CCNA
Routing and
Switching
ICND2 200-105
Official Cert Guide

WENDELL ODOM, CCIE No. 1624
with contributing author
SCOTT HOGG, CCIE No. 5133
Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub
Copy Editor: Bill McManus
Product Line Manager: Brett Bartow
Technical Editor(s): Aubrey Adams, Elan Beer
Business Operation Manager, Cisco Press: Jan Cornelissen
Editorial Assistant: Vanessa Evans
Managing Editor: Sandra Schroeder
Cover Designer: Chuti Prasertsith
Development Editor: Drew Cupp
Composition: Bronkella Publishing
Senior Project Editor: Tonya Simpson
Indexer: Publishing Works, Inc.
Proofreader: Paula Lowell
About the Author

Wendell Odom, CCIE No. 1624 (Emeritus), has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification study tools. This book is his 27th edition of some product for Pearson, and he is the author of all editions of the CCNA Routing and Switching and CCENT Cert Guides from Cisco Press. He has written books about topics from networking basics, and certification guides throughout the years for CCENT, CCNA R&S, CCNA DC, CCNP ROUTE, CCNP QoS, and CCIE R&S. He helped develop the popular Pearson Network Simulator. He maintains study tools, links to his blogs, and other resources at http://www.certskills.com.

About the Contributing Author

Scott Hogg, CCIE No. 5133, CISSP No. 4610, is the CTO for Global Technology Resources, Inc. (GTRI). Scott authored the Cisco Press book IPv6 Security. Scott is a Cisco Champion, founding member of the Rocky Mountain IPv6 Task Force (RMv6TF), and a member of the Infoblox IPv6 Center of Excellence (COE). Scott is a frequent presenter and writer on topics including IPv6, SDN, Cloud, and Security.
About the Technical Reviewers

Aubrey Adams is a Cisco Networking Academy instructor in Perth, Western Australia. With a background in telecommunications design, Aubrey has qualifications in electronic engineering and management; graduate diplomas in computing and education; and associated industry certifications. He has taught across a broad range of both related vocational and education training areas and university courses. Since 2007, Aubrey has technically reviewed a number of Pearson Education and Cisco Press publications, including video, simulation, and online products.

Elan Beer, CCIE No. 1837, is a senior consultant and Cisco instructor specializing in data center architecture and multiprotocol network design. For the past 27 years, Elan has designed networks and trained thousands of industry experts in data center architecture, routing, and switching. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing data center and network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures via his international clientele. Elan has used his expertise to design and troubleshoot data centers and internetworks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting as well as service provider technologies. In 1993, Elan was among the first to obtain the Cisco Certified System Instructor (CCSI) certification, and in 1996, he was among the first to attain Cisco System’s highest technical certification, the Cisco Certified Internetworking Expert. Since then, Elan has been involved in numerous large-scale data center and telecommunications networking projects worldwide.
Dedications

For Kris Odom, my wonderful wife: The best part of everything we do together in life.
Love you, doll.
Acknowledgments

Brett Bartow again served as associate publisher and executive editor on the book. We’ve worked together on probably 20+ titles now. Besides the usual wisdom and good decision making to guide the project, he was the driving force behind adding all the new apps to the DVD/web. As always, Brett has been a pleasure to work with, and an important part of deciding what the entire Official Cert Guide series direction should be.

As part of writing these books, we work in concert with Cisco. A special thanks goes out to various people on the Cisco team who work with Pearson to create Cisco Press books. In particular, Greg Cote, Joe Stralo, and Phil Vancil were a great help while we worked on these titles.

Drew Cupp did his usual wonderful job with this book as development editor. He took over the job for this book during a pretty high-stress and high-load timeframe, and delivered with excellence. Thanks Drew for jumping in and getting into the minutia while keeping the big-picture features on track. And thanks for the work on the online/DVD elements as well!

Aubrey Adams and Elan Beer both did a great job as technical editors for this book, just as they did for the ICND1 100-105 Cert Guide. This book presented a little more of a challenge, from the breadth of some of the new topics, just keeping focus with such a long pair of books in a short time frame. Many thanks to Aubrey and Elan, for the timely input, for taking the time to read and think about every new part of the book, for finding those small technical areas, and for telling me where I need to do more. Truly, it’s a much better book because of the two of you.

Hank Preston of Cisco Systems, IT as a Service Architect, and co-author of the Cisco Press CCNA Cloud CLDADM 210-455 Cert Guide, gave me some valuable assistance when researching before writing the cloud computing chapter (27). Hank helped me refine my understanding based on his great experience with helping Cisco customers implement cloud computing. Hank did not write the chapter, but his insights definitely made the chapter much better and more realistic.

Welcome and thanks to Lisa Matthews for her work on the DVD and online tools, like the Key Topics reviews. That work included many new math-related apps in the ICND1 book, but also many new features that sit on the DVD and on this book’s website as review tools. Thanks for the hard work, Lisa!

I love the magic wand that is production. Presto, Word docs with gobs of queries and comments feed into the machine, and out pops these beautiful books. Thanks to Sandra Schroeder, Tonya Simpson, and all the production team for making the magic happen. From fixing all my grammar, crummy word choices, and passive-voice sentences to pulling the design and layout together, they do it all; thanks for putting it all together and making it look easy. And Tonya, once again getting the “opportunity” to manage two books with many elements at the same timeline. Once again, the juggling act continues, and once again, it is done well and beautifully. Thanks for managing the whole production process again.
The figures in the book continue to be an important part of the book, by design, with a
great deal of attention paid to choosing how to use figures to communicate ideas. Mike
Tanamachi, illustrator and mind reader, did his usual great job creating the finished fig-
ure files once again. Thanks for the usual fine work, Mike!

I could not have made the timeline for this book without Chris Burns of Certskills
Professional. Chris owns the mind map process now, owns big parts of the lab develop-
ment process for the associated labs added to my blogs, does various tasks related to
specific chapters, and then catches anything I need to toss over my shoulder so I can
focus on the books. Chris, you are the man!

Sean Wilkins played the largest role he’s played so far with one of my books. A long-
time co-collaborator with Pearson’s CCNA Simulator, Sean did a lot of technology work
behind the scenes. No way the books are out on time without Sean’s efforts; thanks for
the great job, Sean!

A special thanks to you readers who submit suggestions and point out possible errors,
and especially to those of you who post online at the Cisco Learning Network. Without
question, past comments I have received directly and “overheard” by participating at
CLN have made this edition a better book.

Thanks to my wonderful wife, Kris, who helps make this sometimes challenging work
lifestyle a breeze. I love walking this journey with you, doll. Thanks to my daughter
Hannah. And thanks to Jesus Christ, Lord of everything in my life.
Contents at a Glance

Introduction xxxv
Your Study Plan 2

Part I Ethernet LANs 13
Chapter 1 Implementing Ethernet Virtual LANs 14
Chapter 2 Spanning Tree Protocol Concepts 42
Chapter 3 Spanning Tree Protocol Implementation 68
Chapter 4 LAN Troubleshooting 98
Chapter 5 VLAN Trunking Protocol 120
Chapter 6 Miscellaneous LAN Topics 142
Part I Review 164

Part II IPv4 Routing Protocols 169
Chapter 7 Understanding OSPF Concepts 169
Chapter 8 Implementing OSPF for IPv4 194
Chapter 9 Understanding EIGRP Concepts 224
Chapter 10 Implementing EIGRP for IPv4 244
Chapter 11 Troubleshooting IPv4 Routing Protocols 272
Chapter 12 Implementing External BGP 300
Part II Review 324

Part III Wide-Area Networks 327
Chapter 13 Implementing Point-to-Point WANs 328
Chapter 14 Private WANs with Ethernet and MPLS 362
Chapter 15 Private WANs with Internet VPN 386
Part III Review 434

Part IV IPv4 Services: ACLs and QoS 437
Chapter 16 Basic IPv4 Access Control Lists 438
Chapter 17 Advanced IPv4 Access Control Lists 460
Chapter 18 Quality of Service (QoS) 488
Part IV Review 516
Part V IPv4 Routing and Troubleshooting 519
Chapter 19 IPv4 Routing in the LAN 520
Chapter 20 Implementing HSRP for First-Hop Routing 544
Chapter 21 Troubleshooting IPv4 Routing 566
Part V Review 588

Part VI IPv6 591
Chapter 22 IPv6 Routing Operation and Troubleshooting 592
Chapter 23 Implementing OSPF for IPv6 616
Chapter 24 Implementing EIGRP for IPv6 644
Chapter 25 IPv6 Access Control Lists 664
Part VI Review 688

Part VII Miscellaneous 691
Chapter 26 Network Management 692
Chapter 27 Cloud Computing 730
Chapter 28 SDN and Network Programmability 760
Part VII Review 780

Part VIII Final Prep 783
Chapter 29 Final Review 784

Part IX Appendixes 801
Appendix A Numeric Reference Tables 803
Appendix B Technical Content 810
Glossary 813
Index 852

DVD Appendixes
Appendix C Answers to the “Do I Know This Already?” Quizzes
Appendix D Practice for Chapter 16: Basic IPv4 Access Control Lists
Appendix E Mind Map Solutions
Appendix F Study Planner
Appendix G Learning IPv4 Routes with RIPv2
Appendix H Understanding Frame Relay Concepts
Appendix I Implementing Frame Relay
Appendix J IPv4 Troubleshooting Tools
Appendix K Topics from Previous Editions
Appendix L Exam Topic Cross Reference
Contents

Introduction xxxv

Your Study Plan 2
A Brief Perspective on Cisco Certification Exams 2
Five Study Plan Steps 3
 Step 1: Think in Terms of Parts and Chapters 3
 Step 2: Build Your Study Habits Around the Chapter 4
 Step 3: Use Book Parts for Major Milestones 5
 Step 4: Use the Final Review Chapter to Refine Skills and Uncover Weaknesses 6
 Step 5: Set Goals and Track Your Progress 7
Things to Do Before Starting the First Chapter 8
 Find Review Activities on the Web and DVD 8
 Should I Plan to Use the Two-Exam Path or One-Exam Path? 8
 Study Options for Those Taking the 200-125 CCNA Exam 9
 Other Small Tasks Before Getting Started 10
Getting Started: Now 11

Part I Ethernet LANs 13

Chapter 1 Implementing Ethernet Virtual LANs 14
 “Do I Know This Already?” Quiz 14
 Foundation Topics 16
 Virtual LAN Concepts 16
 Creating Multiswitch VLANs Using Trunking 18
 VLAN Tagging Concepts 18
 The 802.1Q and ISL VLAN Trunking Protocols 20
 Forwarding Data Between VLANs 21
 Routing Packets Between VLANs with a Router 21
 Routing Packets with a Layer 3 Switch 23
 VLAN and VLAN Trunking Configuration and Verification 24
 Creating VLANs and Assigning Access VLANs to an Interface 24
 VLAN Configuration Example 1: Full VLAN Configuration 25
 VLAN Configuration Example 2: Shorter VLAN Configuration 28
 VLAN Trunking Protocol 29
 VLAN Trunking Configuration 30
Chapter 2 Spanning Tree Protocol Concepts 42

“Do I Know This Already?” Quiz 43
Foundation Topics 44
Spanning Tree Protocol (IEEE 802.1D) 44
 The Need for Spanning Tree 45
 What IEEE 802.1D Spanning Tree Does 47
How Spanning Tree Works 48
 The STP Bridge ID and Hello BPDU 49
 Electing the Root Switch 50
 Choosing Each Switch's Root Port 52
 Choosing the Designated Port on Each LAN Segment 54
Influencing and Changing the STP Topology 54
 Making Configuration Changes to Influence the STP Topology 55
 Reacting to State Changes That Affect the STP Topology 55
 How Switches React to Changes with STP 56
 Changing Interface States with STP 57
Rapid STP (IEEE 802.1w) Concepts 58
 Comparing STP and RSTP 59
 RSTP and the Alternate (Root) Port Role 60
 RSTP States and Processes 62
 RSTP and the Backup (Designated) Port Role 62
 RSTP Port Types 63
Optional STP Features 64
 EtherChannel 64
 PortFast 65
 BPDU Guard 65
Chapter Review 66

Chapter 3 Spanning Tree Protocol Implementation 68

“Do I Know This Already?” Quiz 69
Foundation Topics 71
Implementing STP 71
Setting the STP Mode 72
Connecting STP Concepts to STP Configuration Options 72
 Per-VLAN Configuration Settings 72
 The Bridge ID and System ID Extension 73
 Per-VLAN Port Costs 74
 STP Configuration Option Summary 74
Verifying STP Operation 75
Configuring STP Port Costs 78
Configuring Priority to Influence the Root Election 80
Implementing Optional STP Features 81
 Configuring PortFast and BPDU Guard 81
 Configuring EtherChannel 84
 Configuring a Manual EtherChannel 84
 Configuring Dynamic EtherChannels 86
Implementing RSTP 88
 Identifying the STP Mode on a Catalyst Switch 88
 RSTP Port Roles 91
 RSTP Port States 92
 RSTP Port Types 92
Chapter Review 94

Chapter 4 LAN Troubleshooting 98
“Do I Know This Already?” Quiz 99
Foundation Topics 99
Troubleshooting STP 99
 Determining the Root Switch 99
 Determining the Root Port on Nonroot Switches 101
 STP Tiebreakers When Choosing the Root Port 102
 Suggestions for Attacking Root Port Problems on the Exam 103
 Determining the Designated Port on Each LAN Segment 104
 Suggestions for Attacking Designated Port Problems on the Exam 105
 STP Convergence 105
Troubleshooting Layer 2 EtherChannel 106
 Incorrect Options on the channel-group Command 106
 Configuration Checks Before Adding Interfaces to EtherChannels 108
Chapter 5 VLAN Trunking Protocol 120
“Do I Know This Already?” Quiz 120
Foundation Topics 122
VLAN Trunking Protocol (VTP) Concepts 122
Basic VTP Operation 122
 Synchronizing the VTP Database 124
 Requirements for VTP to Work Between Two Switches 126
VTP Version 1 Versus Version 2 127
VTP Pruning 127
Summary of VTP Features 128
VTP Configuration and Verification 129
 Using VTP: Configuring Servers and Clients 129
 Verifying Switches Synchronized Databases 131
 Storing the VTP and Related Configuration 134
 Avoiding Using VTP 135
VTP Troubleshooting 135
 Determining Why VTP Is Not Synchronizing 136
 Common Rejections When Configuring VTP 137
 Problems When Adding Switches to a Network 137
Chapter Review 139

Chapter 6 Miscellaneous LAN Topics 142
“Do I Know This Already?” Quiz 143
Foundation Topics 144
Securing Access with IEEE 802.1x 144

Chapter Review 119
AAA Authentication 147
 AAA Login Process 147
 TACACS+ and RADIUS Protocols 147
 AAA Configuration Examples 148
DHCP Snooping 150
 DHCP Snooping Basics 151
 An Example DHCP-based Attack 152
 How DHCP Snooping Works 152
 Summarizing DHCP Snooping Features 154
Switch Stacking and Chassis Aggregation 155
 Traditional Access Switching Without Stacking 155
 Switch Stacking of Access Layer Switches 156
 Switch Stack Operation as a Single Logical Switch 157
 Cisco FlexStack and FlexStack-Plus 158
 Chassis Aggregation 159
 High Availability with a Distribution/Core Switch 159
 Improving Design and Availability with Chassis Aggregation 160
Chapter Review 162

Part I Review 164

Part II IPv4 Routing Protocols 169

Chapter 7 Understanding OSPF Concepts 170
 “Do I Know This Already?” Quiz 170
 Foundation Topics 172
 Comparing Dynamic Routing Protocol Features 172
 Routing Protocol Functions 172
 Interior and Exterior Routing Protocols 173
 Comparing IGPs 175
 IGP Routing Protocol Algorithms 175
 Metrics 175
 Other IGP Comparisons 176
 Administrative Distance 177
 OSPF Concepts and Operation 178
 OSPF Overview 179
 Topology Information and LSAs 179
 Applying Dijkstra SPF Math to Find the Best Routes 180
Chapter 9 Understanding EIGRP Concepts 224

“Do I Know This Already?” Quiz 224

Foundation Topics 226
EIGRP and Distance Vector Routing Protocols 226
Introduction to EIGRP 226
Basic Distance Vector Routing Protocol Features 227
The Concept of a Distance and a Vector 228
Full Update Messages and Split Horizon 229
Route Poisoning 231
EIGRP as an Advanced DV Protocol 232
EIGRP Sends Partial Update Messages, As Needed 232
EIGRP Maintains Neighbor Status Using Hello 233
Summary of Interior Routing Protocol Features 233
EIGRP Concepts and Operation 234
EIGRP Neighbors 234
Exchanging EIGRP Topology Information 235
Calculating the Best Routes for the Routing Table 236
The EIGRP Metric Calculation 236
An Example of Calculated EIGRP Metrics 237
Caveats with Bandwidth on Serial Links 238
EIGRP Convergence 239
Feasible Distance and Reported Distance 240
EIGRP Successors and Feasible Successors 241
The Query and Reply Process 242
Chapter Review 243

Chapter 10 Implementing EIGRP for IPv4 244

“Do I Know This Already?” Quiz 244

Foundation Topics 246
Core EIGRP Configuration and Verification 246
EIGRP Configuration 246
Configuring EIGRP Using a Wildcard Mask 248
Verifying EIGRP Core Features 249
Finding the Interfaces on Which EIGRP Is Enabled 250
Displaying EIGRP Neighbor Status 253
Displaying the IPv4 Routing Table 253
EIGRP Metrics, Successors, and Feasible Successors 255
Viewing the EIGRP Topology Table 255
Finding Successor Routes 257
Finding Feasible Successor Routes 258
Convergence Using the Feasible Successor Route 260
Examining the Metric Components 262
Other EIGRP Configuration Settings 262
Load Balancing Across Multiple EIGRP Routes 263
Tuning the EIGRP Metric Calculation 265
Autosummarization and Discontiguous Classful Networks 266
Automatic Summarization at the Boundary of a Classful Network 266
Discontiguous Classful Networks 267
Chapter Review 269

Chapter 11 Troubleshooting IPv4 Routing Protocols 272
“Do I Know This Already?” Quiz 272
Foundation Topics 273
Perspectives on Troubleshooting Routing Protocol Problems 273
Interfaces Enabled with a Routing Protocol 274
EIGRP Interface Troubleshooting 275
Examining Working EIGRP Interfaces 276
Examining the Problems with EIGRP Interfaces 278
OSPF Interface Troubleshooting 281
Neighbor Relationships 284
EIGRP Neighbor Verification Checks 285
EIGRP Neighbor Troubleshooting Example 286
OSPF Neighbor Troubleshooting 288
Finding Area Mismatches 290
Finding Duplicate OSPF Router IDs 291
Finding OSPF Hello and Dead Timer Mismatches 293
Other OSPF Issues 294
Shutting Down the OSPF Process 294
Mismatched MTU Settings 296
Chapter Review 296
Chapter 12 Implementing External BGP 300

“Do I Know This Already?” Quiz 300

Foundation Topics 302

BGP Concepts 302

- Advertising Routes with BGP 303
- Internal and External BGP 304
- Choosing the Best Routes with BGP 305
- eBGP and the Internet Edge 306
 - Internet Edge Designs and Terminology 306
- Advertising the Enterprise Public Prefix into the Internet 307
- Learning Default Routes from the ISP 309

eBGP Configuration and Verification 309

- BGP Configuration Concepts 310
- Configuring eBGP Neighbors Using Link Addresses 311
 - Verifying eBGP Neighbors 312
 - Administratively Disabling Neighbors 314
- Injecting BGP Table Entries with the network Command 314
 - Injecting Routes for a Classful Network 315
 - Advertising Subnets to the ISP 318
 - Advertising a Single Prefix with a Static Discard Route 319
- Learning a Default Route from the ISP 320

Chapter Review 321

Part II Review 324

Part III Wide-Area Networks 327

Chapter 13 Implementing Point-to-Point WANs 328

“Do I Know This Already?” Quiz 328

Foundation Topics 330

Leased-Line WANs with HDLC 330

- Layer 1 Leased Lines 331
 - The Physical Components of a Leased Line 332
 - The Role of the CSU/DSU 334
 - Building a WAN Link in a Lab 335
- Layer 2 Leased Lines with HDLC 336
 - Configuring HDLC 337
Leased-Line WANs with PPP 340
 PPP Concepts 340
 PPP Framing 341
 PPP Control Protocols 341
 PPP Authentication 342
 Implementing PPP 343
 Implementing PPP CHAP 344
 Implementing PPP PAP 346
 Implementing Multilink PPP 347
 Multilink PPP Concepts 348
 Configuring MLPPP 349
 Verifying MLPPP 351
 Troubleshooting Serial Links 353
 Troubleshooting Layer 1 Problems 354
 Troubleshooting Layer 2 Problems 354
 Keepalive Failure 355
 PAP and CHAP Authentication Failure 356
 Troubleshooting Layer 3 Problems 357
 Chapter Review 358

Chapter 14 Private WANs with Ethernet and MPLS 362
 “Do I Know This Already?” Quiz 363
 Foundation Topics 364
 Metro Ethernet 364
 Metro Ethernet Physical Design and Topology 365
 Ethernet WAN Services and Topologies 366
 Ethernet Line Service (Point-to-Point) 367
 Ethernet LAN Service (Full Mesh) 368
 Ethernet Tree Service (Hub and Spoke) 369
 Layer 3 Design Using Metro Ethernet 370
 Layer 3 Design with E-Line Service 370
 Layer 3 Design with E-LAN Service 371
 Layer 3 Design with E-Tree Service 372
 Ethernet Virtual Circuit Bandwidth Profiles 373
 Charging for the Data (Bandwidth) Used 373
 Controlling Overages with Policing and Shaping 374
Multiprotocol Label Switching (MPLS) 375
MPLS VPN Physical Design and Topology 377
MPLS and Quality of Service 378
Layer 3 with MPLS VPN 379
OSPF Area Design with MPLS VPN 381
Routing Protocol Challenges with EIGRP 382
Chapter Review 383

Chapter 15 Private WANs with Internet VPN 386
“Do I Know This Already?” Quiz 386
Foundation Topics 389
Internet Access and Internet VPN Fundamentals 389
Internet Access 389
Digital Subscriber Line 390
Cable Internet 391
Wireless WAN (3G, 4G, LTE) 392
Fiber Internet Access 393
Internet VPN Fundamentals 393
Site-to-Site VPNs with IPsec 395
Client VPNs with SSL 396
GRE Tunnels and DMVPN 397
GRE Tunnel Concepts 398
Routing over GRE Tunnels 398
GRE Tunnels over the Unsecured Network 400
Configuring GRE Tunnels 402
Verifying a GRE Tunnel 404
Troubleshooting GRE Tunnels 406
Tunnel Interfaces and Interface State 406
Layer 3 Issues for Tunnel Interfaces 409
Issues with ACLs and Security 409
Multipoint Internet VPNs Using DMVPN 410
PPP over Ethernet 413
PPPoE Concepts 414
PPPoE Configuration 415
PPPoE Configuration Breakdown: Dialers and Layer 1 416
PPPoE Configuration Breakdown: PPP and Layer 2 417
PPPoE Configuration Breakdown: Layer 3 417
Practice Applying Standard IP ACLs 453
Practice Building access-list Commands 454
Reverse Engineering from ACL to Address Range 454
Chapter Review 456

Chapter 17 Advanced IPv4 Access Control Lists 460
“Do I Know This Already?” Quiz 461
Foundation Topics 462
Extended Numbered IP Access Control Lists 462
Matching the Protocol, Source IP, and Destination IP 463
Matching TCP and UDP Port Numbers 464
Extended IP ACL Configuration 467
Extended IP Access Lists: Example 1 468
Extended IP Access Lists: Example 2 469
Practice Building access-list Commands 470
Named ACLs and ACL Editing 471
Named IP Access Lists 471
Editing ACLs Using Sequence Numbers 473
Numbered ACL Configuration Versus Named ACL Configuration 475
ACL Implementation Considerations 476
Troubleshooting with IPv4 ACLs 477
Analyzing ACL Behavior in a Network 477
ACL Troubleshooting Commands 479
Example Issue: Reversed Source/Destination IP Addresses 480
Steps 3D and 3E: Common Syntax Mistakes 481
Example Issue: Inbound ACL Filters Routing Protocol Packets 481
ACL Interactions with Router-Generated Packets 483
Local ACLs and a Ping from a Router 483
Router Self-Ping of a Serial Interface IPv4 Address 483
Router Self-Ping of an Ethernet Interface IPv4 Address 484
Chapter Review 485

Chapter 18 Quality of Service (QoS) 488
“Do I Know This Already?” Quiz 488
Foundation Topics 490
Introduction to QoS 490
QoS: Managing Bandwidth, Delay, Jitter, and Loss 491
Types of Traffic 492
Data Applications 492
Voice and Video Applications 493
QoS as Mentioned in This Book 495
QoS on Switches and Routers 495
Classification and Marking 495
Classification Basics 495
Matching (Classification) Basics 496
Classification on Routers with ACLs and NBAR 497
Marking IP DSCP and Ethernet CoS 499
Marking the IP Header 499
Marking the Ethernet 802.1Q Header 500
Other Marking Fields 501
Defining Trust Boundaries 501
DiffServ Suggested Marking Values 502
Expedited Forwarding (EF) 502
Assured Forwarding (AF) 502
Class Selector (CS) 503
Congestion Management (Queuing) 504
Round Robin Scheduling (Prioritization) 505
Low Latency Queuing 505
A Prioritization Strategy for Data, Voice, and Video 507
Shaping and Policing 507
Policing 508
Where to Use Policing 509
Shaping 510
Setting a Good Shaping Time Interval for Voice and Video 511
Congestion Avoidance 512
TCP Windowing Basics 512
Congestion Avoidance Tools 513
Chapter Review 514

Part IV Review 516

Part V IPv4 Routing and Troubleshooting 519

Chapter 19 IPv4 Routing in the LAN 520
“Do I Know This Already?” Quiz 521
Foundation Topics 522
VLAN Routing with Router 802.1Q Trunks 522
Configuring ROAS 524
Verifying ROAS 526
Troubleshooting ROAS 528
Chapter 20 Implementing HSRP for First-Hop Routing 544

“Do I Know This Already?” Quiz 544

Foundation Topics 546

FHRP and HSRP Concepts 546

The Need for Redundancy in Networks 547
The Need for a First Hop Redundancy Protocol 549
The Three Solutions for First-Hop Redundancy 550

HSRP Concepts 551
HSRP Failover 552
HSRP Load Balancing 553

Implementing HSRP 554

Configuring and Verifying Basic HSRP 554
HSRP Active Role with Priority and Preemption 556
HSRP Versions 559

Troubleshooting HSRP 560
Checking HSRP Configuration 560
Symptoms of HSRP Misconfiguration 561

Chapter Review 563

Chapter 21 Troubleshooting IPv4 Routing 566

“Do I Know This Already?” Quiz 567

Foundation Topics 567

Problems Between the Host and the Default Router 567
Root Causes Based on a Host’s IPv4 Settings 568

Ensure IPv4 Settings Correctly Match 568
Mismatched Masks Impact Route to Reach Subnet 569
Typical Root Causes of DNS Problems 571
Wrong Default Router IP Address Setting 572
Problems Using Any Function That Requires DNS 607
Host Is Missing IPv6 Settings: Stateful DHCP Issues 608
Host Is Missing IPv6 Settings: SLAAC Issues 609
Traceroute Shows Some Hops, But Fails 610
Routing Looks Good, But Traceroute Still Fails 612
Chapter Review 612

Chapter 23 Implementing OSPF for IPv6 616
“Do I Know This Already?” Quiz 616
Foundation Topics 618
OSPFv3 for IPv6 Concepts 618
IPv6 Routing Protocol Versions and Protocols 619
Two Options for Implementing Dual Stack with OSPF 619
OSPFv2 and OSPFv3 Internals 621
OSPFv3 Configuration 621
Basic OSPFv3 Configuration 621
Single-Area Configuration on the Three Internal Routers 623
Adding Multiarea Configuration on the Area Border Router 625
Other OSPFv3 Configuration Settings 626
Setting OSPFv3 Interface Cost to Influence Route Selection 626
OSPF Load Balancing 627
Injecting Default Routes 627
OSPFv3 Verification and Troubleshooting 628
OSPFv3 Interfaces 630
Verifying OSPFv3 Interfaces 630
Troubleshooting OSPFv3 Interfaces 631
OSPFv3 Neighbors 632
Verifying OSPFv3 Neighbors 632
Troubleshooting OSPFv3 Neighbors 633
OSPFv3 LSDB and LSAs 636
The Issue of IPv6 MTU 636
OSPFv3 Metrics and IPv6 Routes 638
Verifying OSPFv3 Interface Cost and Metrics 638
Troubleshooting IPv6 Routes Added by OSPFv3 640
Chapter Review 642
Chapter 24 Implementing EIGRP for IPv6 644

“Do I Know This Already?” Quiz 644
Foundation Topics 646
EIGRP for IPv6 Configuration 646
 - EIGRP for IPv6 Configuration Basics 647
 - EIGRP for IPv6 Configuration Example 648
Other EIGRP for IPv6 Configuration Settings 650
 - Setting Bandwidth and Delay to Influence EIGRP for IPv6 Route Selection 650
 - EIGRP Load Balancing 651
 - EIGRP Timers 652
EIGRP for IPv6 Verification and Troubleshooting 653
 - EIGRP for IPv6 Interfaces 654
 - EIGRP for IPv6 Neighbors 656
 - EIGRP for IPv6 Topology Database 657
 - EIGRP for IPv6 Routes 659
Chapter Review 661

Chapter 25 IPv6 Access Control Lists 664

“Do I Know This Already?” Quiz 664
Foundation Topics 666
IPv6 Access Control List Basics 666
 - Similarities and Differences Between IPv4 and IPv6 ACLs 666
 - ACL Location and Direction 667
 - IPv6 Filtering Policies 668
 - ICMPv6 Filtering Caution 668
 - Capabilities of IPv6 ACLs 669
 - Limitations of IPv6 ACLs 669
 - Matching Tunneled Traffic 670
 - IPv4 Wildcard Mask and IPv6 Prefix Length 670
 - ACL Logging Impact 670
 - Router Originated Packets 670
Configuring Standard IPv6 ACLs 671
Configuring Extended IPv6 ACLs 674
 - Examples of Extended IPv6 ACLs 676
 - Practice Building ipv6 access-list Commands 678
Other IPv6 ACL Topics 679
Implicit IPv6 ACL Rules 679
An Example of Filtering ICMPv6 NDP and the Negative Effects 679
How to Avoid Filtering ICMPv6 NDP Messages 683
IPv6 ACL Implicit Filtering Summary 684
IPv6 Management Control ACLs 685
Chapter Review 686

Part VI Review 688

Part VII Miscellaneous 691

Chapter 26 Network Management 692
“Do I Know This Already?” Quiz 692
Foundation Topics 694
Simple Network Management Protocol 694
SNMP Concepts 695
SNMP Variable Reading and Writing: SNMP Get and Set 696
SNMP Notifications: Traps and Informs 696
The Management Information Base 697
Securing SNMP 698
Implementing SNMP Version 2c 699
Configuring SNMPv2c Support for Get and Set 699
Configuring SNMPv2c Support for Trap and Inform 701
Verifying SNMPv2c Operation 702
Implementing SNMP Version 3 704
SNMPv3 Groups 705
SNMPv3 Users, Passwords, and Encryption Keys 707
Verifying SNMPv3 708
Implementing SNMPv3 Notifications (Traps and Informs) 710
Summarizing SNMPv3 Configuration 711
IP Service Level Agreement 712
An Overview of IP SLA 713
Basic IP SLA ICMP-Echo Configuration 714
Troubleshooting Using IP SLA Counters 715
Troubleshooting Using IP SLA History 716
SPAN 718
SPAN Concepts 718
The Need for SPAN When Using a Network Analyzer 719
SPAN Session Concepts 720
Chapter 27 Cloud Computing 730

“Do I Know This Already?” Quiz 730

Foundation Topics 732

Cloud Computing Concepts 732

Server Virtualization 732

Cisco Server Hardware 732

Server Virtualization Basics 733

Networking with Virtual Switches on a Virtualized Host 735

The Physical Data Center Network 736

Workflow with a Virtualized Data Center 737

Cloud Computing Services 739

Private Cloud 739

Public Cloud 741

Cloud and the “As a Service” Model 741

Infrastructure as a Service 742

Software as a Service 743

(Development) Platform as a Service 743

WAN Traffic Paths to Reach Cloud Services 744

Enterprise WAN Connections to Public Cloud 744

Accessing Public Cloud Services Using the Internet 745

Pros and Cons with Connecting to Public Cloud with Internet 745

Private WAN and Internet VPN Access to Public Cloud 746

Pros and Cons with Connecting to Cloud with Private WANs 747

Intercloud Exchanges 748

Summarizing the Pros and Cons of Public Cloud WAN Options 749

A Scenario: Branch Offices and the Public Cloud 749

Migrating Traffic Flows When Migrating to Email SaaS 750

Branch Offices with Internet and Private WAN 751

Virtual Network Functions and Services 752

Virtual Network Functions: Firewalls and Routers 752

DNS Services 754

Address Assignment Services and DHCP 756

NTP 757

Chapter Review 758
Chapter 28 SDN and Network Programmability 760
“Do I Know This Already?” Quiz 761
Foundation Topics 762
SDN and Network Programmability Basics 762
 The Data, Control, and Management Planes 762
 The Data Plane 762
 The Control Plane 763
 The Management Plane 764
 Cisco Switch Data Plane Internals 765
Controllers and Network Architecture 766
 Controllers and Centralized Control 766
 The Southbound Interface 767
 The Northbound Interface 768
SDN Architecture Summary 770
Examples of Network Programmability and SDN 770
 Open SDN and OpenFlow 771
 The OpenDaylight Controller 771
 Cisco Open SDN Controller 772
 The Cisco Application Centric Infrastructure 773
 The Cisco APIC Enterprise Module 774
Comparing the Three Examples 776
Cisco APIC-EM Path Trace ACL Analysis Application 777
 APIC-EM Path Trace App 777
 APIC-EM Path Trace ACL Analysis Tool Timing and Exam Topic 778
Chapter Review 778

Part VII Review 780

Part VIII Final Prep 783

Chapter 29 Final Review 784
Advice About the Exam Event 784
 Learn the Question Types Using the Cisco Certification Exam Tutorial 784
 Think About Your Time Budget Versus Number of Questions 785
A Suggested Time-Check Method 786
Miscellaneous Pre-Exam Suggestions 786
 Exam-Day Advice 787
Reserve the Hour After the Exam in Case You Fail 788
Reader Services

To access additional content for this book, simply register your product. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9781587205798 and click Submit. After the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Icons Used in This Book

Printer PC Laptop Server Phone
IP Phone Router Switch Frame Relay Switch Cable Modem
Access Point ASA DSLAM WAN Switch CSU/DSU
Hub PIX Firewall Bridge Layer 3 Switch Network Cloud

Ethernet Connection Serial Line Virtual Circuit Ethernet WAN Wireless

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (`|`) separate alternative, mutually exclusive elements.
- Square brackets (`[]`) indicate an optional element.
- Braces (`{}`) indicate a required choice.
- Braces within brackets (`{{}}`) indicate a required choice within an optional element.
Introduction

About the Exams

Congratulations! If you’re reading far enough to look at this book’s Introduction, you’ve probably already decided to go for your Cisco certification. If you want to succeed as a technical person in the networking industry at all, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than 80 percent market share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

The Exams to Achieve CCENT and CCNA R&S

Cisco announced changes to the CCENT and CCNA Routing and Switching certifications, and the related 100-105 ICND1, 200-105 ICND2, and 200-125 CCNA exams, early in the year 2016. Most everyone new to Cisco certifications begins with either CCENT or CCNA Routing and Switching (CCNA R&S). However, the paths to certification are not quite obvious at first.

