Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher
Paul Boger

Associate Publisher
Dave Dustheimer

Business Operation Manager, Cisco Press
Jan Cornelssen

Executive Editor
Brett Bartow

Managing Editor
Sandra Schroeder

Senior Development Editor
Christopher Cleveland

Senior Project Editor
Tonya Simpson

Copy Editors
Keith Cline, Chuck Hutchinson

Technical Editors
Aubrey Adams, Elan Beer

Editorial Assistant
Vanessa Evans

Cover Designer
Mark Shirar

Composition
Studio Galou

Senior Indexer
Erika Millen

Proofreaders
Kathy Ruiz, Paula Lowell
About the Author

Wendell Odom, CCIE No. 1624 (Emeritus), has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification study tools. This book is his 27th edition of some product for Pearson, and he is the author of all editions of the CCNA R&S and CCENT Cert Guides from Cisco Press. He has written books about topics from networking basics, certification guides throughout the years for CCENT, CCNA R&S, CCNA DC, CCNP ROUTE, CCNP QoS, and CCIE R&S. He helped develop the popular Pearson Network Simulator. He maintains study tools, links to his blogs, and other resources at www.certskills.com.

About the Technical Reviewers

Aubrey Adams is a Cisco Networking Academy instructor in Perth, Western Australia. With a background in telecommunications design, Aubrey has qualifications in electronic engineering and management; graduate diplomas in computing and education; and associated industry certifications. He has taught across a broad range of both related vocational and education training areas and university courses. Since 2007, Aubrey has technically reviewed several Pearson Education and Cisco Press publications, including video, simulation, and online products.

Elan Beer, CCIE No. 1837, is a senior consultant and Cisco instructor specializing in data center architecture and multiprotocol network design. For the past 27 years, Elan has designed networks and trained thousands of industry experts in data center architecture, routing, and switching. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing data center and network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures via his international clientele. Elan has used his expertise to design and troubleshoot data centers and internetworks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting as well as service provider technologies. In 1993, Elan was among the first to obtain the Cisco Certified System Instructor (CCSI) certification, and in 1996, he was among the first to attain the Cisco System highest technical certification, the Cisco Certified Internetworking Expert. Since then, Elan has been involved in numerous large-scale data center and telecommunications networking projects worldwide.
Dedications

For Hannah Grace Odom, my wonderful daughter:

Tomato softball, equiangular equilateral quadrilaterals, being Jesus's hands and feet, wasabi, smart brain and a bigger heart, movies while other kids are at school, Underdog stories, math homework—hooray!, singing scat. Love you, precious girl.
Acknowledgments

Brett Bartow again served as executive editor on the book. We’ve worked together on probably 20+ titles now. Besides the usual wisdom and good decision making to guide the project, he was the driving force behind adding all the new apps to the DVD/web. As always, a pleasure to work with, and an important part of deciding what the entire Official Cert Guide series direction should be.

As part of writing these books, we work in concert with Cisco. A special thanks goes out to various people on the Cisco team who work with Pearson to create Cisco Press books. In particular, Greg Cote, Joe Stralo, and Phil Vancil were a great help while we worked on these titles.

Chris Cleveland did the development editing for the very first Cisco Press exam certification guide way back in 1998, and he’s been involved with the series ever since. It’s always great to work with Chris, even though I’m jealous of his office setup. This book has more moving parts than most, and Chris’s part of the work happened on a challenging timeline. Thanks, Chris, for the many late-night hours working through the different elements, and especially for keeping us on track with the new features.

As for technical editors, ho hum, Elan Beer did his usual amazing job. It is truly abnormal to find one person who can do all aspects of technical editing in the same pass, with excellence. From finding small technical errors, to noticing phrasing that might mislead, to suggesting where an extra thought or two rounds out a topic, Elan does it all. Fantastic job as usual; thanks, Elan.

Aubrey Adams tech edited the book, his first time tech editing one of my books, and he also provided some excellent feedback. Aubrey’s experience teaching the material was a big help in particular, because he knows of the common mistakes that students make when learning these same topics. Diligent, objective, useful comments all around; thanks, Aubrey!

Welcome and thanks to a new team member, Lisa Matthews, new at least in terms of someone I interact with during the writing process. Lisa handled all the practice app development: taking various appendixes, learning some subnetting (fun, huh Lisa?), and building apps to make the practice experience more interactive. Thanks for guiding us through the process, Lisa!

I love the magic wand that is production. Presto, word docs with gobs of queries and comments feed into the machine, and out pops these beautiful books. Thanks to Sandra Schroeder, Tonya Simpson, Mandie Frank, for jumping into the fray to keep the schedule moving, and all the production team for making the magic happen. From fixing all my grammar, crummy word choices, passive-voice sentences, and then pulling the design and layout together, they do it all; thanks for putting it all together and making it look easy. And Tonya, once again getting the “opportunity” to manage two books with many elements at the same timeline, once again, the juggling act continues, and done well. Thanks for managing the whole production process again.

Mike Tanamachi, illustrator and mind reader, did a great job on the figures again. I use a different process with the figures than most authors, with Mike drawing new figures as soon as I outline a new section or chapter. It means more edits when I change my mind,
and lots of mind reading of what Wendell really wanted versus what I drew poorly on my Wacom tablet. Mike came through again with some beautiful finished products. And a thanks goes out to Laura Robbins for working on helping make sure all the figures follow our color standards—standards she helped develop over several other editions of other books.

I could not have made the timeline for this book without Chris Burns of Certskills Professional. Chris owns the mind map process now, owns big parts of the lab development process for the associated labs added to my blogs, does various tasks related to specific chapters, and then catches anything I need to toss over my shoulder so I can focus on the books. Chris, you are the man!

Sean Wilkins played the largest role he’s played so far with one of my books. A long-time co-collaborator with Pearson’s CCNA Simulator, Sean did a lot of technology work behind the scenes. No way the books are out on time without Sean’s efforts; thanks for the great job, Sean!

A special thanks you to you readers who write in with suggestions and possible errors, and especially those of you who post online at the Cisco Learning Network. Without question, the comments I receive directly and overhear by participating at CLN made this edition a better book.

Thanks to my wonderful wife, Kris, who helps make this sometimes challenging work lifestyle a breeze. I love walking this journey with you, doll. Thanks to my daughter Hannah (see dedication). And thanks to Jesus Christ, Lord of everything in my life.
Contents at a Glance

Introduction xxxiv
Your Study Plan 2

Part I: Networking Fundamentals 13
Chapter 1 Introduction to TCP/IP Networking 14
Chapter 2 Fundamentals of Ethernet LANs 38
Chapter 3 Fundamentals of WANs 60
Chapter 4 Fundamentals of IPv4 Addressing and Routing 78
Chapter 5 Fundamentals of TCP/IP Transport and Applications 102
Part I Review 120

Part II: Implementing Basic Ethernet LANs 125
Chapter 6 Using the Command-Line Interface 126
Chapter 7 Analyzing Ethernet LAN Switching 146
Chapter 8 Configuring Basic Switch Management 166
Chapter 9 Configuring Switch Interfaces 190
Part II Review 212

Part III: Ethernet LANs: Design, VLANs, and Troubleshooting 217
Chapter 10 Analyzing Ethernet LAN Designs 218
Chapter 11 Implementing Ethernet Virtual LANs 242
Chapter 12 Troubleshooting Ethernet LANs 270
Part III Review 298

Part IV: IP Version 4 Addressing and Subnetting 301
Chapter 13 Perspectives on IPv4 Subnetting 302
Chapter 14 Analyzing Classful IPv4 Networks 326
Chapter 15 Analyzing Subnet Masks 340
Chapter 16 Analyzing Existing Subnets 356
Part IV Review 378
Part V: Implementing IPv4 383
Chapter 17 Operating Cisco Routers 384
Chapter 18 Configuring IPv4 Addresses and Static Routes 402
Chapter 19 Learning IPv4 Routes with RIPv2 434
Chapter 20 DHCP and IP Networking on Hosts 470
Part V Review 498

Part VI: IPv4 Design and Troubleshooting 503
Chapter 21 Subnet Design 504
Chapter 22 Variable-Length Subnet Masks 528
Chapter 23 IPv4 Troubleshooting Tools 542
Chapter 24 Troubleshooting IPv4 Routing 564
Part VI Review 586

Part VII: IPv4 Services: ACLs and NAT 591
Chapter 25 Basic IPv4 Access Control Lists 592
Chapter 26 Advanced IPv4 Access Control Lists 614
Chapter 27 Network Address Translation 642
Part VII Review 666

Part VIII: IP Version 6 671
Chapter 28 Fundamentals of IP Version 6 672
Chapter 29 IPv6 Addressing and Subnetting 688
Chapter 30 Implementing IPv6 Addressing on Routers 704
Chapter 31 Implementing IPv6 Addressing on Hosts 728
Chapter 32 Implementing IPv6 Routing 750
Part VIII Review 772

Part IX: Network Device Management 777
Chapter 33 Device Management Protocols 778
Chapter 34 Device Security Features 802
Contents

Introduction xxxiv

Your Study Plan 2

Part I Networking Fundamentals 13

Chapter 1 Introduction to TCP/IP Networking 14

“Do I Know This Already?” Quiz 14

Foundation Topics 17

Perspectives on Networking 17

TCP/IP Networking Model 18

History Leading to TCP/IP 19

Overview of the TCP/IP Networking Model 20

TCP/IP Application Layer 22

HTTP Overview 22

HTTP Protocol Mechanisms 22

TCP/IP Transport Layer 23

TCP Error Recovery Basics 23

Same-Layer and Adjacent-Layer Interactions 24

TCP/IP Network Layer 25

Internet Protocol and the Postal Service 25

Internet Protocol Addressing Basics 27

IP Routing Basics 27

TCP/IP Link Layer (Data Link Plus Physical) 28

TCP/IP Model and Terminology 30

Comparing the Original and Modern TCP/IP Models 30

Data Encapsulation Terminology 30

Names of TCP/IP Messages 31

OSI Networking Model 32

Comparing OSI and TCP/IP 32

Describing Protocols by Referencing the OSI Layers 33

OSI Layers and Their Functions 33

OSI Layering Concepts and Benefits 35

OSI Encapsulation Terminology 35

Chapter 2 Fundamentals of Ethernet LANs 38

“Do I Know This Already?” Quiz 38

Foundation Topics 40

An Overview of LANs 40

Typical SOHO LANs 41

Typical Enterprise LANs 42

The Variety of Ethernet Physical Layer Standards 43

Consistent Behavior over All Links Using the Ethernet Data Link Layer 44
Chapter 7 Analyzing Ethernet LAN Switching

“Do I Know This Already?” Quiz

Foundation Topics

LAN Switching Concepts

Overview of Switching Logic
Forwarding Known Unicast Frames
Learning MAC Addresses
Flooding Unknown Unicast and Broadcast Frames
Avoiding Loops Using Spanning Tree Protocol
LAN Switching Summary

Verifying and Analyzing Ethernet Switching
Demonstrating MAC Learning
Switch Interfaces
Finding Entries in the MAC Address Table
Managing the MAC Address Table (Aging, Clearing)
MAC Address Tables with Multiple Switches

Chapter 8 Configuring Basic Switch Management

“Do I Know This Already?” Quiz

Foundation Topics

Securing the Switch CLI
Securing User Mode and Privileged Mode with Simple Passwords
Securing User Mode Access with Local Usernames and Passwords
Securing User Mode Access with External Authentication Servers
Securing Remote Access with Secure Shell
Enabling IPv4 for Remote Access
Host and Switch IP Settings
Configuring IPv4 on a Switch
Chapter 11 Implementing Ethernet Virtual LANs 242

“Do I Know This Already?” Quiz 242

Foundation Topics 244

Virtual LAN Concepts 244

Creating Multiswitch VLANs Using Trunking 246

VLAN Tagging Concepts 246

The 802.1Q and ISL VLAN Trunking Protocols 248

Forwarding Data Between VLANs 249

Routing Packets Between VLANs with a Router 249

Routing Packets with a Layer 3 Switch 251

VLAN and VLAN Trunking Configuration and Verification 252

Creating VLANs and Assigning Access VLANs to an Interface 252

VLAN Configuration Example 1: Full VLAN Configuration 253

VLAN Configuration Example 2: Shorter VLAN Configuration 256

VLAN Trunking Protocol 257

VLAN Trunking Configuration 258

Implementing Interfaces Connected to Phones 262

Data and Voice VLAN Concepts 262

Data and Voice VLAN Configuration and Verification 264

Summary: IP Telephony Ports on Switches 266

Chapter 12 Troubleshooting Ethernet LANs 270

“Do I Know This Already?” Quiz 271

Foundation Topics 274

Perspectives on Applying Troubleshooting Methodologies 274

Troubleshooting on the Exams 275

A Deeper Look at Problem Isolation 275

Troubleshooting as Covered in This Book 277

Analyzing Switch Interface Status and Statistics 278

Interface Status Codes and Reasons for Nonworking States 278

Interface Speed and Duplex Issues 279

Common Layer 1 Problems on Working Interfaces 282
Predicting Where Switches Will Forward Frames 284
Predicting the Contents of the MAC Address Table 284
Analyzing the Forwarding Path 286
Analyzing Port Security Operations on an Interface 287
Troubleshooting Shutdown Mode and Err-disabled Recovery 288
Troubleshooting Restrict and Protect Modes 289
Analyzing VLANs and VLAN Trunks 292
Ensuring That the Right Access Interfaces Are in the Right VLANs 292
Access VLANs Not Being Defined 293
Access VLANs Being Disabled 294
Mismatched Trunking Operational States 294

Part III Review 298

Part IV IP Version 4 Addressing and Subnetting 301

Chapter 13 Perspectives on IPv4 Subnetting 302
“Do I Know This Already?” Quiz 302
Foundation Topics 304
Introduction to Subnetting 304
Subnetting Defined Through a Simple Example 305
Operational View Versus Design View of Subnetting 306
Analyze Subnetting and Addressing Needs 306
Rules About Which Hosts Are in Which Subnet 306
Determining the Number of Subnets 308
Determining the Number of Hosts per Subnet 309
One Size Subnet Fits All—Or Not 310
Defining the Size of a Subnet 310
One-Size Subnet Fits All 311
Multiple Subnet Sizes (Variable-Length Subnet Masks) 312
This Book: One-Size Subnet Fits All (Mostly) 312
Make Design Choices 313
Choose a Classful Network 313
Public IP Networks 313
Growth Exhausts the Public IP Address Space 314
Private IP Networks 315
Choosing an IP Network During the Design Phase 316
Choose the Mask 316
Classful IP Networks Before Subnetting 316
Borrowing Host Bits to Create Subnet Bits 317
Choosing Enough Subnet and Host Bits 318
Example Design: 172.16.0.0, 200 Subnets, 200 Hosts 319
Masks and Mask Formats 319
Build a List of All Subnets 320
Plan the Implementation 321
Assigning Subnets to Different Locations 322
Choose Static and Dynamic Ranges per Subnet 323

Chapter 14 Analyzing Classful IPv4 Networks 326
“Do I Know This Already?” Quiz 326
Foundation Topics 328
Classful Network Concepts 328
IPv4 Network Classes and Related Facts 328
The Number and Size of the Class A, B, and C Networks 329
Address Formats 330
Default Masks 331
Number of Hosts per Network 331
Deriving the Network ID and Related Numbers 332
Unusual Network IDs and Network Broadcast Addresses 334
Practice with Classful Networks 334
Practice Deriving Key Facts Based on an IP Address 335
Practice Remembering the Details of Address Classes 335
Additional Practice for This Chapter’s Processes 337
Answers to Earlier Practice Problems 337

Chapter 15 Analyzing Subnet Masks 340
“Do I Know This Already?” Quiz 340
Foundation Topics 342
Subnet Mask Conversion 342
Three Mask Formats 342
Converting Between Binary and Prefix Masks 343
Converting Between Binary and DDN Masks 344
Converting Between Prefix and DDN Masks 346
Practice Converting Subnet Masks 346
Identifying Subnet Design Choices Using Masks 347
Masks Divide the Subnet’s Addresses into Two Parts 348
Masks and Class Divide Addresses into Three Parts 349
Classless and Classful Addressing 350
Calculations Based on the IPv4 Address Format 350
Practice Analyzing Subnet Masks 352
Additional Practice for This Chapter’s Processes 354
Answers to Earlier Practice Problems 354

Chapter 16 Analyzing Existing Subnets 356
“Do I Know This Already?” Quiz 356
Chapter 19 RIPv2 and Distance Vector Routing 439

The Concept of a Distance and a Vector 439
Full Update Messages and Split Horizon 440
Split Horizon 441
Route Poisoning 441

Summarizing RIPv2 Features 442
Core RIPv2 Configuration and Verification 443
Configuring Core RIPv2 Features 443

- Understanding the RIP network Command 444
- RIP Configuration Example, with Many IP Networks 445
- RIP Configuration Example, with One IP Network 446

RIPv2 Verification 447
Examining RIP Routes in the IP Routing Table 447
Comparing Routing Sources with Administrative Distance 449
Revealing RIP Configuration with the show ip protocols Command 450
Examining the Best RIP Routes Using RIP Database 451

Optional RIPv2 Configuration and Verification 452
- Controlling RIP Updates with the passive-interface Command 452
- Supporting Multiple Equal-Cost Routes with Maximum Paths 453
- Understanding Autosummarization and Discontiguous Classful Networks 454

- Verifying Optional RIP Features 456
- RIPv2 Default Routes 458
 - Learning Default Routes Using Static Routes and RIPv2 458
 - Learning a Default Route Using DHCP 460

Troubleshooting RIPv2 461
Symptoms with Missing and Incorrect network Commands 463
Issues Related to Passive Interfaces 464
Issues Related to auto-summary 465
RIP Issues Caused by Other Router Features 466
Summary of RIP Troubleshooting Issues 466

Chapter 20 DHCP and IP Networking on Hosts 470

“Do I Know This Already?” Quiz 471

Foundation Topics 473
Implementing and Troubleshooting DHCP 473

- DHCP Concepts 473
 - Supporting DHCP for Remote Subnets with DHCP Relay 475
 - Information Stored at the DHCP Server 476

- DHCP Server Configuration on Routers 478
- IOS DHCP Server Verification 480
- Troubleshooting DHCP Services 481
 - DHCP Relay Agent Configuration Mistakes and Symptoms 481
IOS DHCP Server Configuration Mistakes and Symptoms 482
IP Connectivity from DHCP Relay Agent to DHCP Server 484
LAN Connectivity Between the DHCP Client and Relay Agent 484
Summary of DHCP Troubleshooting 485
Detecting Conflicts with Offered Versus Used Addresses 485

Verifying Host IPv4 Settings 486
IP Address and Mask Configuration 487
Name Resolution with DNS 488
Default Routers 489
IPv4 Address Types 490
Review of Unicast (Class A, B, and C) IP Addresses 491
IP Broadcast Addresses 491
IPv4 Multicast Addresses (Class D Addresses) 492
Comparing and Contrasting IP Address Types 494

Part V Review 498

Part VI IPv4 Design and Troubleshooting 503

Chapter 21 Subnet Design 504
“Do I Know This Already?” Quiz 504
Foundation Topics 506
Choosing the Mask(s) to Meet Requirements 506
Review: Choosing the Minimum Number of Subnet and Host Bits 507
No Masks Meet Requirements 508
One Mask Meets Requirements 509
Multiple Masks Meet Requirements 510
Finding All the Masks: Concepts 510
Finding All the Masks: Math 511
Choosing the Best Mask 512
The Formal Process 512
Practice Choosing Subnet Masks 513
Practice Problems for Choosing a Subnet Mask 513
Finding All Subnet IDs 513
First Subnet ID: The Zero Subnet 514
Finding the Pattern Using the Magic Number 515
A Formal Process with Less Than 8 Subnet Bits 515
Example 1: Network 172.16.0.0, Mask 255.255.240.0 517
Example 2: Network 192.168.1.0, Mask 255.255.255.224 518
Finding All Subnets with Exactly 8 Subnet Bits 519
Finding All Subnets with More Than 8 Subnet Bits 520
Process with 9–16 Subnet Bits 520
Process with 17 or More Subnet Bits 522
Telnet and SSH 559
Common Reasons to Use the IOS Telnet and SSH Client 559
IOS Telnet and SSH Examples 560

Chapter 24 Troubleshooting IPv4 Routing 564

“Do I Know This Already?” Quiz 565

Foundation Topics 565

Problems Between the Host and the Default Router 565
Root Causes Based on a Host’s IPv4 Settings 566
Ensure IPv4 Settings Correctly Match 566
Mismatched Masks Impact Route to Reach Subnet 567
Typical Root Causes of DNS Problems 569
Wrong Default Router IP Address Setting 570
Root Causes Based on the Default Router’s Configuration 570

DHCP Issues 571
Root Causes Based on the Default Router’s Configuration 571
Router LAN Interface and LAN Issues 573
Problems with Routing Packets Between Routers 574
IP Forwarding by Matching the Most Specific Route 575
Using show ip route and Subnet Math to Find the Best Route 575
Using show ip route address to Find the Best Route 577
show ip route Reference 577
Routing Problems Caused by Incorrect Addressing Plans 579
Recognizing When VLSM Is Used or Not 579
Overlaps When Not Using VLSM 579
Overlaps When Using VLSM 581
Configuring Overlapping VLSM Subnets 582

Pointers to Related Troubleshooting Topics 583
Router WAN Interface Status 583
Filtering Packets with Access Lists 584

