing load, 323–325
bandwidth
definition of, 409
modifying usage of
EIGRP for IPv4, 266
EIGRP for IPv6, 268–269
reference bandwidth, 200–203
bandwidth command, 202–203, 244, 254, 266
banner login command, 47
baseline data, 453–454
Basic Rate Interface (BRI), 384
BD/BDR election, 229–231
BDR (backup designated routers), 189, 229–231
BGP (Border Gateway Protocol)
concepts, 403–404
eBGP (external BGP)
configuration, 404–407
verification, 406–407
BID (bridge ID), 298–299, 307–309
bidirectional communication, 47
binary representation (IP addresses), 90–91
binary values (subnet masks), 80–82
bits borrowed for subnets, determining, 81–82
black hole VLANs (virtual local-area networks), 59
Border Gateway Protocol. See BGP (Border Gateway Protocol)
bottom-up troubleshooting, 459
BPDU (bridge protocol data unit), 298
BPDU guard, 309
BRI (Basic Rate Interface), 384
bridge ID (BID), 298–299, 307–309
bridge protocol data unit (BPDU), 298
broadcast addresses, 36
broadcast domains, 29
broadcast multiaccess networks, 228
broadcast storms, 297
buffering memory, 30

cable modems, 387
cabling
copper cable, 19–20
fiber-optic cable, 19–20
UTP (unshielded twisted pair) cabling, 34–35
Canonical Format Identifier (CFI), 61
CAPWAP (Control and Provisioning of Wireless Access Points), 19
Carrier Sense Multiple Access with Collision Detection (CSMA/CD), 32–33
CBWFQ (Class-Based Weighted Fair Queueing), 413
CCNA Routing and Switching 200–125 Premium Edition Complete Video Course (Wallace), 425
CCNA Routing and Switching ICND2 200–105 Official Cert Guide (Odom), 404, 421
CDP (Cisco Discovery Protocol)
configuration, 274–276
disabling, 275–276
overview of, 273–274
verification, 277–279
cdp holdtime command, 280
cellular Internet connections, 388
CFI (Canonical Format Identifier), 61
Challenge Handshake Authentication Protocol (CHAP), 397–398
channel-group command, 316, 319
CHAP (Challenge Handshake Authentication Protocol), 397–398
CIR (Committed Information Rate), 414
circuit-switched connections, 384–385
Cisco 1941 router, 15
Cisco ACI (Application Centric Infrastructures), 422–423
Cisco APIC-EM (Application Policy Infrastructure Controller Enterprise Module), 423–425
Cisco Application Policy Infrastructure Controller (APIC), 423
Cisco devices, connecting to, 41
Cisco Discovery Protocol. See CDP (Cisco Discovery Protocol)
Cisco IOS Integrated File System. See IFS (Integrated File System)
Cisco Open SDN Controller (OSC), 422
Class of Service (CoS), 411
Class Selector (CS) values, 411
Class-Based Weighted Fair Queueing (CBWFQ), 413
classes of IPv4 addresses, 78–80
classful routing protocols, 112
classification
AF (Assured Forwarding), 412–413
definition of, 410–411
DSCP (differentiated service code point), 411–412
EF (Expedited Forwarding), 412–413
IPP (IP precedence), 411–412
classless routing protocols, 112
clear command, 378
clear ip nat translation command, 377
clear ip ospf process command, 230, 236
clear spanning-tree detected protocols command, 309
CLI (command-line interface). See commands
clients, DHCPv4, 357–358
cloud computing
overview of, 416
server virtualization, 416–418
services, 418–419
virtual network infrastructure, 419
collisions
collision domains, 29
troubleshooting, 54
command history, 44
commands
? 42–43
access-list, 336, 337–338, 375
auto-cost reference-bandwidth, 201, 208
auto-summary, 264
bandwidth, 202–203, 244, 254, 266
banner login, 47
basic switch configuration commands, 46–47
cdp holdtime, 280
channel-group, 316, 319
clear, 378
clear ip nat translation, 377
clear ip ospf process, 230, 236
clear spanning-tree detected protocols, 309
command history, 44
configure terminal, 45
copy, 440–442
copy run start, 124
copy running-config startup-config, 124
copy startup-config running-config, 448
copy tftp flash, 444
crypto key generate rsa, 295
crypto key zeroize rsa, 295
default-information originate, 165, 227, 233
default-router, 353
dir, 438–440, 443
dns-server, 353
domain-name, 353
duplex, 52
duplex auto, 46
eigrp router-id, 250, 257
enable password, 47, 122
encapsulation ppp, 396
exit, 46
frequency, 460
hostname, 46, 397
icmp-echo, 460
interface port-channel, 316
interface range, 47, 316
interface tunnel, 402
interface vlan, 181
ip access-group, 336
ip access-list extended, 340
ip access-list standard, 339
ip address, 46
ip address dhcp, 357
ip bandwidth-percent eigrp, 268
ip default-gateway, 46
ip dhcp excluded-address, 352
ip dhcp pool, 352
ip domain-name, 277, 295
ip forwarding-protocol udp, 357
ip hello-interval eigrp, 266–267
ip helper-address, 356–357
ip hold-time eigrp, 266–267
ip http authentication enable, 46
ip http server, 46
ip nat inside, 374, 375
ip nat inside source list, 375
ip nat inside source static, 374
ip nat outside, 374, 375
ip nat pool name, 375
ip ospf cost, 202–203
ip ospf priority, 229
ip route, 140
ip routing, 181
ip sla, 460
ip sla schedule, 460
ipconfig, 49, 355–356
ipv6 access-class, 344
ipv6 access-list, 344
ipv6 address, 130
ipv6 address autoconfig, 362, 363
ipv6 address dhcp, 363
ipv6 eigrp, 257
ipv6 hello-interval eigrp, 269
ipv6 hold-time eigrp, 269
ipv6 nd, 359–360
ipv6 route, 149
ipv6 router eigrp, 257
ipv6 router ospf, 208
ipv6 traffic-filter, 344
ipv6 unicast-routing, 98, 130, 257, 361
lease, 353
license install, 445–447
license save, 447
line console, 46
lldp holdtime, 280
lldp reinit, 280
lldp run, 280
lldp timer, 280
logging buffered, 434
logging console, 434
logging source-interface, 435
logging source-interface, 435
login, 46
mdix auto, 46
neighbor, 405–406
netbios-name-server, 353
network, 199–200, 250, 353, 406
no cdp enable, 275–276
no cdp run, 273
no debug ip rip, 161
no lldp receive, 280
no lldp transmit, 280
no service dhcp, 354
no shutdown, 257, 275, 291
no switchport, 182
ntp server, 436
passive-interface, 161–162, 208
password, 46
ping, 48–50, 133
ppp authentication chap, 397, 398
ppp authentication pap, 398
pppoe enable, 400
range, 65
redistribute static, 265, 267
remark, 340
reset, 448
router bgp, 405
router ospf, 198
router rip, 163
router-id, 198–199, 208
service password-encryption, 47
service sequence-numbers, 433
service timestamps, 433
service-password encryption, 123
show, 44–45
show access-lists, 341, 346–347
show cdp, 275
show cdp interface, 274
show cdp neighbors, 275
show cdp neighbors detail, 278–279
show cdp traffic, 279
show etherchannel summary, 318
show file systems, 437–438
show flash, 438–439, 443
show history, 44
show interface, 126–129
show interface switchport, 318–319
show interface Tunnel, 403
show interfaces, 52–53, 65–66, 397
show interfaces status, 52–53
show interfaces switchport, 71, 74
show interfaces trunk, 69, 73–74
show ip bgp, 406–407
show ip bgp summary, 406–407
show ip dhcp binding, 354
show ip dhcp conflict, 364
show ip dhcp server statistics, 354
show ip eigrp interface, 269
show ip eigrp interfaces, 270
show ip eigrp neighbors, 252–253, 269
show ip eigrp topology, 253
show ip eigrp topology all-links, 254
show ip interface, 341–342
show ip interface brief, 125, 179–180, 270, 274, 403, 448
show ip interface brief, 203–204
show ip nat statistics, 377
show ip nat translations, 377, 378
show ip ospf, 198, 205–206, 236
show ip ospf database, 218
show ip ospf interface, 236
show ip ospf interface brief, 206, 217
show ip ospf interfaces, 198
show ip ospf neighbor, 204–205, 236
show ip protocols, 114, 159–160, 167, 198, 203–204, 217, 236, 251–252, 269, 270
show ip route eigrp, 255, 265, 269
show ip route ospf, 217, 236
show ip sla configuration, 461
show ip sla statics, 462
show ip ssh, 294–295
show ipv6 access-list, 347
show ipv6 eigrp interface, 270
show ipv6 eigrp neighbors, 259–260, 270
show ipv6 interface, 132–133, 347–348, 362
show ipv6 interface brief, 131–132
show ipv6 ospf, 209–210
show ipv6 ospf database, 211
show ipv6 ospf interface, 210
show ipv6 ospf interface brief, 211, 221
show ipv6 ospf neighbor, 211
show ipv6 ospf neighbors, 233
show ipv6 protocols, 210, 220, 258, 270
show ipv6 route, 149–150, 268
show ipv6 route eigrp, 260–261, 270
show ipv6 route ospf, 212, 221, 233
show license feature, 444
show license udi, 445
show lldp interface, 281
show lldp neighbors, 282
show lldp neighbors detail, 282–283
show lldp traffic, 283
show logging, 434, 435–436
show mac address-table, 71
show ntp associations, 437
show ntp status, 437
show port-security, 286–287
show port-security interface, 286–287
show standby, 322–323
show standby brief, 322–325
show spanning-tree, 308, 310
show spanning-tree active, 310
show spanning-tree interface, 310
show spanning-tree summary, 310
show spanning-tree vlan, 310
show standby, 322–323
show standby brief, 322–325
show version, 442, 448
show vlan, 71–72
show vlan brief, 63, 65
show vlans, 179–180
show vtp password, 173
show vtp status, 172, 173–175
snmpget, 429
snmp-server community, 430
snmp-server contact, 430
snmp-server location, 430
spanning-tree bpduguard default, 309
spanning-tree link-type point-to-point, 309
spanning-tree mode rapid-pest, 309
spanning-tree portfast default, 309
spanning-tree vlan, 307–308
speed, 52
speed auto, 46
ssh, 134–135
standby preempt, 322
standby priority, 322
switchport access vlan, 46, 71, 291
switchport mode access, 46, 285
switchport mode dynamic auto, 74
switchport mode dynamic desirable, 62
switchport mode trunk, 62
switchport mode trunk dynamic auto, 62
switchport nonegotiate, 62
switchport port-security, 285
switchport port-security mac-address, 286
switchport port-security mac-address sticky, 286
switchport port-security maximum, 285
switchport port-security violation {protect | restrict | shutdown} 285
switchport trunk native vlan, 291
terminal history, 44
terminal no history, 44
tracert, 134
traceroute, 134
trust, 50
tunnel mode gre ip, 402
undebug all, 161
username, 397
vtp domain, 171
vtp mode, 171
vtp password, 171
vtp pruning, 171