The CCENT certification requires a single step: pass the ICND1 exam. Simple enough.

Cisco gives you two options to achieve CCNA R&S certification, as shown in Figure I-1: pass both the ICND1 and ICND2 exams, or just pass the CCNA exam. Both paths cover the same exam topics, but the two-exam path does so spread over two exams rather than one. You also pick up the CCENT certification by going through the two-exam path, but you do not when working through the single-exam (200-125) option.

Note that Cisco has begun referencing some exams with a version number on some of their websites. If that form holds true, the exams in Figure I-1 will likely be called version 3 (or v3 for short). Historically, the 200-125 CCNA R&S exam is the seventh separate version of the exam (which warrants a different exam number), dating back to 1998. To make sure you reference the correct exam, when looking for information, using forums, and registering for the test, just make sure to use the correct exam number as shown in the figure.
Types of Questions on the Exams

The ICND1, ICND2, and CCNA R&S exams all follow the same general format. At the testing center, you sit in a quiet room with a PC. Before the exam timer begins, you have a chance to do a few other tasks on the PC; for instance, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment. The question types are:

- Multiple-choice, single-answer
- Multiple-choice, multiple-answer
- Testlet (one scenario with several multiple-choice questions)
- Drag-and-drop
- Simulated lab (sim)
- Simlet

You should take the time to learn as much as possible by using the Cisco Certification Exam Tutorial, which you can find by going to Cisco.com and searching for "exam tutorial." This tool walks through each type of question Cisco may ask on the exam.

Although the first four types of questions in the list should be familiar to anyone who has taken standardized tests or similar tests in school, the last two types are more common to IT tests and Cisco exams in particular. Both use a network simulator to ask questions, so that you control and use simulated Cisco devices. In particular:

- **Sim questions**: You see a network topology, a lab scenario, and can access the devices. Your job is to fix a problem with the configuration.

- **Simlet questions**: This style combines sim and testlet question formats. Like a sim question, you see a network topology, a lab scenario, and can access the devices. However, like a testlet, you also see several multiple-choice questions. Instead of changing/fixing the configuration, you answer questions about the current state of the network.

Using these two question styles with the simulator enables Cisco to test your configuration skills with sim questions, and your verification and troubleshooting skills with simlet questions.

What’s on the CCNA Exams…and in the Book?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, “What’s on the test?” Even in college, people would try to get more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

You can find out more about what’s on the exam from two primary sources: this book and the Cisco website.

The Cisco Published Exam Topics

First, Cisco tells the world the specific topics on each of their certification exams. For every Cisco certification exam, Cisco wants the public to know both the variety of topics
and what kinds of knowledge and skills are required for each topic. Just go to http://www.cisco.com/go/certifications, look for the CCENT and CCNA Routing and Switching pages, and navigate until you see the exam topics.

Note that this book lists those same exam topics in Appendix L, “Exam Topic Cross Reference.” This PDF appendix lists two cross references: one with a list of the exam topics in the order in which Cisco lists them on their website; and the other with a list of chapters in this book with the corresponding exam topics included in each chapter.

Cisco does more than just list the topic (for example, IPv4 addressing); they also list the depth to which you must master the topic. The primary exam topics each list one or more verbs that describe the skill level required. For example, consider the following exam topic, which describes one of the most important topics in both CCENT and CCNA R&S:

Configure, verify, and troubleshoot IPv4 addressing and subnetting

Note that this one exam topic has three verbs (configure, verify, and troubleshoot). So, you should be able to not only configure IPv4 addresses and subnets, but also understand them well enough to verify that the configuration works, and to troubleshoot problems when it is not working. And if to do that you need to understand concepts and need to have other knowledge, those details are implied. The exam questions will attempt to assess whether you can configure, verify, and troubleshoot.

The Cisco exam topics provide the definitive list of topics and skill levels required by Cisco for the exams. But the list of exam topics provides only a certain level of depth. For example, the ICND1 100-105 exam topics list has 41 primary exam topics (topics with verbs), plus additional subtopics that provide more details about that technology area. Although very useful, the list of exam topics would take about five pages of this book if laid out in a list.

You should take the time to not only read the exam topics, but read the short material above the exam topics as listed at the Cisco web page for each certification and exam. Look for notices about the use of unscored items, and how Cisco intends the exam topics to be a set of general guidelines for the exams.

This Book: About the Exam Topics

This book provides a complete study system for the Cisco published exam topics for the ICND2 200-105 exam. All the topics in this book either directly relate to some ICND2 exam topic or provide more basic background knowledge for some exam topic. The scope of the book is defined by the exam topics.

For those of you thinking more specifically about the CCNA R&S certification, and the CCNA 200-125 single-exam path to CCNA, this book covers about one-half of the CCNA exam topics. The CCENT/CCNA ICND1 100-105 Official Cert Guide (and ICND1 100-105 exam topics) covers about half of the topics listed for the CCNA 200-125 exam, and this book (and the ICND2 200-105 exam topics) covers the other half. In short, for content, CCNA = ICND1 + ICND2.
Book Features

This book (and the related CCENT/CCNA ICND1 100-105 Official Cert Guide) goes beyond what you would find in a simple technology book. It gives you a study system designed to help you not only learn facts but also to develop the skills you need to pass the exams. To do that, in the technology chapters of the book, about three-quarters of the chapter is about the technology, and about one-quarter is for the related study features.

The “Foundation Topics” section of each chapter contains rich content to explain the topics on the exam and to show many examples. This section makes extensive use of figures, with lists and tables for comparisons. It also highlights the most important topics in each chapter as key topics, so you know what to master first in your study.

Most of the book’s features tie in some way to the need to study beyond simply reading the “Foundation Topics” section of each chapter. The rest of this section explains these book features. And because the book organizes your study by chapter, and then by part (a part contains multiple chapters), and then a final review at the end of the book, the next section of this Introduction discusses the book features introduced by chapter, part, and for final review.

Chapter Features and How to Use Each Chapter

Each chapter of this book is a self-contained short course about one topic area, organized for reading and study as follows:

- “Do I Know This Already?” quiz: Each chapter begins with a prechapter quiz.
- Foundation Topics: This is the heading for the core content section of the chapter.
- Chapter Review: This section includes a list of study tasks useful to help you remember concepts, connect ideas, and practice skills-based content in the chapter.

Figure I-2 shows how each chapter uses these three key elements. You start with the “Do I Know This Already?” (DIKTA) quiz. You can use the score to determine whether you already know a lot, or not so much, and determine how to approach reading the Foundation Topics (that is, the technology content in the chapter). When finished with the Foundation Topics, use the Chapter Review tasks to start working on mastering your memory of the facts and skills with configuration, verification, and troubleshooting.

<table>
<thead>
<tr>
<th>DIKTA Quiz</th>
<th>Foundation Topics</th>
<th>Chapter Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take Quiz</td>
<td>(Skim) Foundation Topics</td>
<td>1) In-Chapter, or...</td>
</tr>
<tr>
<td>High Score</td>
<td>(Read) Foundation Topics</td>
<td>2) Companion Website</td>
</tr>
<tr>
<td>Low Score</td>
<td></td>
<td>3) DVD</td>
</tr>
</tbody>
</table>

Figure I-2 Three Primary Tasks for a First Pass Through Each Chapter

In addition to these three main chapter features, each “Chapter Review” section presents a variety of other book features, including the following:

- Review Key Topics: In the “Foundation Topics” section, the Key Topic icon appears next to the most important items, for the purpose of later review and mastery. While all
content matters, some is, of course, more important to learn, or needs more review to master, so these items are noted as key topics. The “Review Key Topics” section lists the key topics in a table; scan the chapter for these items to review them.

■ **Complete Tables from Memory:** Instead of just rereading an important table of information, some tables have been marked as memory tables. These tables exist in the Memory Table app that is available on the DVD and from the companion website. The app shows the table with some content removed, and then reveals the completed table, so you can work on memorizing the content.

■ **Key Terms You Should Know:** You do not need to be able to write a formal definition of all terms from scratch. However, you do need to understand each term well enough to understand exam questions and answers. This section lists the key terminology from the chapter. Make sure you have a good understanding of each term, and use the DVD Glossary to cross-check your own mental definitions.

■ **Labs:** Many exam topics use the verbs “configure,” “verify,” and “troubleshoot”; all these refer to skills you should practice at the command-line interface (CLI) of a router or switch. The Chapter Review refers you to these other tools. The Introduction’s section titled “About Building Hands-On Skills” discusses your options.

■ **Command References:** Some book chapters cover a large number of router and switch commands. This section includes reference tables for the commands used in that chapter, along with an explanation. Use these tables for reference, but also use them for study—just cover one column of the table, and see how much you can remember and complete mentally.

■ **Review DIKTA Questions:** Re-answering the DIKTA questions from the chapter is a useful way to review facts. The Part Review element that comes at the end of each book Part suggests that you repeat the DIKTA questions. The Part Review also suggests using the Pearson IT Certification Practice Test (PCPT) exam software that comes with the book, for extra practice in answering multiple-choice questions on a computer.