Part VI Review 586

Part VII IPv4 Services: ACLs and NAT 591

Chapter 25 Basic IPv4 Access Control Lists 592

“Do I Know This Already?” Quiz 592

Foundation Topics 594
IPv4 Access Control List Basics 594
ACL Location and Direction 594
Matching Packets 595
Taking Action When a Match Occurs 596
Types of IP ACLs 596
Standard Numbered IPv4 ACLs 597
List Logic with IP ACLs 598
Matching Logic and Command Syntax 599
Review of Public IPv4 Addressing Concepts 690
Review of Private IPv4 Addressing Concepts 692
Public and Private IPv6 Addresses 692
The IPv6 Global Routing Prefix 693
Address Ranges for Global Unicast Addresses 695
IPv6 Subnetting Using Global Unicast Addresses 696
Deciding Where IPv6 Subnets Are Needed 696
The Mechanics of Subnetting IPv6 Global Unicast Addresses 696
Listing the IPv6 Subnet Identifier 698
List All IPv6 Subnets 699
Assign Subnets to the Internetwork Topology 699
Assigning Addresses to Hosts in a Subnet 700
Unique Local Unicast Addresses 701
Subnetting with Unique Local IPv6 Addresses 701
The Need for Globally Unique Local Addresses 702
Chapter 30 Implementing IPv6 Addressing on Routers 704
“Do I Know This Already?” Quiz 705
Foundation Topics 706
Implementing Unicast IPv6 Addresses on Routers 706
Static Unicast Address Configuration 707
Configuring the Full 128-Bit Address 707
Enabling IPv6 Routing 708
Verifying the IPv6 Address Configuration 709
Generating a Unique Interface ID Using Modified EUI-64 711
Dynamic Unicast Address Configuration 715
Special Addresses Used by Routers 715
Link-Local Addresses 716
Link-Local Address Concepts 716
Creating Link-Local Addresses on Routers 717
Routing IPv6 with Only Link-Local Addresses on an Interface 718
IPv6 Multicast Addresses 719
Local Scope Multicast Addresses 719
Solicited-Node Multicast Addresses 720
Anycast Addresses 722
Miscellaneous IPv6 Addresses 723
IPv6 Addressing Configuration Summary 723
Additional Practice for This Chapter’s Processes 725
Answers to Earlier Practice Problems 726
Chapter 31 Implementing IPv6 Addressing on Hosts 728
“Do I Know This Already?” Quiz 728
Foundation Topics 730
The Neighbor Discovery Protocol 730
Discovering Routers with NDP RS and RA 731
Discovering Addressing Info for SLAAC with NDP RS and RA 732
Discovering Neighbor Link Addresses with NDP NS and NA 733
Discovering Duplicate Addresses Using NDP NS and NA 734
NDP Summary 735
Dynamic Configuration of Host IPv6 Settings 735
Dynamic Configuration Using Stateful DHCP and NDP 736
Differences Between DHCPv6 and DHCPv4 736
DHCPv6 Relay Agents 737
Using Stateless Address Auto Configuration 739
Building an IPv6 Address Using SLAAC 739
Combining SLAAC with NDP and Stateless DHCP 740
Troubleshooting IPv6 Addressing 741
Verifying Host IPv6 Connectivity from Hosts 741
Verifying Host Connectivity from Nearby Routers 744

Chapter 32 Implementing IPv6 Routing 750
“Do I Know This Already?” Quiz 750
Foundation Topics 752
Connected and Local IPv6 Routes 752
Rules for Connected and Local Routes 753
Example of Connected IPv6 Routes 753
Examples of Local IPv6 Routes 755
Static IPv6 Routes 756
Static Routes Using the Outgoing Interface 756
Static Routes Using Next-Hop IPv6 Address 758
Example Static Route with a Global Unicast Next-Hop Address 758
Example Static Route with a Link-Local Next-Hop Address 759
Static Default Routes 760
Static IPv6 Host Routes 761
Floating Static IPv6 Routes 762
Default Routes with SLAAC on Router Interfaces 763
Troubleshooting Static IPv6 Routes 765
Troubleshooting Incorrect Static Routes That Appear in the IPv6 Routing Table 765
The Static Route Does Not Appear in the IPv6 Routing Table 767

Part VIII Review 772

Part IX Network Device Management 777

Chapter 33 Device Management Protocols 778
“Do I Know This Already?” Quiz 779
Foundation Topics 780
System Message Logging (Syslog) 780
 Sending Messages in Real Time to Current Users 780
 Storing Log Messages for Later Review 781
Log Message Format 782
Log Message Severity Levels 783
Configuring and Verifying System Logging 784
 The debug Command and Log Messages 786
Network Time Protocol (NTP) 787
 Setting the Time and Timezone 788
 Implementing NTP Clients, Servers, and Client/Server Mode 789
 NTP Using a Loopback Interface for Better Availability 791
Analyzing Topology Using CDP and LLDP 793
 Examining Information Learned by CDP 793
 Configuring and Verifying CDP Itself 796
 Implementing Link Layer Discovery Protocol 797

Chapter 34 Device Security Features 802
 “Do I Know This Already?” Quiz 802
Foundation Topics 804
Securing IOS Passwords 804
 Encrypting Older IOS Passwords with service password-encryption 805
 Encoding the Enable Passwords with Hashes 806
 Interactions Between Enable Password and Enable Secret 806
 Making the Enable Secret Truly Secret with a Hash 807
 Improved Hashes for Cisco’s Enable Secret 808
 Hiding the Passwords for Local Usernames 810
Cisco Device Hardening 810
 Configuring Login Banners 810
 Securing Unused Switch Interfaces 812
 Controlling Telnet and SSH Access with ACLs 813
Firewalls 814
 Typical Location and Uses of Firewalls 814
 Security Zones 815

Chapter 35 Managing IOS Files 820
 “Do I Know This Already?” Quiz 820
Foundation Topics 822
Managing Cisco IOS Images and Upgrades 822
 The IOS File System 822
 Upgrading IOS Images 824
 Copying a New IOS Image to a Local IOS File System Using TFTP 825
 Verifying IOS Code Integrity with MD5 827
Copying Images with FTP 828
Copying Images with SCP 829
The Cisco IOS Software Boot Sequence 830
The Configuration Register 831
How a Router Chooses Which OS to Load 831
Verifying the IOS Image Using the show version Command 833
Password Recovery 835
The General Ideas Behind Cisco Password Recovery/Reset 836
A Specific Password Reset Example 837
Managing Configuration Files 839
Copying and Erasing Configuration Files 839
Traditional Configuration Backup and Restore with the copy Command 840
Alternatives for Configuration Backup and Restore 841
Erasing Configuration Files 843
Initial Configuration (Setup Mode) 843

Chapter 36 IOS License Management 848
“Do I Know This Already?” Quiz 848
Foundation Topics 850
IOS Packaging 850
IOS Images per Model, Series, and per Software Version/Release 850
Original Packaging: One IOS Image per Feature Set Combination 851
New IOS Packaging: One Universal Image with All Feature Sets 851
IOS Software Activation with Universal Images 852
The Future: Cisco ONE Licensing 854
Managing Software Activation with Cisco License Manager 854
Manually Activating Software Using Licenses 855
Example of Manually Activating a License 857
Showing the Current License Status 857
Adding a Permanent Technology Package License 859
Right-to-Use Licenses 861

Part IX Review 864
Part X Final Review 867

Chapter 37 Final Review 868
Advice About the Exam Event 868
Learn the Question Types Using the Cisco Certification Exam Tutorial 868
Think About Your Time Budget Versus Number of Questions 869
A Suggested Time-Check Method 870
Miscellaneous Pre-Exam Suggestions 870
Exam-Day Advice 871
Reader Services

To access additional content for this book, simply register your product. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9781587205804 and click Submit. After the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Icons Used in This Book

Printer PC Laptop Server Phone

IP Phone Router Switch Frame Relay Switch Cable Modem

Access Point ASA DSLAM WAN Switch CSU/DSU

Hub PIX Firewall Bridge Layer 3 Switch Network Cloud

Ethernet Connection Serial Line Virtual Circuit Ethernet WAN Wireless

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({{ }}) indicate a required choice within an optional element.
Introduction

About the Exams

Congratulations! If you’re reading far enough to look at this book’s Introduction, you’ve probably already decided to go for your Cisco certification. If you want to succeed as a technical person in the networking industry at all, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than 80 percent market share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

The Exams to Achieve CCENT and CCNA R&S

Cisco announced changes to the CCENT and CCNA Routing and Switching certifications, and the related 100-105 ICND1, 200-105 ICND2, and 200-125 CCNA exams, early in the year 2016. Most everyone new to Cisco certifications begins with either CCENT or CCNA Routing and Switching (CCNA R&S). However, the paths to certification are not quite obvious at first.

The CCENT certification requires a single step: pass the ICND1 exam. Simple enough.

Cisco gives you two options to achieve CCNA R&S certification, as shown in Figure I-1: pass both the ICND1 and ICND2 exams, or just pass the CCNA exam. Both paths cover the same exam topics, but the two-exam path does so spread over two exams rather than one. You also pick up the CCENT certification by going through the two-exam path, but you do not when working through the single-exam option.

![Figure I-1 Cisco Entry-Level Certifications and Exams](image)

Note that Cisco has begun referencing some exams with a version number on some of their web pages. If that form holds true, the exams in Figure I-1 will likely be called version 3 (or v3 for short). Historically, the 200-125 CCNA R&S exam is the seventh separate version of the exam (which warrants a different exam number), dating back to 1998. To make sure you reference the correct exam, when looking for information, using forums, and registering for the test, just make sure to use the correct exam number as shown in the figure.

Types of Questions on the Exams

The ICND1, ICND2, and CCNA exams all follow the same general format. At the testing center, you sit in a quiet room with a PC. Before the exam timer begins, you have a chance to do a few other tasks on the PC; for instance, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in
Introduction

getting around a PC should have no problems with the testing environment. The question types are

■ Multiple-choice, single-answer
■ Multiple-choice, multiple-answer
■ Testlet (one scenario with multiple multi-choice questions)
■ Drag-and-drop
■ Simulated lab (sim)
■ Simlet

Before taking the test, learn the exam user interface by using the Cisco Exam Tutorial. To find the Cisco Certification Exam Tutorial, search for “exam tutorial” at www.cisco.com. This tool walks through each type of question Cisco may ask on the exam.

Although the first four types of questions in the list should be somewhat familiar from other tests in school, the last two are more common to IT tests and Cisco exams in particular. Both use a network simulator to ask questions, so that you control and use simulated Cisco devices. In particular:

Sim questions: You see a network topology, a lab scenario, and can access the devices. Your job is to fix a problem with the configuration.

Simlet questions: This style combines sim and testlet question formats. Like a sim question, you see a network topology, a lab scenario, and can access the devices. However, like a testlet, you also see multiple multiple-choice questions. Instead of changing/fixing the configuration, you answer questions about the current state of the network.

These two question styles with the simulator give Cisco the ability to test your configuration skills with sim questions, and your verification and troubleshooting skills with simlet questions.

What’s on the CCNA Exams—And What’s in the Book?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, “What’s on the test?” Even in college, people would try to get more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

You can find out more about what’s on the exam from two primary sources: this book and from the Cisco website.

The Cisco Published Exam Topics

First, Cisco tells the world the specific topics on each of their exams. Cisco wants the public to know both the variety of topics, and an idea about the kinds of knowledge and skills required for each topic, for every Cisco certification exam. Just go to www.cisco.com/go/certifications, look for the CCENT and CCNA Routing and Switching pages, and navigate until you see the exam topics in Appendix R, “Exam Topic Cross Reference.” This PDF appendix lists two cross references: one with a list of the exam topics and the chapters that include something about each topic, as well as the reverse: a list of chapters, with the exam topics included in each chapter.
Cisco does more than just list the topic (for example, IPv4 addressing), but they also list the depth to which you must master the topic. The primary exam topics each list one or more verbs that describe the skill level required. For example, consider the following exam topic, which describes one of the most important topics in both CCENT and CCNA R&S:

Configure, verify, and troubleshoot IPv4 addressing and subnetting

Note that this one exam topic has three verbs (configure, verify, and troubleshoot). So, you should be able to not only configure IPv4 addresses and subnets, but you should understand them well enough to verify that the configuration works, and to troubleshoot problems when it is not working. And if to do that, you need to understand concepts, and you need to have other knowledge, those details are implied. The exam questions will attempt to assess whether you can configure, verify, and troubleshoot.

Note that the list of exam topics provides a certain level of depth. For example, the ICND1 100-105 exam topic list has 41 primary exam topics (topics with verbs), plus additional sub-topics that further define that technology area.

You should take the time to not only read the exam topics, but read the short material above the exam topics as listed at the Cisco web page for each certification and exam. Look for notices about the use of unscored items, and the fact that Cisco intends the exam topics to be a set of general guidelines for the exams.

This Book: About the Exam Topics

This book provides a complete study system for the Cisco published exam topics for the ICND1 100-105 exam. All the topics in this book either directly relate to some ICND1 exam topic or provide more basic background knowledge for some exam topic. The scope of the book is based on the exam topics.

For those of you thinking more specifically about the CCNA R&S certification and the CCNA 200-125 single-exam path to CCNA, this book covers about one-half of the CCNA exam topics. The ICND1 book (and ICND1 100-105 exam topics) covers about half of the topics listed for the CCNA 200-125 exam, and the ICND2 book (and the ICND2 200-105 exam topics) cover the other half. In short, for content, CCNA = ICND1 + ICND2.

Book Features

This book, and the similar CCNA Routing and Switching ICND2 200-105 Official Cert Guide, go beyond what you would find in a simple technology book. These books give you a study system designed to help you not only learn facts but also to develop the skills need to pass the exams. To do that, in the technology chapters of the book, about three-quarters of the chapter is about the technology, and about one-quarter is for the related study features.

The “Foundation Topics” section of each chapter contains rich content to explain the topics on the exam and to show many examples. This section makes extensive use of figures, with lists and tables for comparisons. It also highlights the most important topics in each chapter as key topics, so you know what to master first in your study.

Most of the book’s features tie in some way to the need to study beyond simply reading the “Foundation Topics” section of each chapter. The rest of this section works through these book features. And because the book organizes your study by chapter, and then by part (a part contains multiple chapters), and then a final review at the end of the book, this Introduction discusses the book features introduced by chapter, part, and for final review.
Chapter Features and How to Use Each Chapter

Each chapter of this book is a self-contained short course about one small topic area, organized for reading and study, as follows:

“Do I Know This Already?” quizzes: Each chapter begins with a prechapter quiz.

Foundation Topics: This is the heading for the core content section of the chapter.

Chapter Review: This section includes a list of study tasks useful to help you remember concepts, connect ideas, and practice skills-based content in the chapter.

Figure I-2 shows how each chapter uses these three key elements. You start with the DIKTA quiz. You can use the score to determine whether you already know a lot, or not so much, and determine how to approach reading the Foundation Topics (that is, the technology content in the chapter). When finished, use the chapter review tasks to start working on mastering your memory of the facts and skills with configuration, verification, and troubleshooting.

![Three Primary Tasks for a First Pass Through Each Chapter](image)

In addition to these three main chapter features, each “Chapter Review” section uses a variety of other book features, including the following:

- **Review Key Topics:** Inside the “Foundation Topics” section, the Key Topic icon appears next to the most important items, for the purpose of later review and mastery. While all content matters, some is, of course, more important to learn, or needs more review to master, so these items are noted as key topics. The chapter review lists the key topics in a table; scan the chapter for these items to review them.

- **Complete Tables from Memory:** Instead of just rereading an important table of information, some tables have been marked as memory tables. These tables exist in the Memory Table app that is available on the DVD and from the companion website. The app shows the table with some content removed, and then reveals the completed table, so you can work on memorizing the content.

- **Key Terms You Should Know:** You do not need to be able to write a formal definition of all terms from scratch. However, you do need to understand each term well enough to understand exam questions and answers. The chapter review lists the key terminology from the chapter. Make sure you have a good understanding of each term, and use the DVD Glossary to cross-check your own mental definitions.

- **Labs:** Many exam topics use verbs list “configure,” “verify,” and “troubleshoot”; all these refer to skills you should practice at the user interface (CLI) of a router or switch. The chapter review refers you to these other tools. The Introduction’s upcoming section titled “About Building Hands-On Skills” discusses your options.
- **Command References**: Some book chapters cover a large amount of router and switch commands. The chapter review includes reference tables for the command used in that chapter, along with an explanation. Use these tables for reference, but also use them for study—just cover one column of the table, and see how much you can remember and complete mentally.

- **Review DIKTA Questions**: Although you have already seen the DIKTA questions from the chapters in a part, re-answering those questions can prove a useful way to review facts. The part review suggests that you repeat the DIKTA questions, but using the Pearson IT Certification Practice Test (PCPT) exam software that comes with the book, for extra practice in answering multiple choice questions on a computer.

- **Subnetting and Other Process Exercises**: Many chapters in the ICND1 book ask you to perform various tasks that use math or use a particular process. The chapter review asks you to do additional practice problems as found in DVD-only PDF appendixes.

Part Features and How to Use Part Review

The book organizes the chapters into parts. Each part contains a number of related chapters. Figure I-3 lists the titles of the parts and the chapters in those parts (by chapter number).

![Part Features and How to Use Part Review](image)

Figure I-3 *The Book Parts (by Title), and Chapter Numbers in Each Part*

Each book part ends with a “Part Review” section that contains a list of activities for study and review, much like the “Chapter Review” section at the end of each chapter. However, because the part review takes place after completing a number of chapters, the part review includes some tasks meant to help pull the ideas together from this larger body of work. The following list explains the types of tasks added to part review beyond the types mentioned for chapter review:

- **Answer Part Review Questions**: The books comes with exam software and databases on questions. One database holds questions written specifically for part review. These questions tend to connect multiple ideas together, to help you think about topics from multiple chapters, and to build the skills needed for the more challenging analysis questions on the exams.

- **Mind Maps**: Mind maps are graphical organizing tools that many people find useful when learning and processing how concepts fit together. The process of creating mind maps helps you build mental connections. The part review elements make use of mind maps in several ways: to connect concepts and the related configuration commands, to connect show commands and the related networking concepts, and even to connect terminology. (For more information about mind maps, see the section “About Mind Maps.”)
Labs: The “Part Review” section will direct you to the kinds of lab exercises you should do with your chosen lab product, labs that would be more appropriate for this stage of study and review. (Check out the section “About Building Hands-On Skills” for information about lab options.)

In addition to these tasks, many “Part Review” sections have you perform other tasks with book features mentioned in the “Chapter Review” section: repeating DIKTA quiz questions, reviewing key topics, and doing more lab exercises.

Final Review
The “Final Review” chapter at the end of this book lists a series of preparation tasks that you can best use for your final preparation before taking the exam. The “Final Review” chapter focuses on a three-part approach to helping you pass: practicing your skills, practicing answering exam questions, and uncovering your weak spots. To that end, the “Final Review” chapter uses the same familiar book features discussed for the chapter review and part review elements, along with a much larger set of practice questions.

Other Features
In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including the following:

- **DVD-based practice exam**: The companion DVD contains the powerful Pearson IT Certification Practice Test (PCPT) exam engine. You can take simulated ICND1 exams with the DVD and activation code included in this book. (You can take simulated ICND2 and CCNA R&S exams with the DVD in the *CCNA Routing and Switching ICND2 200-105 Official Cert Guide*.)

- **CCENT ICND1 100-105 Network Simulator Lite**: This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco command-line interface (CLI). No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

- **eBook**: If you are interested in obtaining an eBook version of this title, we have included a special offer on a coupon card inserted in the DVD sleeve in the back of the book. This offer enables you to purchase the *CCENT/CCNA ICND1 100-105 Official Cert Guide Premium Edition* eBook and Practice Test at a 70 percent discount off the list price. In addition to three versions of the eBook, PDF (for reading on your computer), EPUB (for reading on your tablet, mobile device, or Nook or other eReader), and Mobi (the native Kindle version), you also receive additional practice test questions and enhanced practice test features.

- **Subnetting videos**: The companion DVD contains a series of videos that show you how to calculate various facts about IP addressing and subnetting (in particular, using the shortcuts described in this book).

- **Subnetting practice**: The companion DVD contains five appendixes (D–H) with a set of subnetting practice problems and answers. This is a great resource to practice building subnetting skills. You can also do these same practice problems with applications that you can access from the DVD or the companion web site.
Other practice: The companion DVD contains four other appendixes (I–K) that each contain other practice problems related to a particular chapter from the book. Use these for more practice on the particulars with some of the math- and process-oriented activities in the chapters. You can also do these same practice problems with applications that you can access from the DVD or the companion website.

Mentoring videos: The DVD included with this book includes four other instructional videos, about the following topics: switch basics, CLI navigation, router configuration, and VLANs.

Companion website: The website www.ciscopress.com/title/9781587205804 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.

PearsonITCertification.com: The website www.pearsonitcertification.com is a great resource for all things IT-certification related. Check out the great CCNA articles, videos, blogs, and other certification preparation tools from the industry's best authors and trainers.

CCNA Simulator: If you are looking for more hands-on practice, you might want to consider purchasing the CCNA Network Simulator. You can purchase a copy of this software from Pearson at http://pearsonitcertification.com/networksimulator or other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the labs in the simulator to the specific sections in these CCNA cert guides. You can get this mapping guide for free on the Extras tab of the companion website.

Author’s website and blogs: The author maintains a website that hosts tools and links useful when studying for CCENT and CCNA. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND1 book, and links to the author's CCENT Skills blog and CCNA Skills blog. Start at www.certskills.com; look to blog.certskills.com for a page about the blogs in particular, with links to the pages with the labs related to this book.

A Big New Feature: Review Applications

One of the single biggest additions to this edition of the book is the addition of study apps for many of the chapter review activities. In the past, all chapter review activities use the book chapter, or the chapter plus a DVD-only appendix. Readers tell us they find that content useful, but the content is static.

This book (and the CCNA Routing and Switching ICND2 200-105 Official Cert Guide) are the first Cisco Press Cert Guides with extensive interactive applications. Basically, most every activity that can be done at chapter review can now be done with an application. The applications can be found both on the DVD that comes with the book and on the book’s companion website.

The advantages of using these apps are as follows:

Easier to use: Instead of having to print out copies of the appendixes and do the work on paper, these new apps provide you with an easy to use, interactive experience that you can easily run over and over.

Convenient: When you have a spare 5–10 minutes, go to the book’s website, and review content from one of your recently finished chapters.
Untethered from Book/DVD: Because these apps are available on the book’s companion web page in addition to the DVD, you can access your review activities from anywhere—no need to have the book or DVD with you.

Good for tactile learners: Sometimes looking at a static page after reading a chapter lets your mind wander. Tactile learners may do better by at least typing answers into an app, or clicking inside an app to navigate, to help keep you focused on the activity.

Our in-depth reader surveys show that readers who use the chapter review tools like them, but that not everyone uses the “Chapter Review” sections consistently. So, we want to increase the number of people using the review tools, and make them both more useful and more interesting. Table I-1 summarizes these new applications and the traditional book features that cover the same content.

Table I-1 Book Features with Both Traditional and App Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>Traditional</th>
<th>App</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Topic</td>
<td>Table with list; flip pages to find</td>
<td>Key Topics Table app</td>
</tr>
<tr>
<td>Config Checklist</td>
<td>Just one of many types of key topics</td>
<td>Config Checklist app</td>
</tr>
<tr>
<td>Memory Table</td>
<td>Two static PDF appendixes (one with sparse tables for you to complete, one with completed tables)</td>
<td>Memory Table app</td>
</tr>
<tr>
<td>Key Terms</td>
<td>Listed in each “Chapter Review” section, with the Glossary in the back of the book</td>
<td>Glossary Flash Cards app</td>
</tr>
<tr>
<td>Subnetting Practice</td>
<td>Appendixes D–H, with practice problems and answers</td>
<td>A variety of apps, one per problem type</td>
</tr>
<tr>
<td>Other Practice</td>
<td>Appendixes I–K with practice problems and answers</td>
<td>A variety of apps, one per problem type</td>
</tr>
</tbody>
</table>

How to Get the Electronic Elements of This Book

Traditionally, all chapter review activities use the book chapter plus appendixes, with the appendixes often being located on the DVD. But most of that content is static: useful, but static.