comments (IPv4 ACLs), 340–341
Committed Information Rate (CIR), 414
community clouds, 419
composite metric (EIGRP), 244
configuration
CDP (Cisco Discovery Protocol), 274–276
DHCPv4, 352–358
clients, 357–358
request relay, 356–357
servers, 352–356
DHCPv6
SLAAC (stateless address autoconfiguration), 358–360
stateful DHCPv6, 360–361, 363
stateless DHCPv6, 360–362
eBGP (external BGP), 404–406
EIGRP for IPv4
addressing scheme, 249
network command, 250
router IDs, 250–251
topology, 249–250
verification, 251–255
EIGRP for IPv6
addressing scheme, 257
configuration commands, 257–258
topology, 256
verification, 258–261
EtherChannel, 316–317
GRE (generic route encapsulation), 401–402
HSRP (Hot Standby Router Protocol), 322
IPv4 ACLs
comments, 340–341
extended named IPv4 ACLs, 340
extended numbered IPv4 ACLs, 337–339
standard named IPv4 ACLs, 339–340
standard numbered IPv4 ACLs, 335–337
IPv4 default route configuration, 144–146
IPv4 static route configuration
addressing scheme, 141
example of, 141–142
exit interface parameter, 143–144
ip route command, 140
next-hop parameter, 142–143
summary route configuration, 147–148
topology, 140–141
IPv6 ACLs
applying, 344
creating, 344
extended IPv6 ACLs, 345
naming, 343–344
standard IPv6 ACLs, 344–345
IPv6 default route configuration, 150–151
IPv6 static route configuration
addressing scheme, 148–149
ipv6 route command, 149
show ipv6 route command, 149–150
summary route configuration, 151–152
topology, 148
LLDP (Link Layer Discovery Protocol), 280–281
multilayer switch inter-VLAN routing
Layer 3 routed ports, 182
SVIs (switch virtual interfaces), 180–181
NAT (network address translation)
 dynamic NAT, 375–376
 overloading, 376
 static NAT, 374–375
NTP (Network Time Protocol), 436–437
OSPFv2
 addressing scheme, 226
 BD/BDR election, 229–231
 dead intervals, 228
 default route redistribution, 227
 example of, 225–227
 hello intervals, 228
 multiarea OSPFv2, 216
 network types, 228–229
 single-area OSPFv2, 197–203
 topology, 225
OSPFv3
 addressing scheme, 232
 dead intervals, 234
 default route propagation, 233–234
 example of, 231–233
 hello intervals, 234
 multiarea OSPFv3, 220
 single-area OSPFv3, 209–212
 timers, 234–235
 topology, 231
port security, 285–287
PPP (Point-to-Point Protocol), 396–397
PPPoE (PPP over Ethernet), 399–400
RIPv1 (Routing Information Protocol version 1), 156–157
RIPv2 (Routing Information Protocol version 2), 165–167
router configuration with IPv4
 command syntax, 122
 example of, 122–124
 IP addressing, troubleshooting, 136
 network connectivity, verifying, 133–135
 topology, 121
 verification, 124–129
router configuration with IPv6
 command syntax, 130
 example of, 130–133
 IP addressing, troubleshooting, 136
 network connectivity, verifying, 133–135
 topology, 130
router on a stick, 177–179
SNMP (Simple Network Management Protocol), 430
SSH (Secure Shell), 294–295
STP (Spanning Tree Protocol), 306–307
 BID (bridge ID), 307–309
BPDU guard, 309
PortFast, 309
Rapid PVST+, 309
switches
 auto-MDIX, 48
 basic switch configuration commands, 46–47
 Cisco devices, connecting to, 41
 CLI EXEC sessions, 42
 CLI navigation and editing shortcuts, 43–44
 command history, 44
 full-duplex communication, 47
 half-duplex communication, 47
 help facility, 42–43
 network connectivity, verifying, 48–51
 port speed, 47
 subconfiguration modes, 45
 troubleshooting, 51–54
Syslog, 434–435
VLANs (virtual local-area networks), 62–64
 extended VLANs, 67
 trunking, 68–69, 170–173
VTP (VLAN Trunking Protocol), 170–173
configuration files, 440–442, 451
configure terminal command, 45
congestion management, 413
congestion management, 413
connectionless protocols, 10
connections. See also configuration
 EIGRP (Enhanced Interior Gateway Routing Protocol), 243
 TCP (Transmission Control Protocol), 9
 WANs (wide area networks)
 circuit-switched connections, 384–385
 comparison of, 388
 dedicated connections, 383–384
 Internet connections, 386–388
 overview of, 382–383
 packet-switched connections, 385–386
console terminal, 41
Control and Provisioning of Wireless Access Points (CAPWAP), 19
collection planes, 419–420
collectors, 421
core convergence
 with link-state protocols, 118–119
 STP (Spanning Tree Protocol), 299–300
copper cable, 19–20
device management

copy command, 440–442
copy run start command, 124
copy running-config startup-config command, 124
copy startup-config running-config command, 448
copy tftp flash command, 444
core layer, 24
core layer switches, 14
CoS (Class of Service), 411
creating ACLs (access control lists), 344
crypto key generate rsa command, 295
crypto key zeroize rsa command, 295
CS (Class Selector) values, 411
CSMA/CD (Carrier Sense Multiple Access with Collision Detection), 32–33
cut-through switching, 30

d
DAD (duplicate address detection), 96, 99, 358
data center topology, 417–418
data encapsulation, 12–13
data link layer
 overview of, 2
 troubleshooting, 456
data planes, 419–420
data VLANs (virtual local-area networks), 59
databases, LSDB (link-state database), 116–117
DBD (database description) packets, 186
dead intervals
 OSPFv2, 228
 OSPFv3, 234
debug command, 378
debug ip nat command, 378
debug ip rip command, 160–161, 164
debug ppp command, 398
dedicated WAN connections, 383–384
default gateways, troubleshooting, 136
default routing
 EIGRP (Enhanced Interior Gateway Routing Protocol)
 for IPv4, 265–266
 for IPv6, 267–268
 IPv4 default route configuration, 144–146
 IPv6 default route configuration, 150–151
 OSPFv2, 227
 OSPFv3, 233–234
 overview of, 139–140
 RIPv1 (Routing Information Protocol version 1), 164–165
default VLANs (virtual local-area networks), 59
default-information originate command, 165, 227, 233
default-router command, 353
defining ACLs (access control lists), 329
delay, 409
on-demand self-service, 418
deny statement, 338

deny

FTP (File Transfer Protocol), 338
hosts, 336, 340
subnets, 337
Telnet, 338–339
Telnet/SSH access, 337
design guidelines
 ACLs (access control lists), 333–334
 hierarchical campus network designs, 24–26
 multiarea OSPF (Open Shortest Path First) operation, 192–194
designated routers (DR), 189
Desirable mode (PAgP), 315
device discovery. See discovery
device management
 Cisco devices, connecting to, 41
 configuration files, 440–442
 IFS (Integrated File System)
 commands, 437–440
 definition of, 437
 URL prefixes, 440
 IOS images
 backing up, 442–443
 licenses, 444–447
 restoring, 443–444
 TFTP topology, 442
 licenses, 444–447
 NTP (Network Time Protocol), 436–437
 password recovery, 448
 routers, 15
SNMP (Simple Network Management Protocol)
 components, 427
 configuration, 430
 messages, 427–428
 MIB (Management Information Base), 428–429
 operation, 427
 verification, 430–431
 versions, 428
switches, 13
Syslog
 configuration, 434–435
 definition of, 432
 operation, 432–433
 verification, 435–436
DHCP (Dynamic Host Configuration Protocol), 3
 DHCP snooping, 289–290
DHCPv4
 configuration, 352–358
 overview of, 351
 testing, 364
 verification, 354–355
DHCPv6
 SLAAC (stateless address autoconfiguration), 358–360
 stateful DHCPv6, 360–361, 363
 stateless DHCPv6, 360–362
 troubleshooting, 363–364
DHCPOFFER packet, 351
DHCPDISCOVER packet, 351
DHCPPACKET packet, 351
DHCPRREQUERY packet, 351
DHCPREQUEST packet, 351
diacr pool, 400
differentiated service code point (DSCP), 411–412
Diffusing Update Algorithm (DUAL), 245–246
digital subscriber line (DSL), 386–387
Dijkstra Shortest Path First (SPF) algorithm, 117–118
dir command, 438–440, 443
directly connected routes, 109
disabling
 CDP (Cisco Discovery Protocol), 275–276
 RIPv2 automatic summarization, 167
VLANs (virtual local-area networks). See configuration
discards (TCP), 415
discontiguous networks (EIGRP), 270–271
discovery
 CDP (Cisco Discovery Protocol)
 configuration, 274–276
 disabling, 275–276
 overview of, 273–274
 verification, 277–279
 LLDP (Link Layer Discovery Protocol)
 configuration, 280–281
 overview of, 279–280
 verification, 281–283
distance vector protocols, 111
distribution layer, 24
distribution layer switches, 14
DNS (Domain Name System), 3
 operation, 364–366
 troubleshooting, 366
dns-server command, 353
documentation, 451
 baseline data, 453–454
 configuration files, 451
 topology diagrams, 452–453
Domain Name System (DNS), 3
domain-name command, 353
domains
 broadcast domains, 29
 collision domains, 29
 VTP domains, 169
DR (designated routers), 189, 229–231
dSCP (designated service code point), 411–412
DSL (digital subscriber line), 386–387
DTP (Dynamic Trunking Protocol), 61–62
DUAL (Diffusing Update Algorithm), 245–246
dual-homed point-to-point WANs (wide area networks), 381
dual-stacking, 105–106
duplex and speed mismatches, 52–53
duplex auto command, 46
duplex command, 52
duplicate address detection (DAD), 96, 99, 358
duplicate IP addresses, 136
Dynamic Host Configuration Protocol (DHCP), 3
dynamic multipoint VPNs (virtual private networks), 390
dynamic NAT (network address translation)
configuration, 375–376
definition of, 371
dynamic routing
AD (administrative distance), 113–115
classful routing protocols, 112
classless routing protocols, 112
compared to static routing, 109
distance vector protocols, 111
EGP (exterior gateway protocols), 110–111
IGP (interior gateway protocols), 110–111, 115
link-state routing protocols, 115–116
convergence with, 118–119
Dijkstra Shortest Path First (SPF) algorithm, 117–118
LSDB (link-state database), building, 116–117
overview of, 111
metrics, 112–113
timeline of routing protocols, 110
Dynamic Trunking Protocol (DTP), 61–62