Part Features and How to Use Part Review

The book organizes the chapters into seven parts. Each part contains a number of related chapters. Figure I-3 lists the titles of the parts and identifies the chapters in those parts by chapter numbers.

```
<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>IPv6 (22-25)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Miscellaneous (26-28)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IPv4 Services: ACLs and QoS (16-18)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IPv4 Routing and Troubleshooting (19-21)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wide Area Networks (13-15)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IPv4 Routing Protocols (7-12)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ethernet LANs (1-6)</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure I-3 The Book Parts and Corresponding Chapter Numbers
Each book part ends with a “Part Review” section that contains a list of activities for study and review, much like the “Chapter Review” section at the end of each chapter. However, because the Part Review takes place after completing a number of chapters, the Part Review includes some tasks meant to help pull the ideas together from this larger body of work. The following list explains the types of tasks added to each Part Review beyond the types mentioned for the Chapter Review:

- **Answer Part Review Questions:** The books come with exam software and databases of questions. One database holds questions written specifically for Part Reviews. These questions tend to connect multiple ideas together, to help you think about topics from multiple chapters, and to build the skills needed for the more challenging analysis questions on the exams.

- **Mind Maps:** Mind maps are graphical organizing tools that many people find useful when learning and processing how concepts fit together. The process of creating mind maps helps you build mental connections. The Part Review elements make use of mind maps in several ways: to connect concepts and the related configuration commands, to connect show commands and the related networking concepts, and even to connect terminology. (For more information about mind maps, see the section “About Mind Maps” later in this Introduction.)

- **Labs:** Each “Part Review” section will direct you to the kinds of lab exercises you should do with your chosen lab product, labs that would be more appropriate for this stage of study and review. (Check out the later section “About Building Hands-On Skills” for information about lab options.)

In addition to these tasks, many “Part Review” sections have you perform other tasks with book features mentioned in the “Chapter Review” section: repeating DIKTA quiz questions, reviewing key topics, and doing more lab exercises.

Final Review

Chapter 29, “Final Review,” lists a series of preparation tasks that you can best use for your final preparation before taking the exam. Chapter 29 focuses on a three-part approach to helping you pass: practicing your skills, practicing answering exam questions, and uncovering your weak spots. To that end, Chapter 29 uses the same familiar book features discussed for the Chapter Review and Part Review elements, along with a much larger set of practice questions.

Other Features

In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including the following:

- **DVD-based practice exams:** The companion DVD contains the powerful Pearson IT Certification Practice Test (PCPT) exam engine. You can take simulated ICND2 exams, as well as CCNA exams, with the DVD and activation code included in this book. (You can take simulated ICND1 and CCNA R&S exams with the DVD in the CCENT/CCNA ICND1 100-105 Official Cert Guide.)
CCNA ICND2 Simulator Lite: This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

eBook: If you are interested in obtaining an eBook version of this title, we have included a special offer on a coupon card inserted in the DVD sleeve in the back of the book. This offer allows you to purchase the *CCNA Routing and Switching ICND2 200-105 Official Cert Guide Premium Edition eBook and Practice Test* at a 70 percent discount off the list price. In addition to three versions of the eBook, PDF (for reading on your computer), EPUB (for reading on your tablet, mobile device, or Nook or other eReader), and Mobi (the native Kindle version), you also receive additional practice test questions and enhanced practice test features.

Mentoring Videos: The DVD included with this book includes four other instructional videos about the following topics: OSPF, EIGRP, EIGRP metrics, plus PPP and CHAP.

Companion website: The website http://www.ciscopress.com/title/9781587205798 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.

PearsonITCertification.com: The website http://www.pearsonitcertification.com is a great resource for all things IT-certification related. Check out the great CCNA articles, videos, blogs, and other certification preparation tools from the industry’s best authors and trainers.

CCNA Simulator: If you are looking for more hands-on practice, you might want to consider purchasing the CCNA Network Simulator. You can purchase a copy of this software from Pearson at http://pearsonitcertification.com/networksimulator or other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the labs in the simulator to the specific sections in these CCNA cert guides. You can get this mapping guide for free on the Extras tab of the companion website.

Author’s website and blogs: I maintain a website that hosts tools and links that are useful when studying for CCENT and CCNA. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND1 book, and links to my CCENT Skills blog and CCNA Skills blog. Start at http://www.certskills.com; click the Blog tab for a page about the blogs in particular, with links to the pages with the labs related to this book.

A Big New Feature: Review Applications

One of the single biggest new features of this edition of the book is the addition of study apps for many of the Chapter Review activities. In the past, all Chapter Review activities used only the book chapter, or the chapter plus a DVD-only appendix. Readers tell us they find that content useful, but the content is static.

This book and the *CCENT/CCNA ICND1 100-105 Official Cert Guide* are the first Cisco Press Cert Guides with extensive interactive applications. Basically, most every activity that can be done in the “Chapter Review” sections can now be done with an application. The apps can be found both on the DVD that comes with the book and on the book’s
The advantages of using these apps are as follows:

- **Easier to use:** Instead of having to print out copies of the appendixes and do the work on paper, these new apps provide you with an easy-to-use, interactive experience that you can easily run over and over.

- **Convenient:** When you have a spare 5–10 minutes, go to the book’s website, and review content from one of your recently finished chapters.

- **Untethered from book/DVD:** Because these apps are available on the book’s companion website in addition to the DVD, you can access your review activities from anywhere—no need to have the book or DVD with you.

- **Good for tactile learners:** Sometimes looking at a static page after reading a chapter lets your mind wander. Tactile learners may do better by at least typing answers into an app, or clicking inside an app to navigate, to help keep you focused on the activity.

Our in-depth reader surveys show that readers who use the Chapter Review tools like them, but that not everyone uses them consistently. So, we want to increase the number of people using the review tools, and make them both more useful and more interesting. Table I-1 summarizes these new applications and the traditional book features that cover the same content.

Table I-1 Book Features with Both Traditional and App Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>Traditional</th>
<th>App</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Topics</td>
<td>Table with list; flip pages to find</td>
<td>Key Topics Table app</td>
</tr>
<tr>
<td>Config Checklist</td>
<td>Just one of many types of key topics</td>
<td>Config Checklist app</td>
</tr>
<tr>
<td>Memory Table</td>
<td>Two static PDF appendixes (one with sparse tables for you to complete, one with completed tables)</td>
<td>Memory Table app</td>
</tr>
<tr>
<td>Key Terms</td>
<td>Listed in each “Chapter Review” section, with the Glossary in the back of the book</td>
<td>Glossary Flash Cards app</td>
</tr>
<tr>
<td>IPv4 ACL Practice</td>
<td>A static PDF appendix (D) with practice problems</td>
<td>An interactive app that asks the same problems as listed in the appendix</td>
</tr>
</tbody>
</table>

How to Get the Electronic Elements of This Book

Traditionally, all chapter review activities use the book chapter plus appendixes, with the appendixes often being located on the DVD. But most of that content is static—useful, but static.

If you buy the print book, and have a DVD drive, you have all the content on the DVD. Just spin the DVD and use the disk menu (which should automatically start) to explore all the content.
If you buy the print book but do not have a DVD drive, you can get the DVD files by registering your book on the Cisco Press website. To do so, simply go to http://www.ciscopress.com/register and enter the ISBN of the print book: 9781587205798. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book's companion website.

If you buy the CCNA Routing and Switching ICND2 200-105 Official Cert Guide Premium Edition eBook and Practice Test from Cisco Press, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.

If you buy the eBook from some other bookseller, the very last page of your eBook file will contain instructions for how to register the book and access the companion website. The steps are the same as noted earlier for those who buy the print book but do not have a DVD drive.

Book Organization, Chapters, and Appendixes

This book contains 28 core chapters, Chapters 1 through 28, with Chapter 29 as the “Final Review” chapter. Each core chapter covers a subset of the topics on the ICND2 exam. The core chapters are organized into sections. The core chapters cover the following topics:

Part I: Ethernet LANs

- **Chapter 1, “Implementing Ethernet Virtual LANs,”** explains the concepts and configuration surrounding virtual LANs, including VLAN trunking.
- **Chapter 2, “Spanning Tree Protocol Concepts,”** discusses the concepts behind IEEE Spanning Tree Protocol (STP) and how it makes some switch interfaces block frames to prevent frames from looping continuously around a redundant switched LAN.
- **Chapter 3, “Spanning Tree Protocol Implementation,”** shows how to configure and verify STP on Cisco switches.
- **Chapter 4, “LAN Troubleshooting,”** examines the most common LAN switching issues and how to discover those issues when troubleshooting a network. The chapter includes troubleshooting topics for STP/RSTP, Layer 2 EtherChannel, LAN switching, VLANs, and VLAN trunking.
- **Chapter 5, “VLAN Trunking Protocol,”** shows how to configure, verify, and troubleshoot the use of VLAN Trunking Protocol (VTP) to define and advertise VLANs across multiple Cisco switches.
- **Chapter 6, “Miscellaneous LAN Topics,”** as the last chapter in the book specifically about LANs, discusses a variety of small topics, including: 802.1x, AAA authentication, DHCP snooping, switch stacking, and chassis aggregation.

Part II: IPv4 Routing Protocols

- **Chapter 7, “Understanding OSPF Concepts,”** introduces the fundamental operation of the Open Shortest Path First (OSPF) protocol, focusing on link state fundamentals, neighbor relationships, flooding link state data, and calculating routes based on the lowest cost metric.
Chapter 8, “Implementing OSPF for IPv4,” takes the concepts discussed in the previous chapter and shows how to configure and verify those same features.

Chapter 9, “Understanding EIGRP Concepts,” introduces the fundamental operation of the Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv4 (EIGRPv4), focusing on EIGRP neighbor relationships, how EIGRP calculates metrics, and how it quickly converges to alternate feasible successor routes.

Chapter 10, “Implementing EIGRP for IPv4,” takes the concepts discussed in the previous chapter and shows how to configure and verify those same features.

Chapter 11, “Troubleshooting IPv4 Routing Protocols,” walks through the most common problems with IPv4 routing protocols, while alternating between OSPF examples and EIGRP examples.

Chapter 12, “Implementing External BGP,” examines the basics of the Border Gateway Protocol (BGP) and its use between an enterprise and an ISP, showing how to configure, verify, and troubleshoot BGP in limited designs.

Part III: Wide Area Networks

Chapter 13, “Implementing Point-to-Point WANs,” explains the core concepts of how to build a leased-line WAN and the basics of the two common data link protocols on these links: HDLC and PPP.

Chapter 14, “Private WANs with Ethernet and MPLS,” explores the concepts behind building a WAN service using Ethernet through different Metro Ethernet services, as well as using Multiprotocol Label Switching (MPLS) VPNs.

Chapter 15, “Private WANs with Internet VPNs,” works through a variety of conceptual material, plus some configuration and verification topics, for several technologies related to using the Internet to create a private WAN connection between different enterprise sites.

Part IV: IPv4 Services: ACLs and QoS

Chapter 16, “Basic IPv4 Access Control Lists,” examines how standard IP ACLs can filter packets based on the source IP address so that a router will not forward the packet.

Chapter 17, “Advanced IPv4 Access Control Lists,” examines both named and numbered ACLs, and both standard and extended IP ACLs.

Chapter 18, “Quality of Service (QoS),” discusses a wide variety of concepts all related to the broad topic of QoS.

Part V: IPv4 Routing and Troubleshooting

Chapter 19, “IPv4 Routing in the LAN,” shows to a configuration and troubleshooting depth different methods to route between VLANs, including Router on a Stick (ROAS), Layer 3 switching with SVIs, Layer 3 switching with routed ports, and using Layer 3 EtherChannels.

Chapter 20, “Implementing HSRP for First-Hop Routing,” discusses the need for a First Hop Redundancy Protocol (FHRP), and specifically how to configure, verify, and troubleshoot Hot Standby Router Protocol (HSRP)
Chapter 21, “Troubleshooting IPv4 Routing,” looks at the most common IPv4 problems and how to find the root causes of those problems when troubleshooting.

Part VI: IPv6

Chapter 22, “IPv6 Routing Operation and Troubleshooting,” reviews IPv6 routing as discussed in the ICND1 book. It then shows some of the most common problems with IPv6 routing and discusses how to troubleshoot these problems to discover the root cause.

Chapter 23, “Implementing OSPF for IPv6,” explores OSPFv3 and its use as an IPv6 routing protocol, showing traditional configuration, verification, and troubleshooting topics.

Chapter 24, “Implementing EIGRP for IPv6,” takes the EIGRP concepts discussed for IPv4 in Chapter 9 and shows how those same concepts apply to EIGRP for IPv6. It then shows how to configure, verify, and troubleshoot EIGRP for IPv6.

Chapter 25, “IPv6 Access Control Lists,” examines the similarities and differences between IPv4 ACLs and IPv6 ACLs, then shows how to configure, verify, and troubleshoot IPv6 ACLs.

Part VII: Miscellaneous

Chapter 26, “Network Management,” discusses several network management topics that Cisco did not choose to put into ICND1, namely: SNMP, IP SLA, and SPAN.

Chapter 27, “Cloud Computing,” is one of two chapters about topics that strays from traditional CCNA R&S topics as one of the Cisco emerging technology topics. This chapter explains the basic concepts and then generally discusses the impact that cloud computing has on a typical enterprise network.

Chapter 28, “SDN and Network Programmability,” is the other chapter that moves away from traditional CCNA R&S topics to discuss many concepts and terms related to how Software Defined Networking (SDN) and network programmability are impacting typical enterprise networks.

Part VIII: Final Prep

Chapter 29, “Final Review,” suggests a plan for final preparation once you have finished the core parts of the book, in particular explaining the many study options available in the book.

Part IX: Appendixes (In Print)

Appendix A, “Numeric Reference Tables,” lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.

Appendix B, “CCNA ICND2 200-105 Exam Updates,” is a place for the author to add book content mid-edition. Always check online for the latest PDF version of this appendix; the appendix lists download instructions.

The Glossary contains definitions for all of the terms listed in the “Key Terms You Should Know” sections at the conclusion of Chapters 1 through 28.
Part X: DVD Appendixes

The following appendixes are available in digital format on the DVD that accompanies this book:

- **Appendix C**, “Answers to the ‘Do I Know This Already?’ Quizzes,” includes the explanations to all the questions from Chapters 1 through 28.
- **Appendix D**, “Practice for Chapter 16: Basic IPv4 Access Control Lists,” is a copy of the *CCENT/CCNA ICND1 100-105 Official Cert Guide*’s Appendix I.
- **Appendix E**, “Mind Map Solutions,” shows an image of sample answers for all the part-ending mind map exercises.
- **Appendix F**, “Study Planner,” is a spreadsheet with major study milestones, where you can track your progress through your study.
- **Appendix G**, “Learning IPv4 Routes with RIPv2,” explains how routers work together to find all the best routes to each subnet using a routing protocol. This chapter also shows how to configure the RIPv2 routing protocol for use with IPv4. (This appendix is a copy of ICND1’s Chapter 19, and is included with the ICND2 book for convenience.)
- **Appendix H**, “Understanding Frame Relay Concepts,” explains how to build a Frame Relay WAN between routers, focusing on the protocols and concepts rather than the configuration. (This chapter is a chapter that covers old exam topics from the previous edition of the book, included here for those who might be interested.)
- **Appendix I**, “Implementing Frame Relay,” takes the concepts discussed in Appendix H and shows how to configure, verify, and troubleshoot those same features. (This chapter is a chapter that covers old exam topics from the previous edition of the book, included here for those who might be interested.)
- **Appendix J**, “IPv4 Troubleshooting Tools,” focuses on how to use two key troubleshooting tools to find routing problems: the ping and traceroute commands. (This appendix is a copy of ICND1’s Chapter 23, and is included with the ICND2 book for convenience.)
- **Appendix K**, “Topics from Previous Editions,” is a collection of information about topics that have appeared on previous versions of the CCNA exams. While you most likely will not encounter exam questions on these topics, the concepts are still of interest to someone with the CCENT or CCNA certification.
- **Appendix L**, “Exam Topic Cross Reference,” provides some tables to help you find where each exam objective is covered in the book.

ICND1 Chapters in this Book

For this current edition of the ICND1 and ICND2 Cert Guides, I designed several chapters to be used in both books. These chapters include some topics that are listed in the exam topics of both exams:

- Chapter 1, “Implementing Ethernet Virtual LANs” (Chapter 11 in the ICND1 100-101 book).
- Chapter 16, “Basic IPv4 Access Control Lists” (Chapter 25 in the ICND1 100-101 book).
Chapter 17, “Advanced IPv4 Access Control Lists” (Chapter 26 in the ICND1 100-101 book).

Chapter 21, “Troubleshooting IPv4 Routing” (Chapter 24 in the ICND1 100-101 book).

I designed these four chapters for use in both books to be a help to those reading both books while avoiding any problems for those who might be reading only this ICND2 Cert Guide. Cisco has traditionally had some topics that overlap between the two exams that make up the two-exam path to CCNA R&S, and this current pair of exams is no exception. So, for those of you who have already read the ICND1 100-101 book, you can move more quickly through the above four chapters in this book. If you did not read the ICND1 100-101 book, then you have all the material you need right here in this book.

Extra Content Found in DVD Appendixes

Note that several appendixes on the DVD, namely G, H, I, J, and K, contain extra content outside the ICND2 200-105 exam topics. This short section explains why.

First, two appendixes are here to aid the transition when Cisco announced the exams. Appendixes G (about RIP) and J (about ping and traceroute) are copies of two chapters in the ICND1 100-105 book, and are part of the exam topics for the ICND1 100-105 exam. These two chapters might be particularly useful for anyone who was far along in their studies on the date when Cisco announced the ICND1 100-105 and ICND2 200-105 exams in 2016. I included Appendixes G and J to aid that transition for those who buy the ICND2 200-105 Cert Guide but not the ICND1 100-105 Cert Guide.

Three other appendixes are included for instructors who use these books for classes, as well as for the occasional reader who is mostly interested in the technology instead of the certification. Appendixes H, I, and K contain content that is no longer mentioned by the exam topics for the current exams. Appendixes H and I are copies of complete chapters about Frame Relay from the prior edition of this book, and Appendix K is a compilation of small topics I removed from the prior edition of this book when creating this current edition. This material might be helpful to some instructors during the transition time for their courses, or for those who want to read more broadly just for the sake of learning.

You do not need to use these extra appendixes (G through K) to prepare for the ICND2 200-105 exam or the CCNA R&S 200-125 exam, but feel free to use them if you are interested.

Reference Information

This short section contains a few topics available for reference elsewhere in the book. You may read these when you first use the book, but you may also skip these topics and refer back to them later. In particular, make sure to note the final page of this introduction, which lists several contact details, including how to get in touch with Cisco Press.

Install the Pearson IT Certification Practice Test Engine and Questions

This book, like many other Cisco Press books, includes the rights to use the Pearson IT Certification Practice Test (PCPT) software, along with rights to use some exam questions related to this book. PCPT has many options, including the option to answer questions
in study mode, so you can see the answers and explanations for each question as you go along; the option to take a simulated exam that mimics real exam conditions; and the option to view questions in flash card mode, where all the answers are stripped out, challenging you to answer questions from memory.

You should install PCPT so it is ready to use even for the earliest chapters. This book’s Part Review sections ask you specifically to use PCPT, and you can even take the DIKTA chapter quizzes using PCPT.

NOTE The right to use the exams associated with this book is based on an activation code. For those with a paper book, the code is in the DVD sleeve at the back of the book. (Flip over the paper with the exam activation code to find a one-time-use coupon code for 70 percent off the purchase of the CCNA Routing and Switching ICND2 200-105 Official Cert Guide, Premium Edition eBook and Practice Test.) For those who purchase the Premium Edition eBook and Practice Test directly from the Cisco Press website, the activation code will be populated on your account page after purchase. For those who purchase a Kindle edition, the access code will be supplied directly from Amazon. Note that if you purchase an eBook version from any other source, the practice test is not included, as other vendors are not able to vend the required unique access code. Do not lose the activation code.

PCPT Exam Databases with This Book

This book includes an activation code that allows you to load a set of practice questions. The questions come in different exams or exam databases. When you install the PCPT software and type in the activation code, the PCPT software downloads the latest version of all these exam databases. And with the ICND2 book alone, you get six different “exams,” or six different sets of questions, as listed in Figure I-4.

![Figure I-4](PCPT Exams/Exam Databases and When to Use Them)

You can choose to use any of these exam databases at any time, both in study mode and practice exam mode. However, many people find it best to save some of the exams until exam review time, after you have finished reading the entire book. Figure I-4 begins to suggest a plan, spelled out here:

- During Part Review, use PCPT to review the DIKTA questions for that part, using study mode.
- During Part Review, use the questions built specifically for Part Review (the Part Review questions) for that part of the book, using study mode.
- Save the remaining exams to use with the “Final Review” chapter at the end of the book; if preparing for the ICND2 exam, use those practice exams, but if preparing for the CCNA exam, use those exams.
The two modes inside PCPT give you better options for study versus practicing a timed exam event. In study mode, you can see the answers immediately, so you can study the topics more easily. Also, you can choose a subset of the questions in an exam database; for instance, you can view questions from only the chapters in one part of the book.

PCPT practice mode lets you practice an exam event somewhat like the actual exam. It gives you a preset number of questions, from all chapters, with a timed event. Practice exam mode also gives you a score for that timed event.

How to View Only DIKTA Questions by Chapter or Part

Most chapters begin with a DIKTA quiz. You can take the quiz to start a chapter, take it again during Chapter Review for more practice, and, as suggested in the “Part Review” sections, repeat the questions for all chapters in the same part.

You can use the DIKTA quiz as printed in the book, or use the PCPT software. The book lists the questions, with the letter answers on the page following the quiz. Appendix C, on the DVD, lists the answers along with an explanation; you might want to keep that PDF handy.

Using PCPT for these questions has some advantages. It gives you a little more practice in how to read questions from testing software. Also, the explanations to the questions are conveniently located in the PCPT software.

To view these DIKTA questions inside the PCPT software, you need to select Book Questions, which is the way PCPT references questions found inside the printed book. Then you have to deselect all chapters (with a single click), and then select one or more chapters, as follows:

1. Start the PCPT software.
2. From the main (home) menu, select the item for this product, with a name like CCNA Routing and Switching ICND2 200-105 Official Cert Guide, and click Open Exam.
3. The top of the next window that appears should list some exams; check the ICND2 Book Questions box, and uncheck the other boxes. This selects the “book” questions (that is, the DIKTA questions from the beginning of each chapter).
4. On this same window, click at the bottom of the screen to deselect all objectives (chapters). Then select the box beside each chapter in the part of the book you are reviewing.
5. Select any other options on the right side of the window.
6. Click Start to start reviewing the questions.

How to View Part Review Questions

The exam databases you get with this book include a database of questions created solely for study during the Part Review process. DIKTA questions focus more on facts, to help
you determine whether you know the facts contained within the chapter. The Part Review questions instead focus more on application of those facts to typical real scenarios, and look more like real exam questions.

To view these questions, follow the same process as you did with DIKTA/book questions, but select the Part Review database rather than the book database. PCPT has a clear name for this database: Part Review Questions.

About Mind Maps

Mind maps are a type of visual organization tool that you can use for many purposes. For instance, you can use mind maps as an alternative way to take notes.

You can also use mind maps to improve how your brain organizes concepts. Mind maps improve your brain's connections and relationships between ideas. When you spend time thinking about an area of study, and organize your ideas into a mind map, you strengthen existing mental connections and create new connections, all into your own frame of reference.

In short, mind maps help you internalize what you learn.

Each mind map begins with a blank piece of paper or blank window in a mind mapping application. You then add a large central idea, with branches that move out in any direction. The branches contain smaller concepts, ideas, commands, pictures...whatever idea needs to be represented. Any concepts that can be grouped should be put near each other. As need be, you can create deeper and deeper branches, although for this book’s purposes, most mind maps will not go beyond a couple of levels.

NOTE Many books have been written about mind maps, but Tony Buzan often gets credit for formalizing and popularizing mind maps. You can learn more about mind maps at his website, http://www.tonybuzan.com.

For example, Figure I-5 shows a sample mind map that begins to output some of the IPv6 content from Part VIII of the ICND1 book. You might create this kind of mind map when reviewing IPv6 addressing concepts, starting with the big topic of "IPv6 addressing," and then writing down random terms and ideas. As you start to organize them mentally, you draw lines connecting the ideas, reorganize them, and eventually reach the point where you believe the organization of ideas makes sense to you.

![Sample Mind Map](image-url)
Mind maps may be the least popular but most effective study tool suggested in this book. I personally find a huge improvement in learning new areas of study when I mind map; I hope you will make the effort to try these tools and see if they work well for you too.

Finally, for mind mapping tools, you can just draw them on a blank piece of paper, or find and download a mind map application. I have used Mind Node Pro on a Mac, and we build the sample mind maps with XMIND, which has free versions for Windows, Linux, and OS X.

About Building Hands-On Skills

You need skills in using Cisco routers and switches, specifically the Cisco CLI. The Cisco CLI is a text-based command-and-response user interface; you type a command, and the device (a router or switch) displays messages in response. To answer sim and simlet questions on the exams, you need to know a lot of commands, and you need to be able to navigate to the right place in the CLI to use those commands.

This section walks through the options included in the book, with a brief description of lab options outside the book.

Config Lab Exercises

Some router and switch features require multiple configuration commands. Part of the skill you need to acquire is the ability to remember which configuration commands work together, which ones are required, and which ones are optional. So, the challenge level goes beyond just picking the right parameters on one command. You have to choose which commands to use, in which combination, typically on multiple devices. And getting good at that kind of task requires practice.

The Config Labs feature, introduced as a new feature in this edition of the book, helps provide that practice. Each lab presents a sample lab topology, with some requirements, and you have to decide what to configure on each device. The answer then shows a sample configuration. Your job is to create the configuration, and then check your answer versus the supplied answer.

Also for the first time, this edition places the content not only outside the book but also on the author's blog site. To reach my blog sites for ICND1 content or for ICND2 content (two different blogs) and access the Config Labs feature, you can start at my blog launch site (blog.certskills.com) and click from there.

blog.certskills.com/ccent/ Wendell’s CCENT (ICND1): In the menus, navigate to Hands On > Config Lab

blog.certskills.com/ccna/ Wendell’s CCNA (ICND2): In the menus, navigate to Hands On > Config Lab

Both blogs are geared toward helping you pass the exams, so feel free to look around. Note that the Config Lab posts should show an image like this in the summary:
These Config Labs have several benefits, including the following:

- **Untethered and responsive**: Do them from anywhere, from any web browser, from your phone or tablet, untethered from the book or DVD.
- **Designed for idle moments**: Each lab is designed as a 5- to 10-minute exercise if all you are doing is typing in a text editor or writing your answer on paper.
- **Two outcomes, both good**: Practice getting better and faster with basic configuration, or if you get lost, you have discovered a topic that you can now go back and reread to complete your knowledge. Either way, you are a step closer to being ready for the exam!
- **Blog format**: Allows easy adds and changes by me, and easy comments by you.
- **Self-assessment**: As part of final review, you should be able to do all the Config Labs, without help, and with confidence.

Note that the blog organizes these Config Lab posts by book chapter, so you can easily use these at both Chapter Review and Part Review. See the “Your Study Plan” element that follows the Introduction for more details about those review sections.

A Quick Start with Pearson Network Simulator Lite

The decision of how to get hands-on skills can be a little scary at first. The good news is that you have a free and simple first step to experience the CLI: Install and use the Pearson NetSim Lite that comes with this book.

This book comes with a lite version of the best-selling CCNA Network Simulator from Pearson, which provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install NetSim Lite from the DVD in the back of this book.

The latest version of NetSim Lite includes labs associated with Part II of this book. Part I includes concepts only, with Part II being the first part with commands. So, make sure and use NetSim Lite to learn the basics of the CLI to get a good start.

Of course, one reason that NetSim Lite comes on the DVD is that the publisher hopes you will buy the full product. However, even if you do not use the full product, you can still learn from the labs that come with NetSim Lite while deciding about what options to pursue.

NOTE The ICND1 and ICND2 books each contain a different version of the Sim Lite product, each with labs that match the book content. If you bought both books, make sure you install both Sim Lite products.
The Pearson Network Simulator

The Config Labs and the Pearson Network Simulator Lite both fill specific needs, and they both come with the book. However, you need more than those two tools.

The single best option for lab work to do along with this book is the paid version of the Pearson Network Simulator. This simulator product simulates Cisco routers and switches so that you can learn for the CCENT and CCNA R&S certifications. But more importantly, it focuses on learning for the exam by providing a large number of useful lab exercises. Reader surveys tell us that those people who use the Simulator along with the book love the learning process, and rave about how the book and Simulator work well together.

Of course, you need to make a decision for yourself, and consider all the options. Thankfully, you can get a great idea of how the full Simulator product works by using the Pearson Network Simulator Lite product included with the book. Both have the same base code and same user interface, and the same types of labs. Try the Lite version, and check out the full product. There is a full product for CCENT only, and another for CCNA R&S (which includes all the labs in the CCENT product, plus others for the ICND2 parts of the content).

Note that the Simulator and the books work on a different release schedule. For a time in 2016, the version of the Simulator available for purchase will be the Simulator created for the previous versions of the exams (ICND1 100-101, ICND2 200-101, and CCNA 200-120). That product includes approximately 80 percent of the CLI topics in the ICND1 100-105 and ICND2 200-105 books. So during that time, the Simulator is still very useful.

On a practical note, when you want to do labs while reading a chapter or doing Part Review, the Simulator organizes the labs to match the book. Just look for the “Sort by Chapter” tab in the Simulator’s user interface. However, during the months in 2016 for which the available Simulator is the older edition listing the older exams in the title, you will need to refer back to a PDF that lists those labs versus this book’s organization; find that PDF at http://www.ciscopress.com/title/9781587205798.

More Lab Options

If you decide against using the full Pearson Network Simulator, you still need hands-on experience. You should plan to use some lab environment to practice as much CLI interaction as possible.

First, you can use real Cisco routers and switches. You can buy them, new or used, or borrow them at work. You can rent them for a fee. If you have the right mix of gear, you could even do the Config Lab exercises from my blog on that gear, or try and re-create examples from the book.

Cisco offers a virtualization product that lets you run router and switch operating system (OS) images in a virtual environment. This tool, the Virtual Internet Routing Lab (VIRL), lets you create a lab topology, start the topology, and connect to real router and switch OS images. Check out http://virl.cisco.com for more information.

You can even rent virtual Cisco router and switch lab pods from Cisco, in an offering called Cisco Learning Labs.
All these previously mentioned options cost some money, but the next two are generally free to the user, but with a different catch for each. First, GNS3 works somewhat like VIRL, creating a virtual environment running real Cisco IOS. However, GNS3 is not a Cisco product, and cannot provide you with the IOS images for legal reasons.

Cisco also makes a simulator that works very well as a learning tool: Cisco Packet Tracer. However, Cisco intends Packet Tracer for use by people currently enrolled in Cisco Networking Academy courses, and not for the general public. So, if you are part of a Cisco Academy, definitely use Packet Tracer.

This book does not tell you what option to use, but you should plan on getting some hands-on practice somehow. The important thing to know is that most people need to practice using the Cisco CLI to be ready to pass these exams.

For More Information

If you have any comments about the book, submit them via http://www.ciscopress.com. Just go to the website, select Contact Us, and type your message.

Cisco might make changes that affect the CCNA certification from time to time. You should always check http://www.cisco.com/go/ccna and http://www.cisco.com/go/ccent for the latest details.

The *CCNA ICND2 200-105 Official Cert Guide* helps you attain CCNA Routing and Switching certification. This is the CCNA and ICND2 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA certification, but the real work is up to you! I trust that your time will be well spent.
CHAPTER 13

Implementing Point-to-Point WANs

This chapter covers the following exam topics:

3.0 WAN Technologies

3.1 Configure and verify PPP and MLPPP on WAN interfaces using local authentication

Leased-line WANs—also known as serial links—require much less thought than many other topics, at least to the depth required for the CCENT and CCNA R&S exams. That simplicity allows the Cisco exams to discuss leased lines briefly for the ICND1 exam, while using leased lines as part of larger discussions of IP routing.

This chapter finally takes the discussion of leased-line WANs deeper than has been discussed so far. This chapter briefly repeats the leased line concepts from the ICND1 book, to lay a foundation to discuss other concepts. More important, this chapter looks at the configuration, verification, and troubleshooting steps for leased lines that use the familiar High-level Data Link Control (HDLC) data-link protocol and the Point-to-Point Protocol (PPP).

This chapter breaks the material down into three major sections. The first looks at leased-line WANs that use HDLC, by reviewing and adding details about the physical links themselves, along with HDLC (and related) configuration. The second major section discusses PPP, an alternate data-link protocol that you can use instead of HDLC, with a focus on concepts and configuration. The final major section then discusses typical root causes of serial link problems and how to find those problems.

“Do I Know This Already?” Quiz

Take the quiz (either here, or use the PCPT software) if you want to use the score to help you decide how much time to spend on this chapter. The answers are at the bottom of the page following the quiz, and the explanations are in DVD Appendix C and in the PCPT software.

Table 13-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leased-Line WANs with HDLC</td>
<td>1–2</td>
</tr>
<tr>
<td>Leased-Line WANs with PPP</td>
<td>3–6</td>
</tr>
<tr>
<td>Troubleshooting Serial Links</td>
<td>7</td>
</tr>
</tbody>
</table>

1. In the cabling for a leased line, which of the following usually connects to a four-wire line provided by a telco?
 a. Router serial interface without internal CSU/DSU
 b. CSU/DSU
 c. Router serial interface with internal transceiver
 d. Switch serial interface
2. Two routers connect with a serial link, each using its S0/0/0 interface. The link is currently working using PPP. The network engineer wants to migrate to use the Cisco-proprietary HDLC that includes a protocol type field. Which of the following commands can be used to migrate to HDLC successfully? (Choose two answers.)
 a. encapsulation hdlc
 b. encapsulation cisco-hdlc
 c. no encapsulation ppp
 d. encapsulation-type auto

3. Which of the following PPP authentication protocols authenticates a device on the other end of a link without sending any password information in clear text?
 a. MD5
 b. PAP
 c. CHAP
 d. DES

4. Two routers have no initial configuration whatsoever. They are connected in a lab using a DTE cable connected to R1 and a DCE cable connected to R2, with the DTE and DCE cables then connected to each other. The engineer wants to create a working PPP link by configuring both routers. Which of the following commands are required in the R1 configuration for the link to reach a state in which R1 can ping R2's serial IP address, assuming that the physical back-to-back link physically works? (Choose two answers.)
 a. encapsulation ppp
 b. no encapsulation hdlc
 c. clock rate
 d. ip address

5. Consider the following excerpt from the output of a `show` command:

 Serial0/0/1 is up, line protocol is up
 Hardware is GT96K Serial
 Internet address is 192.168.2.1/24
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation PPP, LCP Open
 Open: CDPCP, IPCP, loopback not set

Which of the following are true about this router's S0/0/1 interface? (Choose two answers.)
 a. The interface is using HDLC.
 b. The interface is using PPP.
 c. The interface currently cannot pass IPv4 traffic.
 d. The link should be able to pass PPP frames at the present time.
6. Two routers, R1 and R2, connect to each other using three serial links. The network engineer configures these links to be part of the same multilink PPP group, along with configuring CHAP configuration, IPv4, and OSPFv2 using interface configuration. Which of the following answers list a configuration command along with the correct configuration mode for that command? (Choose two answers.)
 a. `encapsulation ppp` while in multilink interface configuration mode
 b. `ip address` address mask while in serial interface configuration mode
 c. `ppp authentication chap` while in multilink interface configuration mode
 d. `ip ospf 1 area 0` while in serial interface configuration mode
 e. `ppp multilink` while in serial interface configuration mode

7. Consider the following excerpt from the output of a `show interfaces` command on an interface configured to use PPP:
 Serial0/0/1 is up, line protocol is down
 Hardware is GT96K Serial
 Internet address is 192.168.2.1/24
 A ping of the IP address on the other end of the link fails. Which of the following are reasons for the failure, assuming that the problem listed in the answer is the only problem with the link? (Choose two answers.)
 a. The CSU/DSU connected to the other router is not powered on.
 b. The IP address on the router at the other end of the link is not in subnet 192.168.2.0/24.
 c. CHAP authentication failed.
 d. The router on the other end of the link has been configured to use HDLC.
 e. None of the above.

Foundation Topics

Leased-Line WANs with HDLC

A physical leased-line WAN works a lot like in an Ethernet crossover cable connecting two routers, but with no distance limitations. As shown in Figure 13-1, each router can send at any time (full duplex). The speed is also symmetric, meaning that both routers send bits at the same speed.

![Figure 13-1](image-url)

Figure 13-1 Leased Line: Same Speed, Both Directions, Always On
Although the leased line provides a physical layer bit transmission facility, routers also need to use a data link protocol on the WAN link to send bits over the link. The story should be familiar by now: routers receive frames in LAN interfaces, and then the router de-encapsulates the network layer packet. Before forwarding the packet, the router encapsulates the packet inside a WAN data link protocol like High-level Data Link Control (HDLC), as shown at Step 2 of Figure 13-2.

Figure 13-2 Routers and Their Use of HDLC to Encapsulate Packets

These first two figures review some of the Layer 1 and Layer 2 details, respectively, of leased-line WANs. This first major section of this chapter begins by discussing these links again, first with the Layer 1 details, followed by the Layer 2 details. This section ends with an explanation of HDLC configuration details.

Layer 1 Leased Lines

Leased lines have been around a long time, roughly 20 years longer than LANs. However, they still exist today as a WAN service.

As a result of their long history in the market, the networking world has used a large number of different terms. First, the term leased line refers to the fact that the company using the leased line does not own the line, but instead pays a monthly lease fee to use it. Often, you lease the service from a telephone company, or telco. However, many people today use the generic term service provider to refer to a company that provides any form of WAN connectivity, including Internet services. Table 13-2 lists some of those names so that you can understand the different terms you will encounter in a real networking job.

Table 13-2 Different Names for a Leased Line

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning or Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leased circuit, circuit</td>
<td>The words line and circuit are often used as synonyms in telco terminology; circuit makes reference to the electrical circuit between the two endpoints.</td>
</tr>
<tr>
<td>Serial link, serial line</td>
<td>The words link and line are also often used as synonyms. Serial in this case refers to the fact that the bits flow serially and that routers use serial interfaces.</td>
</tr>
<tr>
<td>Point-to-point link, point-to-point line</td>
<td>Refers to the fact that the topology stretches between two points, and two points only. (Some older leased lines allowed more than two devices.)</td>
</tr>
<tr>
<td>T1</td>
<td>A specific type of leased line that transmits data at 1.544 megabits per second (1.544 Mbps).</td>
</tr>
<tr>
<td>WAN link, link</td>
<td>Both these terms are very general, with no reference to any specific technology.</td>
</tr>
</tbody>
</table>

Answers to the “Do I Know This Already?” quiz:
1 B 2 A, C 3 C 4 A, D 5 B, D 6 A, E 7 C, D
The Physical Components of a Leased Line

To create a leased line, the telco must create some physical transmission path between the two routers on the ends of the link. The physical cabling must leave the buildings where each router sits. Then the telco must create the equivalent of a two-pair circuit from end to end, with one circuit to send data in each direction (full duplex). Figure 13-3 shows one such example, in which the telco uses a couple of traditional central office (CO) switches to create a short leased line between two routers.

![Figure 13-3 Possible Cabling Inside a Telco for a Short Leased Line](image)

The details in the center of Figure 13-3 probably show more than you ever need to know about leased-line WANs, at least from the enterprise customer perspective. More commonly, most network engineers think more about a leased line from the perspective of Figure 13-4, which shows a few key components and terms for the equipment on the ends of a leased line, as follows:

Customer premises equipment (CPE): This telco term refers to the gear that sits at their customers’ sites on the ends on the link.

Channel service unit/data service unit (CSU/DSU): This device provides a function called clocking, in which it physically controls the speed and timing at which the router serial interface sends and receives each bit over the serial cable.

Serial cable: This is a short cable that connects the CSU and the router serial interface.

![Figure 13-4 Point-to-Point Leased Line: Components and Terminology](image)

The CPE includes several separately orderable parts. When using an external CSU/DSU, a serial cable must be used to connect the CSU to the router serial interface. These serial interfaces usually exist as part of a removable card on the router, called either WAN interface cards (WIC), High-speed WICs (HWIC), or Network Interface Modules (NIM). Most
of the serial interfaces use one style (size/shape) of physical connector called a smart serial connector, whereas the CSU has one of several other types of connectors. So, when installing the leased line, the engineer must choose the correct cable type, with connectors to match the WIC on one end and the CSU/DSU on the other. Figure 13-5 shows a drawing of one type of serial cable, with the smart serial connector on the left, and the popular V.35 connector on the right. The figure shows a side view of the entire cable, plus direct views into the connector on the ends of the cable.

![Figure 13-5 Serial Cables Used Between a CSU and a Router](image)

Today, many leased lines make use of Cisco WICs with an integrated CSU/DSU. That is, the WIC hardware includes the same functions as a CSU/DSU, so an external CSU/DSU is not needed. Compared to Figure 13-4, the external CSU/DSU and serial cable on each end are not needed, with the cable from the telco connecting directly to the WIC.

Figure 13-6 shows a photo of a router with two NIM slots. Each slot currently shows a faceplate with no NIM cards installed. The foreground of the figure shows a NIM with two serial ports, with smart serial interfaces. The cable end on the left of the drawing in Figure 13-5 would attach to one of these smart serial ports on the NIM in Figure 13-6.

![Figure 13-6 Photo of Router with Serial NIM on the Right](image)

Telcos offer a wide variety of speeds for leased lines. However, a telco customer cannot pick just any speed. Instead, the speeds follow the standards of an age-old technology called the T-carrier system.
Back in the 1950s and 1960s, the U.S.-based Bell companies developed and deployed digital voice and the T-carrier system. As part of that work, they standardized different transmission speeds, including 64 Kbps, 1.544 Mbps, and 44.736 Mbps.

Those same Bell companies developed time-division multiplexing (TDM) technology that let them combine multiples of these base speeds onto a single line. For instance, one popular standard, a Digital Signal level 1 (DS1), or T1, combines 24 DS0s (at 64 Kbps) plus 8 Kbps of overhead into one physical line that runs at 1.544 Mbps. However, to allow flexibility of speeds offered to customers, the telco could install a T1 line to many sites, but run some at slower speeds and some at faster speeds—as long as those speeds were multiples of 64 Kbps.

Now back to the idea of the speed of a leased line. What can you actually buy? Basically, at slower speeds, you get any multiple of 64 Kbps, up to T1 speed. At faster speeds, you can get multiples of T1 speed, up to T3 speed. Table 13-3 summarizes the speeds typically seen in the United States, with a few from Europe.

<table>
<thead>
<tr>
<th>Key Topic</th>
<th>Table 13-3 WAN Speed Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names of Line</td>
<td>Bit Rate</td>
</tr>
<tr>
<td>DS0</td>
<td>64 Kbps</td>
</tr>
<tr>
<td>Fractional T1</td>
<td>Multiples of 64 Kbps, up to 24X</td>
</tr>
<tr>
<td>DS1 (T1)</td>
<td>1.544 Mbps (24 DS0s, for 1.536 Mbps, plus 8 Kbps overhead)</td>
</tr>
<tr>
<td>E1 (Europe)</td>
<td>2.048 Mbps (32 DS0s)</td>
</tr>
<tr>
<td>Fractional T3</td>
<td>Multiples of 1.536 Mbps, up to 28X</td>
</tr>
<tr>
<td>DS3 (T3)</td>
<td>44.736 Mbps (28 DS1s, plus management overhead)</td>
</tr>
<tr>
<td>E3 (Europe)</td>
<td>Approx. 34 Mbps (16 E1s, plus management overhead)</td>
</tr>
</tbody>
</table>

The Role of the CSU/DSU

For our last bit of discussion about WAN links in a working enterprise internetwork, next consider the role of the CSU/DSU (called CSU for short). For the sake of discussion, the next few paragraphs, leading up to Figure 13-7, assume a leased line with external CSU/DSUs, like earlier in Figure 13-4.

The CSU sits between the telco leased line and the router; it understands both worlds and their conventions at Layer 1. On the telco side, that means the CSU connects to the line from the telco, so it must understand all these details about the T-carrier system, TDM, and the speed used by the telco. On the router side of the equation, the CSU connects to the router, with roles called the DCE and DTE, respectively. The CSU, acting as DCE (data circuit-terminating equipment), controls the speed of the router serial interface. The router, acting as DTE (data terminal equipment), is controlled by the clocking signals from the CSU (DCE). That is, the CSU tells the router when to send and receive bits; the router attempts to send and receive bits only when the DCE creates the correct electrical impulses (called clocking) on the cable. Figure 13-7 shows a diagram of those main concepts of the role of the CSU/DSU.
Building a WAN Link in a Lab

On a practical note, to prepare for the CCENT and CCNA R&S exams, you might choose to buy some used router and switch hardware for hands-on practice. If you do, you can create the equivalent of a leased line, without a real leased line from a telco, and without CSU/DSUs, just using a cabling trick. This short discussion tells you enough information to create a WAN link in your home lab.

First, when building a real WAN link with a real telco facility between sites, the serial cables normally used between a router and an external CSU/DSU are called DTE cables. That is, the serial cables in earlier Figure 13-4 are DTE cables.

You can create an equivalent WAN link just by connecting two routers’ serial interfaces using one DTE cable and a slightly different DCE cable, with no CSUs and with no leased line from the telco. The DCE cable has a female connector, and the DTE cable has a male connector, which allows the two cables to be attached directly. That completes the physical connection, providing a path for the data. The DCE cable also does the equivalent of an Ethernet crossover cable by swapping the transmit and receive wire pairs, as shown in Figure 13-8.

The figure shows the cable details at the top, with the wiring details at the bottom. In particular, at the bottom of the figure, note that the DTE serial cable acts as a straight-through cable and does not swap the transmit and receive pair, whereas the DCE cable does swap the pairs.

NOTE Many vendors, for convenience, sell a single cable that combines the two cables shown in Figure 13-8 into a single cable. Search online for “Cisco serial crossover” to find examples.
Finally, to make the link work, the router with the DCE cable installed must provide clocking. A router serial interface can provide clocking, but it can do so only if a DCE cable is connected to the interface and by the configuration of the clock rate command. Newer IOS versions will sense the presence of a DCE cable and automatically set a clock rate, so that the link will work, but old IOS versions require that you configure the clock rate command.

Layer 2 Leased Lines with HDLC

A leased line provides a Layer 1 service. It promises to deliver bits between the devices connected to the leased line. However, the leased line itself does not define a data link layer protocol to be used on the leased line. HDLC provides one option for a data link protocol for a leased line.

HDLC has only a few big functions to perform with the simple point-to-point topology of a point-to-point leased line. First, the frame header lets the receiving router know that a new frame is coming. Plus, like all the other data link protocols, the HDLC trailer has a Frame Check Sequence (FCS) field that the receiving router can use to decide whether the frame had errors in transit, and if so, discard the frame.

Cisco adds another function to the ISO standard HDLC protocol by adding an extra field (a Type field) to the HDLC header, creating a Cisco-specific version of HDLC, as shown in Figure 13-9. The Type field allows Cisco routers to support multiple types of network layer packets to cross the HDLC link. For example, an HDLC link between two Cisco routers can forward both IPv4 and IPv6 packets because the Type field can identify which type of packet is encapsulated inside each HDLC frame.

![Proprietary Cisco HDLC (Adds Type Field)](image)

Figure 13-9 Cisco HDLC Framing

Today, the HDLC Address and Control fields have little work to do. For instance, with only two routers on a link, when a router sends a frame, it is clear that the frame is sent to the only other router on the link. Both the Address and Control fields had important purposes in years past, but today they are unimportant.

Routers use HDLC just like any other data link protocol used by routers: to move packets to the next router. Figure 13-10 shows three familiar routing steps, with the role of HDLC sitting at Step 2.

![General Concept of Routers De-encapsulating and Re-encapsulating IP Packets](image)
Chapter 13: Implementing Point-to-Point WANs

Here is a walkthrough of the steps in the figure:

1. To send the IP packet to router R1, PC1 encapsulates the IP packet in an Ethernet frame.
2. Router R1 de-encapsulates (removes) the IP packet, encapsulates the packet into an HDLC frame using an HDLC header and trailer, and forwards the HDLC frame to router R2.
3. Router R2 de-encapsulates (removes) the IP packet, encapsulates the packet into an Ethernet frame, and forwards the Ethernet frame to PC2.

In summary, a leased line with HDLC creates a WAN link between two routers so that they can forward packets for the devices on the attached LANs. The leased line itself provides the physical means to transmit the bits, in both directions. The HDLC frames provide the means to encapsulate the network layer packet correctly so it crosses the link between routers.

Configuring HDLC

Think back to router Ethernet interfaces for a moment. Router Ethernet interfaces require no configuration related to Layers 1 and 2 for the interface to be up and working, forwarding IP traffic. The Layer 1 details occur by default once the cabling has been installed correctly. Router Ethernet interfaces, of course, use Ethernet as the data link protocol by default. The router only needs to configure an IP address on the interface, and possibly enable the interface with the no shutdown command if the interface is in an “administratively down” state.

Similarly, serial interfaces on Cisco routers need no specific Layer 1 or 2 configuration commands. For Layer 1, the cabling needs to be completed, of course, but the router attempts to use the serial interface once the no shutdown command is configured. For Layer 2, IOS defaults to use HDLC on serial interfaces. As on Ethernet interfaces, router serial interfaces usually only need an ip address command, and possibly the no shutdown command, assuming both routers’ interfaces otherwise have default settings.

However, many optional commands exist for serial links. The following list outlines some configuration steps, listing the conditions for which some commands are needed, plus commands that are purely optional:

Step 1. Use the ip address address mask command in interface configuration mode to configure the interface IP address.

Step 2. The following tasks are required only when the specifically listed conditions are true:

A. If an encapsulation protocol interface subcommand already exists, for a non-HDLC protocol, use the encapsulation hdlc command in interface configuration mode to enable HDLC. Alternatively, use the no encapsulation protocol command in interface configuration mode to use the default setting of HDLC as the data link protocol.

B. If the interface line status is administratively down, use the no shutdown command in interface configuration mode to enable the interface.
C. If the serial link is a back-to-back serial link in a lab (or a simulator), use the `clock rate speed` command in interface configuration mode to configure the clocking rate. Use this command only on the one router with the DCE cable (per the `show controllers serial number` command).

Step 3. The following steps are always optional and have no impact on whether the link works and passes IP traffic:

- **A.** Use the `bandwidth speed-in-kbps` command in interface configuration mode to configure the link’s documented speed so that it matches the actual clock rate of the link.
- **B.** For documentation purposes, use the `description text` command in interface configuration mode to configure a description of the purpose of the interface.

In practice, when you configure a Cisco router with no preexisting interface configuration and install a normal production serial link with CSU/DSUs, the `ip address` and `no shutdown` commands are likely the only configuration commands you would need.

Figure 13-11 shows a sample internetwork, and Example 13-1 shows the matching HDLC configuration. In this case, the serial link was created with a back-to-back serial link in a lab, requiring Steps 1 (`ip address`) and 2C (`clock rate`) from the preceding list. It also shows optional Step 3B (`description`).

Figure 13-11 Typical Serial Link Between Two Routers

Example 13-1 HDLC Configuration

```bash
R1# show running-config
! Note - only the related lines are shown
interface GigabitEthernet0/0
 ip address 192.168.1.1 255.255.255.0
!
interface Serial0/0/0
 ip address 192.168.2.1 255.255.255.0
description link to R2
 clock rate 2000000
!
router eigrp 1
 network 192.168.1.0
 network 192.168.2.0
```
Chapter 13: Implementing Point-to-Point WANs

The configuration on R1 is relatively simple. The matching configuration on R2's S0/0/1 interface simply needs an `ip address` command plus the default settings of `encapsulation hdlc` and `no shutdown`. The `clock rate` command would not be needed on R2 because R1 has the DCE cable, so R2 must be connected to a DTE cable.

Example 13-2 lists two commands that confirm the configuration on R1 and some other default settings. First, it lists the output from the `show controllers` command for S0/0/0, which confirms that R1 indeed has a DCE cable installed and that the clock rate has been set to 2000000 bps. The `show interfaces S0/0/0` command lists the various configuration settings near the top, including the default encapsulation value (HDLC) and default bandwidth setting on a serial interface (1544, meaning 1544 Kbps or 1.544 Mbps). It also lists the IP address, prefix-style mask (/24), and description, as configured in Example 13-1.

Example 13-2 Verifying the Configuration Settings on R1

```markdown
R1# show controllers serial 0/0/0
Interface Serial0/0/0
Hardware is SCC
DCE V.35, clock rate 2000000