If you buy the print book, and have a DVD drive, you have all the content on the DVD. Just spin the DVD and use the disk menu that should automatically start to explore all content.

If you buy the print book but do not have a DVD drive, you can get the DVD files by registering your book on the Cisco Press website. To do so, simply go to www.ciscopress.com/register and enter the ISBN of the print book: 9781587205804. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book’s companion website.

If you buy the Premium Edition eBook and Practice Test from Cisco Press, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.
If you buy the eBook from some other bookseller, the very last page of your eBook file will contain instructions for how to register the book and access the companion website. The steps are the same as noted earlier for those who buy the print book but do not have a DVD drive.

Book Organization, Chapters, and Appendixes

This book contains 36 core chapters, Chapters 1 through 36, with Chapter 37 as the “Final Review” chapter. Each core chapter covers a subset of the topics on the ICND1 exam. The core chapters are organized into sections. The core chapters cover the following topics:

- **Part I: Networking Fundamentals**
 - Chapter 1, “Introduction to TCP/IP Networking,” introduces the central ideas and terms used by TCP/IP, and contrasts the TCP/IP networking model with the OSI model.
 - Chapter 2, “Fundamentals of Ethernet LANs,” introduces the concepts and terms used when building Ethernet LANs.
 - Chapter 3, “Fundamentals of WANs,” covers the concepts and terms used for the data link layer for WANs, including HDLC.
 - Chapter 4, “Fundamentals of IPv4 Addressing and Routing”: IP is the main network layer protocol for TCP/IP. This chapter introduces the basics of IPv4, including IPv4 addressing and routing.
 - Chapter 5, “Fundamentals of TCP/IP Transport and Applications”: This chapter completes most of the detailed discussion of the upper two layers of the TCP/IP model (transport and application), focusing on TCP and applications.

- **Part II: Implementing Basic Ethernet LANs**
 - Chapter 6, “Using the Command-Line Interface,” explains how to access the text-based user interface of Cisco Catalyst LAN switches.
 - Chapter 7, “Analyzing Ethernet LAN Switching,” shows how to use the Cisco CLI to verify the current status of an Ethernet LAN and how it switches Ethernet frames.
 - Chapter 8, “Configuring Basic Switch Management,” explains how to configure Cisco switches for basic management features, such as remote access using Telnet and SSH.
 - Chapter 9, “Configuring Switch Interfaces,” shows how to configure a variety of switch features that apply to interfaces, including duplex/speed and port security.

- **Part III: Ethernet LANs: Design, VLANs, and Troubleshooting**
 - Chapter 10, “Analyzing Ethernet LAN Designs,” examines various ways to design Ethernet LANs, discussing the pros and cons, and explains common design terminology.
 - Chapter 11, “Implementing Ethernet Virtual LANs”: This chapter explains the concepts and configuration surrounding virtual LANs, including VLAN trunking.
 - Chapter 12, “Troubleshooting Ethernet LANs,” focuses on how to tell whether the switch is doing what it is supposed to be doing, mainly through the use of show commands.
Part IV: IP Version 4 Addressing and Subnetting

- Chapter 13, “Perspectives on IPv4 Subnetting,” walks you through the entire concept of subnetting, from starting with a Class A, B, or C network to a completed subnetting design as implemented in an enterprise IPv4 network.

- Chapter 14, “Analyzing Classful IPv4 Networks”; IPv4 addresses originally fell into several classes, with unicast IP addresses being in Class A, B, and C. This chapter explores all things related to address classes and the IP network concept created by those classes.

- Chapter 15, “Analyzing Subnet Masks,” shows how an engineer can analyze the key facts about a subnetting design based on the subnet mask. This chapter shows how to look at the mask and IP network to determine the size of each subnet and the number of subnets.

- Chapter 16, “Analyzing Existing Subnets”: Most troubleshooting of IP connectivity problems starts with an IP address and mask. This chapter shows how to take those two facts and find key facts about the IP subnet in which that host resides.

Part V: Implementing IPv4

- Chapter 17, “Operating Cisco Routers,” is like Chapter 8, focusing on basic device management, but it focuses on routers instead of switches.

- Chapter 18, “Configuring IPv4 Addresses and Static Routes,” discusses how to add IPv4 address configuration to router interfaces and how to configure static IPv4 routes.

- Chapter 19, “Learning IPv4 Routes with RIPv2,” explains how routers work together to find all the best routes to each subnet using a routing protocol. This chapter also shows how to configure the RIPv2 routing protocol for use with IPv4.

- Chapter 20, “DHCP and IP Networking on Hosts,” discusses how hosts can be configured with their IPv4 settings, and how they can learn those settings with DHCP.

Part VI: IPv4 Design and Troubleshooting

- Chapter 21, “Subnet Design,” takes a design approach to subnetting. This chapter begins with a classful IPv4 network, and asks why a particular mask might be chosen, and if chosen, what subnet IDs exist.

- Chapter 22, “Variable-Length Subnet Masks,” moves away from the assumption of one subnet mask per network to multiple subnet masks per network—which makes subnetting math and processes much more challenging. This chapter explains those challenges.

- Chapter 23, “IPv4 Troubleshooting Tools,” focuses on how to use two key troubleshooting tools to find routing problems: the ping and traceroute commands.

- Chapter 24, “Troubleshooting IPv4 Routing,” looks at the most common IPv4 problems and how to find the root causes of those problems when troubleshooting.

Part VII: IPv4 Services: ACLs and NAT

- Chapter 25, “Basic IPv4 Access Control Lists”; This chapter examines how standard IP ACLs can filter packets based on the source IP address so that a router will not forward the packet.
Chapter 26, “Advanced IPv4 Access Control Lists”: This chapter examines both named and numbered ACLs, and both standard and extended IP ACLs.

Chapter 27, “Network Address Translation,” works through the complete concept, configuration, verification, and troubleshooting sequence for the router NAT feature, including how it helps conserve public IPv4 addresses.

Part VIII: IP Version 6

Chapter 28, “Fundamentals of IP Version 6,” discusses the most basic concepts of IP version 6, focusing on the rules for writing and interpreting IPv6 addresses.

Chapter 29, “IPv6 Addressing and Subnetting,” works through the two branches of unicast IPv6 addresses—global unicast addresses and unique local addresses—that act somewhat like IPv4 public and private addresses, respectively.

Chapter 30, “Implementing IPv6 Addressing on Routers,” shows how to configure IPv6 routing and addresses on routers, while discussing a variety of special IPv6 addresses.

Chapter 31, “Implementing IPv6 Addressing on Hosts,” mirrors Chapter 20’s discussions of IPv4 on hosts, while adding details of how IPv6 uses Stateless Address Auto Configuration (SLAAC).

Chapter 32, “Implementing IPv6 Routing,” shows how to add static routes to an IPv6 router's routing table.

Part IX: Network Device Management

Chapter 33, “Device Management Protocols,” discusses the concepts and configuration of some common network management tools: syslog, NTP, CDP, and LLDP.

Chapter 34, “Device Security Features,” takes the discussion of device passwords a step deeper, and examines how to better secure devices through device hardening.

Chapter 35, “Managing IOS Files,” explains the IOS file system, focusing on key files like the IOS and configuration files. The chapter shows how to upgrade IOS and to backup/restore the configuration file.

Chapter 36, “IOS License Management,” discusses the Cisco per-device license management practices through the use of PAK licensing.

Part X: Final Review

Chapter 37, “Final Review,” suggests a plan for final preparation after you have finished the core parts of the book.

Part XI: Appendixes (In Print)

Appendix A, “Numeric Reference Tables,” lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.

Appendix B, “CCENT/CCNA ICND1 100-105 Exam Updates,” is a place for the author to add book content mid-edition. Always check online for the latest PDF version of this appendix; the appendix lists download instructions.

The Glossary contains definitions for all the terms listed in the “Key Terms You Should Know” sections at the conclusion of Chapters 1 through 36.
Part XII: DVD Appendixes
The following appendixes are available in digital format on the DVD that accompanies this book:

- Appendix C, “Answers to the ‘Do I Know This Already?’ Quizzes,” includes the explanations to all the questions from Chapters 1 through 36.
- Appendix D, “Practice for Chapter 14: Analyzing Classful IPv4 Networks”
- Appendix E, “Practice for Chapter 15: Analyzing Subnet Masks”
- Appendix F, “Practice for Chapter 16: Analyzing Existing Subnets”
- Appendix G, “Practice for Chapter 21: Subnet Design”
- Appendix H, “Practice for Chapter 22: Variable-Length Subnet Masks”
- Appendix I, “Practice for Chapter 25: Basic IPv4 Access Control Lists”
- Appendix K, “Practice for Chapter 30: Implementing IPv6 Addressing on Routers”
- Appendix L, “Mind Map Solutions,” shows an image of sample answers for all the part-ending mind map exercises.
- Appendix M, “Study Planner,” is a spreadsheet with major study milestones, where you can track your progress through your study.
- Appendix N, “Classless Inter-domain Routing,” is an extra chapter for anyone interested in reading more about the concepts, terminology, and math related to CIDR.
- Appendix O, “Route Summarization,” is a copy of a chapter that was in the previous edition of this book, but was removed for this edition. It is included here for anyone who has interest, and for instructors who may need the chapter for their existing course.
- Appendix P, “Implementing Point-to-Point WANs,” is a copy of the ICND2 book’s chapter about serial WANs. In a lab environment, you may want to use serial WAN links, and you may not have a copy of the ICND2 book. I included this chapter for reference if you need a little more depth about serial links.
- Appendix Q, “Topics from Previous Editions,” is a collection of information about topics that have appeared on previous versions of the CCNA exams. While no longer within this exam’s topics, the concepts are still of interest to someone with the CCENT or CCNA certification.
- Appendix R, “Exam Topics Cross Reference,” provides some tables to help you find where each exam objectives is covered in the book.

Reference Information
This short section contains a few topics available for reference elsewhere in the book. You may read these when you first use the book, but you may also skip these topics and refer back to them later. In particular, make sure to note the final page of this introduction, which lists several contact details, including how to get in touch with Cisco Press.

Install the Pearson IT Certification Practice Test Engine and Questions
This book, like many other Cisco Press books, includes the rights to use the Pearson IT Certification Practice Test (PCPT) software, along with rights to use some exam questions related to this book. PCPT allows has many options, including the option to answer
questions in study mode, so you can see the answers and explanations for each question as you go along, or to take a simulated exam that mimics real exam conditions, or to view questions in flash card mode, where all the answers are stripped out, challenging you to answer questions from memory.

You should install PCPT so it is ready to use even for the earliest chapters. This book’s Part Review sections ask you specifically to use PCPT, and you can even take the DIKTA chapter pre-quizzes using PCPT.

NOTE The right to use the exams associated with this book is based on an activation code. For those with a print book, the code is in the DVD sleeve at the back of the book. For those who purchase the Premium Edition eBook and Practice Test directly from the Cisco Press website, the code will be populated on your account page after purchase. For those who purchase a Kindle edition, the access code will be supplied directly from Amazon. Note that if you purchase an eBook version from any other source, the practice test is not included, as other vendors are not able to vend the required unique access code. Do not lose the activation code.

NOTE Also on this same piece of paper, on the opposite side from the exam activation code, you will find a one-time-use coupon code that gives you 70 percent off the purchase of the CCENT/CCNA ICND1 100-105 Official Cert Guide, Premium Edition eBook and Practice Test.

PCPT Exam Databases with This Book

This book includes an activation code that allows you to load a set of practice questions. The questions come in different exams or exam databases. When you install the PCPT software and type in the activation code, the PCPT software downloads the latest version of all these exam databases. And with the ICND1 book alone, you get four different “exams,” or four different sets of questions, as listed in Figure I-4.

![Figure I-4](image)

Figure I-4 PCPT Exams/Exam Databases and When to Use Them

You can choose to use any of these exam databases at any time, both in study mode and practice exam mode. However, many people find it best to save some of the exams until exam review time, after you have finished reading the entire book. Figure I-4 begins to suggest a plan, spelled out here:

- During part review, use PCPT to review the DIKTA questions for that part, using study mode.
- During part review, use the questions built specifically for part review (the part review questions) for that part of the book, using study mode.
- Save the remaining exams to use with the “Final Review” chapter at the end of the book.
The two modes inside PCPT give you better options for study versus practicing a timed exam event. In study mode, you can see the answers immediately, so you can study the topics more easily. Also, you can choose a subset of the questions in an exam database; for instance, you can view questions from only the chapters in one part of the book.

PCPT practice mode lets you practice an exam event somewhat like the actual exam. It gives you a preset number of questions, from all chapters, with a timed event. Practice exam mode also gives you a score for that timed event.

How to View Only DIKTA Questions by Chapter or Part

Most chapters begin with a “Do I Know This Already?” (DIKTA) quiz. You can take the quiz to start a chapter, take it again during chapter review for more practice, and the “Part Review” sections even suggest that you repeat the questions from all chapters in that part.

You can use the DIKTA quiz as printed in the book, or use the PCPT software. The book lists the questions, with the letter answers on the page following the quiz. Appendix C, on the DVD, lists the answers along with an explanation; you might want to keep that PDF handy.

Using PCPT for these questions has some advantages. It gives you a little more practice in how to read questions from testing software. Also, the explanations to the questions are conveniently located in the PCPT software.

To view these DIKTA questions inside the PCPT software, you need to select Book Questions, which is the way PCPT references questions found inside the printed book. Then you have to deselect all chapters (with a single click), and then select one or more chapters, as follows:

Step 1. Start the PCPT software.

Step 2. From the main (home) menu, select the item for this product, with a name like CCENT/CCNA ICND1 100-105 Official Cert Guide, and click Open Exam.

Step 3. The top of the next window that appears should list some exams; check the ICND1 Book Questions box, and uncheck the other boxes. This selects the “book” questions (that is, the DIKTA questions from the beginning of each chapter).

Step 4. On this same window, click at the bottom of the screen to deselect all objectives (chapters). Then select the box beside each chapter in the part of the book you are reviewing.

Step 5. Select any other options on the right side of the window.

Step 6. Click Start to start reviewing the questions.

How to View Part Review Questions

The exam databases you get with this book include a database of questions created solely for study during the part review process. DIKTA questions focus more on facts, to help you determine whether you know the facts contained within the chapter. The part review questions instead focus more on application of those facts to typical real scenarios, and look more like real exam questions.
To view these questions, follow the same process as you did with DIKTA/book questions, but select the Part Review database rather than the book database. PCPT has a clear name for this database: Part Review Questions.

About Mind Maps

Mind maps are a type of visual organization tool that you can use for many purposes. For instance, you can use mind maps as an alternative way to take notes.

You can also use mind maps to improve how your brain organizes concepts. Mind maps improve your brain’s connections and relationships between ideas. When you spend time thinking about an area of study, and organize your ideas into a mind map, you strengthen existing mental connections and create new connections, all into your own frame of reference.

In short, mind maps help you internalize what you learn.

Each mind map begins with a blank piece of paper or blank window in a mind mapping application. You then add a large central idea, with branches that move out in any direction. The branches contain smaller concepts, ideas, commands, pictures, whatever idea needs to be represented. Any concepts that can be grouped should be put near each other. As needed, you can create deeper and deeper branches, although for this book’s purposes, most mind maps will not go beyond a couple of levels.

NOTE Many books have been written about mind maps, but Tony Buzan often gets credit for formalizing and popularizing mind maps. You can learn more about mind maps at his website, www.thinkbuzan.com.

For example, Figure I-5 shows a sample mind map that begins to output some of the IPv6 content from Part VIII of the ICND1 book. You might create this kind of mind map when reviewing IPv6 addressing concepts, starting with the big topic of “IPv6 addressing,” and then writing down random terms and ideas. As you start to organize them mentally, you draw lines connecting the ideas, reorganize them, and eventually reach the point where you believe the organization of ideas makes sense to you.

![Sample Mind Map](image)

Figure I-5 Sample Mind Map

Mind maps may be the least popular but most effective study tool suggested in this book. I personally find a huge improvement in learning new areas of study when I mind map; I hope you will make the effort to try these tools and see if they work well for you too.
Finally, for mind mapping tools, you can just draw them on a blank piece of paper, or find and download a mind map application. I have used Mind Node Pro on a Mac, and we build the sample mind maps with XMIND, which has free versions for Windows, Linux, and OS X.

About Building Hands-On Skills

You need skills in using Cisco routers and switches, specifically the Cisco command-line interface (CLI). The Cisco CLI is a text-based command-and-response user interface; you type a command, and the device (a router or switch) displays messages in response. To answer sim and simlet questions on the exams, you need to know a lot of commands, and you need to be able to navigate to the right place in the CLI to use those commands.

This next section walks through the options of what is included in the book, with a brief description of lab options outside the book.

Config Lab Exercises

Some router and switch features require multiple configuration commands. Part of the skill you need to learn is to remember which configuration commands work together, which ones are required, and which ones are optional. So, the challenge level goes beyond just picking the right parameters on one command. You have to choose which commands to use, in which combination, typically on multiple devices. And getting good at that kind of task requires practice.

The Config Labs feature, introduced as a new feature in this edition of the book, helps provide that practice. Each lab presents a sample lab topology, with some requirements, and you have to decide what to configure on each device. The answer then shows a sample configuration. Your job is to create the configuration, and then check your answer versus the supplied answer.

Also for the first time, this edition places the content not only outside the book but also onto the author’s blog site. To reach my blog sites for ICND1 content or for ICND2 content (two different blogs), you can start at my blog launch site (blog.certskills.com), and click from there.

- [blog.certskills.com/ccent/ Wendell's CCENT (ICND1): In the menus, navigate to Hands On... Config Lab](blog.certskills.com/ccent/)
- [blog.certskills.com/ccna/ Wendell's CCNA (ICND2): In the menus, navigate to Hands On... Config Lab](blog.certskills.com/ccna/)

Both blogs are geared toward helping you pass the exams, so feel free to look around. Note that the Config Lab posts should show an image like this in the summary:
These Config Labs have several benefits, including the following:

Untethered and responsive: Do them from anywhere, from any web browser, from your phone or tablet, untethered from the book or DVD.

Designed for idle moments: Each lab is designed as a 5- to 10-minute exercise if all you are doing is typing in a text editor or writing your answer on paper.

Two outcomes, both good: Practice getting better and faster with basic configuration, or if you get lost, you have discovered a topic that you can now go back and reread to complete your knowledge. Either way, you are a step closer to being ready for the exam!

Blog format: Allows easy adds and changes by me, and easy comments by you.

Self-assessment: As part of final review, you should be able to do all the Config Labs, without help, and with confidence.

Note that the blog organizes these Config Lab posts by book chapter, so you can easily use these at both chapter review and part review. See the “Your Study Plan” element that follows the Introduction for more details about those review sections.

A Quick Start with Pearson Network Simulator Lite

The decision of how to get hands-on skills can be a little scary at first. The good news: You have a free and simple first step to experience the CLI: Install and use the Pearson NetSim Lite that comes with this book.

This book comes with a lite version of the best-selling CCNA Network Simulator from Pearson, which provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

The labs with this latest version of NetSim Lite includes labs associated with Part II of this book. Part I includes concepts only, with Part II being the first part with commands. So, make sure and use the NetSim Lite to learn the basics of the CLI to get a good start.

Of course, one reason that NetSim Lite comes on the DVD is that the publisher hopes you will buy the full product. However, even if you do not use the full product, you can still learn from the labs that come with NetSim Lite while deciding about what options to pursue.

NOTE The ICND1 and ICND2 books each contain a different version of the Sim Lite product, each with labs that match the book content. If you bought both books, make sure you install both Sim Lite products.

The Pearson Network Simulator

The Config Labs and the Pearson Network Simulator Lite both fill specific needs, and they both come with the book. However, you need more than those two tools.

The single best option for lab work to do along with this book is the paid version of the Pearson Network Simulator. This simulator product simulates Cisco routers and switches so that you can learn for the CCENT and CCNA R&S certifications. But more importantly, it focuses on learning for the exam by providing a large number of useful lab exercises. Reader surveys tell us that those people who use the Simulator along with the book love the learning process, and rave about how the book and Simulator work well together.
Of course, you need to make a decision for yourself, and consider all the options. Thankfully, you can get a great idea of how the full Simulator product works by using the Pearson Network Simulator Lite product included with the book. Both have the same base code and same user interface, and the same types of labs. Try the Lite version, and check out the full product. There is a full product for CCENT only, and another for CCNA R&S (which includes all the labs in the CCENT product, plus others for the ICND2 parts of the content).

Note that the Simulator and the books work on a different release schedule. For a time in 2016, the Simulator will be the Simulator created for the previous versions of the exams (ICND1 100-101, ICND2 200-101, and CCNA 200-120). That product includes approximately 80 percent of the CLI topics in the ICND1 100-105 and 200-105 books. So during that time, the Simulator is still very useful.

On a practical note, when you want to do labs when reading a chapter or doing practice review, the Simulator organizes the labs to match the book. Just look for “Sort by Chapter” tab in the Simulator’s user interface. However, during the months in 2016 for which the Simulator is the older edition listing the older exams in the title, you will need to refer to a PDF that lists those labs versus this book’s organization. You can find that PDF on the book product page under the Downloads tab here: www.ciscopress.com/title/9781587205804.

More Lab Options

If you decide against using the full Pearson Network Simulator, you still need hands-on experience. You should plan to use some lab environment to practice as much CLI as possible.

First, you can use real Cisco routers and switches. You can buy them, new or used, or borrow them at work. You can rent them for a fee. If you have the right mix of gear, you could even do the Config Lab exercises from my blog on that gear, or try and re-create examples from the book.

Cisco offers a virtualization product that lets you run router and switch operating system (OS) images in a virtual environment. This tool, the Virtual Internet Routing Lab (VIRL; http://virl.cisco.com), lets you create a lab topology, start the topology, and connect to real router and switch OS images. Check out http://virl.cisco.com for more information.

You can even rent virtual Cisco router and switch lab pods from Cisco, in an offering called Cisco Learning Labs (www.cisco.com/go/learninglabs).

All these previously mentioned options cost some money, but the next two are generally free to the user, but with a different catch for each. First, GNS3 works somewhat like VIRL, creating a virtual environment running real Cisco IOS. However, GNS3 is not a Cisco product, and cannot provide you with the IOS images for legal reasons.

Cisco also makes a simulator that works very well as a learning tool: Cisco Packet Tracer. However, Cisco intends Packet Tracer for use by people currently enrolled in Cisco Networking Academy courses, and not for the general public. So, if you are part of a Cisco Academy, definitely use Packet Tracer.

This book does not tell you what option to use, but you should plan on getting some hands-on practice somehow. The important thing to know is that most people need to practice using the Cisco CLI to be ready to pass these exams.
For More Information

If you have any comments about the book, submit them via www.ciscopress.com. Just go to the website, select Contact Us, and type your message.