E
eBGP (external BGP)
configuration, 404–406
verification, 406–407
edge ports, Rapid PVST+ and, 305–306
EF (Expedited Forwarding), 412–413
EGP (exterior gateway protocols), 110–111
eHWIC (enhanced high-speed WAN interface card) slots, 15
EIA (Electronics Industry Alliance), 34
EIGRP (Enhanced Interior Gateway Routing Protocol)
administrative distance, 244–245
composite metric, 244

convergence, 243
discontiguous networks, 270–271
DUAL (Diffusing Update Algorithm), 245–246
IPv4 implementation
addressing scheme, 249
automatic summarization, 263–264
bandwidth utilization, modifying, 266
default route propagation, 265–266
hello intervals and hold times, 266–267
network command, 250
router IDs, 250–251
topology, 249–250, 264–265
verification, 251–255
IPv6 implementation
addressing scheme, 257
bandwidth utilization, modifying, 268–269
concepts, 255–256
configuration commands, 257–258
default route propagation, 267–268
hello intervals and hold times, 269
topology, 256, 267
verification, 258–261
message format, 241–243
overview of, 239
packet types, 241
PDMs (protocol-dependent modules), 240
RTP (Reliable Transport Protocol), 240–241
troubleshooting commands, 269–270

eigrp router-id command, 250, 257
elasticity (cloud), 418
election, BD/BDR, 229–231
Electronics Industry Alliance (EIA), 34
enable password command, 47, 122
enabling. See configuration
encapsulation
data encapsulation, 12–13
encapsulation process, 4
PDU (protocol data units), 4–5
encapsulation ppp command, 396
enhanced high-speed WAN interface card (eHWIC) slots, 15
err-disable state, 288
error detection (PPP), 394
error recovery (TCP), 7–8
EtherChannel
benefits of, 314
configuration, 316–317
implementation restrictions, 314
LACP (Link Aggregation Control Protocol), 315–316
operation, 313–314
overview of, 313
PAgP (Port Aggregation Protocol), 315
troubleshooting, 319
verification, 317–319
Ethernet switching
asymmetric switching, 30
benefits of, 35–36
broadcast domains, 29
collision domains, 29
CSMA/CD (Carrier Sense Multiple Access with Collision Detection), 32–33
Ethernet addressing, 36
Ethernet standards, 21, 30–31, 33–34
evolution to, 27–28
frame formats, 37
frame forwarding, 29–30
Layer 2/Layer 3 switching, 30
legacy Ethernet technologies, 31–33
memory buffering, 30
overview of, 4
physical layer, 38
switching logic, 28–29
symmetric switching, 30
UTP (unshielded twisted pair) cabling, 34–35
EUI-64 concept, 103–104
EXEC sessions, 42
exit command, 46
exit interface parameter (IPv4), 143–144
EXP field (DSCP), 412
Expedited Forwarding (EF), 412–413
extended IPv4 ACLs
(access control lists), 332
extended IPv6 ACLs
(access control lists), 332, 345
extended named IPv4 ACLs
(access control lists), 340
extended system ID, 303
extended VLANs (virtual local-area networks), 66–68
texture gateway protocols (EGP), 110–111
external BGP. See eBGP (external BGP)
F
Fast Ethernet, 34
FC (feasible conditions), 245
FCS (frame check sequence), 61
FD (feasible distance), 245
FDDI (Fiber Distributed Data Interface), 24
feasible conditions (FC), 245
feasible distance (FD), 245
feasible successors (FS), 245
FHRPs (First Hop Redundancy Protocols), 313
cornerstones, 319–320
GLBP (Gateway Load Balancing Protocol), 320
HSRP (Hot Standby Router Protocol)
configuration, 322
definition of, 320
load balancing, 323–325
operation, 321
priority and preemption, 322
troubleshooting, 326
verification, 322–323
versions, 321
VRRP (Virtual Router Redundancy Protocol), 320
Fiber Distributed Data Interface (FDDI), 24
fiber-optic cable, 19–20
FIFO (first-in, first-out), 409
File Transfer Protocol (FTP), 3
files
configuration files, 440–442, 451
IOS images
backing up, 442–443/licenses, 444–447
restoring, 443–444
TFTP topology, 442
FIN bits, 9
fine-tuning. See configuration
finite state machine (FSM), 246
firewalls, 16
First Hop Redundancy Protocols. See FHRPs (First Hop Redundancy Protocols)
first-in, first-out (FIFO), 409
flash: alias, 438
flooding LSAs (link-state advertisements), 116–117, 229
flow control (TCP), 8–9
forwarding
AF (Assured Forwarding), 412–413
EF (Expedited Forwarding), 412–413
frame forwarding, 29–30
packet forwarding, 107–109
fragment-free switching, 30
frame check sequence (FCS), 61
Frame Relay links, 11
frames, 37
FCS (frame check sequence), 61
frame forwarding, 29–30
Frame Relay links, 11
multiple frame transmission, 297
PPP (Point-to-Point Protocol), 393–394
frequency command, 460
FS (feasible successors), 245
FSM (finite state machine), 246
FTP (File Transfer Protocol)
denying, 338
overview of, 3
full mesh WANs (wide area networks), 381
a-full setting, 53
full-duplex communication, 47

G
Gateway Load Balancing Protocol (GLBP), 320
gateways, default, 136
generic route encapsulation. See GRE (generic route encapsulation)
get-bulk-request, 428
get-next-request, 428
get-request, 428
get-response, 428
Gigabit Ethernet, 34
GLBP (Gateway Load Balancing Protocol), 320
global unicast addresses, 92–95
Graziani, Rick, 89, 380
GRE (generic route encapsulation)
characteristics of, 401
configuration, 401–402
troubleshooting, 403
verification, 403
GRE (generic route encapsulation) tunneling, 401
half-duplex communication, 47
hardening, switch port, 291
HDLC frame, 393
headers
EIGRP (Enhanced Interior Gateway Routing Protocol), 243
TCP (Transmission Control Protocol), 6
headers (IPv4), 78
hello intervals
EIGRP (Enhanced Interior Gateway Routing Protocol)
IPv4 implementation, 266–267
IPv6 implementation, 269
OSPFv2, 228
OSPFv3, 234
Hello packets
EIGRP (Enhanced Interior Gateway Routing Protocol), 241
OSPF (Open Shortest Path First), 186
help, 42–43
hierarchical campus network designs, 24–26
hold times (EIGRP)
IPv4 implementation, 266–267
IPv6 implementation, 269
hold-down timers, 116
hostname command, 46, 397
hosts, denying, 336, 340
hot keys, 43–44
Hot Standby Router Protocol. See HSRP (Hot Standby Router Protocol)
HSRP (Hot Standby Router Protocol)
configuration, 322
definition of, 320
load balancing, 323–325
operation, 321
overview of, 313
priority and preemption, 322
troubleshooting, 326
verification, 322–323
versions, 321
HTTP (Hypertext Transfer Protocol), 3
hub-and-spoke WANs (wide area networks), 381
hybrid clouds, 419
Hypertext Transfer Protocol (HTTP), 3