R1# show interfaces s0/0/0
Serial0/0/0 is up, line protocol is up
   Hardware is WIC MBRD Serial
   Description: link to R2
   Internet address is 192.168.2.1/24
   MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
   reliability 255/255, txload 1/255, rxload 1/255
   Encapsulation HDLC, loopback not set
   Keepalive set (10 sec)
   Last input 00:00:01, output 00:00:00, output hang never
   Last clearing of "show interface" counters never
   Input queue: 0/75/max (size/max/drops/flushes); Total output drops: 0
   Queueing strategy: fifo
   Output queue: 0/40 (size/max)
   5 minute input rate 0 bits/sec, 0 packets/sec
   5 minute output rate 0 bits/sec, 0 packets/sec
     276 packets input, 19885 bytes, 0 no buffer
     Received 96 broadcasts (0 IP multicasts)
       0 runts, 0 giants, 0 throttles
       0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     284 packets output, 19290 bytes, 0 underruns
       0 output errors, 0 collisions, 5 interface resets
       0 unknown protocol drops
       0 output buffer failures, 0 output buffers swapped out
       7 carrier transitions
       DCD-up DSR-up DTR-up RTS-up CTS-up
```
Finally, the router uses the serial interface only if it reaches an up/up interface status, as shown in the first line of the output of the `show interfaces S0/0/0` command in Example 13-2. Generally speaking, the first status word refers to Layer 1 status, and the second refers to Layer 2 status. For a quicker look at the interface status, instead use either the `show ip interface brief` or `show interfaces description` commands, as listed in Example 13-3.

Example 13-3 Brief Lists of Interfaces and Interface Status

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/0</td>
<td>192.168.1.1</td>
<td>YES manual up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet0/1</td>
<td>unassigned</td>
<td>YES manual administratively down</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/0</td>
<td>192.168.2.1</td>
<td>YES manual up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/1</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>Serial0/1/0</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>Serial0/1/1</td>
<td>unassigned</td>
<td>YES NVRAM</td>
<td>administratively down</td>
<td>down</td>
</tr>
</tbody>
</table>

Leased-Line WANs with PPP

Point-to-Point Protocol (PPP) plays the same role as HDLC: a data link protocol for use on serial links. However, HDLC was created for a world without routers. In contrast, PPP, defined in the 1990s, was designed with routers, TCP/IP, and other network layer protocols in mind, with many more advanced features.

This second major section of this chapter first discusses PPP concepts, including one example of a more advanced PPP feature (authentication). This section ends with some configuration examples using PPP.

PPP Concepts

PPP provides several basic but important functions that are useful on a leased line that connects two devices:

- Definition of a header and trailer that allows delivery of a data frame over the link
- Support for both synchronous and asynchronous links
- A protocol Type field in the header, allowing multiple Layer 3 protocols to pass over the same link
- Built-in authentication tools: Password Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP)
Control protocols for each higher-layer protocol that rides over PPP, allowing easier integration and support of those protocols.

The next several pages take a closer look at the protocol field, authentication, and the control protocols.

PPP Framing

Unlike the standard version of HDLC, the PPP standard defines a protocol field. The protocol field identifies the type of packet inside the frame. When PPP was created, this field allowed packets from the many different Layer 3 protocols to pass over a single link. Today, the protocol Type field still provides the same function, usually supporting packets for the two different versions of IP (IPv4 and IPv6). Figure 13-12 shows the PPP framing, which happens to mirror the Cisco-proprietary HDLC framing that includes a protocol Type field (as shown earlier in Figure 13-9).

![Figure 13-12 PPP Framing](image)

PPP Control Protocols

In addition to HDLC-like framing, PPP defines a set of Layer 2 control protocols that perform various link control functions. The idea of these extra protocols works a little like how Ethernet includes additional protocols like Spanning Tree Protocol (STP). Ethernet has headers and trailers to deliver frames, plus it defines overhead protocols like STP to help make the frame forwarding process work better. Likewise, PPP defines the frame format in Figure 13-12, plus it defines other protocols to help manage and control the serial link.

PPP separates these control protocols into two main categories:

- **Link Control Protocol (LCP):** This one protocol has several different individual functions, each focused on the data link itself, ignoring the Layer 3 protocol sent across the link.

- **Network Control Protocols (NCP):** This is a category of protocols, one per network layer protocol. Each protocol performs functions specific to its related Layer 3 protocol.

The PPP LCP implements the control functions that work the same regardless of the Layer 3 protocol. For features related to any higher-layer protocols, usually Layer 3 protocols, PPP uses a series of PPP control protocols (CP), such as IP Control Protocol (IPCP). PPP uses one instance of LCP per link and one NCP for each Layer 3 protocol defined on the link. For example, on a PPP link using IPv4, IPv6, and Cisco Discovery Protocol (CDP), the link uses one instance of LCP plus IPCP (for IPv4), IPv6CP (for IPv6), and CDPCP (for CDP).

Table 13-4 summarizes the functions of LCP, gives the LCP feature names, and describes the features briefly. Following the table, the text explains one of the features, PPP authentication, in more detail. Later, the section “Implementing Multilink PPP” discusses the Multilink PPP (MLPPP) feature.
<table>
<thead>
<tr>
<th>Table 13-4 PPP LCP Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>Looped link detection</td>
</tr>
<tr>
<td>Error detection</td>
</tr>
<tr>
<td>Multilink support</td>
</tr>
<tr>
<td>Authentication</td>
</tr>
</tbody>
</table>

PPP Authentication

In networking, *authentication* gives one device a way to confirm that another device is truly the correct and approved device with which communications should occur. In other words, authentication confirms that the other party is the authentic other party, and not some imposter.

For instance, with PPP, if R1 and R2 are supposed to be communicating over a serial link, R1 might want R2 to somehow prove that the device claiming to be R2 really is R2. In that scenario, R1 wants to authenticate R2, with the authentication process providing a way for R2 to prove its identity.

WAN authentication is most often needed when dial lines are used. However, the configuration of the authentication features remains the same whether a leased line or dial line is used.

PPP defines two authentication protocols: PAP and CHAP. Both protocols require the exchange of messages between devices, but with different details. With PAP, the process works with the to-be-authenticated device starting the messages, claiming to be legitimate by listing a secret password in clear text, as shown in Figure 13-13.

Figure 13-13 PAP Authentication Process

In the figure, when the link comes up, authentication takes two steps. At Step 1, Barney sends the shared password in clear text. Fred, who wants to authenticate Barney—that is, confirm that Barney is the real Barney—sees the password. Fred, configured with Barney’s name and password, checks that configuration, confirming that it is the correct password, and sends back an acknowledgment that Barney has passed the authentication process.

CHAP, a much more secure option, uses different messages, and it hides the password. With CHAP, the device doing the authentication (Fred) begins with a message called a *challenge*, which asks the other device to reply. The big difference is that the second message
in the flow (as shown in Figure 13-14) hides the authentication password by instead sending a hashed version of the password. Router Fred has been preconfigured with Barney's name and password in such a way that Fred can confirm that the hashed password sent by Barney is indeed the same password that Fred lists in his configuration for Barney. If the password is indeed the correct password, Fred sends back a third message to confirm the successful authentication of Barney.

Both Figures 13-13 and 13-14 show authentication flows when authentication works. When it fails (for instance, if the passwords do not match), a different final message flows. Also, if the authentication fails, PPP leaves the interface in an up/down state, and the router cannot forward and receive frames on the interface.

PAP flows are much less secure than CHAP because PAP sends the hostname and password in clear text in the message. These can be read easily if someone places a tracing tool in the circuit. CHAP instead uses a one-way hash algorithm, called message digest 5 (MD5), with input to the algorithm being a password that never crosses the link plus a shared random number.

The CHAP process also uses a hash value only one time so that an attacker cannot just make a copy of the hashed value and send it at a later date. To make that work, the CHAP challenge (the first CHAP message) states a random number. The challenged router runs the hash algorithm using the just-learned random number and the secret password as input, and sends the results back to the router that sent the challenge. The router that sent the challenge runs the same algorithm using the random number (sent across the link) and the password (as stored locally); if the results match, the passwords must match. Later, the next time the authentication process works, the authenticating router generates and uses a different random number.

PAP and CHAP are a few examples of the work done by PPP’s LCP. The next topic looks at how to configure and verify PPP.

Implementing PPP

Configuring PPP, as compared to HDLC, requires only one change: using the `encapsulation ppp` command on both ends of the link. As with HDLC, other items can be optionally configured, such as the interface `bandwidth`, and a `description` of the interface. And of course, the interface must be enabled (no `shutdown`). But the configuration to migrate from HDLC to PPP just requires the `encapsulation ppp` command on both routers’ serial interfaces.

Example 13-4 shows a simple configuration using the two routers shown in Figure 13-11, the same internetwork used for the HDLC example. The example includes the IP address configuration, but the IP addresses do not have to be configured for PPP to work.
Example 13-4 Basic PPP Configuration

| ! The example starts with router R1 |
| interface Serial0/0/0 |
| ip address 192.168.2.1 255.255.255.0 |
| **encapsulation ppp** |
| clockrate 2000000 |

! Next, the configuration on router R2 |
| interface Serial0/0/1 |
| ip address 192.168.2.2 255.255.255.0 |
| **encapsulation ppp** |

The one show command that lists PPP details is the show interfaces command, with an example from R1 listed in Example 13-5. The output looks just like it does for HDLC up until the first highlighted line in the example. The two highlighted lines confirm the configuration ("Encapsulation PPP"). These lines also confirm that LCP has completed its work successfully, as noted with the “LCP Open” phrase. Finally, the output lists the fact that two CPs, CDPCP and IPCP, have also successfully been enabled—all good indications that PPP is working properly.

Example 13-5 Finding PPP, LCP, and NCP Status with show interfaces

R1# show interfaces serial 0/0/0
Serial0/0/0 is up, line protocol is up
Hardware is WIC MBRD Serial
Description: link to R2
Internet address is 192.168.2.1/24
MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Open
Open: IPCP, CDPCP, loopback not set
! Lines omitted for brevity

Implementing PPP CHAP

The simplest version of CHAP configuration requires only a few commands. The configuration uses a password configured on each router. (As an alternative, the password could be configured on an external authentication, authorization, and accounting [AAA] server outside the router.)

To configure PPP along with CHAP on an interface that has all default configuration on the serial interfaces of both routers, follow these steps:

Step 1. Use the **encapsulation ppp** command in interface configuration mode, on the serial interfaces on both routers, to enable PPP on the interfaces.

Step 2. Define the usernames and passwords used by the two routers:

A. Use the **hostname name** command in global configuration mode on each router, to set the local router’s name to use when authenticating.
B. Use the `username name password password` command in global configuration mode on each router, to define the name (case-sensitive) used by the neighboring router, and the matching password (case-sensitive). (The name in the `username` command should match the name in the neighboring router’s `hostname` command.)

Step 3. Use the `ppp authentication chap` command in interface configuration mode on each router to enable CHAP on each interface.

Figure 13-15 shows the configuration on both R1 and R2 to both enable PPP and add CHAP to the link. The figure shows how the name in the `hostname` command on one router must match the `username` command on the other router. It also shows that the password defined in each `username` command must be the same (mypass in this case).

![Diagram showing CHAP configuration on R1 and R2](image)

Figure 13-15 CHAP Configuration

You can confirm that CHAP authentication has succeeded in a couple of ways. First, if CHAP authentication is enabled but CHAP authentication fails, the protocol status of the interface falls to a down state. To check that status, use the usual `show interfaces [type number]` command or `show interfaces status` command. Additionally, if CHAP is enabled but CHAP authentication fails, the `show interfaces` command does not list “LCP Open” as shown in this example. Example 13-6 lists the output of the `show interfaces serial0/0/0` command from R1, with CHAP enabled per Figure 13-15, with CHAP working. However, note that this command does not tell us whether authentication has been configured or not.

Example 13-6 Confirming CHAP Authentication with show interfaces

```
R1# show interfaces serial 0/0/0
Serial0/0/0 is up, line protocol is up
  Hardware is WIC MBRD Serial
  Description: link to R2
  Internet address is 192.168.2.1/24
  MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
   reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation PPP, LCP Open
  Open: IPCP, CDPCP, loopback not set
  Keepalive set (10 sec)
  ! Lines omitted for brevity
```
The more obvious way to confirm that CHAP works is to use the `show ppp all` command, as shown at the end of Example 13-6. This command lists a single line per PPP connection in the router. The highlighted header in the example is the column where this command lists various PPP protocols and their status, with a plus sign (+) meaning that the listed protocol is OPEN, and a minus sign (−) meaning that the protocol has failed. The highlighted parts of this command in the example confirm that Serial0/0/0 uses PPP, with CHAP authentication, and that CHAP authentication worked (as proved by the OPEN status of the CHAP protocol).

Implementing PPP PAP

PAP configuration differs from CHAP configuration in a couple of ways. First, PAP uses the similar `authentication ppp pap` command instead of the `authentication ppp chap` command. Then, PAP configures the sent username/password pair much differently than CHAP. A router defines the username/password pair it will send using the `ppp pap sent-username` command, configured as an interface subcommand. Once sent, the other router receives that username/password pair, and compares those values with its various `username password` global commands. Figure 13-16 shows a completed configuration for two routers (R1 and R2), with emphasis on matching the `ppp pap sent-username` command on one router with the `username password` commands on the other router.

Figure 13-16 PAP Configuration

Example 13-7 now shows two commands used to verify PAP operation. In particular, note that the `show interfaces` command tells us nothing more and nothing less as compared to using CHAP authentication. The line protocol status being up confirms that authentication, if configured, worked. (However, nothing in the `show interfaces` command output tells us whether or not CHAP or PAP has been configured.) As with CHAP, the LCP status of Open also confirms that authentication worked, again assuming authentication is configured.
However, just as is the case when using CHAP, or when using no authentication at all, this command does not confirm whether authentication has been configured or, if it is configured, which authentication protocol is used. The better confirmation comes from the `show ppp all` command at the bottom of the example, which identifies PAP as configured on interface Serial0/0/0, and in this case the protocol is OPEN, meaning that authentication worked.

Example 13-7 Configuring and Verifying PAP Authentication

```
R1# show interfaces serial 0/0/0
Serial0/0/0 is up, line protocol is up
    Hardware is WIC MBRD Serial
    Description: link to R2
    Internet address is 192.168.2.1/24
    MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
         reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation PPP, LCP Open
    Open: IPCP, CDPCP, loopback not set
    Keepalive set (10 sec)

R1# show ppp all
+-------------------------------+----------------------------------+
<table>
<thead>
<tr>
<th>Interface/ID</th>
<th>OPEN+ Nego* Fail- Stage Peer Address Peer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se0/0/0</td>
<td>LCP+ PAP+ IPCP+ CDPC&gt; LocalT 192.168.2.2 ciscouser2</td>
</tr>
</tbody>
</table>
```

Finally, note that you can configure the interface to try using the PAP process first, but if the other side does not support PAP, it then tries CHAP. You can configure to try PAP first or CHAP first. Just configure the commands to support both, and add the `ppp authentication pap chap` command to try PAP first, or the `ppp authentication chap pap` command to try CHAP first.

Implementing Multilink PPP

Network designers sometimes use multiple parallel serial links between two routers, rather than a single serial link. That motivation may be to improve availability, so if one link fails, at least the others are working. The motivation may be simple economics—it may be cheaper to install two or three parallel T1 lines (at about 1.5 Mbps each) rather than move up to the next faster type of line, a T3 line, using a fractional T3 service. Whatever the reasons, you end up with a design that looks like the design in Figure 13-17, with multiple serial links between two routers.

![Figure 13-17 Multiple Parallel Serial Links Between Routers](image-url)
If the network engineer configures the parallel serial links as discussed so far in this chapter, each link has IP addresses and can be used to forward IP packets. To make that happen, the interior routing protocol would run over each of the parallel links, with routing protocol neighbor relationships formed over each link. As a result, each router would learn multiple routes to every remote destination subnet—one such route for each parallel link.

Figure 13-18 shows the concept of having multiple equal-metric routes, one for each of the parallel serial links. It shows the same design as Figure 13-17, with two links. R1 has one route for network 192.168.9.0/24 over the top link, and one over the bottom link. If using EIGRP, R1 would have two EIGRP neighbor relationships with R2, one over each link.

![Figure 13-18 Two IP Routes for One Network, One Per Parallel Serial Link](image)

The Layer 3 routing logic in Cisco IOS will then balance packets across the multiple links using the routes as shown in the figure. By default, IOS balances on a destination-by-destination address basis—for instance, in Figure 13-18, all packets to 192.168.9.1 might flow over the top link, with all packets going to destination address 192.168.9.2 being routed over the lower link. IOS can be configured to balance on a packet-by-packet basis.

Using the Layer 3 features discussed in the last page or so works, and works well in many cases. However, PPP offers a feature that simplifies the Layer 3 operations in topologies that use multiple parallel PPP links, with a feature called Multilink PPP (MLPPP).

Multilink PPP Concepts

Multilink PPP (MLPPP) is a PPP feature useful when using multiple parallel serial links between two devices. It provides two important features. First, it reduces the Layer 3 complexity by making the multiple serial interfaces on each router look like a single interface from a Layer 3 perspective. Instead of multiple subnets between routers, with multiple routing protocol neighbor relationships, and multiple equal-metric routes learned for each remote subnet, routers would have one subnet between routers, one routing protocol neighbor relationship, and one route per destination subnet. Figure 13-19 shows these main ideas for the same physical topology shown in Figure 13-18, which has multiple physical links.

![Figure 13-19 Layer 3 Concept Created by Multilink Interface](image)
MLPPP makes the multiple physical links work like a single link by using a virtual interface called a multilink interface. The Layer 3 configuration (like IPv4 and IPv6 addresses and routing protocol interface subcommands) is added to the multilink interface. Then the configuration associates the physical serial interfaces with the multilink interface, connecting the Layer 2 logic that works with the multiple serial links with the Layer 3 logic that works on the single multilink interface.

In addition to simplifying Layer 3 details as just described, MLPPP balances the frames sent at Layer 2 over the multiple links. With MLPPP, a router's Layer 3 forwarding logic forwards each packet out the multilink interface. When IOS internally routes a packet out a multilink interface, MLPPP load-balancing logic takes over, encapsulating the packet into a new data link frame, and load balancing the frame.

Interestingly, MLPPP load balances the data link frame by fragmenting the frame into multiple smaller frames, one per active link, as shown with the process in Figure 13-20. Steps 1 and 2 show normal routing, with an encapsulated IP packet arriving at Step 1, and the router making the usual routing decision at Step 2. However, with the packet exiting a multilink interface, MLPPP fragments the packet into pieces (called fragments), with a PPP header/trailer around each, with a few extra header bytes to manage the fragmentation process. The receiving router reassembles the fragments back into the original packet (Step 4), with normal IP routing shown at Step 5.

Figure 13-20 Layer 2 Fragmentation to Balance Traffic over Multiple Links

MLPPP’s load-balancing process allows for some small variations in the sizes of the fragments, but for the most part, Cisco routers will balance the bytes sent equally across the active links in the multilink bundle. For instance, if three links are active, the router forwards about one-third of the byte volume of traffic.

Configuring MLPPP

Implementing MLPPP requires a longer configuration than most features discussed in this book. So first, to set the context a bit, think about these main three configuration requirements for MLPPP:

1. **Step 1.** Configure matching multilink interfaces on the two routers, configuring the interface subcommands for all Layer 3 features (IPv4, IPv6, and routing protocol) under the multilink interfaces (and not on the serial interfaces).

2. **Step 2.** Configure the serial interfaces with all Layer 1 and 2 commands, like *clock rate* (Layer 1) and *ppp authentication* (Layer 2).

3. **Step 3.** Configure some PPP commands on both the multilink and serial interfaces, to both enable MLPPP and associate the multilink interface with the serial interfaces.
Figure 13-21 shows all the specific MLPPP commands in a working example. The example is based on the design in Figures 13-19 and 13-20. Note that for space, Figure 13-21 shows the configuration for only one of the two serial interfaces, but all serial interfaces would have the same subcommands when used for MLPPP.

First, focus on the six configuration commands noted with white highlight boxes in Figure 13-21 as pointed to with arrows. The `interface multilink` command on each router creates the multilink interface on that router. The network engineer chooses the interface number, but the number must be the same on both routers, or the link will not work. Additionally, the multilink interfaces and the physical serial interfaces must all have both a `ppp multilink group` command, and they must all again refer to that same number (1 in this example). Any number in range could be used, but the number must match with the commands highlighted in the figure.

```
R1 Multilink (Layer 3) Interface
interface multilink 1
  encapsulation ppp
  ppp multilink
  ip address 192.168.5.1 255.255.255.0
  ppp multilink group 1

R1 Layer 2 Interfaces
interface Serial0/0/0
  encapsulation ppp
  ppp multilink
  no ip address
  ppp multilink group 1
    ! Authentication goes here

R2 Multilink (Layer 3) Interface
interface multilink 1
  encapsulation ppp
  ppp multilink
  ip address 192.168.5.2 255.255.255.0
  ppp multilink group 1

R2 Layer 2 Interfaces
interface Serial0/0/1
  encapsulation ppp
  ppp multilink
  no ip address
  ppp multilink group 1
    ! Authentication goes here
```

Now look at the `ip address` commands. Note that the configuration shows IPv4 addresses configured on the multilink interfaces, but no IPv4 address at all on the serial interface. In short, the multilink interface has the Layer 3 configuration, and the serial interfaces do not. As a result, the routing and routing protocol logic will work with the multilink interface.

Finally, note that both the multilink and serial interfaces have two additional commands: `encapsulation ppp` (which enables PPP), and `ppp multilink` (which adds multilink support).

NOTE Figure 13-21 shows only one serial interface, but each serial interface in the multilink group would need the same configuration.
Verifying MLPPP

To verify that an MLPPP interface is working, it helps to think about the Layer 3 features separately from Layer 1 and Layer 2 details. For Layer 3, all the usual IPv4, IPv6, and routing protocol commands will now list the multilink interface rather than the physical serial interfaces. You can also just ping the IP address on the other end of the multilink to test the link. Example 13-8 shows a few commands to confirm the current working state of the MLPPP link, taken from the working configuration in Figure 13-21.

Example 13-8 Verifying Layer 3 Operations with an MLPPP Multilink Interface

```
R1# show ip route
  ! Legend omitted for brevity
  192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
  C  192.168.1.0/24 is directly connected, GigabitEthernet0/0
  L  192.168.1.1/32 is directly connected, GigabitEthernet0/0

  192.168.5.0/24 is variably subnetted, 3 subnets, 2 masks
  C  192.168.5.0/24 is directly connected, Multilink1
  L  192.168.5.1/32 is directly connected, Multilink1
  C  192.168.5.2/32 is directly connected, Multilink1
  D  192.168.9.0/24 [90/1343488] via 192.168.5.2, 16:02:07, Multilink1

R1# show ip eigrp interfaces
  EIGRP-IPv4 Interfaces for AS(1)
  Xmit Queue   PeerQ        Mean   Pacing Time   Multicast   Pending
  Interface   Peers  Un/Reliable  Un/Reliable  SRTT   Un/Reliable   Flow Timer   Routes
  Mu1           1        0/0       0/0           1       0/8           50           0
  Gi0/0         1        0/0       0/0           1       0/0           50           0

R1# show ip interface brief
  Interface                  IP-Address      OK? Method Status                Protocol
  Embedded-Service-Engine0/0 unassigned      YES NVRAM  administratively down down
  GigabitEthernet0/0           192.168.1.1     YES manual up                    up
  GigabitEthernet0/1           192.168.1.1     YES manual up                    up
  Serial0/0/0                unassigned      YES NVRAM  administratively down down
  Serial0/0/1                unassigned      YES NVRAM  administratively down down
  Serial0/1/0                unassigned      YES NVRAM  administratively down down
  Serial0/1/1                unassigned      YES NVRAM  up                    up
  Multilink1                 192.168.5.1     YES manual up                    up
```

Working from the top of the example to the bottom, note that the IPv4 routing table lists interface multilink 1 as the outgoing interface in a variety of routes. However, the two serial interfaces are not listed at all, because they do not have IP addresses and the router’s routing logic works with the multilink interface instead. Similarly, the `show ip eigrp interfaces`
command lists interfaces on which EIGRP is enabled, listing Mu1 (Multilink 1), and not list-
ing either of the two serial interfaces in the MLPPP bundle. Finally, note that the show ip interface brief command does list both the serial interfaces and the multilink interface, but the output confirms that no IP address has been configured on the serial interfaces, as noted with the “unassigned” text under the IP-Address column.

Each multilink interface has a line and protocol status like any other interface, and if that status is up/up, IOS believes the multilink interface is working. By default, that working state implies that at least one of the physical links in the MLPPP group is also working—that is, some of the physical links can fail, and the multilink stays up. You can always directly verify the serial interfaces in the multilink group with the same commands discussed earlier in the chapter (show controllers, show interfaces). Additionally, the two commands in Example 13-9 give some insight into the specifics of MLPPP operation.

Example 13-9 Verifying Operational Details of an MLPPP Group

```
R1# show interfaces multilink 1
Multilink1 is up, line protocol is up
    Hardware is multilink group interface
    Internet address is 192.168.5.1/24
    MTU 1500 bytes, BW 3088 Kbit/sec, DLY 20000 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation PPP, LCP Open, multilink Open
    Open: IPCP, CDPCP, loopback not set
    Keepalive set (10 sec)

R1# show ppp multilink
Multilink1
    Bundle name: R2
    Remote Username: R2
    Remote Endpoint Discriminator: [1] R2
    Local Username: R1
    Local Endpoint Discriminator: [1] R1
    Bundle up for 16:50:33, total bandwidth 3088, load 1/255
    Receive buffer limit 24000 bytes, frag timeout 1000 ms
        0/0 fragments/bytes in reassembly list
        0 lost fragments, 96 reordered
        0/0 discarded fragments/bytes, 0 lost received
        0x654D7 received sequence, 0x654D5 sent sequence
    Member links: 2 active, 0 inactive (max 255, min not set)
        Se0/1/1, since 16:50:33
        Se0/0/0, since 16:23:16
    No inactive multilink interfaces
```

First, notice that the show interfaces multilink 1 command lists many familiar details and some mentions about multilink. In particular, the output shows the traditional line and
protocol status, both in an up state, meaning that the interface is working. On the sixth line, the output mentioned a working multilink state of “Open” in the section about PPP control protocols, confirming that MLPPP is in effect.

Finally, the output of the `show ppp multilink` command identifies the links configured in each multilink bundle, as well as which ones are active. In this case, on R1, interfaces S0/0/0 and S0/1/1 are active, as highlighted at the bottom of the example. The timer to the side shows that both have been active a little over 16 hours. Seeing these two interfaces in the list confirms not only that the physical interfaces are working, but that the MLPPP configuration includes both of these links in multilink group 1.

Troubleshooting Serial Links

This final major section discusses how to isolate and find the root cause of problems related to topics covered earlier in this chapter. Also, this section does not attempt to repeat the IP troubleshooting coverage in Part II of this book, but it does point out some of the possible symptoms on a serial link when a Layer 3 subnet mismatch occurs on opposite ends of a serial link, which prevents the routers from routing packets over the serial link.

A simple `ping` command can determine whether a serial link can or cannot forward IP packets. A ping of the other router's serial IP address—for example, a working `ping 192.168.2.2` command on R1 in Figure 13-11, the figure used for both the HDLC and PPP configuration examples—proves that the link either works or does not.

If the `ping` does not work, the problem could be related to functions at Layer 1, 2, or 3. The best way to isolate which layer is the most likely cause is to examine the interface status codes described in Table 13-5.

<table>
<thead>
<tr>
<th>Line Status</th>
<th>Protocol Status</th>
<th>Likely General Reason/Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively down</td>
<td>Down</td>
<td>Interface shutdown</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Layer 1</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Layer 2</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Layer 3</td>
</tr>
</tbody>
</table>

The serial link verification and troubleshooting process should begin with a simple three-step process:

Step 1. From one router, ping the other router’s serial IP address.

Step 2. If the ping fails, examine the interface status on both routers and investigate problems related to the likely problem areas listed in Table 13-5.

Step 3. If the ping works, also verify that any routing protocols are exchanging routes over the link, as discussed in Chapter 11, “Troubleshooting IPv4 Routing Protocols.”

NOTE The interface status codes can be found using the `show interfaces`, `show ip interface brief`, and `show interfaces description` commands.
The rest of this section explores the specific items to be examined when the ping fails, based on the combinations of interface status codes listed in Table 13-5.

Troubleshooting Layer 1 Problems

The interface status codes, or interface state, play a key role in isolating the root cause of problems on serial links. In fact, the status on both ends of the link may differ, so it is important to examine the status on both ends of the link to help determine the problem.

For example, a serial link fails when just one of the two routers has administratively disabled its serial interface with the `shutdown` interface subcommand. When one router shuts down its serial interface, the other router sits in a down/down state (line status down, line protocol status down), assuming the second router’s interface is not also shut down. The solution is to just configure a `no shutdown` interface configuration command on the interface.

A serial interface with a `down` line status on both ends of the serial link—that is, both ends in a down/down state—usually points to some Layer 1 problem. Figure 13-22 summarizes the most common causes of this state. In the figure, R2’s serial interface has no problems at all; the center and left side of the figure show common root causes that then result in R2’s serial interface being in a down/down state.

Troubleshooting Layer 2 Problems

Data link layer problems on serial links usually result in at least one of the routers having a serial interface status of up/down. In other words, the line status (the first status code) is up, while the second status (the line protocol status) is down. Table 13-6 lists some of these types of problems.

<table>
<thead>
<tr>
<th>Line Status</th>
<th>Protocol Status</th>
<th>Likely Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down on both ends²</td>
<td>Mismatched encapsulation commands</td>
</tr>
<tr>
<td>Up</td>
<td>Down on one end, up on the other</td>
<td>Keepalive disabled on the end in an up state when using HDLC</td>
</tr>
<tr>
<td>Up</td>
<td>Down on both ends</td>
<td>PAP/CHAP authentication failure</td>
</tr>
</tbody>
</table>

¹ In this case, the state may flap from up/up, to up/down, to up/up, and so on, while the router keeps trying to make the encapsulation work.
Chapter 13: Implementing Point-to-Point WANs

The first of these problems—a mismatch between the configured data link protocols—is easy to identify and fix. The `show interfaces` command lists the encapsulation type on about the seventh line of the output, so using this command on both routers can quickly identify the problem. Alternatively, a quick look at the configuration, plus remembering that HDLC is the default serial encapsulation, can confirm whether the encapsulations are mismatched. The solution is simple: Reconfigure one of the two routers to match the other router’s `encapsulation` command.

The other two root causes require a little more discussion to understand the issue and determine if they are the real root cause. The next two sections take a closer look at each.

Keepalive Failure

The router `keepalive` feature helps a router notice when a link is no longer functioning. Once a router believes the link no longer works, the router can bring down the interface, allowing the routing protocol to converge to use other routes if they exist.

The keepalive function on an interface causes routers to send keepalive messages to each other every keepalive interval, defaulting to 10 seconds. For instance, on a serial link between R1 and R2, R1 sends a keepalive message every 10 seconds, and R2 expects to receive those keepalive messages every 10 seconds. If R2 fails to receive the keepalive messages for a set number of consecutive keepalive intervals (usually three or five intervals), R2 believes R1 has failed, and R2 changes the link to an up/down state. The keepalive process happens in both directions as well—R1 sends keepalives with R2 expecting to receive them, and R2 sends keepalives with R1 expecting to receive them.

A keepalive mismatch occurs when one router has keepalives enabled and one router does not. That combination is a mistake, and should not be used. Note that this keepalive mismatch mistake only breaks HDLC links; the PPP keepalive feature prevents the problem. Figure 13-23 shows one such example with HDLC and with R1 mistakenly disabling keepalives.

![Figure 13-23 Results when Using HDLC with a Keepalive Mismatch](image)

Note that the router interface that disables keepalives remains in an up/up state. In the scenario shown in Figure 13-23, R2’s interface fails because

- R1 does not send keepalive messages, because keepalives are disabled.
- R2 still expects to receive keepalive messages, because keepalives are enabled.

You can verify the keepalive setting by looking at the configuration or by using the `show interfaces` command. The examples in this chapter list several examples of the `show interfaces` command that happen to list the text “Keepalive set (10 second),” meaning that keepalives are enabled with a 10-second interval. R1 would list the text “Keepalive not set” in this case.
PAP and CHAP Authentication Failure
As mentioned earlier, a failure in the PAP/CHAP authentication process results in both router interfaces failing to an up and down state. As shown in Examples 13-6 and 13-7, you can use the show interfaces and show ppp all commands to look further into the status of the PPP authentication process. By doing so, you can isolate and discover the root cause of why the interface is in an up/down state, ruling out or ruling in PPP authentication as the root cause.

Another deeper method to troubleshoot PPP authentication problems uses the debug ppp authentication command.

CHAP uses a three-message exchange, as shown back in Figure 13-14, with a set of messages flowing for authentication in each direction by default. If you enable the debug, shut down the link, and bring it back up, you will see debug messages that match that three-way exchange. If authentication fails, you see a failure message at the point at which the process fails, which may help you decide what specifically needs to be fixed.

Example 13-10 shows the three related debug messages when a link comes up. The network connects R1’s S0/0/0 to router R2. The example extracts the three related debug messages from what would be a few dozen debug messages, so you would have to look for these. However, the output highlights the important parts of the process as seen back in Figure 13-14, as follows:

1. The “O” refers to output, meaning that this local router, R1, has output (sent) a Challenge message. Note the “from R1” at the end of the debug message, stating who the message is from.
2. The “I” refers to input, meaning that this local router, R1, has input (received) a Response message. Note the “from R2” at the end of the line.
3. The “O FAILURE” refers to R1 sending out a Failure message, telling R2 that the authentication process failed.

Example 13-10 Debug Messages on Router R1 Confirming the Failure of CHAP