Cisco might make changes that affect the CCNA certification from time to time. You should always check www.cisco.com/go/ccna and www.cisco.com/go/ccent for the latest details.

The CCENT/CCNA ICND1 100-105 Official Cert Guide helps you attain CCENT and CCNA Routing and Switching certification. This is the CCNA ICND1 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA certification, but the real work is up to you! I trust that your time will be well spent.
Your Study Plan

You just got this book. You have probably already read (or quickly skimmed) the Introduction. You are probably now wondering whether to start reading here or skip ahead to Chapter 1, “Introduction to TCP/IP Networking.”

Stop to read this section about how to create your own study plan for the exam(s) you plan to take (ICND1 100-105, ICND2 200-105, and/or CCNA 200-125). Your study will go much better if you take time (maybe 15 minutes) to think about a few key points about how to study before starting on this journey. That is what this section will help you do.

A Brief Perspective on Cisco Certification Exams

Cisco sets the bar pretty high for passing the ICND1, ICND2, and CCNA R&S exams. Most anyone can study and pass these exams, but it takes more than just a quick read through the book and the cash to pay for the exam.

The challenge of these exams comes from many angles. Each of these exams covers a lot of concepts and many commands specific to Cisco devices. Beyond knowledge, these Cisco exams also require deep skills. You must be able to analyze and predict what really happens in a network. You must be able to configure Cisco devices to work correctly in those networks. And you must be ready to troubleshoot problems when the network does not work correctly.

The more challenging questions on these exams work a lot like a jigsaw puzzle, but with four out of every five puzzle pieces not even in the room. To solve the puzzle, you have to mentally re-create the missing pieces. To do that, you must know each networking concept and remember how the concepts work together.

For instance, the ICND1 exam includes many troubleshooting topics. A simple question might ask you why a host cannot communicate with some server. The question would supply some of the information, like some pieces of the jigsaw puzzle, as represented with the white pieces in Figure 1. You have to apply your knowledge of IPv4 routing, IP addressing, and Ethernet LAN switching to the scenario in the question to come up with some of the other pieces of the puzzle. For a given question, some pieces of the puzzle may remain a mystery, but with enough of the puzzle filled in, you should be able to answer the question. And some pieces will just remain unknown for a given question.

These skills require that you prepare by doing more than just reading and memorizing what you read. Of course, you need to read many pages in this book to learn many individual facts and how these facts relate to each other. But a big part of this book lists exercises beyond reading, exercises that help you build the skills to solve these networking puzzles.
Given: Output of
show mac address-table

Predict Configuration:
RIPv2 on Routers

Predict Output:
show ip route

Predict Output:
show ip arp

Given:
Router Topology Drawing

Calculate:
IPv4 subnet IDs

Figure 1 Filling In Puzzle Pieces with Your Analysis Skills

Five Study Plan Steps

These exams are challenging, but many people pass them every day. So, what do you need to do to be ready to pass, beyond reading and remembering all the facts? You need to develop skills. You need to mentally link each idea with other related ideas. Doing that requires additional work. To help you along the way, the next few pages give you five key planning steps to take so that you can more effectively build those skills and make those connections, before you dive into this exciting but challenging world of learning networking on Cisco gear.

Step 1: Think in Terms of Parts and Chapters

The first step in your study plan is to get the right mindset about the size and nature of the task you have set out to accomplish. This is a large book. So you cannot think about the book as one huge task or you might get discouraged. Besides, you never sit down to read 900 pages in one study session. So break the task down into smaller tasks.

The good news here is that the book is designed with obvious breakpoints and built-in extensive review activities. In short, the book is more of a study system than a book.

So the first step in your study plan is to visualize the book not as one large book, but as 9 parts. Then, within each part, visualize an average of 4 chapters. Your study plan has you working through the chapters in each part, and then reviewing the material in that part before moving on, as shown in Figure 2.
Step 2: Build Your Study Habits Around the Chapter

For your second step, possibly the most important step, approach each chapter with the same process: read it, and then study the chapter before moving on.

Each chapter follows the same design with three parts, as shown in Figure 3. The chapter pre-quiz (called a DIKTA quiz, or Do I Know This Already? quiz) helps you decide how much time to spend reading versus skimming the core of the chapter, called the Foundation Topics. The Chapter Review section then gives you instructions about how to study and review what you just read.

The book has no long chapters, on purpose. They average just over 20 pages for the Foundation Topics. By keeping the size reasonable, you can complete all of a chapter in one or two short study sessions. Go into each study session that begins a new chapter thinking that you have a chance to complete the chapter, or at least make a great start on it. And if you do not have enough time, look for the major headings inside the chapter—each chapter...
Your Study Plan 5

has two to three major headings, and those make a great place to stop reading when you need to wait to complete the reading in the next study sessions.

The Chapter Review tasks are very important to your exam-day success. Doing these tasks after you’ve read the chapter really does help you get ready. Do not put off using these tasks until later! The chapter-ending review tasks help you with the first phase of deepening your knowledge and skills of the key topics, remembering terms, and linking the concepts together in your brain so that you can remember how it all fits together. The following list describes most of the activities you will find in the “Chapter Review” sections:

- Review key topics
- Review key terms
- Repeat the DIKTA questions
- Review memory tables
- Re-create config checklists
- Review command tables
- Do lab exercises
- Do subnetting exercises

Check out the upcoming section titled “Find Review Activities on the Web and DVD?” later in this planning section for more details.

Step 3: Use Book Parts for Major Milestones

Studies show that to master a concept and/or skill, you should plan to go through multiple study sessions to review the concept and to practice the skill. The “Chapter Review” section at the end of each chapter is the first such review, while the Part Review, at the end of each part, acts as that second review.

Plan time to do the Part Review task at the end of each part, using the Part Review elements found at the end of each Part. You should expect to spend about as much time on one Part Review as you would on one entire chapter, or maybe a little more for some parts. So in terms of planning your time, think of the Part Review itself as another chapter.

Figure 4 lists the names of the parts in this book, with some color coding. Note that Parts II and III are related (Ethernet), and Parts IV through VII are also related (IP version 4). Each part ends with a Part Review section of 2 to 4 pages, with notes about what tools and activities to use.

![Figure 4](https://example.com/figure4)

Part as Major Milestones
Chapter Review and Part Review differ in some ways. Chapter Review tasks tend to provide a lot of context, so you can focus on mentally adding a specific piece of knowledge, or practicing a specific skill. Part Review activities instead remove a lot of the context, more like real life and the real exams. Removing that context means that you have to exercise your own knowledge and skills. The result: You uncover your weaknesses. The better you become at uncovering weaknesses, and then learning what you are missing in that area, the better prepared you will be for the exam.

The Part Review sections use the following kinds of tools in additional to some of the same tools used for Chapter Review:

- Mind maps
- Part Review questions with PCPT
- Labs

Also, consider setting a goal date for finishing each part of the book (and a reward, as well). Plan a break, some family time, some time out exercising, eating some good food, whatever helps you get refreshed and motivated for the next part.

Step 4: Use the Final Review Chapter to Refine Skills and Uncover Weaknesses

Your fourth step has one overall task: Follow the details outlined in Chapter 37, “Final Review,” at the end of this book for what to do between finishing the book and taking the exam.

The “Final Review” chapter has two major goals. First, it helps you further develop the analytical skills you need to answer the more complicated questions on the exam. Many questions require that you connect ideas about concepts, configuration, verification, and troubleshooting. The closer you get to taking the exam, the less reading you should do, and the more you should do other learning activities; this chapter’s tasks give you activities to further develop these skills.

The tasks in the “Final Review” chapter also help you uncover your weak areas. This final element gives you repetition with high-challenge exam questions, uncovering any gaps in your knowledge. Many of the questions are purposefully designed to test your knowledge of the most common mistakes and misconceptions, helping you avoid some of the common pitfalls people experience with the actual exam.

Step 5: Set Goals and Track Your Progress

Your fifth study plan step spans the entire timeline of your study effort. Before you start reading the book and doing the rest of these study tasks, take the time to make a plan, set some goals, and be ready to track your progress.

While making lists of tasks may or may not appeal to you, depending on your personality, goal setting can help everyone studying for these exams. And to do the goal setting, you need to know what tasks you plan to do.

NOTE If you read this, and decide that you want to try to do better with goal setting beyond your exam study, check out a blog series I wrote about planning your networking career here: http://blog.certskills.com/ccna/tag/development-plan/.
As for the list of tasks to do when studying, you do not have to use a detailed task list. (You could list every single task in every chapter-ending Chapter Review section, every task in the Part Reviews, and every task in the “Final Review” chapter.) However, listing the major tasks can be enough.

You should track at least two tasks for each typical chapter: reading the “Foundation Topics” section and doing the Chapter Review at the end of the chapter. And, of course, do not forget to list tasks for Part Reviews and Final Review. Table 1 shows a sample for Part I of this book.

<table>
<thead>
<tr>
<th>Element</th>
<th>Task</th>
<th>Goal Date</th>
<th>First Date Completed</th>
<th>Second Date Completed (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Do Chapter Review tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Do Chapter Review tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Read Foundation Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Do Chapter Review tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part I Review</td>
<td>Do Part Review activities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE Appendix M, “Study Planner,” on the DVD that comes with this book, contains a complete planning checklist like Table 1 for the tasks in this book. This spreadsheet allows you to update and save the file to note your goal dates and the tasks you have completed.

Use your goal dates as a way to manage your study, and not as a way to get discouraged if you miss a date. Pick reasonable dates that you can meet. When setting your goals, think about how fast you read and the length of each chapter’s “Foundation Topics” section, as listed in the table of contents. Then, when you finish a task sooner than planned, move up the next few goal dates.

If you miss a few dates, do not start skipping the tasks listed at the ends of the chapters! Instead, think about what is impacting your schedule—real life, commitment, and so on—and either adjust your goals or work a little harder on your study.

Things to Do Before Starting the First Chapter

Now that you understand the big ideas behind a good study plan for the book, take a few more minutes for a few overhead actions that will help. Before leaving this section, look at some other tasks you should do either now, or around the time you are reading the first few chapters, to help make a good start in the book.

Find Review Activities on the Web and DVD

The earlier editions of the book have used review activities that relied on the chapter, plus PDF appendixes found on the DVD. Some activities also rely on the PCPT testing software.
This edition is the first Cisco Press certification guide to offer a large set of apps to use instead of the traditional study features. The Introduction’s section titled “A Big New Feature: Review Applications” detailed some of the reasons.

I encourage you to go ahead and access the book's companion website to find the review apps and explore. Also, spin the DVD, and find the review apps there. Both methods organize the review activities by chapter and by part.

Note that this book includes the traditional methods of review as well, with instructions in the book, and matching PDF appendixes in some cases. For instance, all the subnetting exercises can be done in an app, but those same exercises exist in DVD-only appendixes—you choose which works better for you.

Should I Plan to Use the Two-Exam Path or One-Exam Path?

You do not have to make this choice today, but you can be mulling the decision while you study.

To get a CCNA Routing and Switching certification, you choose either a one-exam or two-exam path. Which should you use? The following is my opinion, but it’s based on chatter and opinions from readers from many years. You can consider the one-exam path if

■ You already know about half the topics well, through prior experience or study.
■ You have already proven that you are excellent at learning through self-study.

Otherwise, in my opinion, you would be better off taking the two-exam path. First, there is no cost savings for most people with the one-exam path. Check the exam prices in your country, for ICND1, ICND2, and CCNA, and then make some comparisons. Assume you pass the tests on the first try: traditionally, the cost is identical for both the ICND1 + ICND2 path and the CCNA path. Or, assume that you fail each exam once: again, the costs are identical.

Next, consider the number of topics. From a content perspective, CCNA = ICND1 + ICND2. So, both paths require learning the same content.

Next, which would you rather have done in school: take a final exam over a single semester’s material, or a final exam covering the whole year? It is just harder to prepare for an exam that covers more material, so the two-exam path gain has an advantage.

Finally, the most compelling reason for the two-exam path is that you probably have no experience with Cisco exams yet. I hope you have a chance to pass many Cisco exams during your career. The two-exam path gets you to that first exam attempt sooner, and the exam experience teaches you things about the exam and yourself that no study tool can teach you.

Thankfully, you do not have to decide now. In fact, you can study the entire ICND1 book and all the while ponder whether to use the one-exam or two-exam path to CCNA R&S. At that point, you can make a better decision about which path works better for you.

Study Options for Those Taking the 200-125 CCNA Exam

Studying for the two-exam path has an obvious approach: just use the ICND1 book for the ICND1 exam, and the ICND2 book for the ICND2 exam. Simple enough.
If you do plan to take the 200-125 CCNA R&S exam, you have a couple of study options. First, to be clear: The 200-125 CCNA exam covers the topics in the combined ICND1 and ICND2 books. So, using both the ICND1 and ICND2 books covers everything for the 200-125 CCNA R&S exam. The only question is when to read each part of the two books. You have two reasonable options when going with the one-exam option:

- Complete all the ICND1 book, then move on to the ICND2 book.
- Move back and forth between the ICND1 and ICND2 books, by part, based on topics, as shown in Figure 5.

The first option is pretty obvious, but the second one is less obvious. Figure 5 shows a study plan in which you complete the Ethernet parts in the ICND1, then the Ethernet part in ICND2. Similarly, you complete the IPv4 parts in ICND1, then ICND2, and then the IPv6 part in both books, and then the final part in both books.

Figure 5 Alternate Reading Plan for CCNA: Moving Between Books by Part

Personally, I am a fan of completing the ICND1 book completely, and then moving on to the ICND2 book. However, for those of you with a large amount of experience already, this alternate reading plan may work well.
Other Small Tasks Before Getting Started

You need to do a few overhead tasks to install software, find some PDFs, and so on. You can do these tasks now or do them in your spare moments when you need a study break during the first few chapters of the book. But do these early. That way, if you do stumble upon an installation problem, you have time to work through it before you need a particular tool.

Register (for free) at the Cisco Learning Network (CLN, http://learningnetwork.cisco.com) and join the CCENT/CCNA R&S study group. This group allows you to both lurk and participate in discussions about topics related to the ICND1 exam, ICND2 exam, and CCNA R&S exam. Register (for free), join the groups, and set up an email filter to redirect the messages to a separate folder. Even if you do not spend time reading all the posts yet, later, when you have time to read, you can browse through the posts to find interesting topics (or just search the posts from the CLN website).

Explore the electronic elements of this book, as detailed in the Introduction’s section titled “How to Get the Electronic Elements of This Book.” That includes the installation of the PCPT and Sim Lite software.

Also find my blog site as listed in the Introduction, and bookmark the pages that list the config labs, to have those handy for later study. (The URL is http://blog.certskills.com/ccent/category/hands-on/config-lab.)

Getting Started: Now

Now dive in to your first of many short, manageable tasks: reading the relatively short Chapter 1. Enjoy!
CHAPTER 22

Variable-Length Subnet Masks

This chapter covers the following exam topics:

1.0 Network Fundamentals
1.8 Configure, verify, and troubleshoot IPv4 addressing and subnetting

IPv4 addressing and subnetting use a lot of terms, a lot of small math steps, and a lot of concepts that fit together. While learning those concepts, it helps to keep things as simple as possible. One way this book has kept the discussion simpler so far was to show examples that use one mask only inside a single Class A, B, or C network.

This chapter removes that restriction by introducing variable-length subnet masks (VLSM). VLSM simply means that the subnet design uses more than one mask in the same classful network. VLSM has some advantages and disadvantages, but when learning, the main challenge is that a subnetting design that uses VLSM requires more math, and it requires that you think about some other issues as well. This chapter walks you through the concepts, the issues, and the math.

“Do I Know This Already?” Quiz

Take the quiz (either here, or use the PCPT software) if you want to use the score to help you decide how much time to spend on this chapter. The answers are at the bottom of the page following the quiz, and the explanations are in DVD Appendix C and in the PCPT software.

Table 22-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLSM Concepts and Configuration</td>
<td>1–2</td>
</tr>
<tr>
<td>Finding VLSM Overlaps</td>
<td>3–4</td>
</tr>
<tr>
<td>Adding a New Subnet to an Existing VLSM Design</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Which of the following routing protocols support VLSM? (Choose three answers.)
 a. RIPv1
 b. RIPv2
 c. EIGRP
 d. OSPF
2. What does the acronym VLSM stand for?
 a. Variable-length subnet mask
 b. Very long subnet mask
 c. Vociferous longitudinal subnet mask
 d. Vector-length subnet mask
 e. Vector loop subnet mask

3. R1 has configured interface Fa0/0 with the `ip address 10.5.48.1 255.255.240.0` command. Which of the following subnets, when configured on another interface on R1, would not be considered an overlapping VLSM subnet?
 a. 10.5.0.0 255.255.240.0
 b. 10.4.0.0 255.254.0.0
 c. 10.5.32.0 255.255.224.0
 d. 10.5.0.0 255.255.128.0

4. R4 has a connected route for 172.16.8.0/22. Which of the following answers lists a subnet that overlaps with this subnet?
 a. 172.16.0.0/21
 b. 172.16.6.0/23
 c. 172.16.16.0/20
 d. 172.16.11.0/25

5. A design already includes subnets 192.168.1.0/26, 192.168.1.128/30, and 192.168.1.160/29. Which of the following subnets is the numerically lowest subnet ID that could be added to the design, if you wanted to add a subnet that uses a /28 mask?
 a. 192.168.1.144/28
 b. 192.168.1.112/28
 c. 192.168.1.64/28
 d. 192.168.1.80/28
 e. 192.168.1.96/28
Foundation Topics

VLSM Concepts and Configuration

VLSM occurs when an internetwork uses more than one mask for different subnets of a single Class A, B, or C network. Figure 22-1 shows an example of VLSM used in Class A network 10.0.0.0.

Figure 22-1 VLSM in Network 10.0.0.0: Masks /24 and /30

Figure 22-1 shows a typical choice of using a /30 prefix (mask 255.255.255.252) on point-to-point serial links, with mask /24 (255.255.255.0) on the LAN subnets. All subnets are of Class A network 10.0.0.0, with two masks being used, therefore meeting the definition of VLSM.

Oddly enough, a common mistake occurs when people think that VLSM means “using more than one mask in some internetwork” rather than “using more than one mask in a single classful network.” For example, if in one internetwork diagram, all subnets of network 10.0.0.0 use a 255.255.240.0 mask, and all subnets of network 11.0.0.0 use a 255.255.255.0 mask, the design uses two different masks. However, Class A network 10.0.0.0 uses only one mask, and Class A network 11.0.0.0 uses only one mask. In that case, the design does not use VLSM.

VLSM provides many benefits for real networks, mainly related to how you allocate and use your IP address space. Because a mask defines the size of the subnet (the number of host addresses in the subnet), VLSM allows engineers to better match the need for addresses with the size of the subnet. For example, for subnets that need fewer addresses, the engineer uses a mask with fewer host bits, so the subnet has fewer host IP addresses. This flexibility reduces the number of wasted IP addresses in each subnet. By wasting fewer addresses, more space remains to allocate more subnets.

VLSM can be helpful for both public and private IP addresses, but the benefits are more dramatic with public networks. With public networks, the address savings help engineers avoid having to obtain another registered IP network number from regional IP address assignment authorities. With private networks, as defined in RFC 1918, running out of addresses is not as big a negative, because you can always grab another private network from RFC 1918 if you run out.

Classless and Classful Routing Protocols

Before you can deploy a VLSM design, you must first use a routing protocol that supports VLSM. To support VLSM, the routing protocol must advertise the mask along with each subnet. Without mask information, the router receiving the update would be confused.

Answers to the “Do I Know This Already?” quiz:
1 B, C, D 2 A 3 A 4 D 5 C
For example, if a router learned a route for 10.1.8.0, but with no mask information, what does that mean? Is that subnet 10.1.8.0/24? 10.1.8.0/23? 10.1.8.0/30? The dotted-decimal number 10.1.8.0 happens to be a valid subnet number with a variety of masks, and because multiple masks can be used with VLSM, the router has no good way to make an educated guess. To effectively support VLSM, the routing protocol needs to advertise the correct mask along with each subnet so that the receiving router knows the exact subnet that is being advertised.

By definition, classless routing protocols advertise the mask with each advertised route, and classful routing protocols do not. The classless routing protocols, as noted in Table 22-2, are the newer, more advanced routing protocols. Not only do these more advanced classless routing protocols support VLSM, but they also support manual route summarization, which allows a routing protocol to advertise one route for a larger subnet instead of multiple routes for smaller subnets.

Table 22-2 Classless and Classful Interior IP Routing Protocols

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPv1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RIPv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EIGRP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OSPF</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Beyond VLSM itself, the routing protocols do not have to be configured to support VLSM or to be classless. There is no command to enable or disable the fact that classless routing protocols include the mask with each route. The only configuration choice you must make is to use a classless routing protocol.

VLSM Configuration and Verification

Cisco routers do not configure VLSM, enable or disable it, or need any configuration to use it. From a configuration perspective, VLSM is simply a side effect of using the `ip address` interface subcommand. Routers collectively configure VLSM by virtue of having IP addresses in the same classful network but with different masks.

For example, Example 22-1 shows two of the interfaces from router Yosemite from Figure 22-1. The example shows the IP address assignments on two interfaces, one with a /24 mask and one with a /30 mask, both with IP addresses in Class A network 10.0.0.0.

Example 22-1 Configuring Two Interfaces on Yosemite, Resulting in VLSM

```
Yosemite# configure terminal
Yosemite(config)# interface Fa0/0
Yosemite(config-if)# ip address 10.2.1.1 255.255.255.0
Yosemite(config-if)# interface So/1
Yosemite(config-if)# ip address 10.1.4.1 255.255.255.252
```

The use of VLSM can also be detected by a detailed look at the output of the `show ip route` command. This command lists routes in groups, by classful network, so that you see all the subnets of a single Class A, B, or C network all in a row. Just look down the list, and
look to see, if any, how many different masks are listed. For example, Example 22-2 lists the routing table on Albuquerque from Figure 22-1; Albuquerque uses masks /24 and /30 inside network 10.0.0.0, as noted in the highlighted line in the example.