IaaS (Infrastructure as a Service), 419
IANA (Internet Assigned Numbers Authority), 93
ICMP (Internet Control Message Protocol), 4
icmp-echo command, 460
icons, networking, 23
identification numbers (ACLs), 333
IDS (Intrusion Detection Systems), 16–17
IDs, router, 198–199, 250–251
IEEE 802.1D. See STP (Spanning Tree Protocol)
IEEE 802.1x, 293–294
IETF (Internet Engineering Task Force), 89, 185
IFS (Integrated File System)
commands, 437–440
definition of, 437
URL prefixes, 440
IGP (interior gateway protocols), 110–111, 115, 403
IGRP (Interior Gateway Routing Protocol), 112
IGRP (Interior Gateway Routing Protocol), 112
images. See IOS images
IMAP (Internet Message Access Protocol), 3
Infrastructure as a Service (IaaS), 419
inside global addresses, 370
inside local addresses, 370
installing licenses, 445–447
Integrated File System. See IFS (Integrated File System)
interface port-channel command, 316
interface range command, 47, 316
interface status codes, 52, 125–126
interface tunnel command, 402
interface vlan command, 181
interfaces
ACLs (access control lists), 329–330
Rapid PVST+, 304
interior gateway protocols (IGP), 110–111, 115, 403
Interior Gateway Routing Protocol (IGRP), 112
Intermediate System-to-Intermediate System (IS-IS), 185
Internet Assigned Numbers Authority (IANA), 93
Internet connections, 386–388
Internet Control Message Protocol (ICMP), 4
Internet Engineering Task Force (IETF), 89, 185
Internet layer (TCP/IP model), 10–11
Internet Message Access Protocol (IMAP), 3
Internet Protocol. See IPv4; IPv6
internetworks, 22
inter-VLAN routing
legacy inter-VLAN routing, 175–176
multilayer switch
configuration, 180–182
overview of, 177
overview of, 175
router on a stick
configuration, 177–179
overview of, 176
verification, 179–180
Intrusion Detection Systems (IDS), 16–17
Intrusion Prevention Systems (IPS), 16–17
IOS images
backing up, 442–443
licenses, 444–447
restoring, 443–444
TFTP topology, 442
ip access-group command, 336
ip access-list extended command, 340
ip access-list standard command, 339
ip address command, 46
IPv4. See also IPv6; OSPF (Open Shortest Path First)

ACLs (access control lists)
- comments, 340–341
- compared to IPv6 ACLs, 343
- extended IPv4 ACLs, 332
- extended named IPv4 ACLs, 340
- extended numbered IPv4 ACLs, 337–339
- identification numbers, 333
- list logic with, 330–331
- named IPv4 ACLs, 332
- numbered IPv4 ACLs, 332
- standard IPv4 ACLs, 332
- standard named IPv4 ACLs, 339–340

standard numbered IPv4 ACLs, 335–337
verification, 341–343
addressing, 77
- binary and alphanumeric representations, 90–91
- classes of addresses, 78–80
- embedded addresses, 97
- header format, 78
- IPv4-mapped IPv6 addresses, 97
- private addresses, 81
- public addresses, 81
- subnet masks, 80
- troubleshooting, 136

EIGRP (Enhanced Interior Gateway Routing Protocol)
- addressing scheme, 249
- automatic summarization, 263–264
- bandwidth utilization, modifying, 266
- default route propagation, 265–266
- hello intervals and hold times, 266–267
- network command, 250
- router IDs, 250–251
- topology, 249–250, 264–265
- verification, 251–255

NAT (network address translation), 369–370
- benefits of, 373
- concepts, 369–371
- dynamic NAT, 371, 375–376
- example, 371
- limitations of, 373
- overloading, 372–373, 376
- static NAT, 371, 374–375
- troubleshooting, 378–379
- verification, 377

router configuration
- command syntax, 122
- example of, 122–124
- IP addressing, troubleshooting, 136
- network connectivity, verifying, 133–135
- topology, 121
- verification, 124–129

SLA (service level agreement), 459–462
subnetting
- bits borrowed, determining, 81–82
- examples of, 83–85
- overview of, 81
- subnet addressing scheme, 83
- subnet masks, 80, 82
- subnet multiplier, 83
- variable-length subnet masking (VLSM), 85–87
IPv6. See also IPv4; OSPF (Open Shortest Path First)
ACLs (access control lists), 330–331, 343
extended IPv6 ACLs, 332
named IPv6 ACLs, 332
addressing
anycast addresses, 100
assigned multicast addresses, 98
benefits of, 89–90
binary and alphanumeric representations, 90–91
conventions for writing, 100–102
EUI-64 concept, 103–104
global unicast addresses, 92–95
IPv4 embedded addresses, 97
link-local addresses, 95–96
loopback addresses, 96
prefixes, 101–102
solicited-node multicast addresses, 98–100
stateless address autoconfiguration, 104–105
subnetting, 102–103
troubleshooting, 136
ULAs (unique local addresses), 96–97
unspecified addresses, 96
EIGRP (Enhanced Interior Gateway Routing Protocol)
addressing scheme, 257
bandwidth utilization, modifying, 268–269
concepts, 255–256
configuration commands, 257–258
default route propagation, 267–268
hello intervals and hold times, 269
topology, 256, 267
verification, 258–261
migration to, 105–106
NAT (network address translation)
private address space, 379
purpose of, 379–380
router configuration
command syntax, 130
example of, 130–133
IP addressing, troubleshooting, 136
network connectivity, verifying, 133–135
topology, 130
ipv6 access-class command, 344
ipv6 access-list command, 344
ipv6 address autoconfig command, 362, 363
ipv6 address command, 130
ipv6 address dhcp command, 363
ipv6 eigrp command, 257
IPv6 Fundamentals (Graziani), 89, 380
ipv6 hello-interval eigrp command, 269
ipv6 hold-time eigrp command, 269
ipv6 nd command, 359–360
ipv6 route command, 149
ipv6 router eigrp command, 257
ipv6 router ospf command, 208
ipv6 traffic-filter command, 344
ipv6 unicast-routing command, 98, 130, 257, 361
IS-IS (Intermediate System-to-Intermediate System), 185

J-K
jitter, 409
keywords. See also commands
deny, 338
overload, 376
permit, 338, 345
primary, 308
secondary, 308

L
LACP (Link Aggregation Control Protocol), 315–316
LANs (local-area networks), 22
device connection guidelines, 21
ports
security configuration, 285–287
switch port hardening, 291
violation verification and restoration, 287–289
SSH (Secure Shell) configuration, 294–295
threat mitigation
802.1x, 293–294
Authentication, Authorization, and Accounting (AAA) framework, 292
DHCP snooping, 289–290
native and management VLAN modification, 290–291
switch port hardening, 291
WLANs (wireless LANs), 17
large link-state database (LSDB), 192
latency, 409
Layer 1 problems on “up” interfaces, troubleshooting, 54

Layer 2 protocols
CDP (Cisco Discovery Protocol)
configuration, 274–276
disabling, 275–276
overview of, 273–274
verification, 277–279
LLDP (Link Layer Discovery Protocol)
configuration, 280–281
overview of, 279–280
verification, 281–283

Layer 2 switching, 30
Layer 3 routed ports, 182
Layer 3 switching, 30
LCP (Link Control Protocol), 394–396
lease command, 353
leased lines, 383–384
legacy Ethernet technologies, 31–33
legacy inter-VLAN routing, 175–176
license install command, 445–447
license save command, 447
licenses, 444–447
backing up, 447
installing, 445–447
licensing process, 444–445
uninstalling, 447
verification, 445–447

Lightweight Access Point Protocol (LWAPP), 19
line console command, 46
Link Aggregation Control Protocol (LACP), 315–316
Link Control Protocol (LCP), 394–396
Link Layer Discovery Protocol.
See LLDP (Link Layer Discovery Protocol)
Link Quality Monitoring (LQM), 395
link-local addresses, 95–96
link-state acknowledgment (LSAck) packets, 186
link-state advertisements (LSA), 116, 188, 229
link-state database (LSDB), building, 116–117
link-state request (LSR) packets, 186
link-state routing protocols, 115–116, 190–191
convergence with, 118–119
Dijkstra Shortest Path First (SPF) algorithm, 117–118
LSDB (link-state database), building, 116–117
overview of, 111

link-state update (LSU) packets, 186
list logic (IP ACLs), 330–331
LLC (Logical Link Control) sublayer, 31
LLDP (Link Layer Discovery Protocol)
configuration, 280–281
overview of, 279–280
verification, 281–283
lldp holdtime command, 280
lldp reinit command, 280
lldp run command, 280
lldp timer command, 280

LLQ (Low Latency Queueing), 413
load balancing, 323–325
local area network security. See LANs (local-area networks)
logging buffered command, 434
logging console command, 434
logging source-interface command, 435
logging trap command, 435

logic
list logic (IP ACLs), 330–331
switching logic, 28–29
Logical Link Control (LLC) sublayer, 31
logical network topologies, 23–24
login command, 46
Long-Term Evolution (LTE), 388
loopback addresses, 96
looped-link detection, 394
loops, routing loop prevention, 115–116
loss, 409
Low Latency Queueing (LLQ), 413
LQM (Link Quality Monitoring), 395
LSA (link-state advertisements), 116, 188, 229
LSAck (link-state acknowledgment) packets, 186
LSDB (link-state database), 116–117, 192
LSR (link-state request) packets, 186
LSU (link-state update) packets, 186
LTE (Long-Term Evolution), 388
LWAPP (Lightweight Access Point Protocol), 19

M

MAC (Media Access Control), 11, 28, 31
Management Information Base (MIB), 428–429
management planes, 420
management VLANs (virtual local-area networks), 59, 290–291
marking
AF (Assured Forwarding), 412–413
definition of, 410–411
DSCP (differentiated service code point), 411–412
EF (Expedited Forwarding), 412–413
IPP (IP precedence), 411–412