```
R1# debug ppp authentication
PPP authentication debugging is on
! Lines omitted for brevity
*Nov 18 23:45:48.820: S0/0/0 CHAP: O CHALLENGE id 1 len 23 from "R1"
*Nov 18 23:45:48.820: S0/0/0 CHAP: I RESPONSE id 1 len 23 from "R2"
*Nov 18 23:45:48.820: S0/0/0 CHAP: O FAILURE id 1 len 25 msg is "Authentication failed"
```

While using a debug command may tell us something about the problem, it does not always point to the specific command that is misconfigured. In this case, the fact that both routers send at least one CHAP message implies that both router interfaces can send frames, and that they have enabled CHAP. It looks more like R1 has rejected the hashed password supplied by R2. Note that this example was built by changing the username command to have an incorrect password, so that the CHAP process worked but the authentication was rejected.
Troubleshooting Layer 3 Problems

This chapter suggests that the best starting place to troubleshoot serial links is to ping the IP address of the router on the other end of the link—specifically, the IP address on the serial link. Interestingly, the serial link can be in an up and up state but the ping can still fail because of Layer 3 misconfiguration. In some cases, the ping may work but the routing protocols might not be able to exchange routes. This short section examines the symptoms, which differ slightly depending on whether HDLC or PPP is used and the root cause.

First, consider an HDLC link on which the physical and data link details are working fine. In this case, both routers' interfaces are in an up and up state. However, if the IP addresses configured on the serial interfaces on the two routers are in different subnets, a ping to the IP address on the other end of the link will fail because the routers do not have a matching route. For example, consider an example with a working HDLC link with the IP addresses shown earlier in Figure 13-23. Then, if R1's serial IP address remained 192.168.2.1, and R2's was changed to 192.168.3.2 (instead of 192.168.2.2), still with a mask of /24, the two routers would have connected routes to different subnets. They would not have a route matching the opposite router's serial IP address.

Finding and fixing a mismatched subnet problem with HDLC links is relatively simple. You can find the problem by doing the usual first step of pinging the IP address on the other end of the link and failing. If both interfaces have a status of up/up, the problem is likely this mismatched IP subnet.

For PPP links with the same IP address/mask misconfiguration, the ping to the other router's IP address actually works. However, the IP subnet mismatch still prevents EIGRP and OSPF neighbor relationships from forming, so it is still a good idea to follow the rules and put both serial interface IP addresses in the same subnet.

PPP makes the ping work with the mismatched subnet by adding a host route, with a /32 prefix length, for the IP address of the other router. Example 13-11 shows the working PPP link with addresses in different subnets.

NOTE A route with a /32 prefix, representing a single host, is called a host route.

Example 13-11 PPP Allowing a Ping over a Serial Link, Even with Mismatched Subnets

<table>
<thead>
<tr>
<th>R1# show ip route</th>
</tr>
</thead>
<tbody>
<tr>
<td>! Legend omitted for brevity</td>
</tr>
<tr>
<td>192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks</td>
</tr>
<tr>
<td>C 192.168.1.0/24 is directly connected, GigabitEthernet0/0</td>
</tr>
<tr>
<td>L 192.168.1.1/32 is directly connected, GigabitEthernet0/0</td>
</tr>
<tr>
<td>192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks</td>
</tr>
<tr>
<td>C 192.168.2.0/24 is directly connected, Serial0/0/0</td>
</tr>
<tr>
<td>L 192.168.2.1/32 is directly connected, Serial0/0/0</td>
</tr>
<tr>
<td>192.168.3.0/32 is subnetted, 1 subnets</td>
</tr>
<tr>
<td>C 192.168.3.2 is directly connected, Serial0/0/0</td>
</tr>
</tbody>
</table>

R1# ping 192.168.3.2
The first highlighted line in the example shows the normal connected route on the serial link, for network 192.168.2.0/24. R1 thinks this subnet is the subnet connected to S0/0/0 because of R1’s configured IP address (192.168.2.1/24). The second highlighted line shows the host route created by PPP, specifically for R2’s new serial IP address (192.168.3.2). (R2 will have a similar route for 192.168.2.1/32, R1’s serial IP address.) So, both routers have a route to allow them to forward packets to the IP address on the other end of the link, even though the other router’s address is in a different subnet. This extra host route allows the ping to the other side of the serial link to work in spite of the addresses on each end being in different subnets.

Table 13-7 summarizes the behavior on HDLC and PPP links when the IP addresses on each end do not reside in the same subnet but no other problems exist.

<table>
<thead>
<tr>
<th>Symptoms When IP Addresses on a Serial Link Are in Different Subnets</th>
<th>HDLC</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does a ping of the other router’s serial IP address work?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Can routing protocols exchange routes over the link?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter’s material using either the tools in the book, DVD, or interactive tools for the same material found on the book’s companion website. Refer to the “Your Study Plan” element for more details. Table 13-8 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 13-8 Chapter Review Tracking

<table>
<thead>
<tr>
<th>Review Element</th>
<th>Review Date(s)</th>
<th>Resource Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review key topics</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Review key terms</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Repeat DIKTA questions</td>
<td></td>
<td>Book, PCPT</td>
</tr>
<tr>
<td>Do labs</td>
<td></td>
<td>Blog</td>
</tr>
<tr>
<td>Review memory tables</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Review config checklists</td>
<td></td>
<td>Book, DVD/website</td>
</tr>
<tr>
<td>Review command tables</td>
<td></td>
<td>Book</td>
</tr>
</tbody>
</table>
Review All the Key Topics

Table 13-9 Key Topics for Chapter 13

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 13-3</td>
<td>Speeds for WAN links per the T-carrier system</td>
<td>334</td>
</tr>
<tr>
<td>Figure 13-7</td>
<td>Role of the CSU/DSU and the router as DCE and DTE</td>
<td>335</td>
</tr>
<tr>
<td>List</td>
<td>PPP features</td>
<td>340</td>
</tr>
<tr>
<td>List</td>
<td>Comparison of PPP LCP and NCP</td>
<td>341</td>
</tr>
<tr>
<td>Figure 13-13</td>
<td>Example of messages sent by PAP</td>
<td>342</td>
</tr>
<tr>
<td>Figure 13-14</td>
<td>Example of messages sent by CHAP</td>
<td>343</td>
</tr>
<tr>
<td>Figure 13-16</td>
<td>Sample PAP configuration</td>
<td>346</td>
</tr>
<tr>
<td>List</td>
<td>MLPPP major configuration concepts</td>
<td>349</td>
</tr>
<tr>
<td>Figure 13-21</td>
<td>Sample MLPPP configuration</td>
<td>350</td>
</tr>
</tbody>
</table>

Key Terms You Should Know

leased line, telco, serial link, WAN link, T1, DS0, DS1, T3, customer premises equipment, CSU/DSU, serial cable, DCE, DTE, HDLC, PPP, CHAP, PAP, IP Control Protocol, keep-alive, Link Control Protocol, Multilink PPP

Command References

Tables 13-10 and 13-11 list configuration and verification commands used in this chapter. As an easy review exercise, cover the left column in a table, read the right column, and try to recall the command without looking. Then repeat the exercise, covering the right column, and try to recall what the command does.

Table 13-10 Chapter 13 Configuration Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation [hdlc</td>
<td>ppp]</td>
</tr>
<tr>
<td>[no] shutdown</td>
<td>Administratively disables (shutdown) or enables (no shutdown) the interface in whose mode the command is issued</td>
</tr>
<tr>
<td>clock rate speed</td>
<td>Serial interface subcommand that, when used on an interface with a DCE cable, sets the clock speed in bps</td>
</tr>
<tr>
<td>bandwidth speed-kbps</td>
<td>Interface subcommand that sets the router's opinion of the link speed, in kilobits per second, but has no effect on the actual speed</td>
</tr>
<tr>
<td>description text</td>
<td>Interface subcommand that can set a text description of the interface</td>
</tr>
<tr>
<td>ppp authentication [pap</td>
<td>chap]</td>
</tr>
<tr>
<td>username name password secret</td>
<td>Global command that sets the password that this router expects to use when authenticating the router with the listed hostname</td>
</tr>
<tr>
<td>ppp pap sent-username name password secret</td>
<td>Interface subcommand that defines the username/password pair sent over this link when using PAP authentication</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td><code>interface multilink number</code></td>
<td>Creates a multilink interface and moves the user to interface configuration mode on that interface</td>
</tr>
<tr>
<td><code>ppp multilink</code></td>
<td>Interface subcommand that enables MLPPP features</td>
</tr>
<tr>
<td><code>ppp multilink group number</code></td>
<td>Interface subcommand that associates the interface with a particular multilink interface and multilink group</td>
</tr>
</tbody>
</table>

Table 13-11 Chapter 13 EXEC Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [type number]</code></td>
<td>Lists statistics and details of interface configuration, including the encapsulation type</td>
</tr>
<tr>
<td><code>show interfaces [type number] description</code></td>
<td>Lists a single line per interface (or if the interface is included, just one line of output total) that lists the interface status and description</td>
</tr>
<tr>
<td><code>show ip interface brief</code></td>
<td>Lists one line of output per interface, with IP address and interface status</td>
</tr>
<tr>
<td><code>show controllers serial number</code></td>
<td>Lists whether a cable is connected to the interface, and if so, whether it is a DTE or DCE cable</td>
</tr>
<tr>
<td><code>show ppp multilink</code></td>
<td>Lists detailed status information about each of the PPP multilink groups configured on the router</td>
</tr>
<tr>
<td><code>show ppp all</code></td>
<td>Lists one line of status information per PPP link on the router, including the status for each control protocol</td>
</tr>
<tr>
<td><code>debug ppp authentication</code></td>
<td>Generates messages for each step in the PAP or CHAP authentication process</td>
</tr>
<tr>
<td><code>debug ppp negotiation</code></td>
<td>Generates debug messages for the LCP and NCP negotiation messages sent between the devices</td>
</tr>
</tbody>
</table>
Symbols

2-way state (neighbor relationships), 186, 628
3G wireless, 393
4G wireless, 393
802.1D STP, 58, 62
802.1Q, 20-21
 headers, 500-501
 trunking. See ROAS
802.1w RSTP
 defined, 58
 port roles, 60
 port states, 62
802.11 headers, 501

A

aaa authentication login default command, 149
aaa new-model command, 149
AAA servers
 authentication
 configuration, 148-150
 login authentication rules, 150
 login process, 147
 TACACS+/RADIUS protocols, 148
 configuring for 802.1x, 145
 defining, 149
 enabling, 149
 username/passwords, verifying, 145
aaS (as a Service), 742
ABR (Area Border Router), 190, 625
 interface OSPF areas, verifying, 210-211
 OSPFv2 multiarea configuration, 209-210
 OSPFv3 multiarea configuration, 625
access
 Internet, 389
 cable Internet, 391
 DSLs (digital subscriber lines), 390-391
 fiber, 393
 WANs, 389
 wireless WANs, 392-393
 IPv6 restrictions, 685
 public cloud services
 Internet, 745-746
 private WANs, 746-749
 VPNs, 747
 securing with IEEE 802.1x, 144-146
 AAA servers, configuring, 145
 authentication process, 145
 EAP, 146
 switches as 802.1x
 authenticators, 145
 username/password combinations, verifying, 145
 access-class command, 486
access control lists. See ACLs
Access Control Server (ACS), 147
access interfaces, 24, 113-114
access layer switches, 156-157
access links
MetroE, 365
MPLS, 378
access-list command, 445, 457, 463-466, 486
building ACLs with, 454
examples and logic explanations, 467
extended numbered ACL
configuration commands, 467
keywords
any, 448
deny, 448-449
log, 452
permit, 445, 448-449
tcp keyword, 464
upd keyword, 464
reverse engineering from ACL to address range, 454-456
ACI (Application Centric Infrastructure), 773-774
ACLs (access control lists), 586
ACL Analysis tool, 777-778
classification, 497
comparison of ACL types, 442-443
extended numbered ACLs
configuration, 467-470
matching protocol, source IP, and destination IP, 463-464
matching TCP and UDP port numbers, 464-467
overview, 462
GRE tunnel issues, 409-410
HSRP packets, blocking, 563
implementation considerations, 476-477
IPv4, 666-667
IPv6, 664-666
access-list commands, building, 678-679
access restrictions, 685
blocking, 683
capabilities, 669
extended, 674-678
filtering ICMPv6 NDP messages, 679-683
filtering policies, 668
ICMPv6 message filtering, 668-669
implicit filtering ICMPv6 NDP messages, 683-684
IPv4 ACL, compared, 666-667
limitations, 669-670
logging, 670
management control, 685
prefix lengths, 670
problems, 612
router originated packets, 670
standard, configuring, 671-674
testing, 677
tunneled traffic matching, 670
location and direction, 440-441
matching packets, 441-442
named ACLs
configuration, 472
editing, 473-475
overview, 471-472
numbered ACLs, 475-476
overview, 440
QoS tools, compared, 496
SNMP security, 698
standard numbered ACLs
access-list command, 454
command syntax, 445
configuration examples, 448-452
list logic, 444-445
matching any/all addresses, 448
matching exact IP address, 445-446
matching subset of address, 446-447
overview, 443
reverse engineering from ACL to address range, 454-456
troubleshooting, 452-453
verification, 452-453
wildcard masks, 446-448
troubleshooting, 477
ACL behavior in network, 477-479
ACL interactions with router-generated packets, 483-485
commands, 479-480
common syntax mistakes, 481
inbound ACL filters routing protocol packets, 481-482
reversed source/destination IP address, 480-481
ACL Analysis tool, 777-778
ACS (Access Control Server), 147
active HSRP routers, 558
address blocks. See prefixes addresses
families, 619
global unicast, 593
IPv4, 197
IPv6
assigning to hosts, 595-597
connectivity, verifying, 600-603
multicast, 682
router configuration, 598-599
static route configuration, 599
unicast, 593-595
link, 311-312
link-local, 595
MAC, 49
public cloud assignment services, 756-757
source/destination, 406
unique local unicast, 593
adjacent neighbors, 186, 633
administrative distance, 177-178
administratively shutdown interfaces, 49
ADSL (asymmetric DSL), 391
advertising
BGP routes, 303-304
eBPG enterprise public prefixes, 307-308
subnets to ISPs, 318
AF (Assured Forwarding), 502-503
agents (SNMP), 695
Get/Set messages, 696
MIB, 697
NMS polling, 696
notifications, 696-697
algorithms
Dijkstra SPF, 180
DUAL (Diffusing Update Algorithm), 242-243, 646
IGP routing protocol algorithm, 175
SPF (Shortest Path First), 180, 186-188
STA (spanning-tree algorithm), 48
all IP addresses, matching, 448
alternate ports, 60-61, 91-92
Amazon Web Services (AWS), 742
American Registry for Internet Numbers (ARIN), 174
analyzers (network), 719
answering exam questions, 790-792
anti-replay (Internet VPNs), 394
any keyword, 448
any/all IP addresses, matching, 448
APIs (application programming interfaces), 768-769
APIC (Application Policy Infrastructure Controller), 774
APIC EM (APIC Enterprise Module), 774-776
ACL Analysis tool, 777
controller, 777
labs website, 777
Path Trace ACL Analysis tool, 777-778
Path Trace app, 777
Application Centric Infrastructure (ACI), 773-774
Application Policy Infrastructure Controller (APIC), 774
application signatures, 498
application-specific integrated circuit (ASIC), 765
architectures (SDN), 770
APIC Enterprise Module (APIC-EM), 774-776
controller, 777
labs website, 778
Path Trace ACL Analysis tool, 777-778
Path Trace app, 777
Application Centric Infrastructure (ACI), 773-774
comparisons, 776
Open SDN, 771
Open SDN Controller (OSC), 772
OpenDaylight (ODL), 771-772
OpenFlow, 771
Area Border Router. See ABR
area design (OSPF), 189-190
ABR, 190, 210-211
areas, 189-190
backbone areas, 190
multiarea on ABR configuration, 625
super, 381
backbone routers, 190
benefits, 191
interarea routes, 190
internal routers, 190
intra-area routes, 190
mismatches, finding, 290-291
MPLS VPNs, 381-382
network size, 189
problems, 188, 281
single-area, 188
SPF workload, reducing, 190
three-area, 189
ARIN (American Registry for Internet Numbers), 174
AS (autonomous system), 174, 304
as a Service (-aaS), 742
ASAv (virtual ASA firewall), 754
ASIC (application-specific integrated circuit), 765
ASNs (AS numbers), 174
BGP, 304
EIGRP, 248
for IPv6, 649
neighbors, 235, 288
Assured Forwarding (AF), 502-503
asymmetric DSL (ADSL), 391
attacks
- DHCP-based, 152
types, 150
auth keyword (snmp-server group command), 707
authentication
- 802.1x, 145
AAA servers
 - configuration examples, 148-150
 - login authentication rules, 150
 - login process, 147
TACACS+/RADIUS protocols, 148
EIGRP neighbors, 235, 286
Internet VPNs, 393
PPP, 342-343
PPP CHAP, 356
PPP PAP, 356
SNMPv3, 699, 707-708
authentication ppp pap command, 346
authenticators, switches as, 145
auto-cost reference-bandwidth command, 222, 643
autonomous system (AS), 174, 304
auto-summary command, 267
 - defined, 270
 - EIGRP, 247
 - EIGRP for IPv4, 648
autosummarization, 266
 - classful network boundaries, 266-267
discontiguous classful networks, 267-268
AWS (Amazon Web Services), 742

B
backbone areas (OSPF), 190
 - multiarea on ABR configuration, 625
 - super, 381
backbone routers, 190
backup DRs (BDRs), 185, 211-212
backup port role (RSTP), 62-63
backup ports, 60, 91-92
bandwidth
- EIGRP
 - for IPv6 routes, 650-651
 - metrics, 237-239, 265
 - routes, tuning, 259
interfaces
 - defaults, 216
 - higher, 217
 - OSPF costs based on, 216-217
least-bandwidth, 237
managing, 491
MetroE, 373-374
reference, 216-217
bandwidth command, 216, 359
 - defined, 222, 270
 - EIGRP, 247, 647
 - for IPv6, 662
 - metrics, 237, 265
OSPFv3 interface, 643
batch traffic, 493
BDRs (backup DRs), 185, 211-212
Bellman-Ford protocols. See DV protocols
best path selection (BGP), 305-306
BGP (Border Gateway Protocol), 174, 300, 303
AS, 304
ASNs, 304
best path selection, 305-306
configuring, 310
external. See eBGP
IGPs, compared, 302
internal (iBGP), 304
ISP default routes, learning, 320-321
neighbors, 303
disabling, 314
states, 313
prefixes, 303
reachability, 302
route advertising, 303-304
routing table analysis reports website, 303
table entries, injecting, 314
advertising subnets to ISPs, 318
classful network routes, 315-318
static discard routes, 319-320
update messages, 303-310
bgp commands, 311
BIDs (bridge IDs)
STP, 49
root switch election, 50-52
verification, 77
system ID extensions, 73-74
binary-to-hexadecimal conversion, 808
binary wildcard masks, 447
blocking state
interfaces, 47-49
RSTP ports, 92
Border Gateway Protocol. See BGP
BPDU Guard, 66
configuring, 81
enabling/disabling, 83
global settings, displaying, 83
verifying, 82-83
branch offices public cloud example, 749-752
e-mail services traffic flow, 750-751
Internet connections, 751
private WAN connections, 751
bridge IDs. See BIDs
bridges. See switches
broadcast storms, 45-47
burned-in MAC addresses, 49
C
cable Internet, 391
cabling
DTE cables, 335
leased-line WANs, 332-333
stacking cables, 156
CAC (Call Admission Control) tools, 507
carrier Ethernet, 366
Catalyst switches RSTP modes, 88-90
Catalyst switches STP modes, 88-89
CBWFQ (Class-Based Weighted Fair Queuing), 505
CCENT/CCNA ICND1 100-105 Official Cert Guide, 272
CCNA ICND2 200-105 Official Cert Guide Premium Edition eBook and Practice Test, 792
CCNA ICND2 Config Labs website, 796
CCNA Routing and Switching ICND2 Official Cert Guide website, 777
CCNA R&S practice exam, 790
CE (customer edge), 377
centralized control planes, 766
CFN (Cisco Feature Navigator), 531
challenge messages, 342
channel-group command (EtherChannels), 84, 95, 543
incorrect options, troubleshooting, 106-108
Layer 3, troubleshooting, 541
channel service unit (CSU)/data service unit (DSU), 332-334
CHAP (Challenge-Handshake Authentication Protocol)
authentication, 342, 356
configuring, 344-345
verifying, 345-346
chassis aggregation, 159
benefits, 161
design, improving, 160
distribution/core switches high availability, 159-160
switch stacking, 159-161
CIR (committed information rate), 373, 509
Cisco
Access Control Server (ACS), 147
Application Centric Infrastructure (ACI), 773-774
BPDU Guard, 66
Catalyst switches RSTP modes, 88-90
Catalyst switches STP modes, 88-89
DevNet, 777
Feature Navigator (CFN), 531
Intercloud Fabric, 749
nondisclosure agreement (NDA), 788
Open SDN Controller (OSC), 772
Prime management products website, 695
server hardware, 732-733
Unified Communication Manager (CUCM), 35
virtual ASA firewall (ASAv), 754
Class-Based Weighted Fair Queuing (CBWFQ), 505
Class of Service (CoS) fields (802.1Q header), 500-501
Class Selector (CS), 503
classful networks
autosummarization at boundaries, 266-267
discontiguous, 267-268
routes, injecting, 315-318
classful routing protocols, 177, 266
classic mode (EIGRP configuration), 249
classification (QoS), 495
ACLs, 497
matching, 496-497
NBAR, 498
router queuing, 496
routers, 497
with marking, 497
classless routing protocols, 177
clear ip ospf process command, 204, 223
clear-text passwords, 698
CLI skills, 794-796
client VPNs, 396-397
clock rate commands, 349, 359
clocking, 332
cloud computing
address assignment services, 756-757
cloud services catalogs, 740
Cloud Services Routers (CSRs), 747
DHCP services, 757
Infrastructure as a Service (IaaS), 742
NTP, 757-758
Platform as a Service (PaaS), 743-744
private, 739-741
public, 741
accessing with Internet, 745-746
accessing with private VPNs, 747
accessing with private WANs, 746-749
branch offices example, 749-752
DNS services, 754-756
email services traffic flow, 750-751
intercloud exchanges, 748-749
Internet connections, 751
private WAN connections, 751
VNFs, 752-754
services, 739
Software as a Service (SaaS), 743
Cloud Services Routers (CSRs), 747
codecs, 493
commands
aaa authentication login default, 149
aaa new-model, 149
access-class, 486
access-list, 445, 457, 463-466, 486
any keyword, 448
building ACLs with, 454
deny keyword, 448-449
examples and logic explanations, 467
extended numbered ACL configuration commands, 467
log keyword, 452
permit keyword, 445, 448-449
reverse engineering from ACL to address range, 454-456
tcp keyword, 464
udp keyword, 464
authentication ppp pap, 346
auto-cost reference-bandwidth, 222, 643
auto-summary, 267, 270
EIGRP, 247
EIGRP for IPv4, 648
bandwidth, 216, 222, 270, 359
EIGRP, 247, 647
EIGRP for IPv6, 662
EIGRP metrics, 237, 265
OSPFv3 interface, 643
bgp, 311
channel-group (EtherChannels), 84, 95, 543
incorrect options, troubleshooting, 106-108
Layer 3, troubleshooting, 541
clear ip ospf process, 204, 223
clock rate, 349, 359
cmd, 222
configure terminal, 28
debug, 286
debug eigrp fsm, 271
debug eigrp packets, 286, 298
debug ip ospf adj, 298
mismatched OSPF areas, 290
OSPF neighbors, troubleshooting, 289
debug ip ospf events, 298
debug ip ospf hello, 298
Hello/dead timer mismatches, 293
OSPF neighbors, troubleshooting, 289
debug ip ospf packet, 298
debug ipv6 ospf adj, 632
debug ppp authentication, 356, 360
debug ppp negotiation, 360
debug spanning-tree events, 79, 96
default-information originate, 223, 321, 628
default-information originate always, 214
delay, 247, 270, 472-474
EIGRP, 647
EIGRP for IPv6, 662
EIGRP metrics, 237, 265
extended IPv6 ACLs, 675
IPv6 ACLs, 672
deny icmp any any, 683
description, 359
dialer pool, 417, 432
dns-server, 571
eigrp router-id, 246, 252
EIGRP, 647
EIGRP for IPv6, 662
encapsulation, 359, 525
encapsulation dot1q, 543
encapsulation ppp, 344, 350, 417, 432
erase startup-config, 135
frequency, 728
history buckets-kept 6, 728
history enhanced, 717
history enhanced interval, 728
history filter all, 728
history lives-kept 1, 728
hostname, 345
icmp-echo, 728
ifconfig, 568, 600, 615
interface, 25, 37, 543
interface dialer, 432
interface loopback, 196, 222
interface multilink, 360
interface multilink1, 350
interface port-channel, 543
interface range, 27
interface tunnel, 400, 432
interface vlan, 543
ip -6 neighbor show, 615
ip access-group, 450, 457, 467, 477, 486
ip access-list, 472, 486
ip access-list extended, 473
ip address, 568, 584-585
IP addresses on loopback interfaces, 196
MLPPP, 350
subinterfaces, 525
ip address negotiated, 418, 432
ip domain-lookup, 572
ip hello-interval eigrp, 247, 270, 297, 648
ip helper-address, 573-574
ip hold-time eigrp, 247, 270, 297
ip mtu, 296, 637
ip name-server, 572
ip ospf, 222
ip ospf cost, 222
ip ospf dead-interval, 297
ip ospf hello-interval, 297
ip route, 323
ip routing, 543
ip sla, 728
ip sla restart, 728
ip sla schedule, 715
ipconfig, 568, 600, 615
ipv6 access-list
building, 678-679
IPv6 ACLs, 687
ipv6 access-list deny, 678
ipv6 access-list permit, 678
ipv6 address, 598, 614
ipv6 dhcp relay destination, 614
ipv6 eigrp, 648, 662
ipv6 hello-interval eigrp, 662
ipv6 hold-time eigrp, 662
ipv6 mtu, 637
ipv6 ospf, 614, 624, 643
ipv6 ospf cost, 643
ipv6 router eigrp, 647, 662
ipv6 router ospf, 614, 624, 643
ipv6 traffic-filter, 673, 687
ipv6 unicast routing, 614
ipv6 unicast-routing, 598
mac-address, 432
maximum-paths, 218
defined, 222, 270
EIGRP, 247, 647
EIGRP for IPv6, 651, 662
EIGRP load balancing, 263
OSPFv3, 627, 643
monitor session, 721, 728
mtu, 432
name, 25, 40, 135
ndp-an, 615
neighbor, 322
neighbor shutdown, 314
netsh interface ipv6 show neighbors, 615
network
BGP, 323
BGP table entries, injecting, 314-320
EIGRP, 248, 270
EIGRP, enabling, 246
EIGRP for IPv4, 648
EIGRP for IPv6 compatibility, 647
OSPF single-area configuration, 198-200
OSPFv2 interface configuration, 218
OSPFv2 multiarea configuration, 209
no auto-summary, 268
no ip access-group, 476
no ip address, 539
no ip domain-lookup, 572
no ip sla schedule 1, 715
no neighbor shutdown, 314
no passive-interface, 223, 270
no shutdown, 40, 359
EIGRP for IPv6, 662
EIGRP for IPv6 routing, 650
Layer 1 leased-line WAN problems, 354
OSPF processes, 294
ROAS subinterfaces, 527
no spanning-tree portfast bpduguard default, 95
no spanning-tree portfast default, 95
no switchport
Layer 3 EtherChannels, 539
Layer 3 switches, 543
routed ports, 535
passive-interface, 205
defined, 222, 297
EIGRP, 270
EIGRP support, 251
OSPF interfaces as passive, configuring, 196
OSPFv3, 624
passive-interface default, 205, 270
permit, 471-474, 487

extended IPv6 ACLs, 675
GRE tunnel ACLs, 410
IPv6 ACLs, 672

permit gre, 432
permit icmp any any router-advertisement, 684
permit icmp any any router-solicitation, 684
permit ipv6, 687
ping, 483, 571-574, 615

IPv6 host connectivity, testing, 600
IPv6 routes, testing, 602, 614
leased-line WANs, 353
self-ping, 483-485

ping6, 615
IPv6 ACLs, 674

IPv6 connectivity, testing, 601

ppp authentication, 349, 359
ppp authentication chap, 345
ppp chap hostname, 432
ppp chap password, 432
ppp multilink, 350, 360
ppp multilink group, 360
ppp multilink group 1, 350
ppp pap sent-username, 346, 359
pppoe-client dial-pool-number, 417, 432
pppoe enable, 417, 432
remark, 472, 487
router bgp, 311
router eigrp, 246, 270, 647
router-id, 222, 614, 624
OSPFv3, 643
RIDs, defining, 196
router ospf, 196, 222

router ospf 1, 198

sdm prefer, 532
sdm prefer lanbase-routing, 543
show

IPv6 ACLs, 673
routing protocol-enabled interfaces, verifying, 275

STP status, 68
show access-list, 473
show access-lists, 450, 457, 479, 487, 687
show arp, 572
show controllers, 352
show controllers serial, 360
show etherchannel, 96, 543
show etherchannel 1 summary, 86
show etherchannel summary, 107, 540
show interfaces, 298, 360, 543, 569

EIGRP neighbor requirements, verifying, 286
MLPPP, 352

OSPF interfaces, troubleshooting, 283
OSPF neighbors, troubleshooting, 289

OSPFv3 interface bandwidth, 640

PPP CHAP status, 345

PPP PAP, 346

routed ports, 536
show interfaces description, 298, 576
show interfaces dialer, 421, 433
show interfaces PPP status, 344
show interfaces status

Layer 3 EtherChannels, 539
routed ports, 536
show interfaces switchport, 31-34, 37, 41, 114-116, 135
show interfaces trunk, 32-34, 38, 41, 116-117
show interfaces tunnel, 405, 433
show interfaces virtual-access, 433
show interfaces virtual-access configuration, 423
show interfaces vlan, 543
show ip access-list, 457, 474-476
show ip access-lists, 450, 479, 487
show ip bgp, 323
show ip bgp summary, 313, 323
show ip eigrp interfaces, 271, 297
 EIGRP enabled interfaces, 250-251, 275
 EIGRP neighbor requirements, verifying, 286
 multilink interfaces, 352
show ip eigrp interfaces detail, 250, 271
show ip eigrp neighbors, 271, 297
 neighbor status, displaying, 253
 neighbor verification checks, 285
show ip eigrp topology, 259, 271
 metrics, 262
 successor routes, 258
 topology table, 256
show ip eigrp topology all-links, 260
show ip interface, 450, 457, 479
show ip interface brief, 360
 GRE tunnels, 404
 multilink interfaces, 352
 OSPF interfaces, troubleshooting, 283
show ip interfaces, 286
show ip ospf, 223, 298
 duplicate OSPF RIDs, 291
 OSPF neighbors, troubleshooting, 289
show ip ospf database, 179, 201, 223
show ip ospf interface, 223, 298
 DRs/BDRs details, displaying, 211
 Hello/dead timer mismatches, 293
 OSPF areas for ABR interfaces, 210
 OSPF neighbors, troubleshooting, 289
 OSPFv2 interface configuration, 220
 passive interface, 206
show ip ospf interface brief, 205, 223, 298
 OSPF areas for ABR interfaces, 210
 OSPF-enabled interfaces, identifying, 275
 OSPF neighbors, troubleshooting, 289
 OSPF status on interfaces, 281
 OSPFv2 interface configuration, 221
show ip ospf neighbor, 182, 223, 298
 DRs/BDRs details, displaying, 211
 neighbors, listing, 288
 OSPF processes shutdown, 295
show ip ospf neighbor interface brief, 295
show ip protocols, 223, 271, 297
 EIGRP-enabled interfaces, 251-252, 275
 EIGRP neighbor requirements, verifying, 286
 EIGRP neighbor status, displaying, 253
 IPv4 routing protocols, 202
OSPF configuration errors, 282-283
OSPFv2 interface configuration, 219
show ip route, 223, 271, 323, 577-580
administrative distance, 178
dialer interface Layer 3 orientation, 425
EIGRP-learned routes, displaying, 254
IPv4 routes added by OSPF, 201
routing tables, displaying, 543