Example 22-2 Albuquerque Routing Table with VLSM

Albuquerque# show ip route

| 10.0.0.0/8 is variably subnetted, 14 subnets, 1 masks |
|---|---|---|---|
| D | 10.2.1.0/24 | [90/2172416] via 10.1.4.1, 00:00:34, Serial0/0 |
| D | 10.2.2.0/24 | [90/2172416] via 10.1.4.1, 00:00:34, Serial0/0 |
| D | 10.2.3.0/24 | [90/2172416] via 10.1.4.1, 00:00:34, Serial0/0 |
| D | 10.2.4.0/24 | [90/2172416] via 10.1.4.1, 00:00:34, Serial0/0 |
| D | 10.3.4.0/24 | [90/2172416] via 10.1.6.2, 00:00:56, Serial0/1 |
| D | 10.3.5.0/24 | [90/2172416] via 10.1.6.2, 00:00:56, Serial0/1 |
| D | 10.3.6.0/24 | [90/2172416] via 10.1.6.2, 00:00:56, Serial0/1 |
| D | 10.3.7.0/24 | [90/2172416] via 10.1.6.2, 00:00:56, Serial0/1 |
| C | 10.1.1.0/24 is directly connected, FastEthernet0/0 |
| L | 10.1.1.1/32 is directly connected, FastEthernet0/0 |
| C | 10.1.6.0/30 is directly connected, Serial0/1 |
| L | 10.1.6.1/32 is directly connected, Serial0/1 |
| C | 10.1.4.0/30 is directly connected, Serial0/0 |
| L | 10.1.4.1/32 is directly connected, Serial0/0 |

NOTE For the purposes of understanding whether a design uses VLSM, ignore the /32 “local” routes that a router automatically creates for its own interface IP addresses.

So ends the discussion of VLSM as an end to itself. This chapter is devoted to VLSM, but it took a mere three to four pages to fully describe it. Why the entire VLSM chapter? Well, to work with VLSM, to find problems with it, to add subnets to an existing design, and to design using VLSM from scratch—in other words, to apply VLSM to real networks—takes skill and practice. To do these same tasks on the exam requires skill and practice. The rest of this chapter examines the skills to apply VLSM and provides some practice for these two key areas:

- Finding VLSM overlaps
- Adding new VLSM subnets without overlaps

Finding VLSM Overlaps

Regardless of whether a design uses VLSM, the subnets used in any IP internetwork design should not overlap their address ranges. When subnets in different locations overlap their addresses, a router’s routing table entries overlap. As a result, hosts in different locations can be assigned the same IP address. Routers clearly cannot route packets correctly in these cases. In short, a design that uses overlapping subnets is considered to be an incorrect design and should not be used.
This section begins with a short discussion about VLSM design, to drive home the ideas behind VLSM overlaps. It then gets into an operational and troubleshooting approach to the topic, by looking at existing designs and trying to find any existing overlaps.

Designing Subnetting Plans with VLSM

When creating a subnetting plan using VLSM, you have to be much more careful in choosing what subnets to use. First, whatever masks you use in a VLSM design, each subnet ID must be a valid subnet ID given the mask that you use for that subnet.

For example, consider a subnet plan for Class B network 172.16.0.0. To create a subnet with a /24 mask, the subnet ID must be a subnet ID that you could choose if you subnetted the whole Class B network with that same mask. Chapter 21, “Subnet Design,” discusses how to find those subnets in depth, but with a Class B network and a /24 mask, the possible subnet IDs should be easy to calculate by now: 172.16.0.0 (the zero subnet), then 172.16.1.0, 172.16.2.0, 172.16.3.0, 172.16.4.0, and so on, up through 172.16.255.0.

NOTE Subnet IDs must always follow this important binary rule as noted back in Chapter 16, “Analyzing Existing Subnets”: In binary, each subnet ID has a host field of all binary 0s. If you use the math and processes to find all subnet IDs per Chapter 21, all those subnet IDs happen to have binary 0s in the host fields.

Now expand your thinking about subnet IDs to a VLSM design. To begin, you would decide that you need some subnets with one mask, other subnets with another mask, and so on, to meet the requirements for different sizes of different subnets. For instance, imagine you start with a brand-new VLSM design, with Class B network 172.16.0.0. You plan to have some subnets with /22 masks, some with /23, and some with /24. You might develop then a planning diagram, or at least draw the ideas, with something like Figure 22-2.

Figure 22-2 Possible Subnet IDs of Network 172.16.0.0, with /22, /23, and /24 Masks

The drawing shows the first few subnet IDs available with each mask, but you cannot use all subnets from all three lists in a design. As soon as you choose to use one subnet from any column, you remove some subnets from the other lists because subnets cannot overlap. Overlapping subnets are subnets whose range of addresses include some of the same addresses.
As an example, Figure 22-3 shows the same list of the first few possible /22, /23, and /24 subnets of Class B network 172.16.0.0. However, it shows a check mark beside two subnets that have been allocated for use; that is, on paper, the person making the subnetting plan has decided to use these two subnets somewhere in the network. The subnets with a dark gray shading and an X in them can no longer be used because they have some overlapping addresses with the subnets that have check marks (172.16.3.0/24 and 172.16.4.0/22).

<table>
<thead>
<tr>
<th>List of /22 Subnets</th>
<th>List of /23 Subnets</th>
<th>List of /24 Subnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 172.16.0.0 /22</td>
<td>172.16.0.0 /23</td>
<td>172.16.0.0 /24</td>
</tr>
<tr>
<td></td>
<td>X 172.16.2.0 /23</td>
<td>172.16.1.0 /24</td>
</tr>
<tr>
<td>172.16.4.0 /22</td>
<td></td>
<td>172.16.2.0 /24</td>
</tr>
<tr>
<td></td>
<td>X 172.16.4.0 /23</td>
<td>172.16.3.0 /24</td>
</tr>
<tr>
<td></td>
<td>X 172.16.6.0 /23</td>
<td>172.16.5.0 /24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.16.6.0 /24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.16.7.0 /24</td>
</tr>
</tbody>
</table>

Figure 22-3 Selecting Two Subnets Disallows Other Subnets in Different Columns

Just to complete the example, first look at subnet 172.16.4.0 on the lower left. That subnet includes addresses from the subnet ID of 172.16.4.0 through the subnet broadcast address of 172.16.7.255. As you can see just by looking at the subnet IDs to the right, all the subnets referenced with the arrowed lines are within that same range of addresses.

Now look to the upper right of the figure, to subnet 172.16.3.0/24. The subnet has a range of 172.16.3.0–172.16.3.255 including the subnet ID and subnet broadcast address. That subnet overlaps with the two subnets referenced to the left. For instance, subnet 172.16.0.0/22 includes the range from 172.16.0.0–172.16.3.255. But because there is some overlap, once the design has allocated the 172.16.3.0/24 subnet, the 172.16.2.0/23 and 172.16.0.0/22 subnets could not be used without causing problems, because:

A subnetting design, whether using VLSM or not, should not allow subnets whose address ranges overlap. If overlapping subnets are implemented, routing problems occur and some hosts simply cannot communicate outside their subnets.

These address overlaps are easier to see when not using VLSM. When not using VLSM, overlapped subnets have identical subnet IDs, so to find overlaps, you just have to look at the subnet IDs. With VLSM, overlapped subnets may not have the same subnet ID, as was the case in this most recent example with the subnets across the top of Figure 22-3. To find these overlaps, you have to look at the entire range of addresses in each subnet, from subnet ID to subnet broadcast address, and compare the range to the other subnets in the design.

An Example of Finding a VLSM Overlap

For example, imagine that a practice question for the CCENT exam shows Figure 22-4. It uses a single Class B network (172.16.0.0), with VLSM, because it uses three different masks: /23, /24, and /30.
Chapter 22: Variable-Length Subnet Masks

Now imagine that the exam question shows you the figure, and either directly or indirectly asks whether overlapping subnets exist. This type of question might simply tell you that some hosts cannot ping each other, or it might not even mention that the root cause could be that some of the subnets overlap. To answer such a question, you could follow this simple but possibly laborious process:

Step 1. Calculate the subnet ID and subnet broadcast address of each subnet, which gives you the range of addresses in that subnet.

Step 2. List the subnet IDs in numerical order (along with their subnet broadcast addresses).

Step 3. Scan the list from top to bottom, comparing each pair of adjacent entries, to see whether their range of addresses overlaps.

For example, Table 22-3 completes the first two steps based on Figure 22-4, listing the subnet IDs and subnet broadcast addresses, in numerical order based on the subnet IDs.

Table 22-3 Subnet IDs and Broadcast Addresses, in Numerical Order, from Figure 22-4

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Subnet Number</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 LAN</td>
<td>172.16.2.0</td>
<td>172.16.2.255</td>
</tr>
<tr>
<td>R2 LAN</td>
<td>172.16.4.0</td>
<td>172.16.4.255</td>
</tr>
<tr>
<td>R3 LAN</td>
<td>172.16.5.0</td>
<td>172.16.5.255</td>
</tr>
<tr>
<td>R1-R2 serial</td>
<td>172.16.9.0</td>
<td>172.16.9.3</td>
</tr>
<tr>
<td>R1-R3 serial</td>
<td>172.16.9.4</td>
<td>172.16.9.7</td>
</tr>
</tbody>
</table>

The VLSM design is invalid in this case because of the overlap between R2’s LAN subnet and R3’s LAN subnet. As for the process, Step 3 states the somewhat obvious step of comparing the address ranges to see whether any overlaps occur. Note that, in this case, none of the subnet numbers are identical, but two entries (highlighted) do overlap. The design is invalid because of the overlap, and one of these two subnets would need to be changed.

As far as the three-step process works, note that if two adjacent entries in the list overlap, compare three entries at the next step. The two subnets already marked as overlapped can overlap with the next subnet in the list. For example, the three subnets in the following list overlap in that the first subnet overlaps with the second and third subnets in the list. If you
followed the process shown here, you would have first noticed the overlap between the first two subnets in the list, so you would then also need to check the next subnet in the list to find out if it overlapped.

10.1.0.0/16 (subnet ID 10.1.0.0, broadcast 10.1.255.255)
10.1.200.0/24 (subnet ID 10.1.200.0, broadcast 10.1.200.255)
10.1.250.0/24 (subnet ID 10.1.250.0, broadcast 10.1.250.255)

Practice Finding VLSM Overlaps

As typical of anything to with applying IP addressing and subnetting, practice helps. To that end, Table 22-4 lists three practice problems. Just start with the five IP addresses listed in a single column, and then follow the three-step process outlined in the previous section to find any VLSM overlaps. The answers can be found near the end of this chapter, in the section “Answers to Earlier Practice Problems.”

Table 22-4 VLSM Overlap Practice Problems

<table>
<thead>
<tr>
<th>Problem 1</th>
<th>Problem 2</th>
<th>Problem 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.34.9/22</td>
<td>172.16.126.151/22</td>
<td>192.168.1.253/30</td>
</tr>
<tr>
<td>10.1.29.101/23</td>
<td>172.16.122.57/27</td>
<td>192.168.1.113/28</td>
</tr>
<tr>
<td>10.1.23.254/22</td>
<td>172.16.122.33/30</td>
<td>192.168.1.245/29</td>
</tr>
<tr>
<td>10.1.17.1/21</td>
<td>172.16.122.1/30</td>
<td>192.168.1.125/30</td>
</tr>
<tr>
<td>10.1.1.1/20</td>
<td>172.16.128.151/20</td>
<td>192.168.1.122/30</td>
</tr>
</tbody>
</table>

Adding a New Subnet to an Existing VLSM Design

The task described in this section happens frequently in real networks: choosing new subnets to add to an existing design. In real life, you can use IP Address Management (IPAM) tools that help you choose a new subnet so that you do not cause an overlap. However, for both real life and for the CCENT and CCNA Routing and Switching exams, you need to be ready to do the mental process and math of choosing a subnet that does not create an overlapped VLSM subnet condition. In other words, you need to pick a new subnet and not make a mistake!

For example, consider the internetwork shown earlier in Figure 22-2, with classful network 172.16.0.0. An exam question might suggest that a new subnet, with a /23 prefix length, needs to be added to the design. The question might also say, “Pick the numerically lowest subnet number that can be used for the new subnet.” In other words, if both 172.16.4.0 and 172.16.6.0 would work, use 172.16.4.0.

So, you really have a couple of tasks: To find all the subnet IDs that could be used, rule out the ones that would cause an overlap, and then check to see whether the question guides you to pick either the numerically lowest (or highest) subnet ID. This list outlines the specific steps:

Step 1. Pick the subnet mask (prefix length) for the new subnet, based on the design requirements (if not already listed as part of the question).

Step 2. Calculate all possible subnet numbers of the classful network using the mask from Step 1, along with the subnet broadcast addresses.
Step 3. Make a list of existing subnet IDs and matching subnet broadcast addresses.

Step 4. Compare the existing subnets to the candidate new subnets to rule out overlapping new subnets.

Step 5. Choose the new subnet ID from the remaining subnets identified at Step 4, paying attention to whether the question asks for the numerically lowest or numerically highest subnet ID.

An Example of Adding a New VLSM Subnet

For example, Figure 22-5 shows an existing internetwork that uses VLSM. (The figure uses the same IP addresses as shown in Figure 22-4, but with R3’s LAN IP address changed to fix the VLSM overlap shown in Figure 22-4.) In this case, you need to add a new subnet to support 300 hosts. Imagine that the question tells you to use the smallest subnet (least number of hosts) to meet that requirement. You use some math and logic you learned earlier in your study to choose mask /23, which gives you 9 host bits, for $2^9 - 2 = 510$ hosts in the subnet.

Figure 22-5 Internetwork to Which You Need to Add a /23 Subnet, Network 172.16.0.0

At this point, just follow the steps listed before Figure 22-5. For Step 1, you have already been given the mask (/23). For Step 2, you need to list all the subnet numbers and broadcast addresses of 172.16.0.0, assuming the /23 mask. You will not use all these subnets, but you need the list for comparison to the existing subnets. Table 22-5 shows the results, at least for the first five possible /23 subnets.

Table 22-5 First Five Possible /23 Subnets

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Subnet Number</th>
<th>Subnet Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>First (zero)</td>
<td>172.16.0.0</td>
<td>172.16.1.255</td>
</tr>
<tr>
<td>Second</td>
<td>172.16.2.0</td>
<td>172.16.3.255</td>
</tr>
<tr>
<td>Third</td>
<td>172.16.4.0</td>
<td>172.16.5.255</td>
</tr>
<tr>
<td>Fourth</td>
<td>172.16.6.0</td>
<td>172.16.7.255</td>
</tr>
<tr>
<td>Fifth</td>
<td>172.16.8.0</td>
<td>172.16.9.255</td>
</tr>
</tbody>
</table>

Next, at Step 3, list the existing subnet numbers and broadcast addresses, as shown earlier in Figure 22-5. To do so, do the usual math to take an IP address/mask to then find the subnet ID and subnet broadcast address. Table 22-6 summarizes that information, including the locations, subnet numbers, and subnet broadcast addresses.
Table 22-6 Existing Subnet IDs and Broadcast Addresses from Figure 22-5

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Subnet Number</th>
<th>Subnet Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 LAN</td>
<td>172.16.2.0</td>
<td>172.16.3.255</td>
</tr>
<tr>
<td>R2 LAN</td>
<td>172.16.4.0</td>
<td>172.16.5.255</td>
</tr>
<tr>
<td>R3 LAN</td>
<td>172.16.6.0</td>
<td>172.16.6.255</td>
</tr>
<tr>
<td>R1-R2 serial</td>
<td>172.16.9.0</td>
<td>172.16.9.3</td>
</tr>
<tr>
<td>R1-R3 serial</td>
<td>172.16.9.4</td>
<td>172.16.9.7</td>
</tr>
</tbody>
</table>

At this point, you have all the information you need to look for the overlap at Step 4. Simply compare the range of numbers for the subnets in the previous two tables. Which of the possible new /23 subnets (Table 22-5) overlap with the existing subnets (Table 22-6)? In this case, the second through fifth subnets in Table 22-5 overlap, so rule those out as candidates to be used. (Table 22-5 denotes those subnets with gray highlights.)

Step 5 has more to do with the exam than with real network design, but it is still worth listing as a separate step. Multiple-choice questions sometimes need to force you into a single answer, and asking for the numerically lowest or highest subnet does that. This particular example asks for the numerically lowest subnet number, which in this case is 172.16.0.0/23.

NOTE The answer, 172.16.0.0/23, happens to be a zero subnet. For the exam, the zero subnet should be avoided if (a) the question implies the use of classful routing protocols or (b) the routers are configured with the `no ip subnet-zero` global configuration command. Otherwise, assume that the zero subnet can be used.

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter’s material using either the tools in the book, DVD, or interactive tools for the same material found on the book’s companion website. Refer to the “Your Study Plan” element for more details. Table 22-7 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 22-7 Chapter Review Tracking

<table>
<thead>
<tr>
<th>Review Element</th>
<th>Review Date(s)</th>
<th>Resource Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review key topics</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Review key terms</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Repeat DIKTA questions</td>
<td></td>
<td>Book, PCPT</td>
</tr>
<tr>
<td>Review memory tables</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Practice finding VLSM overlaps</td>
<td></td>
<td>DVD Appendix H, DVD/website</td>
</tr>
<tr>
<td>Practice adding new VLSM subnets</td>
<td></td>
<td>DVD Appendix H, DVD/website</td>
</tr>
</tbody>
</table>
Review All the Key Topics

Table 22-8 Key Topics for Chapter 22

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 22-2</td>
<td>Classless and classful routing protocols listed and compared</td>
<td>531</td>
</tr>
<tr>
<td>Text</td>
<td>Rule about subnetting designs cannot allow subnets to overlap</td>
<td>532</td>
</tr>
<tr>
<td>List</td>
<td>Steps to analyze an existing design to discover any VLSM overlaps</td>
<td>535</td>
</tr>
<tr>
<td>List</td>
<td>Steps to follow when adding a new subnet to an existing VLSM design</td>
<td>536</td>
</tr>
</tbody>
</table>

Key Terms You Should Know

classful routing protocol, classless routing protocol, overlapping subnets, variable-length subnet masks (VLSM)

Additional Practice for This Chapter’s Processes

For additional practice with finding VLSM overlaps and adding a new subnet to a VLSM design, you may do the same set of practice problems using your choice of tools:

 Application: Use the Variable-Length Subnet Masks application on the DVD or companion website.

 PDF: Alternatively, practice the same problems found in both these apps using DVD Appendix H, “Practice for Chapter 22: Variable-Length Subnet Masks.”

Answers to Earlier Practice Problems

Answers to Practice Finding VLSM Overlaps

This section lists the answers to the three practice problems in the section “Practice Finding VLSM Overlaps,” as listed earlier in Table 22-4. Note that the tables that list details of the answer reordered the subnets as part of the process.

In Problem 1, the second and third subnet IDs listed in Table 22-9 happen to overlap. The second subnet’s range completely includes the range of addresses in the third subnet.

Table 22-9 VLSM Overlap Problem 1 Answers (Overlaps Highlighted)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Original Address and Mask</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.1.20</td>
<td>10.1.0.0</td>
<td>10.1.15.255</td>
</tr>
<tr>
<td>2</td>
<td>10.1.17.1/21</td>
<td>10.1.16.0</td>
<td>10.1.23.255</td>
</tr>
<tr>
<td>3</td>
<td>10.1.23.254/22</td>
<td>10.1.20.0</td>
<td>10.1.23.255</td>
</tr>
<tr>
<td>4</td>
<td>10.1.29.101/23</td>
<td>10.1.28.0</td>
<td>10.1.29.255</td>
</tr>
<tr>
<td>5</td>
<td>10.1.34.9/22</td>
<td>10.1.32.0</td>
<td>10.1.35.255</td>
</tr>
</tbody>
</table>
In Problem 2, again the second and third subnet IDs (listed in Table 22-10) happen to overlap, and again, the second subnet’s range completely includes the range of addresses in the third subnet. Also, the second and third subnet IDs are the same value, so the overlap is more obvious.

Table 22-10 VLSM Overlap Problem 2 Answers (Overlaps Highlighted)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Original Address and Mask</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.16.122.1/30</td>
<td>172.16.122.0</td>
<td>172.16.122.3</td>
</tr>
<tr>
<td>2</td>
<td>172.16.122.57/27</td>
<td>172.16.122.32</td>
<td>172.16.122.63</td>
</tr>
<tr>
<td>3</td>
<td>172.16.122.33/30</td>
<td>172.16.122.32</td>
<td>172.16.122.35</td>
</tr>
<tr>
<td>4</td>
<td>172.16.126.151/22</td>
<td>172.16.124.0</td>
<td>172.16.127.255</td>
</tr>
<tr>
<td>5</td>
<td>172.16.128.151/20</td>
<td>172.16.128.0</td>
<td>172.16.143.255</td>
</tr>
</tbody>
</table>

In Problem 3, three subnets overlap. Subnet 1’s range completely includes the range of addresses in the second and third subnets, as shown in Table 22-11. Note that the second and third subnets do not overlap with each other, so for the process in this book to find all the overlaps, after you find that the first two subnets overlap, you should compare the next entry in the table (3) with both of the two known-to-overlap entries (1 and 2).