Masks, subnet, 80, 82, 85–87
maximum transmission unit (MTU), 400
mdix auto command, 46
media (network), 19–21
Media Access Control (MAC), 11, 28, 31
media issues, troubleshooting, 51
memory buffering, 30
message format
EIGRP (Enhanced Interior Gateway Routing Protocol)
message format, 241–243
packet types, 241–243
OSPF (Open Shortest Path First), 185
SNMP (Simple Network Management Protocol), 427–428
Syslog, 433
message-of-the-day (MOTD) banner, 123
methods, troubleshooting, 454–455
metrics
dynamic routing, 112–113
OSPF (Open Shortest Path First), 200–203
MetroE (Metro Ethernet), 385
MIB (Management Information Base), 428–429

migration to IPv6, 105–106
models. See networking models
modes (VTP), 170–171
modifying
CLI (command-line interface) shortcuts, 43–44
EIGRP (Enhanced Interior Gateway Routing Protocol) bandwidth usage
for IPv4, 266
for IPv6, 268–269
hello intervals (EIGRP)
IPv4 implementation, 266–267
IPv6 implementation, 269
hold times (EIGRP)
IPv4 implementation, 266–267
IPv6 implementation, 269
OSPFv2
BD/BDR election, 228–229
dead intervals, 228
default route redistribution, 227
hello intervals, 228
network types, 228–229
OSPFv3
dead intervals, 234
default route propagation, 233–234
hello intervals, 234
timers, 234–235
MOTD (message-of-the-day) banner, 123
MPLS (Multiprotocol Label Switching), 11, 36, 386
MSTP (Multiple Spanning Tree Protocol), 301
MTU (maximum transmission unit), 400
multiarea OSPF (Open Shortest Path First)
multiarea OSPFv2 implementation
addressing scheme, 216
configuration, 216
topology, 215
verification, 216–218
multiarea OSPFv3 implementation
addressing scheme, 219
configuration, 220
topology, 218–219
verification, 220–223
operation
multiarea design, 192–194
overview of, 192
performance of, 194
multicast addresses (IPv6), 36
 anycast addresses, 100
 assigned multicast addresses, 98
 definition of, 98
 solicited-node multicast addresses, 98–100
multilayer switch inter-VLAN routing configuration
 Layer 3 routed ports, 182
 SVIs (switch virtual interfaces), 180–181
 overview of, 177
multilink PPP (Point-to-Point Protocol), 394
multiple frame transmission, 297
Multiple Spanning Tree Protocol (MSTP), 301
Multiprotocol Label Switching (MPLS), 11, 36, 386
municipal Wi-Fi, 388
MX record (DNS), 365

N

named ACLs (access control lists), 343–344
 IPv4, 332
 extended named IPv4 ACLs, 340
 standard named IPv4 ACLs, 339–340
 IPv6, 332
NAT (network address translation)
 benefits of, 373
 concepts, 369–371
 dynamic NAT
 configuration, 375–376
 definition of, 371
 example, 371
 limitations of, 373
 NAT for IPv6
 private address space, 379
 purpose of, 379–380
 NAT54, 97
 NAT-PT, 97
 overloading
 configuration, 376
 definition of, 372–373
 static NAT
 configuration, 374–375
 definition of, 371
 topology, 369–370
 troubleshooting, 378–379
 verification, 377

National Institute of Standards and Technology (NIST), 418
native VLANs (virtual local-area networks), 59, 290–291
navigating CLI (command-line interface), 43–44
NBI (northbound interface), 421
NBMA (nonbroadcast multiaccess) networks, 228
NDP (Neighbor Discovery Protocol), 98, 359
neighbor command, 405–406
Neighbor Discovery Protocol (NDP), 98, 359
neighbor establishment, 186–188.
 See also discovery
Neighbor Solicitation (NS) message, 358
neighbor tables (EIGRP)
 IPv4, 252–253
 IPv6, 259–260
netbios-name-server command, 353
NetConf, 422
network access layer (TCP/IP model), 11–12
network address translation. See NAT (network address translation)
network command, 199–200, 250, 353, 406
network connectivity, verifying, 48–51, 133–135
network interface cards (NIC), 47
network layer
 overview of, 2
 troubleshooting, 456
network management system (NMS), 427
Network Time Protocol (NTP), 436–437
networking models
 OSI (Open Systems Interconnection), 1–3
 overview of, 1
 TCP/IP (Transmission Control Protocol/Internet Protocol)
 application layer, 5
 overview of, 1–3
 PDUs (protocol data units), 4–5
 transport layer, 5–10
networks. See also LANs (local-area networks); networking models; WANs (wide area networks)

- APs (access points), 17–19
- data encapsulation, 12–13
- discontiguous networks (EIGRP), 270–271
- firewalls, 16
- hierarchical campus designs, 24–26
- IDS (Intrusion Detection Systems), 16–17
- internetworks, 22
- IPS (Intrusion Prevention Systems), 16–17
- media, 19–21
- network connectivity, verifying, 48–51
- networking icons, 23
- permitting specific, 335–336
- physical layer, 19
- routers, 15
- SDN (software-defined networking)
 - control planes, 419–420
 - controllers, 421
 - data planes, 419–420
 - examples, 421–424
 - management planes, 420
 - overview of, 419
- SOHO (small offices or home offices), 22
- switches, 13–14
- topologies, 23–24
- types of, 228–229
- virtual network infrastructure, 419
- VLANs (virtual local-area networks)
 - concepts, 57–58
 - configuration, 62–64
 - enabling/disabling, 72–73
 - extended VLANs, 66–68
 - native and management VLAN modification, 290–291
 - traffic types, 58
 - troubleshooting, 71–72
 - trunking, 60–62, 68–70, 73–75
 - types of, 59
 - verification, 64–66
 - voice VLAN example, 59–60
- WLANs (wireless LANs), 17
- next-hop parameter (IPv4), 142–143
- NICs (network interface cards), 47
- NIST (National Institute of Standards and Technology), 418
- NMS (network management system), 427
- no cdp enable command, 275–276
- no cdp run command, 273
- no debug ip rip command, 161
- no lldp receive command, 280
- no lldp transmit command, 280
- no service dhcp command, 354
- no shutdown command, 257, 275, 291
- no switchport command, 182
- noise, troubleshooting, 54
- nonbroadcast multiaccess (NBMA) networks, 228
- northbound interface (NBI), 421
- NS (Neighbor Solicitation) message, 358
- NS record (DNS), 365
- NTP (Network Time Protocol), 436–437
- ntp server command, 436
- numbered IPv4 ACLs, 332

- object IDs (OIDs), 428
- Odom, Wendell, 404, 421
- OIDs (object IDs), 428
- On mode
 - LACP (Link Aggregation Control Protocol), 316
 - PAgP (Port Aggregation Protocol), 315
- ONF (Open Networking Foundation), 421–422
- Opcode field (EIGRP), 243
- Open Networking Foundation (ONF), 421–422
- Open SDN Controller (OSC), 422
- Open Systems Interconnection (OSI) model, 1–3
- OpenDaylight, 421
- OpenFlow, 421–422
- OpFlex, 423
- OSC (Open SDN Controller), 422
- OSI (Open Systems Interconnection) model, 1–3
- OSPF (Open Shortest Path First), 182
 - algorithm, 189–190
 - BDR (backup designated routers), 189
passwords, 489

DR (designated routers), 189
link-state advertisements, 188
link-state routing process, 190–191
message format, 185
multiarea operation
 multiarea design, 192–194
 overview of, 192
 performance of, 194
multiarea OSPFv2
 addressing scheme, 216
 configuration, 216
 topology, 215
 verification, 216–218
multiarea OSPFv3
 addressing scheme, 219
 configuration, 220
 topology, 218–219
 verification, 220–223
neighbor establishment, 186–188
OSPFv2 configuration
 addressing scheme, 226
 BD/BDR election, 229–231
 compared to OSPFv3, 191–192
 dead intervals, 228
 default route redistribution, 227
 example of, 225–227
 hello intervals, 228
 network types, 228–229
 topology, 225
OSPFv3 configuration
 addressing scheme, 232
 compared to OSPFv2, 191–192
 dead intervals, 234
 default route propagation, 233–234
 example of, 231–233
 hello intervals, 234
 timers, 234–235
 topology, 231
packet types, 186
single-area operation, 185
single-area OSPFv2
 addressing scheme, 197
 configuration, 197–203
 OSPF metric, 200–203
 passive interfaces, 200
 router IDs, 198–199
 topology, 197–198
 verification, 203–206
single-area OSPFv3
 configuration, 206–209
 verification, 209–212
troubleshooting, 235
 adjacency, 236
 states, 235
 troubleshooting commands, 236–237
outside global addresses, 370
outside local addresses, 370
overload keyword, 376
overloading NAT (network address translation)
 configuration, 376
 definition of, 372–373