show ip route eigrp, 254, 271, 297
show ip route ospf, 223, 298, 577-578
show ip route static, 214
show ip sla enhanced-history distribution-statistics, 729
show ip sla history, 717, 729
show ip sla statistics, 729
show ip sla summary, 729
show ipv6 access-list, 677, 687
show ipv6 eigrp interfaces, 654, 662
show ipv6 eigrp interfaces detail, 662
show ipv6 eigrp neighbors, 663
show ipv6 eigrp topology, 663
show ipv6 eigrp topology | section, 663
show ipv6 interface, 614, 687
show ipv6 neighbors, 614
IPv6 ACL ICMPv6 NDP message filtering, 681
IPv6 IPv4 replacement, 603
show ipv6 ospf, 640, 643
show ipv6 ospf database, 636, 643
show ipv6 ospf interface, 630-631, 643
show ipv6 ospf interface brief, 630, 640, 643
show ipv6 ospf neighbor, 635, 643
show ipv6 protocols, 614, 643
EIGRP for IPv6, 662
EIGRP for IPv6 interfaces, 654
OSPFv3 interfaces, 630
show ipv6 route, 614, 643
EIGRP for IPv6, 663
IPv6 router connectivity, 603
show ipv6 route eigrp, 663
show ipv6 route ospf, 638, 643
show ipv6 route | section, 663
show ipv6 routers, 614, 681
show mac address-table, 114
show mac address-table dynamic, 111
show monitor detail, 724, 729
show monitor session, 724, 729
show monitor session all, 723
show ppp all, 346-347, 360
show ppp multilink, 353, 360
show pppoe session, 424, 433
show running-config, 135, 449, 473-475
show snmp, 703, 729
show snmp community, 702, 728
show snmp contact, 728
show snmp group, 709, 729
show snmp host, 702, 729
show snmp location, 728
show snmp user, 708, 729
show spanning-tree, 96
show spanning-tree bridge, 81
show spanning-tree interface, 96
show spanning-tree interface detail, 82
show spanning-tree root, 77, 81
show spanning-tree summary, 83, 96
show spanning-tree vlan, 96
show spanning-tree vlan 10, 75-77
show spanning-tree vlan 10 bridge, 77
show spanning-tree vlan 10 interface gigabitethernet0/2 state, 92
show standby, 556, 560, 565
show standby brief, 555, 565
show tcp brief, 313
show tcp summary, 323
show vlan, 41, 114, 141
show vlan brief, 26-29, 114
show vlan id, 27, 114
show vlan status, 135
show vlans, 527, 543
show vtp password, 134, 141
show vtp status, 29, 41, 131, 134, 141
shutdown, 40, 359

EIGRP for IPv6, 662
EIGRP for IPv6 routing, 650
Layer 1 leased-line WAN problems, 354
OSPF processes, 294
ROAS subinterfaces, 527

shutdown vlan, 135, 140
snmp-server, 700
snmp-server community, 727
snmp-server contact, 727
snmp-server enable traps, 727
snmp-server group, 705
snmp-server host, 701, 710, 727
snmp-server location, 727
snmp-server user, 707
spanning-tree, 95
spanning-tree bpduguard disable, 95
spanning-tree bpduguard enable, 75, 81, 95
spanning-tree mode, 88, 95
spanning-tree mode mst, 72
spanning-tree mode pvst, 72
spanning-tree mode rapid-pvst, 72, 90
spanning-tree pathcost method long, 55
spanning-tree portfast, 75, 81, 95
spanning-tree portfast bpduguard, 95
spanning-tree portfast default, 83, 95
spanning-tree portfast disable, 83, 95
spanning-tree vlan, 74
spanning-tree vlan 10 port-priority 112, 103
speed, 576
standby, 554, 564
standby 1 preempt, 558
standby version, 559
standby version 1 | 2, 564
switchport
Layer 3 switches, 543
routed ports, 535
switchport access vlan, 25, 28-29, 37-38, 40, 113, 135
switchport mode, 30, 40
switchport mode access, 25, 28, 37-38, 139
switchport mode dynamic auto, 116
switchport mode dynamic desirable, 32
switchport mode trunk, 30, 116, 524
switchport nonegotiate, 34, 40, 116, 139
switchport trunk allowed vlan, 41, 117
switchport trunk encapsulation, 30, 40
switchport trunk native vlan, 40, 118
switchport voice vlan, 36-38, 41, 135
traceroute, 574

GRE tunnels, 406
IPv6 host connectivity, testing, 600
IPv6 network router problems, troubleshooting, 611
IPv6 router connectivity, testing, 602, 614
traceroute6, 615
tracert, 615
tunnel destination, 406-408, 432
tunnel mode gre ip, 404, 432
tunnel mode gre multipoint, 404
tunnel source, 406-407, 432
undebug all, 298
username, 345, 359
variance, 270
EIGRP, 247, 263, 647
EIGRP for IPv6, 651, 662
verification, 75
vlan, 25, 37, 40, 135
vlan 10, 122
vlan 200, 137
vtp, 134
vtp domain, 134, 140
vtp mode, 40, 134, 140
vtp mode off, 29, 135
vtp mode transparent, 29, 135
vtp password, 134, 140
vtp pruning, 134, 140
vtp version, 140
committed information rate (CIR), 373, 509
communities (SNMP), 698-699
Community-based SNMP Version 2 (SNMPv2c), 699
community strings (SNMP), 698
confidentiality (Internet VPNs), 393
Config Checklist app, 796
configure terminal command, 28
configuring
AAA servers, 148-150
AAA servers for 802.1x, 145
ACLs (access control lists)
 extended numbered, 467-470
 named, 472
 numbered, 475-476
 standard numbered, 448-452
BGP, 310
disabling eBGP neighbors, 314
eBGP neighbor verification, 312-313
eBGP neighbors using link addresses, 311-312
ISP default routes, learning, 320-321
table entries, injecting, 314-320
transporting messages with TCP, 310
update messages, 310
BPDU Guard, 81-83
DHCP snooping, 153-154
EIGRP, 246
 ASNs, 248
 checklist, 246
 classful network numbers, 248
 classic versus named mode, 249
 sample internetwork, 247
 verification. See verifying,
 EIGRP configuration
 wildcard masks, 248-249
EIGRP for IPv6, 647
 commands, 647
 example, 648-649
 load balancing, 651-652
 route metrics, 650-652
timers, 652
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherChannels</td>
<td>84</td>
</tr>
<tr>
<td>- dynamic</td>
<td>86-87</td>
</tr>
<tr>
<td>- manual</td>
<td>84-86</td>
</tr>
<tr>
<td>GRE tunnels</td>
<td>402-404</td>
</tr>
<tr>
<td>HDLC</td>
<td>337-340</td>
</tr>
<tr>
<td>HSRP</td>
<td>554, 560-561</td>
</tr>
<tr>
<td>ICMP-Echo operations</td>
<td>714-715</td>
</tr>
<tr>
<td>IGPs</td>
<td>310</td>
</tr>
<tr>
<td>interfaces as passive</td>
<td>205</td>
</tr>
<tr>
<td>IPv6</td>
<td>598-599</td>
</tr>
<tr>
<td>- addressing on routers</td>
<td>598-599</td>
</tr>
<tr>
<td>- extended ACLs</td>
<td>674-676</td>
</tr>
<tr>
<td>- hosts</td>
<td>595-597</td>
</tr>
<tr>
<td>- routing</td>
<td>598</td>
</tr>
<tr>
<td>- standard ACLs</td>
<td>671-674</td>
</tr>
<tr>
<td>- static routes</td>
<td>599</td>
</tr>
<tr>
<td>ISL</td>
<td>525</td>
</tr>
<tr>
<td>ISP routers</td>
<td>419</td>
</tr>
<tr>
<td>Layer 3</td>
<td>537-539</td>
</tr>
<tr>
<td>- EtherChannels</td>
<td>537-539</td>
</tr>
<tr>
<td>- switch routed ports</td>
<td>535-537</td>
</tr>
<tr>
<td>- switching with SVIs</td>
<td>529-531</td>
</tr>
<tr>
<td>local SPAN</td>
<td>721-724</td>
</tr>
<tr>
<td>MLPPP</td>
<td>349-350</td>
</tr>
<tr>
<td>multiarea OSPFv2</td>
<td>206-210</td>
</tr>
<tr>
<td>- network commands</td>
<td>209</td>
</tr>
<tr>
<td>- single-area configurations</td>
<td>207-208</td>
</tr>
<tr>
<td>- subnets</td>
<td>206</td>
</tr>
<tr>
<td>- verifying</td>
<td>210-212</td>
</tr>
<tr>
<td>OSPFv2 interfaces</td>
<td>218-221</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>621</td>
</tr>
<tr>
<td>- default routes</td>
<td>627-628</td>
</tr>
<tr>
<td>- load balancing</td>
<td>627</td>
</tr>
<tr>
<td>- multiarea example</td>
<td>622</td>
</tr>
<tr>
<td>- multiarea on ABR</td>
<td>625</td>
</tr>
<tr>
<td>- route selection metrics, setting</td>
<td>626</td>
</tr>
<tr>
<td>- single-area</td>
<td>623-624</td>
</tr>
<tr>
<td>overlapping VLSM subnets</td>
<td>584-585</td>
</tr>
<tr>
<td>PortFast</td>
<td>81-83</td>
</tr>
<tr>
<td>PPP</td>
<td>343-344</td>
</tr>
<tr>
<td>- CHAP</td>
<td>344-345</td>
</tr>
<tr>
<td>- PAP</td>
<td>346-347</td>
</tr>
<tr>
<td>PPPoE</td>
<td>415-416</td>
</tr>
<tr>
<td>- ISP router configuration example</td>
<td>419</td>
</tr>
<tr>
<td>- Layer 1</td>
<td>416-417</td>
</tr>
<tr>
<td>- Layer 2</td>
<td>417-418</td>
</tr>
<tr>
<td>- summary</td>
<td>418-419</td>
</tr>
<tr>
<td>- verification</td>
<td>420-425</td>
</tr>
<tr>
<td>RIDs (OSPF)</td>
<td>203-204</td>
</tr>
<tr>
<td>ROAS</td>
<td>524</td>
</tr>
<tr>
<td>- native VLANs</td>
<td>525-526</td>
</tr>
<tr>
<td>- subinterface numbers</td>
<td>525</td>
</tr>
<tr>
<td>- subinterfaces, creating</td>
<td>524-525</td>
</tr>
<tr>
<td>- troubleshooting</td>
<td>528-529</td>
</tr>
<tr>
<td>- verifying</td>
<td>526-527</td>
</tr>
<tr>
<td>single-area OSPFv2</td>
<td>197-198</td>
</tr>
<tr>
<td>- IPv4 addresses</td>
<td>197</td>
</tr>
<tr>
<td>- matching with network command</td>
<td>198-200</td>
</tr>
<tr>
<td>- multiarea configurations</td>
<td>207-208</td>
</tr>
<tr>
<td>- network command</td>
<td>198</td>
</tr>
<tr>
<td>- organization</td>
<td>196-197</td>
</tr>
<tr>
<td>- passive interfaces</td>
<td>204-206</td>
</tr>
<tr>
<td>- RIDs</td>
<td>203-204</td>
</tr>
<tr>
<td>- verifying</td>
<td>200-202</td>
</tr>
<tr>
<td>- wildcard masks</td>
<td>199</td>
</tr>
<tr>
<td>SNMPv2</td>
<td></td>
</tr>
<tr>
<td>- Get/Set messages</td>
<td>699-701</td>
</tr>
<tr>
<td>- Trap/Inform messages</td>
<td>701-702</td>
</tr>
<tr>
<td>- verifying</td>
<td>702-704</td>
</tr>
</tbody>
</table>
configuring

SNMPv3, 704
- authentication, 707-708
- encryption, 707-708
- groups, 705-707
- notifications, 710-711
- requirements, 704
- summary, 711-712
- users, 707
- verifying, 708-709

STP, 71
- modes, 72
- options, 74-75
- per-VLAN port costs, 74
- port costs, 78-79
- PVST+, 72-73
- root election influence, 80-81
- system ID extensions, 73-74
- topology changes, influencing, 55
- verification commands, 75

VLANs (virtual LANs), 24-25
- data and voice VLANs, 36-38
- full VLAN configuration example, 25-28
- shorter VLAN configuration example, 28-29
- trunking, 30-34

VTP
- common rejections, troubleshooting, 137
- default VTP settings, 129
- example, 130-131
- new VTP configuration settings, 130
- planning, 129
- steps, 129
- storing configuration, 134-135
- transparent mode, 135
- congestion avoidance, 512
- TCP windowing, 512-513
- tools, 513-514
- congestion management, 504
- Low Latency Queuing (LLQ), 505-507
- multiple queues, 504
- output queuing, 504
- prioritization, 505
- round robin scheduling, 505
- strategy, 507

connections (public cloud access)
- branch offices, 751
- Internet, 745-746
- private WANs, 746-749
- VPNs, 747

contiguous networks, 267

control planes
- centralized, 766
- distributed, 766
- networking devices, 763-764

control protocols (CP), 341

controllers, 766
- APIC-EM, 777
- centralized control, 766-767
- Northbound Interfaces (NBIs), 768-770
- OpenDaylight SDN controller, 771
- Southbound Interfaces (SBIs), 767-768

convergence
- EIGRP, 239
 - DUAL process, 242-243
 - feasible successor routes, 260-261
 - successors, 241-242
- routing protocols, 173
- STP, 48, 105-106
converting
 binary to hexadecimal, 808
decimal to binary, 805-807
hexadecimal to binary, 808
core switches, 159-160
CoS (Class of Service) fields (802.1Q header), 500-501
costs. See metrics counters, 715-716
CP (control protocols), 341
CPE (customer premises equipment), 332
CS (Class Selector), 503
CS DSCP values, marking, 503
CSRs (Cloud Services Routers), 747
CSU/DSU (channel service unit/data service unit), 332-334
CUCM (Cisco Unified Communication Manager), 35
customer edge (CE), 377
data
 application traffic, 492-493
 EIGRP for IPv6 topology, 657-658
 integrity, 393
 usage (MetroE), 373
 bandwidth used, charging for, 373-374
 overages, controlling, 374-375
data centers (virtual)
 networking, 735
 physical networks, 736
 vendors, 735
 workflow, 737-738
data circuit-terminating equipment (DCE), 334
data plane
 EtherChannel impact on MAC tables, 111-112
 networking devices, 762-763
 STP impact on MAC tables, 110
 VLAN of incoming frames, 112-113
data terminal equipment (DTE), 334-335
databases
 LSDB, 179
 area design, 190
 best routes, finding, 180
 contents, displaying, 201
 exchanging between neighbors, 183-186
 LSAs relationship, 179
 OSPFv3, 636
 MIB, 695-697
 OIDs, 697
 variable numbering/names, 697
 variables, monitoring, 696
 views, 705
topology, 188
VLAN, 131-133
DCE (data circuit-terminating equipment), 334
Dead Interval timer, 184
dead timers, 293-294
debug command, 286
debug eigrp fsm command, 271
debug eigrp packets command, 286, 298
debug ip ospf adj command, 298
 mismatched OSPF areas, 290
 OSPF neighbors, troubleshooting, 289
debug ip ospf events command, 298
debug ip ospf hello command, 298
 Hello/dead timer mismatches, 293
 OSPF neighbors, troubleshooting, 289
debug ip ospf packet command, 298
debug ipv6 ospf adj command, 632
debug messages, 261
default-information originate always
 command, 214
default-information originate
 command, 223, 321
 OSPF default routes, 214
 OSPFv3, 628
default routes, 627-628
default VLANs, 25
delay command, 270
 EIGRP, 247, 647
 EIGRP for IPv6, 662
 EIGRP metrics, 237, 265
delays
 EIGRP
 IPv6 routes, 650-651
 metrics, 237, 265
 managing, 491
delivery headers, 400
deny command, 472-474, 487
 extended IPv6 ACLs, 675
 IPv6 ACLs, 672
deny icmp any any command, 683
deny keyword, 442, 448-449
dependencies (SPAN), 722
description command, 359
design
 improving with chassis aggregation, 160
 Internet edge, 306
 MetroE Layer 3, 370
 E-LAN service, 371-372
 E-Line service, 370-371
 E-Tree service, 372
 MetroE physical, 365-366
 MPLS Layer 3, 377
 MPLS VPNs Layer 3, 379-382
 OSPF area, 189
 ABR, 190, 210-211
 areas, 189-190
 backbone areas, 190
 backbone routers, 190
 benefits, 191
 interarea routes, 190
 internal routers, 190
 intra-area routes, 190
 MPLS VPNs, 381-382
 network size, 189
 problems, 188, 281
 single-area, 188
 SPF workload, reducing, 190
 three-area, 189
 OSPFv3 multiarea, 622
designated ports. See DPs
designated routers. See DRs
destination addresses, 406
destination IP, matching, 463-464
destination ports (SPAN), 719
devices, networking, 762
 control, centralizing, 766-767
 control plane, 763-764
data plane, 762-763
management plane, 764
switch internal processing, 765-766
DevNet, 777
DHCP (Dynamic Host Control Protocol)
Binding Table, 153
DHCP Relay, 573
public cloud services, 757
snooping
 configuration settings, 153
 DHCP-based attacks, 152
 DHCP Binding Table, 153
 features, 151
 ports as trusted, configuring, 153
 rate limiting, 154
 rules summary, 153
 trusted/untrusted ports, 151-154
stateful, 608-609
troubleshooting, 573-574
DHCP-based attacks, 152
DHCPv6, 596
dialer interfaces
 Layer 3 orientation, 425
 PPPoE
 configuration, 416-417
 verifying, 421-422
dialer pool command, 417, 432
Differentiated Services Code Point. See DSCP
Diffusing Update Algorithm (DUAL), 242-243, 646
Digital Signal level 0 (DS0), 334
Digital Signal level 1 (DS1), 334
Digital Signal level 3 (DS3), 334
digital subscriber lines (DSLs), 390-391
Dijkstra SPF algorithm, 180
direction (ACLs), 440-441
disabling
 BGP neighbors, 314
 BPDU Guard, 83
 DTP, 116
 EIGRP for IPv6 routing, 650
 PortFast, 83
 ports, 60
 VLANs, 114-115
 VLAN trunking, 139
discard routes, 319
discarding state
 interfaces, 47-49
 RSTP, 61
discontiguous classful networks, 266-268
discontiguous networks, 267
discovery (EIGRP neighbors), 234
displaying
 BPDU Guard global settings, 83
 DRs/BDRs details, 211
 EIGRP
 enabled interfaces, 275
 IPv4 routing table, 253-254
 neighbor status, 253
 topology table, 255-257
 LSDB contents, 201
 OSPF-enabled interfaces, 275
 passive interfaces, 206
 PortFast global settings, 83
 TCP connections, 313
distance vector protocols. See DV protocols
distributed control planes, 766
distribution switches, chassis aggregation, 159-160
DMVPN (Dynamic Multipoint VPN), 411
multipoint GRE tunnels, 411
NHRP (Next Hop Resolution Protocol), 412-413
DNS (Domain Name System)
IPv6 network troubleshooting, 607-608
public cloud services, 754-756
troubleshooting, 571-572
dns-server command, 571
down status (interfaces), 354
DP (designated port), LAN segments, 49, 60
choosing, 54, 104-105
problems, troubleshooting, 105
DR (designated router), 185
backup (BDRs), 185
discovering, 211-212
Ethernet links, 185-186
DROthers routers, 186
DS0 (Digital Signal level 0), 334
DS1 (Digital Signal level 1), 334
DS3 (Digital Signal level 3), 334
DSCP (Differentiated Services Code Point), 497
fields (QoS marking), 501
marking values
 AF, 502-503
 CS, 503
 EF, 502
DSL (digital subscriber line), 390-391
DSLAMs (DSL access multiplexers), 390
DTE (data terminal equipment), 334-335
DTP (Dynamic Trunking Protocol), 116
DUAL (Diffusing Update Algorithm), 242-243, 646
dual Internet edge design, 306
dual stack
 OSPFv2/OSPFv3, 619
 OSPFv3 address families, 620
 strategies, 598
DV (distance vector) protocols, 175, 228
distance/vector information learned, 228
 EIGRP as, 232-233
 route poisoning, 231-232
 split horizon, 230-231
 update messages, 229-230
dynamic EtherChannels configuration, 86-87
Dynamic Host Control Protocol. See DHCP
Dynamic Multipoint VPN. See DMVPN
Dynamic Trunking Protocol (DTP), 116
E
E1, 334
E3, 334
EAP (Extensible Authentication Protocol), 146
EAPoL (EAP over LAN), 146
earplugs (exam), 786
eBGP (External BGP), 304
Internet edge, 306
 design, 306
 enterprise public prefixes, advertising, 307-308
 ISP default routes, learning, 309
neighbors
 configuring, 312
 disabling, 314
 using link addresses, configuring, 311
 verifying, 312-313
Eclipse IDE, 744
edge ports, 63
EF (Expedited Forwarding), 501
EF DSCP value marking, 502
EF RFC (RFC 3246), 502
EGP (exterior gateway protocol), 173, 302
EIGRP (Enhanced Interior Gateway Routing Protocol), 175
EIGRP for IPv4
 as advanced DV protocol, 232-233
 authentication, 286
 autosummarization, 266
 classful network boundaries, 266-267
 discontiguous classful networks, 267-268
 benefits, 227
 configuration, 246
 ASNs, 248
 checklist, 246
 classful network numbers, 248
 classic versus named mode, 249
 sample internetwork, 247
 wildcard masks, 248-249
 convergence, 239
 DUAL process, 242-243
 feasible successor routes, 260-261
 successors, 241-242
 disadvantages, 227
EIGRP for IPv6, compared, 644-646, 653
feasible successor routes
 convergence, 260-261
 identifying, 258-260
goals, 302
interfaces
 configuration problems, 278-281
 identifying, 275
 OSPF interfaces, compared, 281
 troubleshooting, 275-281
K-values, 286
metrics, 236
 bandwidth, 265
 calculation, 236-237
 components, 262
 delay settings, 265
 EIGRP topology database, 262
 example, 237-238
 FD (feasible distance), 240-241
 RD (reported distance), 240-241
 route load balancing, 264
 serial link bandwidth, 238-239
MPLS VPN challenges, 382
neighbors, 234-235
 discovery, 234
 requirements, 284-286
 status, 233, 253
 topology information, exchanging, 235-236
 troubleshooting example, 286-288
 verifying, 235, 285-286
OSPF, compared, 224
query/reply messages, 242
RIDs, configuring, 252
RIP metrics, compared, 176
RIPv2/OSPFv2, compared, 233
routes
 choosing, 234
 load balancing, 263-264
 tuning with bandwidth changes, 259
 variance, 263-264
successor routes, identifying, 257-258
topology
 database metrics, 262
 exchange, 234
 table, displaying, 255-257
variance, 263-264
verification, 249
 EIGRP enabled interfaces, finding, 250-252
 IPv4 routing table, displaying, 253-254
 neighbor status, displaying, 253

EIGRP for IPv6
configuration, 647
 commands, 647
 example, 648-649
 load balancing, 651-652
 route metrics, 650-651
 timers, 652
DUAL, 646
EIGRP for IPv4, compared, 644-646, 653
FS, 646
 interfaces, 654-655
 neighbors, 656-657
routes
 ASNs, 649
 enabling/disabling, 650
 FS, 646
 successors, 646
 troubleshooting, 660
 verifying, 659-660
topology data, 657-658
eigrp router-id command, 246, 252, 647, 662
E-LAN (Ethernet LAN) service, 368-372
E-Line (Ethernet Line) service, 367-371
e-mail, 750-751
enabling
 AAA servers, 149
 BPDU Guard, 83
 EIGRP, 246
 EIGRP for IPv6 routing, 650
 IPv6 routing, 598
 OSPF configuration mode, 198
 PortFast, 83
 PPPoE, 417
 VLANs, 115
Encapsulated RSPAN (ERSPAN), 721
encapsulation command, 359, 525
encapsulation dot1q command, 543
encapsulation ppp command, 344, 350, 417, 432
encryption
 IPsec, 395-396
 keys, 395
 SNMPv3, 699, 707-708
tunnel VPNs, 395
End-to-End QoS Network Design,
Second Edition (Cisco Press), 494
end-user traffic, measuring, 713
endpoints, 773
enhanced history, 717
Enhanced Interior Gateway Routing
Protocol (EIGRP), 175. See also
 EIGRP for IPv4; EIGRP for IPv6
Enterprise QoS Solution Reference
Network Design Guide, 494
effectiveness, classification matching, 496-497
eq 21 parameters, 465
erase startup-config command, 135
ERSPAN (Encapsulated RSPAN), 721
EtherChannels, 64-65
 configuring, 84
 dynamic, 86-87
 manual, 84-86
Layer 3
 configuring, 537-539
 troubleshooting, 541
 verifying, 539-540
MAC tables impact, predicting, 111-112
troubleshooting, 106
 configuration checks before adding interfaces, 108-109
 incorrect options, 106-108
Ethernet
 802.1Q headers, 500-501
 802.11 headers, 501
 access links, 365
carrier, 366
IEEE standards, 366
links, 185-186
WANs, 747
Ethernet LANs
 service, 368-372
troubleshooting, 575-576
VLANs (virtual LANs)
 configuration, 24-29
default VLANs, 25
IDs, 18
IP telephony, 34-39
native VLANs, 20
overview, 16-18
routing between, 21-24
tagging, 18-20
trunking, 18-21, 29-34
Ethernet Line (E-Line) service, 367-371
E-Tree (Ethernet Tree) service, 369, 372
ETSI (European Telco standards body), 754
EUI-64 rules, 597-599
EVC (Ethernet Virtual Connection), 367
exact IP address matching, 445-446
exam
 CLI skills, 794-796
 earplugs, 786
 exam-day suggestions, 787
 knowledge gaps, finding, 792-793
 practice exams
 answering questions, 790-791
 CCNA R&S, 790
 checklist, 790
 ICND2, 790
 other, 792
 taking, 789-790
 pre-exam suggestions, 786-787
 preparing for failure, 788
 question types, 784
 ready to pass assessment, 797
 scores, 796-797
 study tasks, 798
 studying after failing to pass, 797-798
time budget versus number of questions, 785
time-check method, 786
tutorial, 784-785
Expedited Forwarding (EF), 501

extended IPv6 ACLs
configuring, 674-676
examples, 676-678

extended numbered IPv4 ACLs, 462
configuration, 467-470
matching protocol, source IP, and
destination IP, 463-464
matching TCP and UDP port numbers,
464-467

Extensible Authentication Protocol
(EAP), 146

exterior gateway protocol (EGP), 173,
302

external BGP. See eBGP

Facebook (Wendell Odom), 799

failed interfaces, 49

failing the exam, 788, 797-798

failures
CHAP authentication, 356
HSRP, 552
keepalive, 355
PAP authentication, 356

FCS (Frame Check Sequence), 336

FD (feasible distance), 240-241, 256
feasibility conditions, 242, 260
feasible successor (FS), 646
feasible successor routes, 241-242
convergence, 260-261
identifying, 258-260

FHRP (First Hop Redundancy Protocol), 544
features, 550

HSRP, 551
active/passive model, 551
active/standby routers, choosing,
555
active/standby rules, 557
configuring, 554
failover, 552
group numbers, 555
load balancing, 555
no preemption, 557
with preemption, 558
troubleshooting, 560-563
verifying, 555-556
versions, 559-560

need for, 549
options, 550-551

fiber Internet, 393

FIFO (first-in, first-out), 504
filtering
ICMPv6 messages, 668-669, 679-683
IPv6
ACL policies, 668
issues, 604

finding
EIGRP
enabled interfaces, 250-252
feasible successor routes,
258-260
successor routes, 257-258
mismatched Hello/dead timers, 293
OSPF area mismatches, 290-291
routers best routes, 180
wildcard masks, 448

firewalls, 754

First Hop Redundancy Protocol. See
FHRP
first-in, first-out (FIFO), 504
FlexStack, 158
FlexStack-Plus, 158
flooding, 179
flow
 networking, 493
 public cloud traffic, 750-751
Forward delay timer (STP), 56
forwarding
 data. See routing
 interface state, 47-49
 paths, 777-778
forwarding plane. See data plane
Fractional T1, 334
Fractional T3, 334
Frame Check Sequence (FCS), 336
Frame Relay, 362
frames
 broadcast storms, 45-47
 defined, 495
 HDLC, 336
 incoming, 112-113
 looping, preventing, 44
 multiple frame transmissions, 47
 PPP, 341
 switching, 113
frequency command, 728
FS (feasible successor), 646
full drops, 514
full mesh topology (MetroE), 368
full neighbor state, 186, 628
full updates, 229, 235
full VLAN configuration example, 25-28
fully adjacent neighbors, 186, 633

generic routing encapsulation (GRE), 398
“Get IEEE 802” program, 59
Get messages
 agent information, 696
 RO/RW communities, 699
 SNMPv2 support, 699-701
GLBP (Gateway Load Balancing Protocol), 544
global unicast addresses, 593
Google App Engine PaaS, 744
GRE (generic routing encapsulation), 398
GRE tunnels, 398
 between routers, 399
 configuring, 402-404
 details, displaying, 404
 functionality, testing, 406
 large scale environments, 411
 multipoint with DMVPN, 411
 point-to-point, 399
 routes, 405
 troubleshooting, 406
 ACLs, 409-410
 interface state, 407
 Layer 3 issues, 409
 source/destination addresses, 406
 tunnel destination, 408
 tunnel interfaces, 398
 unsecured networks, 400-401
 verifying, 404-406
group numbers (HSRP), 555
groups
 endpoint, 773
 SNMPv3, 705-707
 MIB views, 705
 security levels, 705
 write views, 706

HDLC (High-level Data Link Control), 331, 336-340, 398
headers
 802.1Q, 500-501
 802.11, 501
 delivery, 400
 IP, 499-501
 MPLS Label, 501
Hello BPDU, 49
Hello Interval, 184, 233
Hello messages (OSPF), 181-182
Hello timer
 dead timer mismatches, troubleshooting, 293-294
 STP, 56
hexadecimal-to-binary conversion, 808
high availability, 159-160
High-level Data Link Control (HDLC), 331, 336-340, 398
High-speed WICs (HWICs), 332
historical success/failure counters (IP SLAs), 716
history
 IP SLA data, 717
 OSPF, 619
 SNMP, 695
history buckets-kept 6 command, 728
history enhanced command, 717
history enhanced interval command, 728
history filter all command, 728
history lives-kept 1 command, 728
Hold Interval, 233
hostname command, 345
hosts
 IPv6, 595
 connectivity, verifying, 600-601
 issues, 604
 missing settings, 608-610
 name resolution problems, 607-608
 pings fail from default router, 606-607
 pings only working in some cases, 605-606
 stateful DHCPv6, 596
 stateless address autoconfiguration (SLAAC), 597
routes, 357
server virtualization, 734
troubleshooting IPv4 settings
 default router IP address setting, 572
 DNS problems, 571-572
 ensuring IPv4 settings match, 568-569
 mismatched masks, 569-571
HSRP (Hot Standby Router Protocol), 544, 551
 active/passive model, 551
 active/standby routers, choosing, 555
 active/standby rules, 557
 configuring, 554
 failover, 552
 group numbers, 555
load balancing, 553
no preemption, 557
with preemption, 558
troubleshooting, 560
 ACL blocks HSRP packets, 563
 configuration, 560-561
 group number mismatches, 563
 misconfiguration symptoms, 561
 routers configuring different VIPs, 563
 version mismatches, 562
verifying, 555-556
versions, 559-560
HSRPv2 (HSRP version 2), 559
hub and spoke topology (MetroE), 369
Huston, Geoff website, 303
HWICs (High-speed WICs), 332
hypervisors, 734

IaaS (Infrastructure as a Service), 742
IANA (Internet Assigned Numbers Authority), 174
ASNs, assigning, 174
ICMPv6 parameters, 669
IPv6 multicast address space registry website, 682
website, 174
iBGP (Internal BGP), 304
icmp-echo command, 728
ICMP-Echo operations, 714-715
ICMP Echo probe, 713
icmp keyword, 481
ICMPv6
 Echo Request messages, 674
 messages, filtering, 668-684
 packets, matching, 675
ICND2 practice exam. See practice exams
IEEE (Institute of Electrical and Electronics Engineers)
 802.1D Spanning-Tree states, 58
 802.1D standard, 58
 802.1w amendment, 58
 802.1x
 access, securing, 144-145
 authenticators, 145
 LAN access, securing, 145-146
default port costs, 55
Ethernet standards, 366
“Get IEEE 802” program, 59
ifconfig command, 568, 600, 615
IGP (interior gateway protocol), 173, 226
 BGP, compared, 302
classless/classful, 177
configuring, 310
goals, 302
metrics, 175-176
routing protocol algorithm, 175
subnets, 303
IGRP (Interior Gateway Routing Protocol), 175
implicit filtering, 683-684
incoming frames, 112-113
inferior Hello, 50
infinity, 231
Inform messages, 696-697
SNMPv2, 701-702
SNMPv3, 710-711
Infrastructure as a Service (IaaS), 742
injecting BGP table entries, 314
 advertising subnets to ISPs, 318
classful network routes, 315-318
static discard routes, 319-320
instantiating VMs, 742
Institute of Electrical and Electronics Engineers. See IEEE
Integrated Intermediate System to Intermediate System (IS-IS), 175
interactive data application traffic, 492
interactive voice traffic, 494
interarea routes, 190, 212, 640
intercloud exchanges, 748-749
Intercloud Fabric, 749
interface command, 25, 37, 543
interface dialer command, 432
interface loopback command, 196, 222
interface multilink command, 360
interface multilink 1 command, 350
interface port-channel command, 543
interface range command, 27
interface tunnel command, 400, 432
interface vlan command, 543
interfaces
 ABR OSPF areas, verifying, 210-211
 access, 113-114
 administratively shutdown, 49
 application programming (APIs), 768-769
bandwidth
 defaults, 216
 EIGRP metric calculations, 265
 EIGRP routes, tuning, 259
 higher reference, 217
 OSPF costs based on, 216-217
blocking state, 47
delays, 265
dialer
 Layer 3 orientation, 425
 PPPoE, 416-417, 421-422
down status, 354
EIGRP
 configuration problems, 278-281
 enabled, finding, 250-252, 275
 OSPF interfaces, compared, 281
 troubleshooting, 275-281
EIGRP for IPv6, 654-655
EtherChannels, adding, 108-109
failed, 49
forwarding state, 47
LAN speeds, 490
learning state, 58
listening state, 58
loopback, 203
multilink, 349
Northbound (NBIs), 768-770
OSPF
 bandwidth, 216
 costs, setting, 216-217
 EIGRP interfaces, compared, 281
 identifying, 275
 passive, 196
 troubleshooting, 281-283
OSPFv2 configuration, 218
example, 218
verifying, 219-221
OSPFv3, 630
 influence route selections, setting, 626
 troubleshooting, 631-632
 verifying, 630-631, 638-640
passive
 EIGRP, 251
 OSPF, 204-206
 OSFPv3, 624
per-VLAN STP costs, 74
routed, 535-537
routing protocol-enabled, verifying, 274
Southbound (SBIs), 767-768
states
changing with STP, 57-58
forwarding or blocking criteria, 48-49
status codes, 353
subinterfaces, 524-527
switched virtual. See SVIs
tunnel
ACLs, 409-410
creating, 400
destinations, 408
Layer 3 issues, 409
replacing serial links, 398
state, 407
virtual-access, 423
VLAN. See SVIs
WANs, 490
working, 49
interior gateway protocol. See IGP
Interior Gateway Routing Protocol (IGRP), 175
interior IP routing protocols, 233
internal BGP (iBGP), 304
internal processing (switches), 765-766
internal routers, 190, 623-624
Internet
access, 389
cable Internet, 391
DSLs (digital subscriber lines), 390-391
fiber, 393
WANs, 389
wireless WANs, 392-393
edge, eBGP and, 306
design, 306
enterprise public prefixes, advertising, 307-308
ISP default routes, learning, 309
public cloud
accessing, 745-746
computing branch office connections, 751
VPNs, 389
benefits, 394
clients, 396-397
security, 393
site-to-site, 395-396
as WAN service, 389