Table 22-11 VLSM Overlap Problem 3 Answers (Overlaps Highlighted)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Original Address and Mask</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.1.113/28</td>
<td>192.168.1.112</td>
<td>192.168.1.127</td>
</tr>
<tr>
<td>2</td>
<td>192.168.1.122/30</td>
<td>192.168.1.120</td>
<td>192.168.1.123</td>
</tr>
<tr>
<td>3</td>
<td>192.168.1.125/30</td>
<td>192.168.1.124</td>
<td>192.168.1.127</td>
</tr>
<tr>
<td>4</td>
<td>192.168.1.1245/29</td>
<td>192.168.1.1240</td>
<td>192.168.1.1247</td>
</tr>
<tr>
<td>5</td>
<td>192.168.1.253/30</td>
<td>192.168.1.252</td>
<td>192.168.1.255</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Symbols

2-switch topology, 162-163
2-tier campus design, 228-230
3-tier campus design, 230-232
10BASE-T, 43, 48-50, 220-221
10GBASE-T, 43
100BASE-T, 43, 48-50
802.1A, 416-419
802.1Q, 248-249
1000BASE-LX, 43
1000BASE-T, 51
? command, 136-137
:: (double colon), 681

A

AAA (authentication, authorization, and accounting) servers, 175-176
abbreviating IPv6 addresses, 681-682
access-class command, 640, 813-814, 819
access control lists. See ACLs
access interfaces, 252, 292-293
access-list command, 599, 602, 611, 617-620, 640
any keyword, 602
building ACLs with, 608
deny keyword, 602-603
examples and logic explanations, 621
extended numbered ACL configuration commands, 621
log keyword, 606
permit keyword, 599, 602-603
reverse engineering from ACL to address range, 608-610
tcp keyword, 618
upd keyword, 618
access points (APs), 41
access switches, 228, 232
access VLANs (virtual LANs), 293-294
ACK flags, 110
ACLs (access control lists), 584, 594
comparison of, 596-597
controlling Telnet and SSH access with, 813-814
extended numbered ACLs, 616-621
implementation considerations, 630-631
location and direction, 594-595
matching packets, 595-596
named ACLs, 625-629
standard numbered ACLs, 597, 629-630
access-list command, 608
command syntax, 599
configuration examples, 602-606
list logic, 598-599
matching any/all addresses, 602
matching exact IP address, 599-600
matching subset of address, 600-601
boot system command, 831-833, 845
bridges, 221-222
bridging table. See MAC address table
broadcast addresses, 53-54, 491-492
broadcast domains, 224-227
broadcast flags, 474
broadcast subnet, 518
browsers, 114
browsing web
 DNS (Domain Name System) resolution, 115-117
 HTTP (Hypertext Transfer Protocol), 114, 117-118
 URIs (Uniform Resource Identifiers), 114-115

C

cables, 41
cable Internet, 76-77
DCE (data communications equipment) cables, 66
DTE (data terminal equipment) cables, 66
leased-line cabling, 64-65
physical console connection, 130-132
UTP (unshielded twisted-pair), 43-46
cabling pinouts for 10BASE-T and 100BASE-T, 48-50
cabling pinouts for 1000BASE-T, 51
UTP Ethernet links, 46-47

cache (ARP), 100
CAM (Content-Addressable Memory) tables. See MAC address table
campus LANs
 three-tier campus design, 230-232
topology design terminology, 232-233	
two-tier campus design, 227-230
carrier sense multiple access with collision detection (CSMA/CD), 57, 221

CDP (Cisco Discovery Protocol)
 configuration, 796-797
discovering information about neighbors, 793-796
 verification, 796-797
cdp enable command, 801
cdp run command, 801
channel service unit/data service unit (CSU/DSU), 65
CIDR (classless inter-domain routing), 343, 645-646
circuits. See leased-line WANs
Cisco Adaptive Security Appliance (ASA) firewall, 814
Cisco Binary Game, 344
Cisco Catalyst switches, 128-129
Cisco Certification Exam tips. See exam tips
Cisco Certification Exam Tutorial, 868-869
Cisco Discovery Protocol. See CDP
Cisco integrated services routers, 387-388
Cisco IOS. See IOS (Internetwork Operating System)
Cisco Learning Network (CLN), 344
Cisco License Manager, 854-855
Cisco ONE Licensing, 854
Cisco Product License Registration Portal, 855-857
Cisco Unified Communication Manager (CUCM), 263
Class A networks, 88-91
 address formats, 330
calculating hosts per network, 331-332
default masks, 331
dividing addresses into three parts, 349-350
 first octet values, 328
number and size, 329-330
reserved networks, 329, 334
unusual addresses, 334
CLM (Cisco License Manager), 854-855
CLN (Cisco Learning Network), 344
clock rate command, 66, 397, 400
clock set command, 788-789
clock summer-time command, 789, 800
clock timezone command, 789, 800
clocking, 66, 396-397
collapsed core design, 227-230
collision domains, 220
 10BASE-T with hub, 220-221
 impact on LAN design, 223-224
 switches, 222-223
 transparent bridges, 221-222
command-line interface. See CLI
commands. See individual commands (for example, access-list command)
config-register command, 831, 845
configuration, 717-718
 ACLs (access control lists), 602-606
 CDP (Cisco Discovery Protocol), 796-797
 DHCP (Dynamic Host Configuration Protocol), 182-183, 478-480
 dynamic unicast addresses (IPv6), 715
 extended numbered ACLs, 621-624
IOS software
 common command prompts, 140
 configuration mode, 138-139
 configuration submodes and contexts, 139-141
 copying configuration files, 143
 erasing configuration files, 143
 initial configuration, 843
 storing configuration files, 141-143
IPv4, 181-183
IPv6
 address configuration summary, 723-724
 host settings, 735-741
login banners, 810-812
named ACLs (access control lists), 626
NAT (Network Address Translation)
 dynamic NAT, 655-657
 PAT (Port Address Translation), 660-662
 static NAT, 654-655
NTP (Network Time Protocol) client/server, 789-791
numbered ACLs (access control lists), 629-630
overlapping VLSM subnets, 582-583
passwords
 local passwords, 173-175
 simple passwords, 169-173
RIPv2, 443-447
static routes, 422-428
static unicast addresses, 707
 configuring full 128-bit address, 707-708
 enabling IPv6 routing, 708
 generating unique interface ID with modified EUI-64, 711-714
 verifying, 709-711
switch interfaces, 190-192
 autoconfiguration, 198-202
 description, 193-194
 duplex, 193-194
 enabling/disabling interfaces, 195-197
 multiple interfaces, 195
 port security, 202-208
 removing configuration, 197-198
 speed, 193-194
Syslog, 784-786
VLANs (virtual LANs), 252-253
 data and voice VLANs, 264-266
 full VLAN configuration example, 253-256
 routing, 420-422
 shorter VLAN configuration example, 256-257
 trunking, 258-262
VLSM (variable length subnet masks), 531-532
configuration files
archiving, 841
copying, 143, 839-841
erasing, 143, 843
replacing, 841-842
running-config, 142
startup-config, 142
storing, 141-143
configuration mode (CLI), 138-139
configuration register, 831
configure replace command, 841-842, 846
configure restore command, 841
configure terminal command, 139, 143-145, 171, 256, 841
conflicts (DHCP), 485-486
confreg command, 836-837
connected routes, 403, 413-414, 753-755
connection establishment and termination (TCP), 110-111
connection-oriented protocols, 111
connectionless protocols, 111
console connection cabling, 130-132
console passwords, 169
Content-Addressable Memory (CAM) tables. See MAC address table
context-setting commands, 139
contiguous networks, 455
copy command, 391, 825, 828, 839-840, 846
copy ftp flash command, 828
copy running-config startup-config command, 143-145, 205, 831, 839, 841, 846
copy startup-config running-config command, 145, 838, 846
copy tftp flash command, 825
copy tftp startup-config command, 840
copying
configuration files, 839-841
IOS images, 825-830
switch configuration files, 143
core design, 230-232
CPE (customer premises equipment), 65
crossover cable pinout, 50
crosstalk, 46
crypto key command, 177
crypto key generate rsa command, 176-178, 187, 818
CSMA/CD (carrier sense multiple access with collision detection), 57, 221
CSU/DSU (channel service unit/data service unit), 65
CUCM (Cisco Unified Communication Manager), 263
current license status, showing, 857-859
customer premises equipment (CPE), 65

D

DAD (Duplicate Address Detection), 731, 734-735
data centers, 148
data communications equipment (DCE) cables, 66
data encapsulation
OSI terminology, 35
TCP/IP terminology, 30-32
data link layer
Ethernet, 44, 51-52
OSI, 34
data-link protocols, 66-67
data terminal equipment (DTE) cables, 66
DCE (data communications equipment) cables, 66
DDN (dotted-decimal notation), 27, 87, 342-346
debug command, 138, 783, 786-787, 801
debug ip nat command, 659, 665
debug ip rip command, 786
decimal masks. See DDN (dotted-decimal notation)
decimal subnet analysis
 analysis with easy masks, 368-369
 finding subnet broadcast addresses, 372-374
 finding subnet IDs, 370-372
 predictability in interesting octet, 369-370
 reference table: DDN mask values and binary equivalent, 374
decimal-to-binary conversion, 889-891
decimal wildcard masks, 600-601
de-encapsulation of IP packets, 410
default gateways, 83, 93, 406
default masks, 331
default-router command, 496
default routers, 83, 93, 406, 489-490
default VLANs, 253
delete vlan.dat command, 156
demilitarized zone (DMZ), 816
denial of service (DoS) attack, 815
deny command, 596, 602-603, 626-628, 641
description command, 193, 210, 400
destination IP, matching, 617-618
destination port numbers, 107
device hardening
 controlling Telnet and SSH access with ACLs, 813-814
 definition of, 810
 firewalls, 814-817
 login banner configuration, 810-812
 unused switch interface security, 812-813
device management protocols
 CDP (Cisco Discovery Protocol)
 configuration, 796-797
 discovering information about neighbors, 793-796
 verification, 796-797
 LLDP (Link Layer Discovery Protocol), 797-799
 NTP (Network Time Protocol), 787-788
 client/server configuration, 789-791
 loopback interfaces, 791-793
 setting time and timezone, 788-789
Syslog
 configuration, 784-786
 debug command, 786-787
 log message format, 782
 log message security levels, 783
 sending messages to users, 780-781
 storing log messages for review, 781-782
 verification, 784-786
device security
 device hardening
 controlling Telnet and SSH access with ACLs, 813-814
 definition of, 810
 firewalls, 814-817
 login banner configuration, 810-812
 unused switch interface security, 812-813
 IOS passwords, 804
 encoding with hashes, 806-809
 encrypting with service password-encryption command, 805-806
 hiding for local usernames, 810
DHCP (Dynamic Host Configuration Protocol), 182-183, 323, 471-475
 advantages of, 473
 broadcast flags, 474
 configuration, 478-480
 DHCP pools, 478
 DHCP Relay, 571
 supporting, 475-476
 troubleshooting, 481-482
 DHCPv6, 736
 compared to DHCPv4, 736-737
 relay agents, 737-739
 information stored at DHCP server, 476-477
pools, 478
server verification, 480-481
troubleshooting, 481, 571-572
 conflicts, 485-486
 DHCP Relay agent configuration, 481-482
 DHCP server configuration, 482-484
 IP connectivity, 484
 LAN connectivity, 484-485
 summary, 485
diagrams, network, 18, 29
digital subscriber line (DSL), 74-76
dir command, 826, 846, 863
directed broadcast addresses, 320, 491
direction (ACLs), 594-595
disable command, 145
disabled VLANs, 294
discontiguous classful networks, 454-455
disk file systems, 824
distance vector, 439-440
distribution switches, 228, 232
DMZ (demilitarized zone), 816
DNS (Domain Name System), 98-99, 109, 115-117, 488-489, 569-570
dns-server command, 496, 569
DoS (denial of service) attack, 815
dotted-decimal notation (DDN), 27, 87, 342-346
DRAM (dynamic random-access memory), 141
DSL (digital subscriber line), 74-76
DSL access multiplexer (DSLAM), 76
DSLAM (DSL access multiplexer), 76
DTE (data terminal equipment) cables, 66
dual stack, 679
duplex
 configuring on switch interfaces, 193-194
duplex mismatch, 201
troubleshooting, 279-282
duplex command, 193-194, 209,
 279-281, 297, 391, 400
Duplicate Address Detection (DAD), 731, 734-735
duplicate addresses, 734-735
dynamic configuration of IPv6 host settings, 735
DHCPv6, 736-739
SLAAC (Stateless Address Auto Configuration)
 building IPv6 addresses with,
 739-740
 combining with NDP and DHCP,
 740-741
Dynamic Host Configuration Protocol.
 See DHCP
dynamic IP address configuration, 182-183
dynamic NAT (Network Address Translation), 650-651
 configuration, 655-657
 verification, 657-659
dynamic port numbers, 107
dynamic random-access memory (DRAM), 141
dynamic ranges per subnet, choosing, 323-324
dynamic unicast address configuration, 715
dynamic windows, 112-113

echo replies (ICMP), 100
echo requests (ICMP), 100
EIGRPv6 (EIGRP for IPv6), 679
enable command, 133, 145, 169-170
enable mode, 133-135
enable password command, 171, 806, 819
enable passwords, 169
enable secret command, 171, 188, 806-809, 819
enable secret love command, 136
encapsulation, 411-412
de-encapsulation of IP packets, 410
IPv4 (Internet Protocol Version 4), 83-84
OSI terminology, 35
TCP/IP terminology, 30-32
encapsulation command, 418
encoding schemes, 45
encryption, 805-806
end command, 145
end-user perspectives on networking, 17-18
enterprise LANs, 42-43
enterprise networks, 17, 307
enterprise routers, 386-388
enterprise wireless LANs, 238-240
EoMPLS (Ethernet over MPLS), 70-71
eq 21 parameters, 619
equal-cost load balancing, 453
equal-cost routes, 453-454
erase nvram command, 145, 843, 846
erase startup-config command, 145, 156, 843, 846
err-disabling recovery, 288-289
error detection, 55, 104
error recovery, 104, 111-112
Ethernet emulation, 70-72
Ethernet LANs, 29, 38-40
broadcast domains, 224-227
campus LANs
three-tier campus design, 230-232
topology design terminology, 232-233
two-tier campus design, 227-230
collision domains, 220
10BASE-T with hub, 220-221
impact on LAN design, 223-224
switches, 222-223
transparent bridges, 221-222
enterprise LANs, 42-43
Ethernet addressing, 52-54
Ethernet data link protocols, 44, 51-52
Ethernet frames, 44
Ethernet physical layer standards, 43
Ethernet ports, 46
Ethernet Type field, 54
FCS (Frame Check Sequence) field, 55
full-duplex logic, 55-56
half-duplex logic, 56-58
hubs, 220
LAN switching, 41
analyzing, 156
flooding, 154
MAC address table, 153-163
overview, 146-149
STP (Spanning Tree Protocol), 154-155
summary, 155-156
switch forwarding and filtering decisions, 150-153
switch interfaces, 158-159
switching logic, 149-150
verifying, 156
physical standards, 233-234
choosing, 235-236
enterprise wireless LANs, 238-240
Ethernet types, media, and segment lengths, 235
history of, 234
home office wireless LANs, 236-237
table of, 234
port security, 202-203
configuration, 203-205
MAC addresses, 207-208
verifying, 205-206
violation actions, 207
SOHO (small office/home office) LANs, 41-42
switch interface configuration, 190-192
 autonegotiation, 198-202
 description, 193-194
 duplex, 193-194
 enabling/disabling interfaces, 195-197
 multiple interfaces, 195
 removing configuration, 197-198
 speed, 193-194
troubleshooting, 573-574
 analyzing forwarding paths, 286-287
 definition of, 271
 interface speed and duplex issues, 279-282
 interface status codes, 278-279
 Layer 1 problems, 282-284
 methodologies, 274-275
 port security, 287-292
 predicting contents of MAC address table, 284-286
 problem isolation, 275-277
 VLANs (virtual LANs), 292-296
UTP (unshielded twisted-pair) cables, 43-46
 cabling pinouts for 10BASE-T and 100BASE-T, 48-50
 cabling pinouts for 1000BASE-T, 51
 UTP Ethernet links, 46-47
VLANs (virtual LANs), 244-246
 configuration, 252-257
 default VLANs, 253
 IP telephony, 262-267
 native VLANs, 248
 routing between, 249-252
 tagging, 246-248
 troubleshooting, 292-296
 trunking, 246-249, 257-262
 VLAN IDs, 246
Ethernet over MPLS (EoMPLS), 70-71
Ethernet WANs (wide area networks), 69-70
 Ethernet emulation, 70-72
 Ethernet over MPLS (EoMPLS), 70-71
 Internet access, 72
 cable Internet, 76-77
 DSL (digital subscriber line), 74-76
 Internet access links, 73-74
 Internet as a large WAN, 72-73
EtherType, 54
EUI-64 (extended unique identifier), 711-714
exact IP address matching, 599-600
exam tips
 assessing whether you are ready to pass, 881-882
 Cisco Certification Exam Tutorial, 868-869
 exam-day advice, 871
 exam review, 872-873
 finding knowledge gaps, 877-879
 hands-on CLI skills, 879-881
 practice exams, 874-877
 suberetting and other math-related skills, 873-874
 other study tasks, 883-884
 pre-exam suggestions, 870-871
 study suggestions after failing to pass, 871-872, 882-883
 time management, 869-870
EXEC modes, 169-173
 privileged EXEC, 133-135
 user EXEC, 133-135
exec-timeout command, 185, 188
exit command, 139, 143-145
experimental addresses, 328
extended numbered IPv4 ACLs, 616
 configuration, 621-624
extended numbered IPv4 ACLs

matching protocol, source IP, and destination IP, 617-618
matching TCP and UDP port numbers, 618-621
extended ping
testing LAN neighbors with, 550-551
testing reverse routes with, 547-549
external authentication servers, 175-176

F

failed exam attempts, 871-872, 882-883
Fast Ethernet, 43
FCS (Frame Check Sequence) field, 55
feature sets, 851
fiber-optic cabling, 43
file system, 822-824
File Transfer Protocol. See FTP
files
configuration files, 839
archiving, 841
copying, 143, 839-841
erasing, 143, 843
replacing, 841-842
running-config, 142
startup-config, 142
storing, 141-143
management, 820-822
configuration files, 839-842
IOS file system, 822-824
IOS software boot sequence, 830-835
password recovery/reset, 835-838
upgrading IOS images, 824-830
transferring, 117-118
FIN bits, 110
firewalls, 814-817
first octet values, 328
first usable IP addresses, 332-333
flash memory, 141, 823
floating static routes, 426, 762-763
flooding, 154
flow control (TCP), 112-113
forward acknowledgment, 111
forward-versus-filter decisions, 152
forwarding packets. See IPv4 routing; IPv6 routing
forwarding path, 286-287
Frame Check Sequence (FCS) field, 55
frames, 29-31, 44
deciding to process incoming frames, 409-410
flooding, 154
transmitting, 412
FTP (File Transfer Protocol), 828-829
full addresses (IPv6), 680
full-duplex logic, 55-56
full mesh topology, 229, 233
full update messages, 440-441
full VLAN configuration example, 253-256