P

PaaS (Platform as a Service), 418
packets
 CDP (Cisco Discovery Protocol), verifying, 279
 DHCPACK, 351
 DHCPDISCOVER, 351
 DHCPNAK, 351
 DHCPOFFER, 351
 DHCPREQUEST, 351
 EIGRP (Enhanced Interior Gateway Routing Protocol), 241
 forwarding, 107–109
 path determination, 108–109
 switching functions, 108–109
 topology, 108
 OSPF (Open Shortest Path First), 186
 packet-switched connections, 385–386
 PAgP (Port Aggregation Protocol), 315
 PAP (Password Authentication Protocol), 398
 PAR (positive acknowledgment with retransmission), 8
passive interfaces
 RIPv1 (Routing Information Protocol version 1), 161–162
 single-area OSPFv2, 200
 Passive mode (LACP), 316
 passive-interface command, 161–162, 208
Password Authentication Protocol (PAP), 398
password command, 46
passwords
 recovery, 448
 VTP (VLAN Trunking Protocol), 170
PAT (Port Address Translation), 372–373
path determination, 108–109
PDMs (protocol-dependent modules), 240
PDUs (protocol data units), 4–5
performance, multiarea OSPF (Open Shortest Path First) operation, 194
permit statement, 338, 345
physical layer, 19
 overview of, 2
 role of, 38
 troubleshooting, 455–456
physical network topologies, 23–24
pi rule, 92
ping command, 48–50, 133
planes (network), 419–420
planning for ACLs (access control lists), 331
Platform as a Service (PaaS), 418
point-to-multipoint networks, 228
Point-to-Point Protocol. See PPP (Point-to-Point Protocol)
point-to-point WANs (wide area networks), 228, 381
poison reverse, 116
policing, 413–415
POP3 (Post Office Protocol), 3
Port Address Translation (PAT), 372–373
Port Aggregation Protocol (PAGP), 315
PortFast, 309
ports
 Layer 3 routed ports, 182
 PAGP (Port Aggregation Protocol), 315
 port numbers, 7
 port speed, 47
 PVST+ port states, 302
 Rapid PVST+
 edge ports, 305–306
 port roles, 305
 port states, 304
at high speed, 47
 verification, 364
positive acknowledgment, 7
positive acknowledgment with retransmission (PAR), 8
Post Office Protocol (POP3), 3
PPP (Point-to-Point Protocol), 11. See also PPPoE (PPP over Ethernet)
 CHAP (Challenge Handshake Authentication Protocol), 397–398
 concepts, 393
 configuration, 396–397
 frame format, 393–394
 LCP (Link Control Protocol), 394–396
 PAP (Password Authentication Protocol), 398
 topology, 396
 troubleshooting, 398
ppp authentication chap command, 397, 398
ppp authentication pap command, 398
PPPoE (PPP over Ethernet)
 concepts, 399
 configuration, 399–400
 troubleshooting, 400–401
pppoe enable command, 400
preemption (HSRP), 322
 prefixes (IPv6), 101–102
presentation layer (OSI model), 2
preventing routing loops, 115–116
PRI (Primary Rate Interface), 384
primary keyword, 308
Primary Rate Interface (PRI), 384
priority (HSRP), 322
private address space (IPv6), 379
private clouds, 419
private IPv4 addresses, 81
processes (EIGRP)
 administrative distance, 244–245
 composite metric, 244
 convergence, 243
 DUAL (Diffusing Update Algorithm), 245–246
processing interface ACLs (access control lists), 329–330
protocol data units (PDUs), 4–5
protocol-dependent modules (PDMs), 240
Pseudo-Random Global ID Algorithm, 96
public clouds, 419
public IPv4 addresses, 81
PVST+
 definition of, 301
 extended system ID, 303
 features of, 301
 operation, 301–302
 port states, 302
Rapid PVST+
 configuration, 309
 definition of, 301
 features of, 301
Q
QoS (Quality of Service), 409–410
 classification and marking
 AF (Assured Forwarding), 412–413
 definition of, 410–411
 DSCP (differentiated service code point), 411–412
 EF (Expedited Forwarding), 412–413
 IPP (IP precedence), 411–412
 congestion management, 413
 overview of, 409–410
 policing, 413–415
 shaping, 413–415
 TCP discards, 415
Query packets (EIGRP), 241
R
RA (Router Advertisement)
 message, 358
RADIUS (Remote Authentication Dial-In User Service), 292
range command, 65
Rapid PVST+
 configuration, 309
 definition of, 301
 edge ports, 305–306
 features of, 301
 interface behavior, 304
 operation, 303–304
 port roles, 305
 port states, 304
Rapid STP (RSTP)
 definition of, 301
 features of, 301
 rate limiting, 290
RD (reported distance), 245
records (DNS), 365
recovery, password, 448
redistribute static command, 265, 267
redistribution, OSPFv2 default routes, 227
reference bandwidth, 200–203
Regional Internet Registries (RIR), 93
reliability, 7
Reliable Transport Protocol (RTP), 240–241
remark keyword, 340
remote access with SSH (Secure Shell), 134–135
Remote Authentication Dial-In User Service (RADIUS), 292
remote terminal, 41
remote-access VPNs (virtual private networks), 389
Reply packets (EIGRP), 241
reported distance (RD), 245
Request messages
 DHCP (Dynamic Host Configuration Protocol), 356–357
 RIPv1 (Routing Information Protocol version 1), 156
reset command, 448
resolving address conflicts, 363–364
resource pooling, 418
restoring
 IOS images, 443–444
 ports, 287–289
retransmission timeout (RTO), 253
RFC 2328, 185
RIPv1 (Routing Information Protocol version 1)
 automatic summarization, 162–164
 configuration, 156–157
 default routing, 164–165
 operation, 156
 passive interfaces, 161–162
 troubleshooting, 158–161
 verification, 158–161
RIPv2 (Routing Information Protocol version 2)
 automatic summarization, 167
 configuration, 165–167
 troubleshooting, 167–168
 verification, 167–168
RIR (Regional Internet Registries), 93
roles, Rapid PVST+ ports and, 305
route poisoning, 116
Router Advertisement (RA) message, 358
router bgp command, 405
router configuration, 15. See also
routing
DHCPv4 clients, 357–358
DHCPv4 servers, 352–356
IP addressing, troubleshooting, 136
IP SLA (service level agreement), 459–462
with IPv4
command syntax, 122
example of, 122–124
network connectivity, verifying, 133–135
topology, 121
verification, 124–129
with IPv6
command syntax, 130
example of, 130–133
network connectivity, verifying, 133–135
topology, 130
to relay DHCPv4 requests, 356–357
router IDs, 198–199, 250–251
router on a stick
configuration, 177–179
overview of, 176
verification, 179–180
router on a stick
configuration, 177–179
overview of, 176
verification, 179–180
router ospf command, 198
router rip command, 163
Router Solicitation (RS) message, 358
router-id command, 198–199, 208
routing. See also EIGRP (Enhanced Interior Gateway Routing Protocol);
OSPF (Open Shortest Path First);
router configuration
directly connected routes, 109
dynamic routing
AD (administrative distance), 113–115
classful routing protocols, 112
classless routing protocols, 112
compared to static routing, 109
distance vector protocols, 111
EIGRP (interior gateway protocols), 110–111
IGP (interior gateway protocols), 110–111, 115
link-state routing protocols, 111, 115–119
metrics, 112–113
timeline of routing protocols, 110
inter-VLAN routing
deliver route, 175–176
multilayer switch, 177, 180–182
overview of, 175
router on a stick, 176, 177–180
IPv4 default route configuration, 144–146
IPv4 static route configuration
addressing scheme, 141
example of, 141–142
exit interface parameter, 143–144
ip route command, 140
next-hop parameter, 142–143
summary route configuration, 147–148
topology, 140–141
IPv6 default route configuration, 150–151
IPv6 static route configuration
addressing scheme, 148–149
ip6 route command, 149
show ipv6 route command, 149–150
summary route configuration, 151–152
topology, 148
packet forwarding, 107–109
path determination, 108–109
RIPv1 (Routing Information Protocol version 1)
automatic summarization, 162–164
cowboy config, 156–157
default routing, 164–165
operation, 156
passive interfaces, 161–162
troubleshooting, 158–161
verification, 158–161
RIPv2 (Routing Information Protocol version 2)
automatic summarization, 167
cowboy config, 165–167
troubleshooting, 167–168
verification, 167–168
routing loop prevention, 115–116
routing tables
EIGRP for IPv4, 255
EIGRP for IPv6, 260–261
static routing, 109
switching functions, 108–109
VTP (VLAN Trunking Protocol)
 concepts, 169–171
 configuration, 170–173
 verification, 173–175
RS (Router Solicitation) message, 358
RSTP (Rapid STP)
 definition of, 301
 features of, 301
RTO (retransmission timeout), 253
RTP (Reliable Transport Protocol), 240–241

S
SaaS (Software as a Service), 418
satellite Internet, 388
SBI (southbound interface), 421
SDN (software-defined networking)
 control planes, 419–420
 controllers, 421
 data planes, 419–420
 examples, 421–424
 Cisco ACI (Application Centric
 Infrastructures), 422–423
 Cisco APIC-EM (Application Policy
 Infrastructure Controller Enterprise
 Module), 423–425
 Open SDN and OpenFlow, 421–422
 management planes, 420
 overview of, 419
secondary keyword, 308
Secure Shell (SSH)
 configuration, 294–295
 remote access with, 134–135
security
 ACLs (access control lists)
 defining, 329
 design guidelines, 333–334
 identification numbers, 333
 interface processing ACLs, 329–330
 IP ACLs, list logic with, 330–331
 operation, 329
 planning for, 331
 types of, 332
 firewalls, 16
 IDS (Intrusion Detection Systems), 16–17
 IPS (Intrusion Prevention Systems), 16–17
 password recovery, 448
ports
 configuration, 285–287
 switch port hardening, 291
 violation verification and restoration,
 287–289
SSH (Secure Shell) configuration,
 294–295
threat mitigation
 802.1x, 293–294
 Authentication, Authorization, and
 Accounting (AAA) framework, 292
 DHCP snooping, 289–290
 native and management VLAN
 modification, 290–291
 switch port hardening, 291
Sequence field (TCP), 7
servers
 authentication servers, 293
 DHCPv4 servers, 352–356
 virtualization, 416–418
service password-encryption
 command, 47
service sequence-numbers
 command, 433
service timestamps command, 433
show access-lists command, 341,
 346–347
show cdp command, 275
show cdp interface command, 274
show cdp neighbors command, 275
show cdp neighbors detail command,
 278–279
show cdp traffic command, 279
show command, 44–45
show etherchannel summary command,
 318
show file systems command, 437–438
show flash command, 438–439, 443
show history command, 44
show interface command, 126–129
show interface switchport command, 318–319
show interface Tunnel command, 403
show interfaces command, 52–53, 65–66, 397
show interfaces status command, 52–53
show interfaces switchport command, 71, 74
show interfaces trunk command, 69, 73–74
show ip bgp command, 406–407
show ip bgp summary command, 406–407
show ip dhcp binding command, 354
show ip dhcp conflict command, 364
show ip dhcp server statistics command, 354
show ip eigrp interface command, 269
show ip eigrp interfaces commands, 270
show ip eigrp neighbors command, 252–253
show ip eigrp neighbors commands, 269
show ip eigrp topology all-links command, 254
show ip eigrp topology command, 253
show ip interface brief command, 125, 179–180, 203–204, 270, 274, 403, 448
show ip interface command, 341–342
show ip nat statistics command, 377
show ip nat translations command, 377, 378
show ip ospf command, 198, 205–206, 236
show ip ospf database command, 218
show ip ospf interface brief command, 206, 217
show ip ospf interface command, 236
show ip ospf interfaces command, 198
show ip ospf neighbor command, 204–205, 236
show ip protocols command, 114, 159–160, 167, 198, 203–204, 217, 236, 251–252, 269, 270
show ip route eigrp command, 255, 265, 269
show ip route ospf command, 217, 236
show ip sla configuration command, 461
show ip sla statics command, 462
show ip ssh command, 294–295
show ipv6 access-list command, 347
show ipv6 eigrp interface command, 270
show ipv6 eigrp neighbors command, 259–260, 270
show ipv6 interface, 362
show ipv6 interface brief command, 131–132
show ipv6 interface command, 132–133, 347–348
show ipv6 interface brief command, 211, 221–223
show ipv6 ospf interface brief command, 211, 221
show ipv6 ospf interface command, 210
show ipv6 ospf neighbor command, 233
show ipv6 ospf neighbors command, 233
show ipv6 ospf neighbors brief command, 210
show ipv6 ospf neighbor command, 211
show ipv6 ospf protocols command, 210, 220, 258, 270
show ipv6 route command, 149–150, 268
show ipv6 route eigrp command, 260–261, 270
show ipv6 route ospf command, 212, 221, 233
show license feature command, 444
show license udi command, 445
show lldp interface command, 281
show lldp neighbors command, 282
spanning-tree link-type point-to-point command