wireless, 393
Internet Assigned Numbers Authority. See IANA
Internet service providers. See ISPs
Inter-Switch Link (ISL), 20-21, 525
intra-area routes, 190
ip -6 neighbor show command, 615
ip access-group command, 450, 457, 467, 477, 486
ip access-list command, 472, 486
ip access-list extended command, 473
IP ACLs (access control lists). See ACLs
ip address command, 568, 584-585
IP addresses on loopback interfaces, 196
MLPPP, 350
subinterfaces, 525
ip address negotiated command, 418, 432
ip_address parameter (network command), 198
IP addressing

conversions

binary-to-hexadecimal, 808
decimal-to-binary, 805-807
hexadecimal-to-binary, 808

public clouds

address assignment services, 756-757
DHCP services, 757

ip domain-lookup command, 572

IP headers, 499-501

ip hello-interval eigrp command, 247, 270, 297, 648

ip helper-address command, 573-574

ip hold-time eigrp command, 247, 270, 297

IP IGP metrics, 175-176

ip mtu command, 296, 637

ip name-server command, 572

ip ospf command, 222

ip ospf cost command, 222

ip ospf dead-interval command, 297

ip ospf hello-interval command, 297

ip route command, 323

ip routing command, 543

ip sla command, 728

ip sla restart command, 728

IP SLAs (IP Service Level Agreements), 712

historical success/failure counters, 716
history data, troubleshooting with, 717

ICMP-Echo, 713-715

operations, 713

responders, 713

sources, 713

troubleshooting with

counters, 715-716

history data, 717

UDP Jitter probes, 713

ip sla schedule command, 715

IP telephony (VLANs), 34

data and voice VLAN concepts, 34-36

data and voice VLAN configuration and verification, 36-38

summary, 38-39

ipconfig command, 568, 600, 615

IPP (IP Precedence) fields (QoS marking), 501-503

IPsec, 395-396

IPv4 routing

ACLs, 666-667

addresses, 197, 619

EIGRP

configuration, 248-249

load balancing, 263-264

verifying, 253-254

EIGRP verification, 249

EIGRP enabled interfaces, finding, 250-252

IPv4 routing table, displaying, 253-254

neighbor status, displaying, 253

Layer 3 EtherChannels

configuring, 537-539

troubleshooting, 541

verifying, 539-540

Layer 3 switch routed ports, 534-537

Layer 3 switching with SVIs

configuring, 529-531

troubleshooting, 532-534

verifying, 531
matching addresses
 any/all addresses, 448
 exact IP address, 445-446
 subset of address, 446-447
OSPF added, 201
QoS marking, 499
routing protocols
displaying, 202
troubleshooting, 273-274
subnet masks
 mismatched masks, 569-571
 VLSM (variable length subnet masking), 581
troubleshooting, 572
default router IP address setting, 572
DHCP issues, 573-574
DNS problems, 571-572
incorrect addressing plans, 581-585
IP forwarding issues, 577-580
LAN issues, 575-576
mismatched IPv4 settings, 568-569
mismatched masks, 569-571
packet filtering with access lists, 586
router WAN interface status, 585
IPv6 access-list commands
 building, 678-679
 IPv6 ACLs, 687
ipv6 access-list deny command, 678
ipv6 access-list permit command, 678
ipv6 address command, 598, 614
ipv6 dhcp relay destination command, 614
ipv6 eigrp command, 648, 662
ipv6 hello-interval eigrp command, 662
ipv6 hold-time eigrp command, 662
ipv6 mtu command, 637
ipv6 ospf command, 614, 624, 643
ipv6 ospf cost command, 643
ipv6 router eigrp command, 647, 662
ipv6 router ospf command, 614, 624, 643
IPv6 routing
 access restrictions with IPv6 ACLs, 685
ACLs, 664-666
 access-list commands, building, 678-679
 access restrictions, 685
 blocking, 683
 capabilities, 669
 extended, 674-678
 filtering ICMPv6 NDP messages, 679-683
 filtering policies, 668
 ICMPv6 message filtering, 668-669
 implicit filtering ICMPv6 NDP messages, 683-684
 IPv4 ACL, compared, 666-667
 limitations, 669-670
 logging, 670
 management control, 685
 prefix lengths, 670
 problems, 612
 router originated packets, 670
 standard, configuring, 671-674
testing, 677
tunneled traffic matching, 670
addressing on routers configuration, 598-599
connectivity, verifying, 600-601
 hosts, 600-601
 routers, 601-603
EIGRP
- ASNs, 649
- configuration, 647-649
- DUAL, 646
- EIGRP for IPv4, compared, 644-646, 653
- FS, 646
- interfaces, 654-655
- load balancing, 651-652
- neighbors, 656-657
- routes, 650-651, 659-660
- successors, 646
- timers, 652
- topology data, 657-658
- global unicast addresses, 593
- host configuration, 595
 - stateful DHCPv6, 596
 - stateless address autoconfiguration (SLAAC), 597
- link-local addresses, 595
- multicast addresses, 682
- OSPF, 619-620
- OSPFv3
 - configuration, 621-622
 - default routes, 627-628
 - interface cost metrics, 638-640
 - interfaces, 630
 - IPv6 MTU mismatches, 636-638
 - IPv6 routes, troubleshooting, 640-641
 - load balancing, 627
 - LSAs, 636
 - LSDBs, 636
 - multiarea on ABR configuration, 625
 - neighbors, 632
- OSPFv2, compared, 621, 628-629
- passive interfaces, 624
- RIDs, 624
- route selection metrics, 626
- single-area configuration, 623-624
- troubleshooting interfaces, 631-632
- troubleshooting neighbors, 633-635
- verifying interfaces, 630-631
- verifying neighbors, 632-633
- protocols, 619
- QoS marking, 500
- routers, enabling, 598
- routes
 - EIGRP for IPv6 metrics, 650-651
 - OSPFv3 metrics, 626, 638-640
 - troubleshooting, 640-641
- subnetting, 593
- unique local unicast addresses, 593
- static route configuration, 599
- subnetting, 593-594
- troubleshooting, 604
 - ACLs, 612
 - filtering issues, 604
 - host issues, 604
 - host pings fail from default router, 606-607
 - host pings only working in some cases, 605-606
 - missing IPv6 settings in host, 608-610
 - name resolution problems, 607-608
 - router issues, 604
 - routing, 611-612
- unicast addresses, 593-595
ipv6 traffic-filter command, 673, 687
ipv6 unicast routing command, 598, 614
IS-IS (Integrated Intermediate System to Intermediate System), 175
ISL (Inter-Switch Link), 20-21, 525
ISPs (Internet service providers), 389
default routes, learning, 320-321
dial connections with PPP, 414
Internet edge, learning, 309
router configuration example, 419
subnets, advertising, 318

J
Jenkins continuous integration and automation tool, 744
jitter, managing, 491

K
keepalive failures, 355
keyboard, video display, or mouse (KVM), 733
keys (encryption), 395
keywords. See also commands
any, 448
deny, 442, 448-449
icmp, 481
log, 452, 670
permit, 442, 448-449
tcp, 464
udp, 464
knowledge gaps, finding, 792-793
K-values (EIGRP), 286
KVM (keyboard, video display, or mouse), 733

L
labs, completing, 795-796
LACP (Link Aggregation Control Protocol), 86
LANs, 523
defined, 16
DPs, 54, 104-105
interfaces, 490
redundancy
problems caused without STP, 45-46
STP, 42
security
IEEE 802.1x, 144-146
STP security exposures, 65-66
troubleshooting, 575-576
VLAN support, adding, 122
Layer 1
leased-line WANs
CSU/DSUs, 334
physical components, 332-333
speeds, 333-334
troubleshooting, 354
leased-line WANs with HDLC, 335-336
PPPoE
configuration, 416-417
switches, 21
troubleshooting, 427-428
Layer 2
leased-line WANs, 354-356
leased-lines with HDLC, 336
MLPPP, 349
PPPoE
configuration, 417
troubleshooting, 428-429
Layer 3
GRE tunnel issues, 409
leased-line WANs, troubleshooting, 357-358
MetroE design, 370
 E-LAN service, 371-372
 E-Line service, 370-371
 E-Tree service, 372
MLPPP, 348-349
MPLS, 377
MPLS VPNs, 379-380
 EIGRP challenges, 382
 OSPF area design, 381-382
PPPoe
 configuration, 417-418
 status, verifying, 425
 troubleshooting, 429
switches, 21
 EtherChannels, 537-541
 routed ports, 534-537
 with SVIs, 529-534
 VLAN (virtual LAN) routing, 23-24
LCP (Link Control Protocol), 341-342
learning state (interfaces), 58
leased-line WANs, 330-331
 building, 335-336
 CSU/DSU, 334
 with HDLC, 336
 configuring HDLC, 337-340
 de-encapsulating/re-encapsulating IP packets, 336
 framing, 336
 physical components, 332-333
 with PPP
 authentication, 342-343
 configuring PPP, 343-344
 configuring PPP CHAP, 344-346
 configuring PPP PAP, 346-347
 control protocols, 341
 framing, 341
 multilink. See MLPPP
 PPP functions, 340
 speeds, 333-334
 troubleshooting, 353-354
 Layer 1 problems, 354
 Layer 2 problems, 354-356
 Layer 3 problems, 357-358
 mismatched subnets, 358
least-bandwidth, 237
limiting SPAN sources, 725
Link Aggregation Control Protocol (LACP), 86
Link Control Protocol (LCP), 341-342
link-local addresses, 595
link-state advertisements. See LSAs
link-state database. See LSDB
link-state protocols, 175. See also OSPF
Link-State Update (LSU) packets, 183
links
 access
 MetroE, 365
 MPLS, 378
 addresses, 311-312
 Ethernet, 185-186
 RSTP types, 63
 serial
 bandwidth, 238-239
 replacing with IP tunnels, 398
 routing IP packets over, 398
list logic (IP ACLs), 444-445
listening state (interfaces), 58
LLQ (Low Latency Queuing), 505-507
load balancing
 EIGRP, 263-264, 651-652
 HSRP, 553
 MLPPP, 349
 OSPF, 217
 OSPFv3, 627
local SPAN, configuring, 721-724
location (ACLs), 440-441
log keyword, 452, 670
log messages, unsolicited, 283
logging IPv6 ACLs, 670
logical switches, 157-158
logins (AAA), 147, 150
Long-Term Evolution (LTE), 393
loopback interfaces, 203
looping frames, preventing, 44
loss, managing, 491
Low Latency Queuing (LLQ), 505-507
LSAs (link-state advertisements), 183
 exchanging with OSPF neighbors, 183-184
 DRS on Ethernet links, 185-186
 maintenance, 184-185
flooding, 179
LSDB relationship, 179
OSPFv3, 636
router, 636
LSDB (link-state database), 179
 area design, 190
 best routes, finding, 180
 contents, displaying, 201
 exchanging between neighbors
 DRS on Ethernet links, 185-186
 fully exchanging LSAs, 183-184
 maintaining neighbors, 184-185
LSAs relationship, 179
OSPFv3, 636
LSU (Link-State Update) packets, 183
LTE (Long-Term Evolution), 393

M
mac-address command, 432
MAC addresses
 burned-in, 49
 forwarding, 111
 learning, 111
 tables
 EtherChannel impact, predicting, 111-112
 instability, 47
 STP impact, predicting, 110
maintenance
 EIGRP neighbors, 233
 OSPF neighbors, 184-185
Managed Extensibility Framework (MEF), 366
Management Information Base. See MIB
management plane (networking devices), 764
managing
 bandwidth, 491
 delay, 491
 IPv6 ACLs, 685
 jitter, 491
 loss, 491
 SNMP, 695
manual EtherChannels configuration, 84-86
marking, 497-499
 with classification, 497
 DiffServ DSCP values
 AF, 502-503
 CS, 503
 EF, 502
marking

Ethernet 802.1Q headers, 500-501
Ethernet 802.11 headers, 501
IP headers, 499-501
MPLS Label headers, 501
trust boundaries, 501-502
matching packets, 441-442
matching parameters
extended numbered ACLs
protocol, source IP, and destination IP, 463-464
TCP and UDP port numbers, 464-467
standard numbered ACLs
any/all addresses, 448
command syntax, 445
exact IP address, 445-446
subset of address, 446-447
wildcard masks, 446-448
MaxAge timer (STP), 56
maximum-paths command, 218, 222, 270
EIGRP
for IPv4, 247, 647
for IPv6, 651, 662
load balancing, 263
OSPFv3, 627, 643
maximum transmission unit. See MTU
measuring
cloud computing services, 739
derend user traffic, 713
MEC (Multichassis EtherChannel), 161
MEF (Managed Extensibility Framework), 366
memory (TCAM), 766
messages
challenge, 342
ddebug, 261
EIGRP, 242
Get
agent information, 696
RO/RW communities, 699
SNMPv2 support, 699-701
ICMPv6
Echo request, 674
filtering, 668-669
NDP, filtering, 679-684
Inform, 696-697
SNMPv2, 701-702
SNMPv3, 710-711
NA (neighbor advertisement), 683
NS (neighbor solicitation), 683
OSPF Hello, 181-182
partial update, 232
RA (router advertisement), 610, 684
RS (router solicitation), 610, 684
RSTP, 62
Set
RO/RW communities, 699
SNMPv2 support, 699-701
writing variables on agents, 696
SNMP variables, monitoring, 696
STP Hello BPDU, 49
Trap, 696-697
SNMPv2, 701-702
SNMPv3, 710-711
unsolicited log, 283
update
BGP, 303, 310
DV routing protocols, 229-230
EIGRP, 235-236

cloud computing services, 739
derend user traffic, 713
metrics
BGP best path selection, 305-306
EIGRP, 236
 bandwidth, 265
 calculation, 236-237
 components, 262
 delay settings, 265
 EIGRP topology database, 262
 example, 237-238
 FD (feasible distance), 240-241
 RD (reported distance), 240-241
 route load balancing, 264
 serial link bandwidth, 238-239
IGP, 175-176
infinity, 231
IPv6 routes
 EIGRP for IPv6, 650-651
 OSPFv3 interface costs, 626
OSPF, 215
 based on interface bandwidth, 216-217
 higher reference bandwidth, 217
 setting, 217
OSPFv3, 638-640
per-VLAN STP, 74
port, 78-79
root, 48
STP port, 53
MetroE (Metro Ethernet), 362-364
 access links, 365
 data usage, 373
 bandwidth used, charging for, 373-374
 overages, controlling, 374-375
IEEE Ethernet standards, 366
Layer 3 design, 370
 E-LAN service, 371-372
 E-Line service, 370-371
 E-Tree service, 372
MEF, 366
physical design, 365-366
services, 366
 E-LAN, 368-372
 E-Line, 367-371
 E-Tree, 369-372
topologies
 full mesh, 368
 hub and spoke, 369
 partial mesh, 369
 Point-to-Point, 367-368
MIB (Management Information Base), 695-697
OIDs, 697
variables
 monitoring, 696
 numbering/names, 697
views, 705
mind maps, reviewing, 795
mismatched IPv4 settings, troubleshooting, 568-569
mismatched masks, troubleshooting, 569-571
mismatched subnets, 286
MLPPP (multilink PPP), 348
 configuring, 349-350
Layer 2 fragmentation balance, 349
Layer 3, 348-349
load balancing, 349
verifying, 351-353
monitor session command, 721, 728
monitoring MIB variables, 696
MPBGP (Multiprotocol BGP), 380
MPLS (Multiprotocol Label Switching), 362, 375-377
access links, 378
Label headers, 501
Layer 3 design, 377
public cloud connections, 747
QoS, 378-379
virtual private networks. See MPLS VPNs
MPLS VPNs (MPLS Virtual Private Networks), 376
EIGRP challenges, 382
Layer 3, 379-382
OSPF area design, 381-382
MST (Multiple Spanning Tree), 72
MTU (maximum transmission unit), 236
IPv6 mismatches, 636-638
OSPF mismatched settings, 296
mtu command, 432
multiarea on ABR OSPFv3 configuration, 625
multiarea OSPFv2 configuration, 206-210
network commands, 209
single-area configurations, 207-208
subnets, 206
verifying, 210-212
multiarea OSPFv3 configuration, 622
multicast addresses, 682
Multichassis EtherChannel (MEC), 161
multihomed Internet edge design, 306
multilayer switches. See Layer 3, switches
multilink interfaces, 349
multiple frame transmissions, 47
multiple queues (queueing systems), 504
multiple serial links between routers, 347
Multiple Spanning Tree (MST), 72
Multiprotocol BGP (MPBGP), 380
Multiprotocol Label Switching. See MPLS
multithreading, 734

N
NA (neighbor advertisement) messages, 683
name command, 25, 40, 135
named ACLs
configuration, 472
ingoing, 473-475
overview, 471-472
named mode (EIGRP configuration), 249
names (MIB variables), 697
National Institute of Standards and Technology (NIST), 739
native VLANs, 20
mismatched on trunks, 118
router configuration, 525-526
NBAR (Network Based Application Recognition), 498
NBIs (Northbound Interfaces), 768-770
NCP (Network Control Protocols), 341
NDA (nondisclosure agreement), 788
NDP (Neighbor Discovery Protocol), 593
filtering messages through IPv6 ACLs, 679-683
implicit filtering messages through IPv6 ACLs, 683-684
SLAAC, 597
ndp –an command, 615
Network Interface Modules (NIMs)

neighbor commands, 322
neighbor shutdown command, 314
neighbors
advertisement (NA) messages, 683
BGP, 303
disabling, 314
states, 313
eBGP
configuring, 312
disabling, 314
using link addresses, configuring, 311
verifying, 312-313
EIGRP for IPv4, 234-235
discovery, 234
requirements, 286
status, 253
topology information, exchanging, 235-236
troubleshooting, 286-290
verifying, 235, 285-286
EIGRP for IPv6, 656-657
requirements, 656
troubleshooting, 656-657
OSPF
area mismatches, finding, 290-291
duplicate RIDs, 291-293
Hello/dead timer mismatches, 293-294
Hello messages, 181-182
LSDB exchange, 183-186
meeting, 181
requirements, 289
RIDs, learning, 181
states, 182-183, 186, 288
troubleshooting, 288-294
OSPFv3, 632
requirements, 633-634
troubleshooting, 633-635
verifying, 632-633
relationships, 284
neighbor requirements, 284
pinging routers, confirming, 285
routing protocol relationships, troubleshooting, 274
solicitation (NS) messages, 683
states, 628
netsh interface ipv6show neighbors command, 615
Network Based Application Recognition (NBAR), 498
network command, 222, 323
BGP table entries, injecting, 314
advertising subnets to ISPs, 318
classful network routes, 315-318
static discard routes, 319-320
EIGRP, 270
enabling, 246
for IPv4, 648
for IPv6 compatibility, 647
wildcard masks, 248
OSPF single-area configuration, 198-200
OSPFv2
interface configuration, 218
multiarea configuration, 209
Network Control Protocols (NCP), 341
network functions virtualization (NFV), 754
network interface cards (NICs), 718, 735
Network Interface Modules (NIMs), 332
Network Layer Reachability Information (NLRI), 303
Network Management Station. See NMS
Network Time Protocol (NTP), 757-758
networks
 analyzers, 719
 broad access, 739
 classful
 autosummarization at boundaries, 266-267
 routes, injecting, 315-318
 contiguous, 267
controllers
 centralized control, 766-767
 defined, 766
 Northbound Interfaces (NBIs), 768-770
 Southbound Interfaces (SBIs), 767-768
devices, 762
 control, centralizing, 766-767
 control plane, 763-764
 data plane, 762-763
 management plane, 764
 security. See authentication, AAA servers
 switch internal processing, 765-766
discontiguous, 267
discontiguous classful, 266-268
flow, 493
physical data center, 736
programmability, 760
 APIC Enterprise Module (APIC-EM), 774-776
 Application Centric Infrastructure (ACI), 773-774
public cloud
 address assignment services, 756-757
 DHCP services, 757
 DNS services, 754-756
 NTP, 757-758
 VNFs, 752-754
redundancy needs, 547-548
traffic
 bandwidth, managing, 491
 characteristics, 491
 delay, 491
 jitter, 491
 loss, 491
 types, 492-494
unsecured, 400-401
virtual, 735-736, 754
VMs, 736
Nexus 1000v vSwitch, 736
NFV (network functions virtualization), 754
NHRP (Next Hop Resolution Protocol), 412-413
dynamic mapping, enabling, 412
spoke-to-spoke communication, 413
NICs (network interface cards), 718, 735
NIMs (Network Interface Modules), 332
NIST (National Institute of Standards and Technology), 739
NLRI (Network Layer Reachability Information), 303
NMS (Network Management Station), 695
notification community strings, 701
SNMP, 696-697
no auto-summary command, 268
no ip access-group command, 476
no ip address command, 539
no ip domain-lookup command, 572
no ip sla schedule 1 command, 715
no neighbor shutdown command, 314
no passive-interface command, 223, 270
no shutdown command, 40, 359
 EIGRP for IPv6, 650, 662
 Layer 1 leased-line WAN problems, 354
 OSPF processes, 294
 ROAS subinterfaces, 527
no spanning-tree portfast bpduguard
default command, 95
no spanning-tree portfast default
command, 95
no switchport command
 Layer 3 EtherChannels, 539
 Layer 3 switches, 543
 routed ports, 535
nondisclosure agreement (NDA), 788
noninteractive data application traffic, 493
nonroot switches (RPs), 101-103
 problems, troubleshooting, 103
tiebreakers, 102-103
normal-time questions, 785
Northbound Interfaces (NBIs), 768-770
notification community strings, 701
notifications
 SNMP, 696-697
 SNMPv3, 710-711
NS (neighbor solicitation) messages, 683
NTP (Network Time Protocol), 757-758
numbered ACLs, configuring, 475-476
numbers
 AS numbers. See ASNs
 HSRP group, 555
 MIB variables, 697
 ROAS subinterfaces, 525
 sequence, editing ACLs with, 473-475
numeric reference table conversions
 binary-to-hexadecimal, 808
decimal-to-binary, 805-807
hexadecimal-to-binary, 808

ODL (OpenDaylight), 771-772
Odom, Wendell Twitter/Facebook information, 799
OIDs (object IDs), 697
on-demand self-service (cloud computing), 739
one-way delay, 491
ONF (Open Networking Foundation), 771
Open SDN, 771
Open SDN Controller (OSC), 772
Open Shortest Path First. See OSPF
OpenDaylight (ODL), 771-772
OpenFlow, 768, 771
operations (IP SLAs), 713-715
OpFlex, 768
OSC (Open SDN Controller), 772
OSPF (Open Shortest Path First), 170, 179
 area design, 189
 ABR, 190, 210-211
 areas, 189-190
 backbone areas, 190
 backbone routers, 190
benefits, 191
interarea routes, 190
internal routers, 190
intra-area routes, 190
MPLS VPNs, 381-382
network size, 189
problems, 188, 281
single-area, 188
SPF workload, reducing, 190
three-area, 189
best routes with SPF, calculating, 186-188
configuration
errors, troubleshooting, 282-283
mode, enabling, 198
default routes, 213-215
Dijkstra SPF algorithm, 180
EIGRP, compared, 224
goals, 302
Hello/dead timers, 293-294
history, 619
interarea routes, verifying, 212
interfaces
costs, setting, 216-217
EIGRP interfaces, compared, 281
identifying, 275
passive, 196
troubleshooting, 281-283
load balancing, 217
LSAs, 179
metrics, 215
based on interface bandwidth, 216-217
higher reference bandwidth, 217
setting, 217
MTU mismatched settings, 296
neighbors, 181
area mismatches, finding, 290-291
DRs on Ethernet links, 185-186
duplicate RIDs, 291-293
Hello messages, 181-182
Hello/dead timer mismatches, 293-294
LSAs, exchanging, 183-184
maintaining, 184-185
meeting, 181
requirements, 284, 289
RIDs, learning, 181
states, 182-186, 288
troubleshooting, 288-294
process-ids, 198
processes, shutting down, 294-296
RIDs
configuring, 203-204
duplicate, troubleshooting, 291-293
super backbone, 381
Version 2. See OSPFv2
OSPFv2 (OSPF Version 2), 170
default routes, 213-215
dual stack, 619
history, 619
interface configuration
example, 218
verifying, 219-221
load balancing, 217
metrics, 215
based on interface bandwidth, 216-217
higher reference bandwidth, 217
setting, 217
multiarea configuration, 206-210
 network commands, 209
 single-area configurations, 207-208
 subnets, 206
 verifying, 210-212
OSPFv3, compared, 621, 628-629
RIPv2/EIGRP, compared, 233
single-area configuration, 197-198
 IPv4 addresses, 197
 matching with network command, 198-200
 multiarea configurations, 207-208
 network command, 198
 organization, 196-197
 passive interfaces, 204-206
 RIDs, 203-204
 verifying, 200-202
 wildcard masks, 199
OSPFv3 (OSPF Version 3), 616
 address families dual stack, 620
 configuration, 621
 default routes, 627-628
 load balancing, 627
 multiarea example, 622
 multiarea on ABR, 625
 route selection metrics, setting, 626
 single-area, 623-624
 dual stack, 619
 interfaces, 630
 troubleshooting, 631-632
 verifying, 630-631
IPv6
 MTU mismatches, 636-638
 routes, 638-641
 LSAs, 636
 LSDBs, 636
 neighbors, 632
 requirements, 633-634
 troubleshooting, 633-635
 verifying, 632-633
OSPFv2, compared, 621, 628-629
 passive interfaces, 624
 RIDs, 624
 output queuing, 504
 overages (MetroE data usage), 374-375
 overlapping routes, troubleshooting, 577-580
 overlapping subnets
 with VLSM, 583-585
 without VLSM, 581-583
PaaS (Platform as a Service), 743-744
packets
 classification, 495
 ACLs, 497
 with marking, 497
 matching, 496-497
 NBAR, 498
 router queuing, 496
 routers, 497
 congestion avoidance, 512
 TCP windowing, 512-513
 tools, 513-514
 congestion management, 504
 Low Latency Queuing (LLQ), 505-507
 multiple queues, 504
 output queuing, 504
prioritization, 505
queuing strategy, 507
round robin scheduling, 505
de-encapsulating/re-encapsulating with HDLC, 336
defined, 495
filtering. See ACLs
ICMPv6, 675
marking, 499
802.1Q headers, 500-501
802.11 headers, 501
with classification, 497
DiffServ DSCP AF values, 502-503
DiffServ DSCP CS values, 503
DiffServ DSCP EF values, 502
IP headers, 499-501
MPLS Label headers, 501
trust boundaries, 501-502
matching, 441-442
policing, 507
discarding excess traffic, 509
edge between networks, 509-510
features, 510
traffic rate versus configured policing rate, 508
router originated, 670
router queuing, 496
routing over serial links, 398
shaping, 507, 510
features, 512
slowing messages, 510
time intervals, 511-512
TCP, 675
UDP, 675
PAP (Password Authentication Protocol), 86
parameters
ICMPv6, 669
ip_address, 198
wildcard_mask, 198
partial mesh topology (MetroE), 369
partial updates (EIGRP), 232, 235
passive-interface command, 205
defined, 222, 297
EIGRP, 251, 270
OSPF interfaces as passive, configuring, 196
OSPFv3, 624
passive-interface default command, 205, 270
passive interfaces
EIGRP, 251
OSPF, 196, 204-206
OSPFv3, 624
Password Authentication Protocol. See PAP
passwords, 698
path attributes (BGP), 305-306
Path MTU Discovery (PMTUD), 668
paths
forwarding
APIC-EM Path Trace ACL Analysis tool, 778
APIC-EM Path Trace app, 777
selections, 172
PBX (private branch exchange), 34
PCP (Priority Code Point) field (802.1Q header), 500
PE (provider edge), 377
Pearson Network Simulator (the Sim), 796
peers (BGP), 303
periodic updates, 229
permit command, 471-474, 487
extended IPv6 ACLs, 675
GRE tunnel ACLs, 410
IPv6 ACLs, 672
permit gre command, 432
permit icmp any any router-advertisement command, 684
permit icmp any any router-solicitation command, 684
permit ipv6 commands, 687
permit keyword, 442, 448-449
Per-VLAN Spanning Tree Plus (PVST+), 72-73
physical data center networks, 736
physical design (MetroE), 365-366
physical server model, 734
ping command, 483, 571-574, 615
IPv6
connectivity, testing, 600-602
routes, testing, 614
leased-line WANs, 353
self-ping, 483-485
ping6 command, 615
IPv6 ACLs, 674
IPv6 connectivity, testing, 601
pings (IPv6 hosts)
failure from default router, 606-607
name resolution problems, 607-608
working only in some cases, 605-606
planes (networking devices)
control, 763-764
data, 762-763
management, 764
planning
EIGRP configuration, 246
VTP configuration, 129
Platform as a Service (PaaS), 743-744
PMTUD (Path MTU Discovery), 668
point-to-point edge ports, 63, 93
point-to-point GRE tunnels, 399
point-to-point lines, 330-331
building, 335-336
CSU/DSU, 334
with HDLC, 336
configuring HDLC, 337-340
de-encapsulating/re-encapsulating IP packets, 336
framing, 336
physical components, 332-333
with PPP
authentication, 342-343
configuring PPP, 343-344
configuring PPP CHAP, 344-346
configuring PPP PAP, 346-347
control protocols, 341
framing, 341
multilink. See MLPPP
PPP functions, 340
speeds, 333-334
troubleshooting, 353-354
Layer 1 problems, 354
Layer 2 problems, 354-356
Layer 3 problems, 357-358
mismatched subnets, 358
Point-to-Point over Ethernet. See PPPoE
point-to-point ports, 63, 93
Point-to-Point Protocol. See PPP
Point-to-Point topology (MetroE), 367-368
points of presence (PoP), 304, 365
policies
ACI, 773
filtering, 668
policing
data overages (MetroE), 374
QoS, 507
discarding excess traffic, 509
edge between networks, 509-510
features, 510
traffic rate versus configured policing rate, 508
rate, 508
pooling resources, 739
PoP (points of presence), 304, 365
Port Aggregation Protocol (PAgP), 86
PortChannels. See EtherChannels
PortFast, 65
configuring, 81
enabling/disabling, 83
global settings, displaying, 83
verifying, 82-83
ports
802.1w RSTP roles, 60
alternate, 60-61, 91-92
backup, 60, 91-92
blocking, choosing, 44
channels, 86
costs
IEEE default, 55
STP, 53, 78-79
designated, 49, 54, 60
disabled, 60
Layer 3 switch routed, 534-537
numbers, matching, 464-467
per-VLAN STP costs, 74
root (RPs), 60
nonroot switches, 101-103
switches, choosing, 52-53
RSTP
backup, 62-63
roles, 60, 91-92
states, 92-93
types, 63, 92
SPAN destination/source, 719
stacking ports, 156
states
RSTP, 92
STP versus RSTP, 62
switch root, choosing, 52-53
trusted/untrusted, 151-153
configuring, 153
DHCP snooping, 154
powers of 2 numeric reference table, 810
PPP (Point-to-Point Protocol), 340, 413
authentication, 342-343
CHAP
authentication, 342, 356
configuring, 344-345
verifying, 345-346
configuring, 343-344
control protocols, 341
dial connections to ISPs, 414
framing, 341
leased-line WANs, 340
multilink (MLPPP), 348
configuring, 349-350
Layer 2 fragmentation balance, 349
Layer 3, 348-349
load balancing, 349
verifying, 351-353
PAP
authentication, 343, 356
configuring, 346-347
PPPoE Layer 2 configuration, 417
status, 344
ppp authentication chap command, 345
ppp authentication command, 349, 359
ppp chap hostname command, 432
ppp chap password command, 432
ppp multilink command, 350, 360
ppp multilink group command, 360
ppp multilink group 1 command, 350
ppp pap sent-username command, 346, 359
PPPoE (Point-to-Point over Ethernet), 413-415
configuring, 415-416
ISP router configuration
example, 419
Layer 1, 416-417
Layer 2, 417
Layer 3, 417-418
summary, 418-419
enabling, 417
history, 414
troubleshooting, 425-426
customer router configuration, 426
dialer 2 status, 427
Layer 1, 427-428
Layer 2, 428-429
Layer 3, 429
summary, 430
verification, 420-421
dialers, 421-422
Layer 3 status, 425
session status, 424
virtual-access interfaces, 423
pppoe-client dial-pool number
command, 417, 432
pppoe enable command, 417, 432
practice exams
answering questions, 790-791
CCNA R&S, 790
checklist, 790
ICND2, 790
knowledge gaps, finding, 792-793
other, 792
scores, 796-797
taking, 789-790
preemption (HSRP active/standby
roles), 557-558
pre-exam suggestions, 786-787
prefixes
BGP, 303
IPv6, 594, 670
preparing for the exam
CLI skills, 794-796
exam-day suggestions, 787
knowledge gaps, finding, 792-793
practice exams
answering questions, 790-791
CCNA R&S, 790
checklist, 790
ICND2, 790
other, 792
scores, 796-797
taking, 789-790
pre-exam suggestions, 786-787
preparing for failure, 788
preparing for the exam

question types, 784
ready to pass assessment, 797
study tasks, 798
studying after failing to pass, 797-798
tutorial, 784-785
prioritization (congestion management), 505
Priority Code Point (PCP) field (802.1Q header), 500
priority queues, 506
priv keyword (snmp-server group command), 707
private branch exchange (PBX), 34
private cloud computing, 739-741
private WANs
MetroE, 364
 access links, 365
data usage, 373-375
E-LAN services, 368-372
E-Line services, 367-371
E-Tree services, 369-372
full mesh topology, 368
hub and spoke topology, 369
IEEE Ethernet standards, 366
Layer 3 design, 370-372
MEF, 366
partial mesh topology, 369
physical design, 365-366
Point-to-Point topology, 367-368
services, 366
MPLS, 375-377
 access links, 378
Layer 3 design, 377
MPLS VPNs, 379-382
QoS, 378-379
VPNs, 376
public cloud
 accessing, 746-749
 branch office connections, 751
types, 362
probes, 713-715
process-ids (OSPF), 198
processes
 OSPF, shutting down, 294-296
 RSTP, 62
programmability (network), 760
 APIC Enterprise Module (APIC-EM), 774-776
 Application Centric Infrastructure (ACI), 773-774
 comparisons, 776
proprietary routing protocols, 175
protocols, 224
 BGP, 174, 300, 303
 AS, 304
 ASNs, 304
 best path selection, 305-306
 configuring, 310
 external. See eBGP
 IGPs, compared, 302
 internal (iBGP), 304
 ISP default routes, learning, 320-321
 neighbors, 303, 313-314
 prefixes, 303
 reachability, 302
 route advertising, 303-304