G

G0/0 status code, 394
G0/1 status code, 394
GET requests, 23, 117
Gigabit Ethernet, 43
global routing prefix (IPv6), 693-695
global unicast addresses
address ranges for, 695
assigning to hosts, 700-701
definition of, 692-693
IPv6 static routes with, 758-759
subnetting with, 696-699
group addresses, 53
groupings (IP address), 83, 87-88
half-duplex logic, 56-58
hands-on CLI skills, practicing, 879-881
hashes, 806
HDLC (High-Level Data Link Control), 67
headers
 Ethernet, 52
 HDLC (High-Level Data Link Control), 67
headers (HTTP), 23
hexadecimal-to-binary conversion, 681, 892
High-Level Data Link Control (HDLC), 67
history buffer commands, 184
history size command, 184, 188
home office wireless LANs, 236-237
host addresses, 331-332
host bits, 310
host forwarding logic, 82, 93-94
host part (of IP addresses), 330, 340, 348-349
host routing logic, 406
hostname command, 141-145, 156, 178, 188
hostname Fred command, 139
hostnames, 98
hosts, IPv4, 27, 81
 analyzing subnet needs, 306-309
 assigning addresses to, 700-701
 calculating per subnet, 350-352
 host bits, 310
IPv4 settings, 86, 179-181, 486
 default routers, 489-490
 DNS name resolution, 488-489
 IP address and mask configuration, 487-488
 troubleshooting, 566-570
hosts, IPv6
 dynamic configuration, 735
 DHCPv6, 736-739
SLAAC (Stateless Address Auto Configuration), 739-741
NDP (Neighbor Discovery Protocol), 730-731
 discovering duplicate addresses, 734-735
 discovering neighbor link addresses, 733-734
 discovering routers, 731-732
 discovering SLAAC addressing info, 732-733
 NA (Neighbor Advertisement), 733
 NS (Neighbor Solicitation), 733
 RA (Router Advertisement), 731
 RS (Router Solicitation), 731
verifying host connectivity
 from hosts, 741-744
 from nearby routers, 744-747
HTTP (Hypertext Transfer Protocol), 22-23, 114-118
hubs
 10BASE-T, 220-221
 autonegotiation and, 201-202
Huston, Geoff, 675
hybrid topology, 229, 233
Hypertext Transfer Protocol (HTTP), 22-23, 114-118
IANA (Internet Assigned Numbers Authority), 645, 688
IBM SNA (Systems Network Architecture), 19
ICANN (Internet Corporation for Assigned Names and Numbers), 688
ICMP (Internet Control Message Protocol), 100
icmp keyword, 635
ICMPv6, 676
IDs
interface IDs, 698
IPv4 subnet IDs, 310, 320, 360-361, 513
finding subnets with 9-16 subnet bits, 520-522
finding subnets with 17 or more subnet bits, 522
finding subnets with exactly 8 subnet bits, 519-520
finding subnets with less than 8 subnet bits, 515-519
finding with binary math, 362-363
finding with decimal math, 370-372
finding with magic number, 515
zero subnet, 514
IPv6 subnet IDs, 698-699
VLAN IDs, 246
IEEE (Institute of Electrical and Electronic Engineers), 20
ifconfig command, 487, 497, 566, 742, 748
IGPs (interior gateway protocols), 437-438
IGRP (Interior Gateway Routing Protocol), 437
images (IOS)
copying
with FTP, 828-829
to local file system, 825-827
with SCP, 829-830
one image per feature set, 851
one image per model/series, 850
universal images, 851-853
upgrading, 824-830
verifying, 827, 833-835
incoming frames, 409-410
infinity, 441
input errors, 282
inside global addresses, 649-650
inside local addresses, 649-650
installation of routers
Cisco integrated services routers, 387-388
enterprise routers, 386-388
Internet access routers, 389-390
Institute of Electrical and Electronic Engineers (IEEE), 20
interesting octet, 369-370, 515
interface command, 139, 145, 209, 253, 265, 391, 400
interface ethernet command, 392
interface fastethernet command, 392
interface gigabitethernet command, 392
interface IDs, 698
Interface loopback command, 800
interface range command, 195, 209, 255
interface subcommands, 139
interface vlan command, 187
interface vlan vlan_id, 421
interfaces
access interfaces, 292-293
Layer 1 problems, 282-284
port security, 202-203, 287-288
configuration, 203-205
erd-disabled recovery, 288-289
MAC addresses, 207-208
protect mode, 289-292
restrict mode, 289-292
shutdown mode, 288-289
verifying, 205-206
violation actions, 207
router interfaces
bandwidth, 398
clock rate, 396-397
displaying, 391-393
interface status codes, 393-396
speed and duplex issues, 279-282
status codes, 278-279, 393-394
switch interface configuration, 190-192
autonegotiation, 198-202
description, 193-194
duplex, 193-194
enabling/disabling interfaces, 195-197
multiple interfaces, 195
removing configuration, 197-198
speed, 193-194
interior gateway protocols (IGPs), 437-438
Interior Gateway Routing Protocol (IGRP), 437
International Organization for Standardization (ISO), 19
Internet access, 72
DSL (digital subscriber line), 74-76
Internet access links, 73-74
Internet access routers, 389-390
Internet as a large WAN, 72-73
Internet Assigned Numbers Authority (IANA), 645, 688
Internet Control Message Protocol (ICMP), 100
Internet Corporation for Assigned Names and Numbers (ICANN), 688
Internetwork Operating System. See IOS internetworks, 85, 307
Inter-Switch Link (ISL), 248-249
IOS (Internetwork Operating System)
boot sequence, 830-831
choosing IOS to load, 831-833
configuration register, 831
verifying IOS image, 833-835
configuration
common command prompts, 140
configuration mode, 138-139
configuration submodes and contexts, 139-141
copying configuration files, 143
erasing configuration files, 143
storing configuration files, 141-143
file management, 820-822
configuration files, 839-842
IOS file system, 822-824
password recovery/reset, 835-838
upgrading IOS images, 824-830
initial configuration, 843
license management, 848
manual software activation, 855-860
software activation with Cisco License Manager, 854-855
software activation with universal images, 852-853
packaging
one image per model/series, 850
one IOS image per feature set, 851
universal images, 851-853
password security, 804
encoding with hashes, 806-809
encrypting with service password-encryption command, 805-806
hiding passwords for local usernames, 810
software activation
with Cisco License Manager, 854-855
manual activation, 855-860
with right-to-use licenses, 861-862
with universal images, 852-853
versions versus releases, 850
ip -6 neighbor show command, 734, 748
ip access-group command, 604, 611, 621, 631, 640
ip access-list command, 626-627, 640
IP ACLs (access control lists). See ACLs (access control lists)
ip address command, 182, 187, 394, 400, 413-414, 418, 421, 424, 531, 566, 582-583
IP ARP table, 415
ip default-gateway command, 182, 187
ip dhcp excluded-address command, 478-479, 496
ip dhcp pool command, 478, 496
ip domain-lookup command, 570
ip domain-name command, 178
ip ftp password command, 845
ip ftp username command, 845
ip helper-address command, 473-476, 480-483, 497, 571-572
ip name-server command, 182, 187, 570
ip nat command, 665
ip nat inside command, 653, 655, 660-662
ip nat inside source command, 657, 665
ip nat inside source list command, 656, 660, 663
ip nat inside source static command, 653, 655, 662
ip nat outside command, 653-655, 660-662
ip nat pool command, 656, 665
ip route, 403, 413, 422-424
ip scp server enable command, 829
ip ssh version 2 command, 178
ip subnet-zero command, 514
IP telephony, 262
data and voice VLAN concepts, 262-264
data and voice VLAN configuration and verification, 264-266
summary, 266-267
ipconfig command, 487, 497, 566, 742, 748
IPv4 ACLs (access control lists). See ACLs (access control lists)
IPv4 addresses, 84-85. See also subnet masks; subnets
address exhaustion, 675
address formats, 330
broadcast addresses, 491-492
calculating hosts and subnets in network, 350-352
calculating hosts per network, 331-332
CIDR (classless inter-domain routing), 645-646
classes in, 328-329
classless versus classful addressing, 350
comparison of address types, 494-495
default masks, 331
dynamic IP address configuration, 182-183
grouping, 87-88
host settings, 486-490
matching addresses
 any/all addresses, 602
 exact IP address, 599-600
 subset of address, 600-601
multicast addresses, 492-494
NAT (Network Address Translation), 642, 647-648
dynamic NAT, 650-651, 655-659
PAT (Port Address Translation), 652-653, 660-662
source NAT, 648
static NAT, 648-650, 654-655
troubleshooting, 662-664
network number and related numbers, 332-333
number and size of networks, 329-330
private addresses, 646-647, 690-692
public addresses, 690-692
router interface IP addresses, 394-396
rules for, 86-87
scalability, 645
troubleshooting, 570
unicast addresses, 491
unusual addresses within classes, 334
IPv4 routing, 25-28, 78, 81, 405-407. See also subnets
ARP (Address Resolution Protocol), 84, 99-100
configuring on switch, 181-182
DNS (Domain Name System), 98-99
enabling IPv4 support on router interfaces
 bandwidth, 398
 CLI access, 390-391
 clock rate, 396-397
displaying interfaces, 391-393
interface status codes, 393-394
IP addresses, 394-396
router auxiliary ports, 398-399
examples of, 408
choosing where to forward packets, 410-411
deciding whether to process incoming frames, 409-410
de-encapsulation of IP packets, 410
capsulating packets in frames, 411-412
hosts forward IP packets to default routers (gateway), 409
transmitting frames, 412
host and switch IP settings, 179-181
IP hosts, 27, 86
IP networks, 85, 88-91
IP packet encapsulation, 408
protocols, 85-86, 96-98
routing logic, 81-83
data link layer encapsulation, 83-84
host forwarding logic, 82, 93-94
IP routing tables, 83, 94-95
routing tables, 83, 94-95
RIPv2, 437
autosummarization, 454-455
comparison of IGPs (interior gateway protocols), 438
configuration, 443-447
discontiguous classful networks, 454-455
distance vector, 439-440
equal-cost routes, 453-454
full update messages, 440-441
history of IGPs (interior gateway protocols), 437-438
key features, 442-443
RIP updates, controlling, 452-453
route poisoning, 441-442
split horizon, 441
troubleshooting, 461-466
verification, 447-451, 456-458
testing connectivity, 100
troubleshooting, 564
default router IP address setting, 570
DHCP issues, 571-572
DNS problems, 569-570
incorrect addressing plans, 579-583
IP forwarding issues, 575-578
LAN issues, 573-574
mismatched IPv4 settings, 566-567
mismatched masks, 567-569
packet filtering with access lists, 584
ping command, 543-553
router WAN interface status, 583
SSH (Secure Shell), 559-561
telnet, 559-561
traceroute command, 553-559
verifying on switch, 183-184
ipv6 address command, 707, 711, 715-717, 726, 753
ipv6 address dhcp command, 726
ipv6 address eui-64 command, 714
ipv6 address link-local command, 718
ipv6 addresses, 674, 706-707
abbreviating, 681-682
address configuration summary, 723-724
assigning subnets to internetwork topology, 699-700
dynamic configuration of host settings, 735
DHCPv6, 736-739
SLAAC (Stateless Address Auto Configuration), 739-741
dynamic unicast address configuration, 715
expanding addresses, 682
global routing prefix, 693-695
global unicast addresses
 address ranges for, 695
 assigning to hosts, 700-701
 definition of, 692-693
 subnetting with, 696-699
hexadecimal/binary conversion chart, 681
history of, 674-676
interface IDs, 698
link-local addresses, 716-718
loopback addresses, 723
multicast addresses
 anycast addresses, 722-723
 local scope multicast addresses, 719-720
 solicited-node multicast addresses, 720-721
NDP (Neighbor Discovery Protocol), 730-731
 discovering duplicate addresses, 734-735
 discovering neighbor link addresses, 733-734
 discovering routers, 731-732
 discovering SLAAC addressing info, 732-733
 NA (Neighbor Advertisement), 733
 NS (Neighbor Solicitation), 733
 RA (Router Advertisement), 731
 RS (Router Solicitation), 731
summary, 735
prefix length, 683-685
protocols, 676-677
representing full IPv6 addresses, 680
routting, 677-680
site local addresses, 693
static unicast address configuration, 707
 configuring full 128-bit address, 707-708
 enabling IPv6 routing, 708
generating unique interface ID with modified EUI-64, 711-714
verifying, 709-711
subnet router anycast addresses, 699
subnetting with global unicast addresses, 696-699
subnetting with unique local addresses, 701-702
troubleshooting, 741
 verifying host connectivity from hosts, 741-744
 verifying host connectivity from nearby routers, 744-747
unique local addresses
 definition of, 692-693
 importance of, 702-703
 subnetting with, 701-702
unknown addresses, 723
ipv6 dhcp relay command, 738-739
ipv6 dhcp relay destination command, 748
ipv6 enable command, 718, 726
ipv6 route command, 756, 769
 floating static routes, 762
 global unicast next-hop address, 758
 link-local next-hop address, 759
 outgoing interface, 756
 static default routes, 761
 static host routes, 761
troubleshooting, 765-768
IPv6 routing, 752
 connected routes, 753-755
 local routes, 753, 755-756
 static routes, 756
 floating static routes, 762-763
 global unicast next-hop address, 758-759
 link-local next-hop address, 759-760
 outgoing interface, 756-757
 static default routes, 760-761
 static host routes, 761-762
troubleshooting, 765-768
ipv6 unicast-routing command, 708, 726
ISL (Inter-Switch Link), 248-249
ISO (International Organization for Standardization), 19
isolating problems with traceroute, 275-277, 553-559

J-K-L

knowledge gaps, finding, 877-879
known unicast frames, 150-153
L3 PDU (Layer 3 protocol data units), 84
L4PDU, 106
LANs (local-area networks). See Ethernet LANs; WLANs
LAN neighbors, testing, 549-551
LAN switching, 146-149
analyzing, 156
flooding, 154
MAC address table, 153-154
 aging, 161
clearing, 162
 finding entries in, 159-160
 multiple switches, 162-163
 showing, 156-157
port security, 202-203, 287-288
 configuration, 203-205
 err-disabled recovery, 288-289
MAC addresses, 207-208
 protect mode, 289-292
 restrict mode, 289-292
 shutdown mode, 288-289
 verifying, 205-206
 violation actions, 207
STP (Spanning Tree Protocol), 154-155
summary, 155-156
switch forwarding and filtering decisions, 150-153
switch interface configuration, 158-159, 190-192
 autonegotiation, 198-202
description, 193-194
duplex, 193-194
 enabling/disabling interfaces, 195-197
 multiple interfaces, 195
 removing configuration, 197-198
 speed, 193-194
switching logic, 149-150
 verifying, 156
last usable IP addresses, 332-333
Layer 1 problems, 282-284
Layer 2 switches, 181, 249
Layer 3 protocol data units (L3 PDU), 84
Layer 3 switches, 181, 249, 416
 configuring routing to VLANs, 420-422
VLAN (virtual LAN) routing, 251-252
Layer 4 PDU, 106
layers
 Ethernet
 data link, 44, 51-52
 physical layer standards, 43
OSI (Open Systems Interconnection), 33-35
TCP/IP
 adjacent-layer interaction, 24-25
application layer, 22-23
 compared to OSI, 32-33
data encapsulation terminology, 30-32
HTTP (Hypertext Transfer Protocol), 22-23
 link layer, 28-30
network layer, 25-28
 original versus modern TCP/IP models, 30
 same-layer interaction, 24-25
lease command, 497
leased circuits. See leased-line WANs
leased-line WANs (wide area networks)
cabling, 64-65
connecting LANs via, 62-63
creating in lab, 66
data-link protocols, 66-67
HDLC (High-Level Data Link Control), 67
leased line terminology, 63-64
routing, 68-69
license boot module command, 861-862
license install command, 857, 863
license management, 848
Cisco License Manager, 854-855
Cisco ONE Licensing, 854
Cisco Product License Registration Portal, 855-857
IOS packaging, 850
 one IOS image per feature set, 851
 one IOS image per model/series, 850
 universal images, 851-853
right-to-use licenses, 861-862
software activation
 with Cisco License Manager, 854-855
 manual activation, 855-860
 with universal images, 852-853
License Manager (Cisco), 854-855
Lightweight AP (LWAP), 239
limited broadcast addresses (IPv4), 491
line aux 0 command, 399
line con 0 command, 170-171
line console command, 818
line console 0 command, 139-140, 145, 187, 391
line vty command, 171, 187, 818
link layer (TCP/IP), 28-30
Link Layer Discovery Protocol (LLDP), 797-799
link-local addresses (IPv6), 716-718
link-local next-hop address, 759-760
links, 115
list logic (IP ACLs), 598-599
list of subnets, building, 320-321
LLDP (Link Layer Discovery Protocol), 797-799
lldp receive command, 799-801
lldp run command, 799-801
lldp transmit command, 799-801
local-area networks. See Ethernet LANs; wireless LANs
local broadcast addresses (IPv4), 491
local routes (IPv6), 753-756
local scope multicast addresses, 719-720
local usernames, hiding passwords for, 810
location (ACLs), 594-595
log keyword, 606
logging with Syslog, 780
 configuration, 784-786
 debug command, 786-787
 log message format, 782
 log message security levels, 783
 sending messages to users, 780-781
 storing log messages for review, 781-782
 verification, 784-786
logging buffered command, 781, 785, 800
logging command, 800
logging console command, 185, 188, 780, 800
logging monitor command, 781, 800
logging synchronous command, 185, 188
logging trap command, 800
login banners, 810-812
login command, 136, 145, 170-171, 187, 818
login local command, 187, 818
loopback addresses, 334, 723
loopback interfaces, 791-793
loops, avoiding with STP (Spanning Tree Protocol), 154-155
LWAP (Lightweight AP), 239

M

MAC address table, 52-54, 153-154
- aging, 161
- clearing, 162
- finding entries in, 159-160
- multiple switches, 162-163
- overview, 153-154
- predicting contents of, 284-286
- showing, 156-157

MAC addresses
- port security, 207-208
- sticky secure MAC addresses, 203

macrobending, 279

magic number, 370, 515

manual software activation
Cisco Product License Registration Portal, 855-857
- current license status, showing, 857-859
- permanent technology package licenses, adding, 859-861

masks. See subnet masks

matching packets, 595-596

matching parameters
- extended numbered ACLs, 617-621
- standard numbered ACLs
 - any/all addresses, 602
 - command syntax, 599
 - exact IP address, 599-600
 - subset of address, 600-601
 - wildcard masks, 600-602
- maximum-paths command, 453-454, 458, 468
- maximum transmission unit (MTU), 52

MD5 verification, 827

Media Access Control. See MAC address table

memory, 141, 823

messages
- full update messages, 440-441
- log messages, 781-783
- sending to users, 780-781

mismatched IPv4 settings, 566-567
mismatched masks, 567-569
mismatched trunking operational states, 294-296

models, networking
- definition of, 18-19
- history of, 19-20
- OSI model, 32-35

TCP/IP, 20-21
 - adjacent-layer interaction, 24-25
 - application layer, 22-23
 - compared to OSI, 32-33
 - data encapsulation terminology, 30-32
 - link layer, 28-30
 - network layer, 25-28
 - original versus modern TCP/IP models, 30
 - overview, 20-21
 - same-layer interaction, 24-25
 - TCP (Transmission Control Protocol), 24
 - transport layer, 23-24

modified EUI-64 (extended unique identifier), 711-714

MP BGP-4 (Multiprotocol BGP version 4), 679

MTU (maximum transmission unit), 52

multicast addresses
IPv4, 53-54, 328, 492-494
IPv6, 719
anycast addresses, 722-723
local scope multicast addresses, 719-720
solicited-node multicast addresses, 720-721
multilayer switches, 181, 249-252
multiple interfaces, configuring, 195
multiple subnet sizes, 312
multiplexing, 106-108
Multiprotocol BGP version 4 (MP BGP-4), 679

N

NA (Neighbor Advertisement), 733
name command, 253, 268
name resolution, 488-489
named ACLs, 625-629
NAT (Network Address Translation), 642, 647-648, 690
dynamic NAT, 650-651, 655-659
PAT (Port Address Translation), 652-653, 660-662
source NAT, 648
static NAT, 648-650, 654-655
troubleshooting, 662-664
NAT Overload. See PAT (Port Address Translation)
native VLANs, 248
NDP (Neighbor Discovery Protocol), 676, 730-731
discovering duplicate addresses, 734-735
discovering neighbor link addresses, 733-734
discovering routers, 731-732
discovering SLAAC addressing info, 732-733
NA (Neighbor Advertisement), 733
NS (Neighbor Solicitation), 733
RA (Router Advertisement), 731
RS (Router Solicitation), 731
ndp -an command, 734, 748
Neighbor Advertisement (NA), 733
Neighbor Discovery Protocol. See NDP
neighbor link addresses, 733-734
Neighbor Solicitation (NS), 733
neighbors, testing
LAN neighbors, 549-551
WAN neighbors, 551-552
netsh interface ipv6 show neighbors command, 734, 748
netstat -rn command, 489, 497
network access layer. See link layer (TCP/IP)
Network Address Translation. See NAT
network broadcast addresses, 332-334, 491
network command, 444-447, 463-464, 468, 480-483, 496
network file systems, 824
network IDs, 332-334
network interface cards (NICs), 62
network interface layer. See link layer (TCP/IP)
network layer
OSI, 34
TCP/IP, 25-28
network numbers, 332-334
network routes, 424
Network Time Protocol. See NTP
networking architecture, 18
networking blueprint, 18
networking diagrams, 18, 29
next-hop IPv6 address, 758-760
next-server command, 480
NICs (network interface cards), 62
no auto-summary command, 454-455, 458, 465
no cdp enable command, 796, 819
no cdp run command, 819
overlapping routes

no debug all command, 145
no description command, 197-198, 210
no duplex command, 197-198, 210
no enable password command, 819
no enable secret command, 819
no ip access-group command, 630
no ip directed-broadcast command, 492
no ip domain-lookup command, 185, 570
no ip http server command, 819
no ip subnet-zero command, 514
no logging console command, 185, 188, 783
no logging monitor command, 783
no passive-interface command, 457, 468
no password command, 173
no service password-encryption command, 806
no shutdown command, 182, 195-198, 209, 268, 288-289, 297, 391, 400, 421, 785, 838
no speed command, 197-198, 210
nonvolatile RAM (NVRAM), 141, 824
nonworking states, troubleshooting, 278-279
NS (Neighbor Solicitation), 733
NTP (Network Time Protocol), 787-788
client/server configuration, 789-791
loopback interfaces, 791-793
setting time and timezone, 788-789
ntp master command, 800
ntp server command, 791, 800
ntp source command, 800
numbered ACLs, 629-630
numbers
DDN (dotted-decimal notation), 27, 87
magic number, 370
network numbers, 332-334
port numbers, 107-108
SEQ (sequence number), 24
sequence numbers, 627-629
subnet numbers, 310, 320, 360-361, 513
finding subnets with 9-16 subnet bits, 520-522
finding subnets with 17 or more subnet bits, 522
finding subnets with exactly 8 subnet bits, 519-520
finding subnets with less than 8 subnet bits, 515-519
finding with binary math, 362-363
finding with decimal math, 370-372
finding with magic number, 515
zero subnet, 514
numeric reference table
binary-to-hexadecimal conversion, 892
decimal-to-binary conversion, 889-891
hexadecimal-to-binary conversion, 892
NVRAM (nonvolatile RAM), 141, 824

O

objects, 117
octets, 87
on-link, 733
ONE Licensing (Cisco), 854
one-size subnets, 311-312
opaque file systems, 824
Open Shortest Path First (OSPF), 94
Open Systems Interconnection. See OSI
operational view of subnetting, 306
OSI (Open Systems Interconnection), 19, 32-35
OSPF (Open Shortest Path First), 94
OSPFv3, 676, 679
outgoing interfaces, IPv6 static routes with, 756-757
outside global addresses, 649-650
outside local addresses, 649-650
overlapping routes, 575-578
overlapping subnets
with VLSM, 532-536, 581-583
without VLSM, 579-581
overloading NAT (Network Address Translation), 652-653, 660-662

P

packaging (IOS), 850
one IOS image per feature set, 851
one IOS image per model/series, 850
universal images, 851-853
packet filtering. See ACLs (access control lists)
packet forwarding (IPv4), 81-83
data link layer encapsulation, 83-84
host forwarding logic, 82, 93-94
IP routing tables, 83, 94-95
routing protocols, 85-86, 96-98
PAK (product authorization key) licensing, 848
Cisco License Manager, 854-855
Cisco ONE Licensing, 854
Cisco Product License Registration Portal, 855-857
IOS packaging, 850-853
software activation

with Cisco License Manager, 854-855
manual software activation, 855-860
with universal images, 852-853
PAR (Positive Acknowledgment and Retransmission), 113
partial mesh topology, 229, 233
passive-interface command, 452-453, 457, 464, 468
passive-interface default command, 457, 468
passive interfaces, 464-465
password command, 139, 145, 170-171, 187, 805, 818
password faith command, 136
passwords
CLI (command-line interface), 135-136
local username/password configuration, 173-175
simple password configuration, 169-173
console passwords, 169
enable passwords, 169
security, 804

encoding with hashes, 806-809
encrypting with service password-encryption command, 805-806
hiding passwords for local usernames, 810
recovery/reset, 835-838
shared passwords, 169
Telnet passwords, 169
PAT (Port Address Translation), 660-663
path command, 845
path selection, 82
PBX (private branch exchange), 262
PCPT (Pearson IT Certification Practice Test) exam software, 874
PDUs (protocol data units), 35
permanent keyword, 425, 430
permanent technology package licenses, 859-861
permit command, 596, 602-603, 625-628, 641
physical console connection, 130-132
physical layer (OSI), 34
physical standards (Ethernet LANs), 233-234
choosing, 235-236
enterprise wireless LANs, 238-240
Ethernet types, media, and segment lengths, 235
history of, 234
home office wireless LANs, 236-237
table of, 234
PID (product ID), 855
RA (Router Advertisement), 731
RAM (random access memory), 141
ranges
for global unicast addresses, 695
of usable addresses, 361-362
read-only memory (ROM), 141
recovery
err-disabling recovery, 288-289
password recovery/reset, 835-838
Regional Internet Registries (RIRs), 675
registered public IP networks, 313-315
releases (IOS), 850
reload command, 133-134, 143-145, 156, 834, 840, 846
remark command, 626, 641
remote subnets, 411
replies
ARP, 99
HTTP, 23
ICMP echo replies, 100
requests
ARP (Address Resolution Protocol) requests, 99
HTTP GET requests, 117
ICMP echo requests, 100
reserved networks, 329, 334
resetting passwords, 835-838
resident subnets, 358
restrict mode, 289-292
reverse engineering from ACL to address range, 608-610
reverse routes, testing, 547-549
reversed source/destination IP address, 634-635
right-to-use licenses, 861-862
RIPng (RIP next generation), 679
RIPv2 (Routing Information Protocol Version 2), 434, 437
autosummarization, 454-455
configuration, 443-447
discontiguous classful networks, 454-455
distance vector, 439-440
equal-cost routes, 453-454
full update messages, 440-441
IGPs (interior gateway protocols), 437-438
key features, 442-443
RIP updates, controlling, 452-453
route poisoning, 441-442
split horizon, 441
troubleshooting, 461-462
auto-summary issues, 465
missing/incorrect network commands, 463-464
other router issues, 466
passive interfaces, 464-465
summary, 466
verification, 447
AD (administrative distance), 449-450
show ip protocols command, 450-451, 456-458
show ip route command, 447-449
RIRs (Regional Internet Registries), 675
RJ-45 ports, 46
ROAS (router-on-a-stick), 251, 416
ROM (read-only memory), 141
ROMMON, 830, 836
route poisoning, 441-442
router-on-a-stick (ROAS), 251, 416
router rip command, 468
Router Solicitation (RS), 731
router VLAN trunking, 416
routers, 41, 384
ARM table, 415
auxiliary ports, 398-399
CLI (command-line interface), 390-391
default routers, 83, 93, 489-490
DHCP (Dynamic Host Configuration Protocol) configuration, 478-480
discovering with NDP (Neighbor Discovery Protocol), 731-732

dynamic unicast address configuration, 715

installation

Cisco integrated services routers, 387-388
enterprise routers, 386-388
Internet access routers, 389-390
IPv4, 403, 407

link-local address configuration, 717-718

ROAS (router-on-a-stick), 251, 416

router interfaces

bandwidth, 398
clock rate, 396-397
displaying, 391-393
interface status codes, 393-394
IP addresses, 394-396

router WAN interface status, 583

static unicast address configuration

configuring full 128-bit address, 707-708
enabling IPv6 routing, 708
generating unique interface ID with modified EUI-64, 711-714
verifying, 709-711

troubleshooting

DHCP issues, 571-572
LAN issues, 573-574
verifying IPv6 host connectivity from, 744-747
VLAN (virtual LAN) routing, 249-251
wireless routers, 236

routing. See IPv4 routing; IPv6 routing

Routing Information Protocol Version 2. See RIPv2

routing tables, 447-449
RS (Router Solicitation), 731
running-config file, 142
RXBOOT, 830