show lldp neighbors detail command, 282–283
show lldp traffic command, 283
show logging command, 434, 435–436
show mac address-table command, 71
show ntp associations command, 437
show ntp status command, 437
show port-security command, 286–287
show port-security interface command, 286–287
show run command, 68, 317, 346, 377
show running-config command, 124, 342–343
show snmp command, 430–431
show snmp community command, 431
show spanning-tree active command, 310
show spanning-tree brief command, 310
show spanning-tree command, 308, 310
show spanning-tree detail command, 310
show spanning-tree interface command, 310
show spanning-tree summary command, 310
show spanning-tree vlan command, 310
show standby brief command, 322–325
show standby command, 322–323
show version command, 442, 448
show vlan brief command, 63, 65
show vlan command, 71–72
show vlans command, 179–180
show vtp password command, 173
show vtp status command, 172, 173–175
Simple Mail Transfer Protocol (SMTP), 3
Simple Network Management Protocol (SNMP), 3
single-area OSPF (Open Shortest Path First)
neighbor establishment, 186–188
operation, 185
single-area OSPFv2
addressing scheme, 197
configuration, 197–203
OSP F metric, 200–203
passive interfaces, 200
router IDs, 198–199
topology, 197–198
verification, 203–206
single-area OSPFv3
configuration, 206–209
verification, 209–212
site-to-site VPNs (virtual private networks), 389
SLAAC (stateless address autoconfiguration), 104–105, 358–360
small offices or home offices (SOHO), 22
smooth round trip timer (SRTT), 253
SMTP (Simple Mail Transfer Protocol), 3
SNMP (Simple Network Management Protocol), 3
components, 427
configuration, 430
messages, 427–428
MIB (Management Information Base), 428–429
operation, 427
verification, 430–431
versions, 428
snmpget command, 429
snmp-server community command, 430
snmp-server contact command, 430
snmp-server location command, 430
snooping (DHCP), 289–290
Software as a Service (SaaS), 418
software-defined networking. See SDN (software-defined networking)
SOHO (small offices or home offices), 22
solicited-node multicast addresses, 98–100
southbound interface (SBI), 421
Spanning Tree Protocol. See STP (Spanning Tree Protocol)
spanning-tree bpdu guard default command, 309
spanning-tree link-type point-to-point command, 309
spanning-tree mode rapid-pvst command, 309
spanning-tree portfast default command, 309
spanning-tree vlan command, 307–308
speed
duplex and speed mismatches, 52–53
port speed, 47
speed auto command, 46
speed command, 52
SPF (Shortest Path First) algorithm, 117–118
split horizon, 116
SRTT (smooth round trip timer), 253
SSH (Secure Shell)
allowing, 344–345
configuration, 294–295
denying, 337
remote access with, 134–135
ssh command, 134–135
stacking switches, 310–312
standard IPv4 ACLs (access control lists), 332
standard IPv6 ACLs (access control lists), 344–345
standard named IPv4 ACLs (access control lists), 339–340
standard numbered IPv4 ACLs (access control lists), 335–337
standards
Ethernet, 21, 30–31, 33–34
network media, 19–21
standby preempt command, 322
standby priority command, 322
stateful DHCPv6, 360–361, 363
stateless address autoconfiguration (SLAAC), 104–105, 358–360
stateless DHCPv6, 360–362
states
OSPF (Open Shortest Path First), 235
port states
PVST+, 302
RSTP (Rapid STP), 304
static NAT (network address translation)
configuration, 374–375
definition of, 371
static routing, 109
IPv4 static route configuration
addressing scheme, 141
even of, 141–142
exit interface parameter, 143–144
ip route command, 140
next-hop parameter, 142–143
summary route configuration, 147–148
topology, 140–141
IPv6 static route configuration
addressing scheme, 148–149
ipv6 route command, 149
show ipv6 route command, 149–150
summary route configuration, 151–152
topology, 148
overview of, 139–140
status codes (interface), 52, 125–126
store-and-forward switching, 29
STP (Spanning Tree Protocol)
algorithm, 298–299
configuration, 306–307
BID (bridge ID), 307–309
BPDU guard, 309
PortFast, 309
Rapid PVST+, 309
convergence, 299–300
MSTP (Multiple Spanning Tree Protocol), 301
overview of, 297
PVST+
definition of, 301
extended system ID, 303
features of, 301
operation, 301–302
port states, 302
Rapid PVST+
definition of, 301
edge ports, 305–306
features of, 301
interface behavior, 304
operation, 303–304
port roles, 305
port states, 304
RSTP (Rapid STP)
definition of, 301
features of, 301
switch stacking, 310–312
verification, 310
subconfiguration modes, 45
subnet addressing scheme, 83
subnet masks, 80, 82, 85–87
subnet multiplier, determining, 83
subnets, denying, 337
subnetting
IPv4
bits borrowed, determining, 81–82
examples of, 83–85
overview of, 81
subnet addressing scheme, 83
subnet masks, 80, 82
subnet multiplier, 83
variable-length subnet masking (VLSM),
85–87
IPv6, 102–103
successors, 245
summarization, automatic.
See automatic summarization
summary route configuration
IPv4, 147–148
IPv6, 151–152
SVIs (switch virtual interfaces), 180–181
switches, 13, 221–223
access layer switches, 14
configuration
auto-MDIX, 48
basic switch configuration commands, 46–47
Cisco devices, connecting to, 41
CLI EXEC sessions, 42
CLI navigation and editing shortcuts,
43–44
command history, 44
full-duplex communication, 47
half-duplex communication, 47
help facility, 42–43
IOS examination commands, 44
network connectivity, verifying, 48–51
port speed, 47
subconfiguration modes, 45
troubleshooting, 51–54
core layer switches, 14
distribution layer switches, 14
Ethernet switching
asymmetric switching, 30
benefits of, 35–36
broadcast domains, 29
collision domains, 29
CSMA/CD (Carrier Sense Multiple
Access with Collision Detection), 32–33
Ethernet addressing, 36
Ethernet standards, 21, 30–31, 33–34
 evolution to, 27–28
frame formats, 37
frame forwarding, 29–30
Layer 2/Layer 3 switching, 30
legacy Ethernet technologies, 31–33
memory buffering, 30
overview of, 4
physical layer, 38
switching logic, 28–29
symmetric switching, 30
UTP (unshielded twisted pair) cabling,
34–35
multilayer switch
configuration, 180–182
overview of, 177
switch forwarding, 29–30
switch port hardening, 291
switch stacking, 310–312
switching, Ethernet. See Ethernet
switching
switchport access vlan command, 46,
71, 291
switchport mode access command, 46,
285
switchport mode dynamic auto
command, 74
switchport mode dynamic desirable
command, 62
switchport mode trunk command, 62
switchport mode trunk dynamic auto
command, 62
switchport nonegotiate command, 62
switchport port-security command, 285
switchport port-security mac-address
command, 286
switchport port-security mac-address
sticky command, 286
switchport port-security maximum
command, 285
switchport port-security violation
command, 285
switchport trunk native vlan command,
291
symmetric switching, 30
Syslog
configuration, 434–435
definition of, 432
operation, 432–433
verification, 435–436
tables (EIGRP)
neighbor tables, 252–253, 259–260
routing tables, 255, 260–261
topology tables, 253–255
TACACS+ (Terminal Access Controller Access-Control System Plus), 292
tag protocol ID (TPID), 61
TCP (Transmission Control Protocol) connection establishment and termination, 9
definition of, 3
error recovery, 7–8
flow control, 8–9
headers, 6
port numbers, 7
Quality of Service (QoS), 415
windowing, 8–9
TCP/IP (Transmission Control Protocol/Internet Protocol) model
application layer, 5
Internet layer, 10–11
network access layer, 11–12
overview of, 1–3
PDU's (protocol data units), 4–5
transport layer
overview of, 5–6
TCP (Transmission Control Protocol), 6–9
UDP (User Datagram Protocol), 10
Telecommunications Industry Association (TIA), 34
Telnet
denying, 337, 338–339
overview of, 3
Terminal Access Controller Access-Control System Plus (TACACS+), 292
terminal history command, 44
terminal no history command, 44
terminating TCP connections, 9
testing DHCPv4 operation, 364
TFTP (Trivial File Transfer Protocol)
location, specifying, 440
topology, 442
threat mitigation
802.1x, 293–294
Authentication, Authorization, and Accounting (AAA) framework, 292
DHCP snooping, 289–290
native and management VLAN modification, 290–291
switch port hardening, 291
three-tiered campus design, 24–26
TIA (Telecommunications Industry Association), 34
TID (Traffic Identifier) field, 412
Time to Live (TTL) field, 116
timeline of routing protocols, 110
timers (OSPFv3), 234–235
TLV field (EIGRP), 242
Token Ring, 24
top of rack (ToR) switches, 417
topology
data centers, 417–418
EIGRP (Enhanced Interior Gateway Routing Protocol), 253–255
for IPv4, 249–250, 264–265
for IPv6, 256, 267
IPv4 static routing, 140–141
IPv6 static routing, 148
multiarea OSPFv2 implementation, 215
multiarea OSPFv3 implementation, 218–219
NAT (network address translation), 369–370
network topologies, 23–24
OSPF (Open Shortest Path First), 197–198
OSPFv2, 225
OSPFv3, 231
packet forwarding, 108
PPP (Point-to-Point Protocol), 396
router configuration
with IPv4, 121
with IPv6, 130
TFTP, 442
topology diagrams, 452–453
VTP (VLAN Trunking Protocol), 171
WANs (wide area networks), 381–382
ToR (top of rack) switches, 417
TPIP (tag protocol ID), 61
traceroute command, 134
tracert command, 50
Traffic Identifier (TID) field, 412
traffic types, 58, 409–410
Transmission Control Protocol/Internet
unicast addresses