S

S0/0/0 status code, 394
same-layer interaction, 24-25
SCP (SSH Copy Protocol), 829-830
scp command, 829

sdm prefer lanbase-routing, 421

Secure Shell (SSH), 133, 176-179, 559-561, 813-814

security

CLI (command-line interface), 168-169
external authentication servers, 175-176
local username/password configuration, 173-175
password security, 135-136
simple password configuration, 169-173
SSH (Secure Shell), 176-179
device hardening

controlling Telnet and SSH access with ACLs, 813-814
definition of, 810
firewalls, 814-816
login banner configuration, 810-812
unused switch interface security, 812-813

IOS passwords, 804
encoding with hasbes, 806-809
encrypting with service password-encryption command, 805-806
biding for local usernames, 810

password recovery/reset, 835-838
port security, 202-203, 287-288
configuration, 203-205
err-disabling recovery, 288-289
MAC addresses, 207-208
protect mode, 289-292
restrict mode, 289-292
shutdown mode, 288-289
verifying, 205-206
violation actions, 207
security levels (log messages), 783
security zones (firewall), 815-817
segments, 31, 106
self-ping, 637-639
SEQ (sequence number), 24, 627-629
serial line. See leased-line WANs
serial number (SN), 855
servers
AAA (authentication, authorization, and accounting) servers, 175-176
DHCP (Dynamic Host Configuration Protocol) servers, 478-484
external authentication servers, 175-176
NTP (Network Time Protocol), 789-791
Telnet servers, 133
web servers, 114
service password-encryption command, 805-806, 819
service providers, 64
service sequence-numbers command, 800
session layer (OSI), 34
setup command, 843, 846
Setup mode (IOS), 843
shared passwords, 169
shorter VLAN configuration example, 256-257
show access-lists command, 604, 611, 627, 633, 641
show controllers command, 397, 401
show crypto key mypubkey rsa command, 188
show dhcp lease command, 183, 188
show flash command, 824-827, 846
show history command, 184, 188
show interface switchport command, 293
show interfaces command, 159, 196-197, 211, 278-280, 283, 297, 392-393, 396, 401, 413, 466, 567, 753
show interfaces description command, 278, 297, 574
show interfaces loopback command, 801
show interfaces serial command, 392
show interfaces status command, 158, 164, 193-194, 278-281, 297
show interfaces switchport command, 259-262, 265, 269, 293-297
show interfaces trunk command, 260-262, 266, 269, 296-297
show interfaces vlan command, 183, 188
show ip access-lists command, 604, 611, 628-630, 633, 641
show ip arp command, 497
show ip default-gateway command, 183, 188
show ip dhcp binding command, 480, 497
show ip dhcp conflict command, 486, 497
show ip dhcp pool command, 480-481, 497
show ip dhcp server statistics command, 480, 497
show ip interface brief command, 392, 396, 401, 468
show ip interface command, 466, 482, 604, 611, 633
show ip nat statistics command, 655-662, 665
show ip nat translations command, 655-665
show ip protocols command, 450-451, 456-458, 468
show ip route command, 360, 391, 413-414, 423, 426-428, 447-449, 468, 531-532, 575-578, 755
show ip route ospf command, 575-576
show ip route static, 424
show ip ssh command, 179, 188
show ipv6 interface brief command, 709-710, 717, 722, 726
show ipv6 interface command, 709-710, 717, 720, 726, 738-739
show ipv6 neighbors command, 745, 748
show ipv6 route command, 716, 726, 754, 757, 770
show ipv6 route connected command, 710, 756
show ipv6 route local command, 755
show ipv6 route static command, 757-763
show ipv6 routers command, 746-748
show license command, 857-863
show license feature command, 858, 863
show license udi command, 855-856, 863
show lldp commands, 801
show lldp entry command, 798
show lldp interface command, 799
show lldp neighbors command, 798
show logging command, 781, 784, 801
show mac address-table aging-time command, 161, 164
show mac address-table command, 159, 164, 293, 297, 391
show mac address-table count command, 161, 164
show mac address-table dynamic address command, 164
show mac address-table dynamic command, 137, 156-157, 162-164, 207-210, 285-286
show mac address-table dynamic interface command, 160, 164
show mac address-table dynamic vlan command, 164
show mac address-table secure command, 207-210
show mac address-table static command, 207, 210
show mac address-table vlan command, 160
show ntp associations command, 791, 801
show ntp status command, 791, 801
show port-security command, 211, 288, 297
show port-security interface command, 205-206, 211, 288-291
show process cpu command, 787
show protocols command, 395-396, 401
show running-config command, 135, 142, 145, 172-173, 183, 188, 195, 210, 603, 627-629, 754, 819, 824, 846
show ssh command, 179, 188
show startup-config command, 142-145, 824
show version command, 833-835, 858-863
show vlan brief command, 254-257, 293, 297
show vlan command, 269, 293-294, 297
show vlan id command, 255, 293, 297
show vlans, 419
show vtp status command, 257, 269, 293, 297
shutdown command, 182, 195-196, 209, 268, 288-289, 297, 391, 400, 785, 788, 813, 819
shutdown mode, 288-289
Simple Mail Transfer Protocol (SMTP), 109
Simple Network Management Protocol (SNMP), 109
single-size subnets, 311-312
site local addresses, 693
size of subnets, 310-312
SLAAC (Stateless Address Auto Configuration), 711, 731, 739-741
slash masks, 343
sliding windows, 112-113
small office/home office (SOHO) LANs, 17, 41-42
SMARTnet, 852
SMTP (Simple Mail Transfer Protocol), 109
SN (serial number), 855
SNA (Systems Network Architecture), 19
SNMP (Simple Network Management Protocol), 109
sockets, 107
software activation
 with Cisco License Manager, 854-855
 manual activation, 855-857
 Cisco Product License Registration Portal, 855-857
 current license status, showing, 857-859
 permanent technology package licenses, adding, 859-861
 with right-to-use licenses, 861-862
 with universal images, 852-853
software configuration
 common command prompts, 140
 configuration files, 141-143
 configuration mode, 138-139
 configuration submodes and contexts, 139-141
SOHO (small office/home office) LANs, 17, 41-42
solicited-node multicast addresses, 720-721
source IP, matching, 617-618
source MAC addresses, 153
source NAT (Network Address Translation), 648
Spanning Tree Protocol (STP), 154-155
speed command, 139-141, 193-194, 209, 279-281, 297, 391, 400, 574
split horizon, 441
SSH (Secure Shell), 133, 176-179, 559-561, 813-814
SSH Copy Protocol. See SCP
standard numbered IPv4 ACLs, 597
 access-list command, 608
 command syntax, 599
 configuration examples, 602-606
 list logic, 598-599
 matching any/all addresses, 602
 matching exact IP address, 599-600
 matching subset of address, 600-601
 reverse engineering from ACL to address range, 608-610
 troubleshooting, 606-607
 verification, 606-607
 wildcard masks, 600-602
star topology, 229, 233
startup-config file, 142
stateful inspection, 815
Stateless Address Auto Configuration (SLAAC), 711, 731, 739-741
stateless DHCPv6, 741
static NAT (Network Address Translation), 648-650, 654-655
static ranges per subnet, choosing, 323-324
static routes
IPv4, 403, 413, 424-428
 configuring, 422-428
 floating static routes, 426
 troubleshooting, 428-430
IPv6, 756, 760-762
 floating static routes, 762-763
 global unicast next-hop address, 758-759
 link-local next-hop address, 759-760
 outgoing interface, 756-757
 static default routes, 760-761
 static host routes, 761-762
 troubleshooting, 765-768
static unicast address configuration (IPv6), 707
configuring full 128-bit address, 707-708
enabling IPv6 routing, 708
generating unique interface ID with modified EUI-64, 711-714
verifying, 709-711
status codes
interface status codes, 393-394
troubleshooting, 278-279
sticky secure MAC addresses, 203
STP (Spanning Tree Protocol), 154-155
straight-through cable pinout, 48-49
subcommands, 139
subdivided networks. See subnets
subinterface numbers, 418
subinterfaces, 416
subnet blocks, 521
subnet masks, 310, 340
borrowing host bits to create subnet bits, 317-318
calculating hosts and subnets in network, 350-352
choosing, 316-318, 506-512
classful IP networks before subnetting, 316-317
converting between formats, 343-346
finding, 510-512
formats for, 342-343
mask formats, 319-320
mismatched masks, 567-569
prefix part, 347-350
sample design, 319
VLSM (variable length subnet masking), 312, 530
adding new subnets to existing VLSM design, 536-538
classful routing protocols, 530-531
classless routing protocols, 530-531
configuration, 531-532
definition of, 528
designing subnet plans with, 533-534
finding VLSM overlaps, 532-536
overlapping subnets, 581-583
recognizing when VLSM is used, 579
verification, 531-532
subnet numbers, 310, 320, 360-361, 513
finding subnets with 9-16 subnet bits, 520-522
finding subnets with 17 or more subnet bits, 522
finding subnets with exactly 8 subnet bits, 519-520
finding subnets with less than 8 subnet bits, 515-519
finding with binary math, 362-363
finding with decimal math, 370-372
finding with magic number, 515
zero subnet, 514
subnet part of IP addresses, 340, 349-350
subnet router anycast addresses, 699, 723
subnet zero, 514
subnets, 83, 91-93, 304. See also subnet masks
analyzing with binary math, 362
binary practice problems, 364-366
Boolean math, 367
finding range of addresses, 367
finding subnet broadcast addresses, 364
finding subnet IDs, 362-363
shortcut for binary process, 366-367
analyzing with decimal math
analysis with easy masks, 368-369
finding subnet broadcast addresses, 372-374
finding subnet IDs, 370-372
predictability in interesting octet, 369-370
reference table: DDN mask values and binary equivalent, 374
analyzing subnet needs
number of hosts per subnet, 309
number of subnets, 308-309
size of subnets, 310-313
which hosts are in which subnet, 306-308
broadcast addresses, 310, 518
building list of, 320-321
calculating per network, 350-352
definition of, 305, 358
design choices
choosing IP network, 316
classful networks, 315-316
list of all subnets, 320-321
public IP networks, 313-315
subnet masks, 316-320, 506-512
DHCP Relay, 475-476, 481-482
elephant of network with four subnets, 358-359
IPv6
assigning to internetwork topology, 699-700
with global unicast addresses, 696-699
interface IDs, 698
with unique local addresses, 701-702
operational versus design view of, 306
overlapping subnets
without VLSM, 579-581
with VLSM, 581-583
planning implementation, 321-324
range of usable addresses, 361-362
remote subnets, 411
resident subnets, 358
routing between VLANs, 415-419
simple example, 305
size, 310-312
subnet blocks, 521
subnet broadcast, 320, 361
subnet numbers, 310, 320, 360-361, 513
finding subnets with 9-16 subnet bits, 520-522
finding subnets with 17 or more subnet bits, 522
finding subnets with exactly 8 subnet bits, 519-520
finding subnets with less than 8 subnet bits, 515-519
finding with binary math, 362-363
finding with decimal math, 370-372
finding with magic number, 515
zero subnet, 514
subset of IP address, matching, 600-601
switches, 41. See also LAN switching
access switches, 228, 232
auto-mdix, 51
Cisco Catalyst switches, 128-129
collision domains and, 222-223
configuration files, 141-143
DHCP (Dynamic Host Configuration Protocol), 182-183
distribution switches, 228, 232
history buffer commands, 184
interfaces
Layer 1 problems, 282-284
speed and duplex issues, 279-282
status codes, 278-279
troubleshooting, 278-284
IPv4
configuring on switch, 181-182
dynamic IP address configuration with DHCP, 182-183
host and switch IP settings, 179-181
verifying on switch, 183-184
Layer 2 switches, 181, 249
Layer 3 switches, 181, 249-252
port security, 202-203, 287-288
configuration, 203-205
err-disabled recovery, 288-289
MAC addresses, 207-208
restrict mode, 289-292
shutdown mode, 288-289
verifying, 205-206
violation actions, 207
predicting where switches will forward frames, 284-287
security, 168-169
external authentication servers, 175-176
local username/password configuration, 173-175
simple password configuration, 169-173
SSH (Secure Shell), 176-179
switch forwarding and filtering decisions, 150-153
switch interface configuration, 190-192
autonegotiation, 198-202
description, 193-194
duplex, 193-194
enabling/disabling interfaces, 195-197
multiple interfaces, 195
removing configuration, 197-198
speed, 193-194
switch interfaces, 158-159
voice switches, 262
switching table. See MAC address table
switchport access command, 226
switchport access vlan command, 253, 256-257, 265-268, 293, 813, 819
switchport mode access command, 203-205, 253, 256, 265-266, 813, 819
switchport mode command, 210, 258, 268
switchport mode dynamic auto command, 294
switchport mode dynamic desirable command, 260
switchport mode trunk command, 203, 258, 295, 417
switchport nonegotiate command, 262, 268, 295
switchport port-security command, 203-205
switchport port-security mac-address command, 204-205, 210
switchport port-security mac-address sticky command, 204-206, 210
switchport port-security maximum command, 203, 210
switchport port-security violation command, 203, 207, 210, 287, 297
switchport trunk allowed vlan command, 269
switchport trunk encapsulation command, 258, 268
switchport trunk native vlan command, 268, 813, 819
switchport voice vlan command, 264-266, 269
SYN flags, 110
Syslog, 780
configuration, 784-786
debug command, 786-787
log message format, 782
log message security levels, 783
sending messages to users, 780-781
storing log messages for review, 781-782
verification, 784-786
Systems Network Architecture (SNA), 19

T

T1. See leased-line WANs

Tables

ARP (Address Resolution Protocol) tables, 100, 415, 490
IP routing tables, 83, 94-95
MAC address table, 153-154
 aging, 161
 clearing, 162
 finding entries in, 159-160
 multiple switches, 162-163
 predicting contents of, 284-286
 showing, 156-157
routers, 447-449
tagging (VLAN), 246-248
TCP (Transmission Control Protocol), 23, 105-106
 compared to UDP (User Datagram Protocol), 104
 connection establishment and termination, 110-111
 error recovery and reliability, 23-24, 111-112
 flow control, 112-113
 multiplexing, 106-108
 popular applications, 108-109
 port numbers, 107-108
 segments, 106
 sockets, 107
 supported features, 104-105
tcp keyword, 618
TCP/IP (Transmission Control Protocol/Internet Protocol), 14, 20-21. See also IPv4 addresses; IPv6 addresses; TCP (Transmission Control Protocol)
 application layer, 22-23
 compared to OSI, 32-33
 data encapsulation terminology, 30-32
 history of, 19-20
 HTTP (Hypertext Transfer Protocol), 22-23
 link layer, 28-30
 network layer, 25-28
 original versus modern TCP/IP models, 30
 RFCs (Requests for Comments), 20
 transport layer, 23-25
 UDP (User Datagram Protocol), 104-105, 113-114
web browsing
 DNS (Domain Name System)
 resolution, 115-117
 HTTP (Hypertext Transfer Protocol), 114, 117-118
 identifying receiving application, 118-119
 URLs (Uniform Resource Identifiers), 114-115
Telecommunications Industry Association (TIA), 235
Telnet, 133, 559
 controlling access with ACLs, 813-814
 examples, 560-561
 passwords, 169
 when to use, 559-560
terminal history size command, 184, 188
terminal monitor command, 781, 787, 801
terminal no monitor command, 801
testing. See troubleshooting
TFTP (Trivial File Transfer Protocol), 109, 478, 828
three-tier campus design, 230-232
TIA (Telecommunications Industry Association), 235
time, setting, 788-789
time management for Cisco Certification Exam, 869-870
time-period command, 845
Time To Live (TTL), 554
Time-to-Live Exceeded (TTL Exceeded), 554
timezone, 788-789
topologies of campus LANs
 three-tier campus design, 230-232
topology design terminology, 232-233
two-tier campus design, 227-230
troubleshooting command, 553-559, 572, 744-745, 748
traceroute command, 743-744, 748
tracert command, 748
trailer fields (Ethernet), 52
transferring files, 117-118
Transmission Control Protocol. See TCP
Transmission Control Protocol/Internet Protocol. See TCP/IP
transmitting frames, 412
transparent bridges, 221-222
transport input all command, 178
transport input command, 178, 187, 391, 818
transport input none command, 178
transport input ssh command, 178
transport input telnet ssh command, 178
transport layer (OSI), 34
transport layer (TCP/IP), 23
adjacent-layer interaction, 24-25
same-layer interaction, 24-25
TCP (Transmission Control Protocol), 105-106
 compared to UDP (User Datagram Protocol), 104
 connection establishment and termination, 110-111
 error recovery and reliability, 23-24, 111-112
 flow control, 112-113
 multiplexing, 106-108
 popular applications, 108-109
 port numbers, 107-108
 segments, 106
 sockets, 107
 supported features, 104-105
UDP (User Datagram Protocol), 104-105, 113-114
Trivial File Transfer Protocol (TFTP), 109, 478, 828
troubleshooting
definition of, 271
DHCP (Dynamic Host Configuration Protocol), 481-485
Ethernet LANs, 282-284
interfaces
 Layer 1 problems, 282-284
 speed and duplex issues, 279-282
 status codes, 278-279
IPv4 ACLs (access control lists)
 ACL behavior in network, 631-633
 ACL interactions with router-generated packets, 637-639
 common syntax mistakes, 635
 inbound ACL filters routing protocol packets, 635-636
 reversed source/destination IP address, 634-635
 troubleshooting commands, 633-634
IPv4 routing, 564
 default router IP address setting, 570
 DHCP issues, 571-572
 DNS problems, 569-570
 incorrect addressing plans, 579-583
 IP forwarding issues, 575-578
 LAN issues, 573-574
 mismatched IPv4 settings, 566-567
 mismatched masks, 567-569
 packet filtering with access lists, 584
 router WAN interface status, 583
IPv6 addressing
 verifying host connectivity from hosts, 741-744
 verifying host connectivity from nearby routers, 744-747
methodologies, 274-275
with ping command, 543-544
 ping with names and IP addresses, 552-553
testing LAN neighbors with extended ping, 550-551

testing LAN neighbors with standard ping, 549-550

testing longer routes from near source of problem, 545-547

testing reverse routes with extended ping, 547-549

testing WAN neighbors with extended ping, 551-552

dode

port security, 287-292
predicting where switches will forward frames, 284-287
problem isolation with traceroute, 275-277, 554-559
RIPv2, 461-466
with SSH (Secure Shell), 559-561
standard numbered ACLs (access control lists), 606-607
static IPv4 routes, 428-430, 765-768
with Telnet, 559-561
with traceroute command, 553-559
VLANs (virtual LANs), 292-296

trunking, 246, 416-417
802.1Q, 248-249
configuration, 258-262
ISL (Inter-Switch Link), 248-249
mismatched trunking operational states, 294-296
VLAN tagging, 246-248
VTP (VLAN Trunking Protocol), 257

TTL (Time To Live), 554

TTL Exceeded (Time-to-Live Exceeded), 554
tutorials for Cisco Certification Exam, 868-869
two-switch topology, 162-163
two-tier campus design, 227-230

UDI (unique device identifier), 855

UDP (User Datagram Protocol), 23, 113-114

compared to TCP (Transmission Control Protocol), 104
port numbers, matching, 618-621
supported features, 104-105
unabbreviated addresses (IPv6), 680
undebug all command, 145
undefined VLANs, 293

unicast addresses, 53, 328, 688
dynamic unicast address configuration (IPv6), 715
static unicast address configuration (IPv6)
configuring full 128-bit address, 707-708
enabling IPv6 routing, 708-711
generating unique interface ID with modified EUI-64, 711-714

unicast IP addresses, 358, 491

Uniform Resource Identifiers (URI), 114-115

Uniform Resource Locators (URLs), 22
unique device identifier (UDI), 855
unique local addresses, 701
definition of, 692-693
importance of, 702-703
subnetting with, 701-702

universal addresses, 53
universal images (IOS), 851-853

Universal Resource Identifiers (URIs), 22
unknown addresses (IPv6), 723
unknown unicast frames, flooding, 154
unshielded twisted-pair. See UTP (unshielded twisted-pair) cables

unused switch interface security, 812-813
updates (RIP), 452-453
VLANs (virtual LANs) 963
upgrading IOS images, 824-830
URLs (Uniform Resource Identifiers), 22, 114-115
URLs (Uniform Resource Locators), 22
usbflash file systems, 824
User Datagram Protocol. See UDP
user EXEC mode, 133-135
user mode
external authentication servers, 175-176
passwords
local password configuration, 173-175
simple password configuration, 169-173
username command, 173, 818, 829, 845
username password command, 175, 810
username privilege 15 command, 829
username secret command, 174-175, 187, 810
usernames
hiding passwords for, 810
local username configuration, 173-175
users, sending messages to, 780-781
UTP (unshielded twisted-pair) cables, 43-46
cabling pinouts for 10BASE-T and 100BASE-T, 48-50
cabling pinouts for 1000BASE-T, 51
UTP Ethernet links, 46-47

VLANs (virtual LANs) 225-226, 244-246
configuration, 252-253
data and voice VLANs, 264-266
full VLAN configuration example, 253-256
Layer 3 switches, 420-422
shorter VLAN configuration example, 256-257
trunking, 258-262
default VLANs, 253
IP telephony, 262-267
VLAN IDs, 246
vlan command, 253, 265, 268
VLAN IDs, 246
VLAN Trunking Protocol (VTP), 257
VLSM (variable length subnet mask), 312, 530
adding new subnets to existing VLSM design, 536-538
classful routing protocols, 530-531
classless routing protocols, 530-531
definition of, 528
designing subnet plans with, 533-534
finding VLSM overlaps, 532-536
verification, 531-532
overlapping subnets, 581-583
recognizing when VLSM is used, 579
voice switches, 262
VTP (VLAN Trunking Protocol), 257
vtp mode command, 257, 268
Wireless LAN Controllers (WLCs), 239
wireless routers, 236
WLANs (wireless LANs)
 enterprise wireless LANs, 238-240
 home office wireless LANs, 236-237
WLCs (Wireless LAN Controllers), 239
World Wide Web (WWW), 109
write erase command, 145, 843, 846
write-memory command, 841, 845
WWW (World Wide Web), 109

zero subnet, 514