Protocol. See TCP/IP (Transmission Control Protocol/Internet Protocol) model

transport layer
TCP/IP model
overview of, 5–6
TCP (Transmission Control Protocol), 6–9
UDP (User Datagram Protocol), 10
troubleshooting, 457–458

transport layer (OSI model), 2

Troubleshooting
application layer, 458
bottom-up, 459
data link layer, 456
DHCP (Dynamic Host Configuration Protocol), 363–364
DNS (Domain Name System), 366
documentation, 451
baseline data, 453–454
configuration files, 451
topology diagrams, 452–453
EIGRP (Enhanced Interior Gateway Routing Protocol), 269–270
EtherChannel, 319
GRE (generic route encapsulation), 403
HSRP (Hot Standby Router Protocol), 326
IP addressing, 136
with IP SLA (service level agreement), 459–462
IPv6 ACLs, 348–349
methods, 454–455
NAT (network address translation), 378–379
network layer, 456
OSPF (Open Shortest Path First), 235
adjacency, 236
states, 235
troubleshooting commands, 236–237
physical layer, 455–456
PPP (Point-to-Point Protocol), 398
PPPoE (PPP over Ethernet), 400–401
RIPv1 (Routing Information Protocol version 1), 158–161
RIPv2 (Routing Information Protocol version 2), 167–168
switch configuration
duplex and speed mismatches, 52–53
interface status codes, 52
Layer 1 problems on “up” interfaces, 54
media issues, 51
tools
ping, 133
SSH (Secure Shell), 134–135
traceroute, 134
troubleshooting, 457–458
VLANs (virtual local-area networks), 71–72, 73–75

Trunking VLANs (virtual local-area networks)
configuration, 68–69
DTP (Dynamic Trunking Protocol), 61–62
example of, 60–61
troubleshooting, 73–75
verification, 69–70
VTP (VLAN Trunking Protocol)
configuration, 170–173
verification, 173–175

Trusted ports, 290

TTL (Time to Live) field, 116

Tunnel mode gre ip command, 402

Tunneling
GRE (generic route encapsulation)
characteristics of, 401
configuration, 401–402
overview of, 401
troubleshooting, 403
verification, 403
overview of, 105–106

Type/Length/Value field (EIGRP), 242

UDP
(User Datagram Protocol), 4, 10
ULAs (unique local addresses), 96–107

Undo all command, 161

unaddressed

IPv4

global unicast addresses, 92–95
IPv4 embedded addresses, 97
link-local addresses, 95–96
loopback addresses, 96
ULAs (unique local addresses), 96–97
unspecified addresses, 96
Uniform Resource Identifier (URI), 364
uninstalling licenses, 447
unique local addresses (ULAs), 96–97
Universal Resource Locator (URL), 365, 440
unshielded twisted pair (UTP) cabling, 34–35
unspecified addresses, 96
untrusted ports, 290
“up” interfaces, troubleshooting Layer 1 problems on, 54
Update packets (EIGRP), 241
URI (Uniform Resource Identifier), 364
URL (Universal Resource Locator), 365, 440
User Datagram Protocol (UDP), 4, 10
username command, 397
UTP (unshielded twisted pair) cabling, 34–35

V

variable-length subnet masking (VLSM), 85–87
vectors, distance, 111
verification
 BID (bridge ID), 307–309
 CDP (Cisco Discovery Protocol), 277–279
 DHCPv4, 354–355
eBGP (external BGP), 406–407
EIGRP for IPv4, 251–255
 neighbor tables, 252–253
 protocol details, 251–252
 routing tables, 255
topology tables, 253–255
EIGRP for IPv6
 neighbor tables, 259–260
 overview of, 258
 protocol details, 258–259
 routing tables, 260–261
EtherChannel, 317–319
GRE (generic route encapsulation), 403
HSRP (Hot Standby Router Protocol), 322–323
IPv4 ACLs, 341–343
IPv6 ACLs, 346–348
licenses, 445–447
LLDP (Link Layer Discovery Protocol), 281–283
NAT (network address translation), 377
network connectivity, 48–51, 133–135
NTP (Network Time Protocol), 436–437
OSPF (Open Shortest Path First)
 multiarea OSPFv2, 216–218
 multiarea OSPFv3, 220–223
 single-area OSPFv2, 203–206
 single-area OSPFv3, 209–212
port security, 287–289
RIPv1 (Routing Information Protocol version 1), 158–161
RIPv2 (Routing Information Protocol version 2), 167–168
routers
 with IPv4, 124–129
 router on a stick, 179–180
SNMP (Simple Network Management Protocol), 430–431
STP (Spanning Tree Protocol), 310
Syslog, 435–436
VLANs (virtual local-area networks), 64–66
 trunking, 69–70
 VTP (VLAN Trunking Protocol), 173–175
versions (SNMP), 428
VID (VLAN ID), 61
viewing EIGRP (Enhanced Interior Gateway Routing Protocol) tables
 neighbor tables, 252–253
 routing tables, 255
topology tables, 253–255
virtual links, 228
virtual local-area networks. See VLANs (virtual local-area networks)
virtual machines (VMs), 416
virtual network functions (VNF), 419
virtual network infrastructure, 419
Virtual Router Redundancy Protocol (VRRP), 320
virtualization, 416–418
VLAN Trunking Protocol. See VTP (VLAN Trunking Protocol)
VLANs (virtual local-area networks)
- concepts, 57–58
- configuration, 62–64
- enabling/disabling, 72–73
- extended VLANs, 66–68
- inter-VLAN routing
 - legacy inter-VLAN routing, 175–176
 - multilayer switch, 177, 180–182
 - overview of, 175
 - router on a stick, 176, 177–180
- native and management VLAN
 - modification, 290–291
- traffic types, 58
- troubleshooting, 71–72
- trunking
 - configuration, 68–69
 - DTP (Dynamic Trunking Protocol), 61–62
 - example of, 60–61
 - troubleshooting, 73–75
 - verification, 69–70
 - VTP (VLAN Trunking Protocol), 169–175
- types of, 59
- verification, 64–66
- VID (VLAN ID), 61
- voice VLAN example, 59–60
- VTP (VLAN Trunking Protocol)
 - concepts, 169–171
 - configuration, 170–173
 - modes, 170–171
 - topology, 171
- verification, 173–175

VLSM (variable-length subnet masking), 85–87
VMs (virtual machines), 416
VNF (virtual network functions), 419
voice VLANs (virtual local-area networks), 59–60
VPNs (virtual private networks)
- benefits of, 389
- types of, 389–391
VRRP (Virtual Router Redundancy Protocol), 320
VTP (VLAN Trunking Protocol)
- concepts, 169–171
- configuration, 170–173
- modes, 170–171
- topology, 171
- verification, 173–175
vtp domain command, 171
vtp mode command, 171
vtp password command, 171
vtp pruning command, 171

W-X-Y-Z

Wallace, Kevin, 425
WANs (wide area networks), 22
- BGP (Border Gateway Protocol)
 - concepts, 403–404
 - eBGP, 404–407
- connection options
 - circuit-switched connections, 384–385
 - comparison of, 388
 - dedicated connections, 383–384
 - Internet connections, 386–388
 - overview of, 382–383
 - packet-switched connections, 385–386
- GRE (generic route encapsulation)
 - characteristics of, 401
 - configuration, 401–402
 - overview of, 401
 - troubleshooting, 403
 - verification, 403
- PPP (Point-to-Point Protocol)
 - CHAP (Challenge Handshake Authentication Protocol), 397–398
 - concepts, 393
 - configuration, 396–397
 - frame format, 393–394
 - LCP (Link Control Protocol), 394–396
 - PAP (Password Authentication Protocol), 398
 - topology, 396
 - troubleshooting, 398
- PPPoE (PPP over Ethernet)
 - concepts, 399
 - configuration, 399–400
 - troubleshooting, 400–401
 - topologies, 381–382
 - VPNs (virtual private networks)
 - benefits of, 389
 - types of, 389–391
- web traffic, allowing, 345
wide area networks. See WANs (wide area networks)
Wi-Fi, 388
WiMAX (Worldwide Interoperability for Microwave Access), 388
windowing, 8–9
wireless connections, 19–20, 388

WLANs (wireless LANs), 17
WLCs (wireless LAN controllers), 17–19
Worldwide Interoperability for Microwave Access (WiMAX), 388
writing IPv6 addresses, 100–102