 routing table analysis reports
 website, 303
 table entries, injecting, 314-320
 update messages, 303-310
 BPDUs (bridge protocol data units), 49
CHAP
 authentication, 342, 356
 configuring, 344-345
 verifying, 345-346
control plane, 764
DHCP
 Binding Table, 153
 DHCP Relay, 573
 public cloud services, 757
 snooping, 151-154
Dijkstra SPF algorithm, 180
DTP, 116
DV (distance vector), 175, 228
 distance/vector information learned, 228
 EIGRP as, 232-233
 route poisoning, 231-232
 split horizon, 230-231
 update messages, 229-230
EAP, 146
EAPoL, 146
eBGP, 304
 Internet edge, 306-309
 neighbors, 311-314
EGP, 173, 302
EIGRP, 175
FHRP, 544
 features, 550
 HSRP. See HSRP
 need for, 549
 options, 550-551
GLBP, 544
HDLC, 331, 336-340, 398
HSRP, 544, 551
 active/passive model, 551
 active/standby routers, choosing, 555
 active/standby rules, 557
 configuring, 554
 failover, 552
 group numbers, 555
 load balancing, 553
 no preemption, 557
 with preemption, 558
 troubleshooting, 560-563
 verifying, 555-556
 versions, 559-560
iBGP, 304
IGPs, 173, 226
 BGP, compared, 302
 classless/classful, 177
 configuring, 310
 goals, 302
 metrics, 175-176
 routing protocol algorithm, 175
 subnets, 303
IGRP, 175
IPv4. See IPv4 routing
IPv6. See IPv6 routing
link-state, 175
management plane, 765
matching, 463-464
MPBGP, 380
NDP, 593
 filtering messages through IPv6 ACLs, 679-683
 implicit filtering messages through IPv6 ACLs, 683-684
SLAAC, 597
NHRP, 412-413
 dynamic mapping, enabling, 412
 spoke-to-spoke communication, 413
NTP, 757-758
OSPF. See OSPF
OSPFv2. See OSPFv2
OSPFv3. See OSPFv3
PAgP, 86
PAP
 authentication, 343, 356
 configuring, 346-347
PPP. See PPP
PPPoE, 413, 415
 configuring, 415-419
 enabling, 417
history, 414
 ISP router configuration
 example, 419
 troubleshooting, 425-430
 verification, 420-425
RADIUS, 146-148
RIP, 175-176, 226
RIPv2, 302
 EIGRP/OSPFv2, compared, 233
 goals, 302
routable, 172
routed, 172
routing
 administrative distance, 177-178
 algorithms, 175
AS, 174
 autosummation, 266-268
 classless/classful, 177, 266
 convergence, 173
defined, 172
DV. See DV protocols
EIGP (exterior gateway protocol), 173
 functions, 172-173
IGP, 173-177
interfaces enabled with,
 verifying, 274
interior comparison, 233
IPv4, 202
link-state, 175
 path selections, 172
proprietary, 175
RIPv1, 226
RIPv2, 226
route redistribution, 177
troubleshooting, 273-274
RSTP
 alternate ports, 60-61
 backup port role, 62-63
Cisco Catalyst STP modes, 88-90
 implementing, 88
link types, 63
port roles, 60, 91-92
port states, 62, 92-93
port types, 63, 92
processes, 62
standards, 58
STP, compared, 59-60
RTP, 235
SNMP. See SNMP
STA (spanning-tree algorithm), 48
STP. See STP
TACACS+, 148
TCP
 BGP connections, displaying, 313
 packets, 675
 port numbers, matching, 464-467
transporting messages between
 BGP peers, 310
windowing, 512-513
UDP

- Jitter probes, 713
- Packets, IPv6 ACL matching, 675
- Port numbers, matching, 464-467

VRRP, 544

VTP, 120

- Automated update powers, 120
- Configuration, 129-131
- Domains, 125-127
- Features, 128
- Planning configuration, 129
- Pruning, 127-128
- Requirements, 126-127
- Servers, 124
- Standard range VLANs, 123
- Storing configuration, 134-135
- Switches synchronization to VLAN database, verifying, 131-133
- Synchronization, 125-126
- Transparent mode, 135
- Troubleshooting, 135-139
- Versions, 127
- VLAN support, adding, 123

Provider edge (PE), 377

Pruning (VTP), 127-128

Public cloud computing, 741

- Accessing with
 - Internet, 745-746
 - Private WANs, 746-749
 - VPNs, 747

Address assignment services, 756-757

Branch offices example, 749-752

- Email services traffic flow, 750-751
- Internet connections, 751
- Private WAN connections, 751

QoS (Quality of Service)

- DHCP services, 757
- DNS services, 754-756
- Intercloud exchanges, 748-749
- NTP, 757-758
- VNFs, 752-754
- PVST+ (Per-VLAN Spanning Tree Plus), 72-73

QoE (Quality of Experience), 492

QoS (Quality of Service), 378, 488

- Bandwidth, 491
- Classification, 495
 - ACLs, 497
 - With marking, 497
 - Matching, 496-497
 - NBAR, 498
 - Router queuing, 496
 - Routers, 497
- Congestion avoidance, 512
 - TCP windowing, 512-513
 - Tools, 513-514
- Congestion management, 504
 - Low Latency Queuing (LLQ), 505-507
 - Multiple queues, 504
 - Output queuing, 504
 - Prioritization, 505
 - Queuing strategy, 507
 - Round robin scheduling, 505

Defined, 488

- Delay, 491
- Jitter, 491
- Loss, 491
marking, 499
 with classification, 497
DiffServ DSCP AF values, 502-503
DiffServ DSCP CS values, 503
DiffServ DSCP EF values, 502
Ethernet 802.1Q headers, 500-501
Ethernet 802.11 headers, 501
IP headers, 499-501
MPLS Label headers, 501
trust boundaries, 501-502
MPLS, 378-379
needs based on traffic types
data applications, 492-493
video applications, 494
voice applications, 493-494
policing, 507
discarding excess traffic, 509
edge between networks, 509-510
features, 510
traffic rate versus configured policing rate, 508
shaping, 507, 510
features, 512
slowing messages, 510
time intervals, 511-512
switches/routers, 495
tools, 496
VoIP, 493-494
query messages (EIGRP), 242
questions (exam)
 answering, 790-791
 budgeting time, 785
 knowledge gaps, finding, 792-793
types, 784
queuing
 congestion management, 504
 Low Latency Queuing (LLQ), 505-507
 multiple queues, 504
 output queuing, 504
 prioritization, 505
 round robin scheduling, 505
 strategy, 507
priority queues, 506
queue starvation, 506
routers, classification for, 496
R
RA (Router Advertisement), 610, 684
RADIUS protocol, 146-148
rapid elasticity (cloud computing), 739
Rapid PVST+, 72
Rapid Spanning Tree Protocol. See RSTP
rate limiting (DHCP snooping), 154
RD (reported distance), 240-241, 257
reachability (BGP), 302
read-only (RO) communities (SNMP), 699
read-write (RW) communities (SNMP), 699
ready to pass assessment (exam), 797
Real-time Transport Protocol (RTP), 235
redistribution
 Internet edge ISP routes, learning, 309
 routes (MPLS VPNs), 380
redundancy
 FHRP
 features, 550
 HSRP. See HSRP
need for, 549
options, 550-551
LANs
problems caused without STP, 45-46
STP, 42
network needs for, 547-548
single points of failure, 547
reference bandwidth, 216-217
relationships (neighbors), 284
EIGRP for IPv6, 656-657
OSPFv3, troubleshooting, 633-635
pinging routers, confirming, 285
requirements, 284
states, 628
relay agents (DHCPv6), 596
Reliable Transport Protocol (RTP), 235
remark command, 472, 487
Remote SPAN (RSPAN), 721
reply messages (EIGRP), 242
reported distance (RD), 240-241, 257
Representational State Transfer (REST), 769
requirements
cloud computing services, 739
EIGRP for IPv6 neighbors, 656
neighbors, 284
EIGRP, 286
OSPF, 289
OSPFv3, 633-634
SNMPv3 configuration, 704
VTP, 126-127
resource pooling (cloud computing), 739
responders (IP SLAs), 713
REST (Representation State Transfer), 769
RESTful APIs, 769
reverse engineering from ACL to address range, 454-456
reversed source/destination IP address, troubleshooting, 480-481
RFC 1065, 694
RFC 4301 Security Architecture for the Internet Protocol, 395
RIDs (router IDs), 181
defining, 196
EIGRP, configuring, 252
OSPF, 181
configuring, 203-204
duplicate, troubleshooting, 291-293
OSPFv3, 624
RIP (Routing Information Protocol), 175-176, 226
RIPv2 (RIP Version 2), 226
EIGRP/OSPFv2, compared, 233
goals, 302
RO (read-only) communities (SNMP), 699
ROAS (router-on-a-stick), 520, 524
configuration, 524
example, 524
native VLANs, 525-526
subinterface numbers, 525
subinterfaces, creating, 524-525
troubleshooting, 528-529
verifying, 526-527
connected routes, 526
show vlans command, 527
subinterface state, 527
roles
ports
alternate, 60-61
backup, 62-63
root. See RPs
 RSTP, 60, 91-92
STP, 57
root bridge IDs, 50
root costs (switches), 48
root ports. See RPs
root switches
 electing, 50-52
 election influence, configuring, 80-81
 ruling out switches, 100-101
 STP, verification, 77
 troubleshooting, 99-101
round robin scheduling (queuing), 505
round-trip delay, 491
Round Trip Time (RTT), 715
routable protocols, 172
routed ports, 534-537
routed protocols, 172
Router Advertisement (RA) messages, 610, 684
router bgp command, 311
router eigrp command, 246, 270, 647
router-id command, 222, 614
 OSPFv3, 624, 643
 RIDs, defining, 196
router-on-a-stick. See ROAS
router ospf command, 196, 222
router ospf 1 command, 198
Router Solicitation (RS), 610
routers. See also routes; routing
 ABR (Area Border Router), 190
 interface OSPF areas, verifying, 210-211
 OSPFv2 multiarea configuration, 209-210
 advertisement (RA) messages, 610, 684
 backbone, 190
 best routes, finding, 180
 classification, 497
 ACLs, 497
 NBAR, 498
Cloud Services Routers (CSRs), 747
configuring different VIPs, troubleshooting, 563
data plane processing, 763
designated (DRs), 185
 backup (BDRs), 185
 discovering, 211-212
 Ethernet links, 185-186
DROthers, 186
flooding, 179
GRE tunnels between, 399
HSRP
 active/passive model, 551
 active/standby routers, choosing, 555
 active/standby rules, 557
 configuring, 554
 failover, 552
 group numbers, 555
 load balancing, 553
 no preemption, 557
 with preemption, 558
 troubleshooting, 560-563
 verifying, 555-556
 versions, 559-560
IDs. See RIDs
 internal, 190, 623-624
IPv6
 addressing configuration, 598-599
 connectivity, verifying, 601-603
 issues, 604
 routing, enabling, 598
static route configuration, 599
troubleshooting, 611-612
ISP, 419
LSAs, 636
multiple serial links between, 347
OSPF interface costs, 216-217
public cloud networks, 754
QoS, 495
queuing
classification for, 496
congestion management, 504-507
strategy, 507
redundant, 549. See also FHRP
ROAS, 23, 524
configuration, 524-526
native VLANs, 525-526
subinterfaces, creating, 524-525
troubleshooting, 528-529
verifying, 526-527
router WAN interface status, 585
routing IP packets over serial links, 398
solicitation (RS) messages, 610, 684
troubleshooting
DHCP issues, 573-574
LAN issues, 575-576
VLAN routing, 21-23
routes. See also routers; routing
BGP
advertising, 303-304
best path selection, 305-306
classful networks, injecting, 315-318
default, 627-628
discard, 319
EIGRP
choosing, 234
load balancing, 263-264
tuning with bandwidth, 259
variance, 263-264
EIGRP for IPv6, 659-660
feasible successor, 241-242
convergence, 260-261
identifying, 258-260
host, 357
interarea, 640
IPV6
EIGRP for IPv6 metrics, 650-651
OSPFv3 metrics, 626, 638-640
static, configuring, 599
troubleshooting, 640-641
ISP
default, learning, 320-321
Internet edge, learning, 309
OSPF
default routes, 213-215
interarea, verifying, 212
poisoning, 231-232
redistribution, 177, 380
static discard, 319-320
successor, 257-258
routing. See also routers; routes
EIGRP for IPv6, enabling/disabling, 650
LANs, 523
protocols. See routing protocols
troubleshooting
default router IP address setting, 572
DHCP issues, 573-574
DNS problems, 571-572
incorrect addressing plans, 581-585
IP forwarding issues, 577-580
LAN issues, 575-576
mismatched IPv4 settings, 568-569
mismatched masks, 569-571
router WAN interface status, 585
VLAN. See VLAN routing

Routing Information Protocol (RIP), 175

Routing Information Protocol (RIP)
administrative distance, 177-178
algorithms, 175
AS, 174
autosummarization, 266
classful network boundaries, 266-267
discontiguous classful networks, 267-268
classless/classful, 177, 266
convergence, 173
defined, 172
DV, 175, 228
distance/vector information learned, 228
EIGRP as, 232-233
route poisoning, 231-232
split horizon, 230-231
update messages, 229-230

EGP (exterior gateway protocol), 173
functions, 172-173
IGP, 173
algorithms, 175
classless/classful, 177
metrics, 175-176
interfaces enabled with, verifying, 274
interior comparison, 233
IPv4, 202
link-state, 175
path selections, 172
proprietary, 175
RIPv1, 226
RIPv2, 226
route redistribution, 177
troubleshooting
configuration errors, 274
internetwork, analyzing, 273
neighbor relationships, 274
routing tables, 273

RPs (root ports), 60
nonroot switches, 101-103
problems, troubleshooting, 103
tiebreakers, 102-103
switches, choosing, 52-53

RS (Router Solicitation) messages, 610, 684

RSPAN (Remote SPAN), 721

RSTP (Rapid Spanning Tree Protocol), 58-59
alternate ports, 60-61
backup port role, 62-63
Cisco Catalyst switch RSTP modes, 88-90
implementing, 88
link types, 63
ports
oles, 60, 91-92
states, 62, 92-93
types, 63, 92
processes, 62
standards, 58
STP, compared, 59-60

RTP (Real-time Transport Protocol), 235

RTP (Reliable Transport Protocol), 235

RTT (Round Trip Time), 715
rules
AAA login authentication, 150
HSRP active/standby, 557
implicit IPv6 ACL ICMPv6 message filtering, 683-684
ruling out switches, 100-101
RW (read-write) communities (SNMP), 699

security
AAA servers
configuration, 148-150
login authentication rules, 150
login process, 147
TACACS+/RADIUS protocols, 148
access, 145
attacks
DHCP-based, 152
types, 150
authentication
802.1x, 145
AAA servers, 147-150
Internet VPNs, 393
SNMPv3, 699, 707-708
DHCP snooping
configuration settings, 153
DHCP-based attacks, 152
DHCP Binding Table, 153
features, 151
ports as trusted, configuring, 153
rate limiting, 154
rules summary, 153
trusted/untrusted ports, 151-154
encryption, 699, 707-708
IEEE 802.1x, 144-146
AAA servers, configuring, 145
authentication process, 145
EAP, 146
username/password combinations, verifying, 145
Internet VPNs, 393
IPsec encryption, 395-396
SNMP, 698-699
SNMPv3, 705-707
STP, 65-66

SaaS (Software as a Service), 743
SBIs (Southbound Interfaces), 767-768
scoring exams, 796-797
sdm prefer command, 532
sdm prefer lanbase-routing command, 543
SDN (Software Defined Networking), 760
APIC Enterprise Module (APIC-EM), 774-776
Application Centric Infrastructure (ACI), 773-774
architecture, 770
comparisons, 776
collectors
centralized control, 766-767
Northbound Interfaces (NBIs), 768-770
OpenDaylight SDN controller, 771
Southbound Interfaces (SBIs), 767-768
Open SDN, 771
Open SDN Controller (OSC), 772
OpenDaylight (ODL), 771-772
OpenFlow, 771
Secure Shell (SSH), 765
Secure Sockets Layer (SSL), 396-397

IEEE 802.1x, 144-146
AAA servers, configuring, 145
authentication process, 145
EAP, 146
username/password combinations, verifying, 145
Internet VPNs, 393
IPsec encryption, 395-396
SNMP, 698-699
SNMPv3, 705-707
STP, 65-66
self-ping, 483-485
sender’s bridge IDs, 50
sender’s root cost, 50
sequence numbers, 473-475
serial cables, 332
serial links. See leased-line WANs
servers
AAA
 authentication, 147-150
 configuring for 802.1x, 145
 defining, 149
 enabling, 149
 username/passwords, verifying, 145
Cisco hardware, 732-733
defined, 732
physical server model, 734
virtualization, 734-735
 hosts, 734
 hypervisors, 734
 multithreading, 734
 networking, 736
 virtual data centers, 735-738
 VMs, 734
VTP, 124
service-level agreements (SLAs), 712
service providers (SPs), 362
services
cloud computing
 broad network access, 739
 cloud services catalogs, 740
 Infrastructure as a Service (IaaS), 742
 measured, 739
 on-demand self-service, 739
 Platform as a Service (PaaS), 743-744
private, 739-741
public, 741
rapid elasticity, 739
requirements, 739
resource pooling, 739
Software as a Service (SaaS), 743
DHCP, 757
DNS, 754-756
Internet as WAN, 389
MetroE, 366
 E-LAN, 368-372
 E-Line, 367-371
 E-Tree, 369-372
public cloud
 accessing with Internet, 745-746
 accessing with private WANs, 746-749
 accessing with VPNs, 747
 address assignment, 756-757
 branch offices example, 749-752
 intercloud exchanges, 748-749
session keys, 395
session status (PPPoE), 424
sessions (SPAN), 720-721, 725
Set messages
 RO/RW communities, 699
 SNMPv2 support, 699-701
 writing variables on agents, 696
shaping (QoS), 507, 510
 features, 512
 rate, 510
 slowing messages, 510
 time intervals, 511-512
shaping data overages (MetroE), 375
shared edge ports, 93
shared keys, 395
shared ports, 63, 93
shared session keys, 395
shorter VLAN configuration example, 28-29
Shortest Path First algorithm. See SPF algorithm
show access-list command, 473
show access-lists command, 450, 457, 479, 487, 687
show arp command, 572
show commands
IPv6 ACLs, 673
routing protocol-enabled interfaces, verifying, 275
STP status, 68
show controllers command, 352
show controllers serial command, 360
show etherchannel 1 summary command, 86
show etherchannel command, 96, 543
show etherchannel summary command, 107, 540
show interfaces command, 298, 360, 543, 569
EIGRP neighbor requirements, verifying, 286
MLPPP, 352
OSPF
 interfaces, 283
 neighbors, 289
OSPFv3 interface bandwidth, 640
PPP CHAP status, 345
PPP PAP, 346
PPP status, 344
routed ports, 536
show interfaces description command, 298, 576
show interfaces dialer command, 421, 433
show interfaces status command
 Layer 3 EtherChannels, 539
 routed ports, 536
show interfaces switchport command, 31-34, 37, 41, 114-116, 135
show interfaces trunk command, 32-34, 38, 41, 116-117
show interfaces tunnel command, 405, 433
show interfaces virtual-access command, 433
show interfaces virtual-access configuration command, 423
show interfaces vlan command, 543
show ip access-list command, 457, 474-476
show ip access-lists command, 450, 479, 487
show ip bgp command, 323
show ip bgp summary command, 313, 323
show ip eigrp interfaces command, 271, 297
 EIGRP-enabled interfaces, 250-251, 275
 EIGRP neighbor requirements, verifying, 286
 multilink interfaces, 352
show ip eigrp interfaces detail command, 250, 271
show ip eigrp neighbors command, 271, 297
 neighbor status, displaying, 253
 neighbor verification checks, 285
show ip eigrp topology all-links command, 260
show ip eigrp topology command, 271
 feasible successor routes, 259
 metrics, 262
show ip eigrp topology command

successor routes, 258

topology table, 256

show ip interface brief command, 360

GRE tunnels, 404

multilink interfaces, 352

OSPF interfaces, troubleshooting, 283

show ip interface command, 286, 450, 457, 479

show ip ospf command, 223, 298

duplicate OSPF RIDs, 291

OSPF neighbors, troubleshooting, 289

show ip ospf database command, 179, 201, 223

show ip ospf interface brief command, 205, 223, 298

OSPF areas for ABR interfaces, 210

OSPF-enabled interfaces, identifying, 275

OSPF neighbors, troubleshooting, 289

OSPF status on interfaces, 281

OSPFv2 interface configuration, 221

show ip ospf interface command, 223, 298

DRs/BDRs details, displaying, 211

Hello/dead timer mismatches, 293

OSPF areas for ABR interfaces, 210

OSPF neighbors, troubleshooting, 289

OSPFv2 interface configuration, 220

passive interface, 206

show ip ospf neighbor command, 182, 223, 298

DRs/BDRs details, displaying, 211

neighbors, listing, 288

OSPF processes shutdown, 295

show ip ospf neighbor interface brief command, 295

show ip protocols command, 223, 271, 297

EIGRP-enabled interfaces, 251-252, 275

EIGRP neighbors, 253, 286

IPv4 routing protocols, 202

OSPF configuration errors, 282-283

OSPFv2 interface configuration, 219

show ip route command, 223, 271, 323, 577-580

administrative distance, 178

dialer interface Layer 3 orientation, 425

EIGRP-learned routes, displaying, 254

IPv4 routes added by OSPF, 201

routing tables, displaying, 543

show ip route eigrp command, 254, 271, 297

show ip route ospf command, 223, 298, 577-578

show ip route static command, 214

show ip sla enhanced-history
distribution-statistics command, 729

show ip sla history command, 717, 729

show ip sla statistics command, 729

show ip sla summary command, 729

show ipv6 access-list command, 677, 687

show ipv6 eigrp interfaces command, 654, 662

show ipv6 eigrp interfaces detail
command, 662

show ipv6 eigrp neighbors command, 663

show ipv6 eigrp topology command, 663

show ipv6 eigrp topology | section
command, 663
show tcp summary command

show ipv6 interface command, 614, 687
show ipv6 neighbors command, 614
IPv6 ACL ICMPv6 NDP message filtering, 681
IPv6 IPv4 replacement, 603
show ipv6 ospf command, 640, 643
show ipv6 ospf database command, 636, 643
show ipv6 ospf interface brief command, 630, 640, 643
show ipv6 ospf interface command, 630-631, 643
show ipv6 ospf neighbor command, 635, 643
show ipv6 protocols command, 614, 643
EIGRP for IPv6, 662
EIGRP for IPv6 interfaces, 654
OSPFv3 interfaces, 630
show ipv6 route command, 614, 643
EIGRP for IPv6, 663
IPv6 router connectivity, 603
show ipv6 route eigrp command, 663
show ipv6 route ospf command, 638, 643
show ipv6 route section command, 663
show ipv6 routers command, 614, 681
show mac address-table command, 114
show mac address-table dynamic command, 111
show monitor detail command, 724, 729
show monitor session all command, 723
show monitor session command, 724, 729
show ppp all command, 346-347, 360
show ppp multilink command, 353, 360
show pppoe session command, 424, 433
show running-config command, 135, 449, 473-475
show snmp command, 703, 729
show snmp community command, 702, 728
show snmp contact command, 728
show snmp group command, 709, 729
show snmp host command, 702, 729
show snmp location command, 728
show snmp user command, 708, 729
show spanning-tree bridge command, 81
show spanning-tree command, 96
show spanning-tree interface command, 96
show spanning-tree interface detail command, 82
show spanning-tree root command, 77, 81
show spanning-tree summary command, 83, 96
show spanning-tree vlan 10 bridge command, 77
show spanning-tree vlan 10 command, 75-77
show spanning-tree vlan 10 interface gigabitethernet0/2 state command, 92
show spanning-tree vlan command, 96
show standby brief command, 555-565
show standby command (HSRP), 565
configuration, 560
status, 556
show tcp brief command, 313
show tcp summary command, 323
show vlan brief command, 26-29, 114
show vlan command, 41, 114, 141
show vlan id command, 27, 114
show vlan status command, 135
show vlans command, 527, 543
show vtp password command, 134, 141
show vtp status command, 29, 41, 131, 134, 141
shutdown command, 40, 359
EIGRP for IPv6, 650, 662
Layer 1 leased-line WAN problems, 354
OSPF processes, 294
ROAS subinterfaces, 527
shutdown vlan command, 135, 140
shutting down OSPF processes, 294-296
signatures, 498
the Sim (Pearson Network Simulator), 796
Simple Network Management Protocol. See SNMP
single-area OSPF, 188
single-area OSPFv2 configuration, 197-198
IPv4 addresses, 197
matching with network command, 198-200
multiarea configurations, 207-208
network command, 198
organization, 196-197
passive interfaces, 204-206
RIDs, 203-204
verifying, 200-202
IPv4 routing protocols, 201-202
LSDB contents, displaying, 201
wildcard masks, 199
single-area OSPFv3 configuration, 623-624
single homed Internet edge design, 306
single points of failure, 547
site-to-site VPNs, 394-396
SLA (service level agreement), 712
SLAAC (stateless address autoconfiguration)
EUI-64, 597
IPv6 settings, 597
NDP, 597
troubleshooting, 609-610
SLBaaS (SLB as a service), 753
SNMP (Simple Network Management Protocol), 692
agents, 695-696
clear-text passwords, 698
communities, 698-699
Get messages
agent information, 696
RO/RW communities, 699
SNMPv2 configuration, 699-701
history, 695
Inform messages, 696-697, 701-702
managers, 695
MIB, 696-697
notifications, 696-697
read-only (RO) communities, 699
read-write (RW) communities, 699
security, 698-699
Set messages
RO/RW communities, 699
SNMPv2 configuration, 699-701
writing variables on agents, 696
Trap messages, 696-697, 701-702
snmp-server command, 700
spanning-tree pathcost method long command

Software Defined Networking. See SDN
solution apps, 777
sources
addresses, 406
IPs, matching, 463-464
IP SLAs, 713
ports (SPAN), 719
SPAN, limiting, 725
Southbound Interfaces (SBIs), 767-768
SPAN (Switched Port Analyzer), 718
dependencies, 722
destination ports, 719
Encapsulated RSPAN (ERSPAN), 721
local, 721-724
network analyzer needs for, 719
Remote (RSPAN), 721
sessions, 720-721
source ports, 719
sources, limiting, 725
traffic direction, 725
VLANs, monitoring, 721
spanning-tree algorithm (STA), 48
spanning-tree bpduguard disable command, 95
spanning-tree bpduguard enable command, 81, 95
spanning-tree bpduguard enable command, 75
spanning-tree commands, 95
spanning-tree mode command, 88, 95
spanning-tree mode mst command, 72
spanning-tree mode pvst command, 72
spanning-tree mode rapid-pvst command, 72, 90
spanning-tree pathcost method long command, 55

snmp-server community command, 727
snmp-server contact command, 727
snmp-server enable traps command, 727
snmp-server group command, 705
snmp-server host command, 701, 710, 727
snmp-server location command, 727
snmp-server user command, 707
SNMPv2
configuring
Get/Set messages, 699-701
Trap/Inform messages, 701-702
verifying, 702-704
security, 699
SNMPv2c (Community-based SNMP Version 2), 699
SNMPv3
configuring, 704
authentication, 707-708
encryption, 707-708
groups, 705-707
notifications, 710-711
requirements, 704
summary, 711-712
users, 707
verifying, 708-709
groups
MIB views, 705
security levels, 705
write views, 706
Inform messages, 710-711
MIB views, 705
security, 699
Trap messages, 710-711
Software as a Service (SaaS), 743
spanning-tree portfast bpduguard default command, 95
spanning-tree portfast command, 75, 81, 95
spanning-tree portfast default command, 83, 95
spanning-tree portfast disable command, 83, 95
Spanning Tree Protocol. See STP
spanning-tree vlan 10 port priority 112 command, 103
spanning-tree vlan command, 74
speed command, 576
speeds
 LAN/WAN interfaces, 490
 leased-line WANs, 333-334
SPF (Shortest Path First) algorithm, 180
 Dijkstra SPF, 180
 OSPF best routes, calculating, 186-188
spinning up VMs, 742
split horizon (DV routing protocols), 230-231
spoofing, 422
SPs (service providers), 362
SSH (Secure Shell), 765
SSL (Secure Sockets Layer), 396-397
STA (spanning-tree algorithm), 48
 stack masters, 157
stacking cables, 156
stacking modules, 156
stacking ports, 156
stacking switches
 access layer switches, 156-157
 benefits, 155
 chassis aggregation, 159-161
 FlexStack/FlexStack-Plus, 158
 operating as single logical switch, 157-158
 stack masters, 157
standard ACLs, configuring, 671-674
standard numbered IPv4 ACLs, 443
 access-list command, 454
 command syntax, 445
 configuration examples, 448-452
 list logic, 444-445
 matching any/all addresses, 448
 matching exact IP address, 445-446
 matching subset of address, 446-447
 overview, 443
 reverse engineering from ACL to address range, 454-456
 troubleshooting, 452-453
 verification, 452-453
 wildcard masks
 binary wildcard masks, 447-448
 decimal wildcard masks, 446-447
standard range VLANs, 123
standby 1 preempt command, 558
standby command, 554, 564
standby HSRP routers, 557
standby version 1 | 2 command, 564
standby version command, 559
stateful DHCP, troubleshooting, 608-609
stateful DHCPv6, 596
stateless address autoconfiguration. See SLAAC
states
 change reactions (STP topology), 55-56
 discarding, 61
interfaces
 changing with STP, 57-58
criteria, 48-49
STP (Spanning Tree Protocol) 917
forwarding/blocking, 47
learning, 58
listening, 58
neighbors
BGP, 313
OSPF, 182-183, 186, 288
OSPFv3, 632
relationships, 628
ports
RSTP, 92-93
STP versus RSTP, 62
ROAS subinterfaces, 527
STP, 57
tunnel interfaces, 407
VLAN mismatched trunking operational, 116
static discard routes, 319-320
static routes (IPv6), configuring, 599
status
BPDUs (bridge protocol data units), 49
BPDU Guard
configuring, 81
enabling/disabling, 83
global settings, displaying, 83
verifying, 82-83
Cisco Catalyst switch STP modes, 88-89
configuration, 71
modes, 72
options, 74-75
per-VLAN port costs, 74
PVST+, 72-73
system ID extensions, 73-74
convergence, 48, 105-106
EtherChannels, 64-65
configuring, 84-87
MAC tables impact, predicting, 111-112
troubleshooting, 106-109
forwarding or blocking criteria, 48-49
interface states, changing, 57-58
LAN redundancy, 42-46
LAN segment DPs, choosing, 54
looping frames, preventing, 44
MAC tables impact, predicting, 110
PortFast, 65
configuring, 81
enabling/disabling, 83
global settings, displaying, 83
verifying, 82-83

BIDs
defined, 49
root switch election, 50-52
system ID extensions, 73-74

Layer 3, 425
sessions, verifying, 424
STP verification, 75-77
ports
- blocking, choosing, 44
- costs, 53, 78-79
- states, 62
purpose, 47-49
roles, 57
root election influence, configuring, 80-81
root switch election, 50-52, 100-101
RSTP (Rapid STP), 58-59
- alternate ports, 60-61
- backup port role, 62-63
- Cisco Catalyst switch RSTP modes, 88-90
- implementing, 88
- link types, 63
- port roles, 91-92
- port states, 92-93
- port types, 63, 92
- processes, 62
- standards, 58
- STP, compared, 59-60
security, 65-66
STA (spanning-tree algorithm), 48
states, 56-57
switch reactions to changes, 56-57
switch RPs, choosing, 52-53
tiebreakers, 102-103
timers, 56-57
topology influences, 55-56
troubleshooting
- convergence, 105-106
- DPs on LAN segments, 104-105
- root switch election, 99-101
- RPs on nonroot switches, 101-103
verification, 75-77

studying after failing the exam, 797-798
studying for exam, 798
subinterfaces
- defined, 524
- ROAS
 - creating, 524-525
 - numbers, 525
 - state, verifying, 527
subnet masks
- mismatched masks, troubleshooting, 569-571
- VLSM (variable length subnet masking)
 - overlapping subnets, 583-585
 - recognizing when VLSM is used, 581
subnets
- advertising to ISPs, 318
- IGPs, 303
- IPv6, 593-594
- mismatched
 - EIGRP neighbors, 286
 - leased-line WANs, 358
 - OSPFv2 multiarea configuration, 206
 - overlapping subnets
 - with VLSM, 583-585
 - without VLSM, 581-583
subset of IP address, matching, 446-447
successors
- EIGRP
 - identifying, 257-258
 - for IPv4, 241-242
 - for IPv6, 646
feasible
- convergence, 260-261
- identifying, 258-260
super backbone (OSPF), 381
superior Hello, 50
supplicants, 145
SVIs (switched virtual interfaces), 520, 529
 configuring, 529-531
 troubleshooting, 532-534
 verifying, 531
Switched Port Analyzer. See SPAN
switches
 as 802.1x authenticators, 145
 access layer, 156-157
 adding, 137-139
 chassis aggregation, 159
 benefits, 161
 design, improving, 160
 distribution/core switches high availability, 159-160
 switch stacking, 159-161
Cisco Catalyst
 RSTP modes, 88-90
 STP modes, 88-89
core, 159-160
distribution
 design, improving, 160
 high availability with chassis aggregation, 159-160
internal processing, 765-766
Layer 2, 21
Layer 3, 21
 with routed ports, 534-537
 VLAN routing, 23-24
Layer 3 EtherChannels
 configuring, 537-539
 troubleshooting, 541
 verifying, 539-540
Layer 3 with SVIs
 configuring, 529-531
 troubleshooting, 532-534
 verifying, 531
links, 63
logical, 157-158
nonroot, 101-103
PortFast, 65
QoS, 495
root
 costs, 48
 electing, 50-52
 election influence, configuring, 80-81
 ruling out switches, 100-101
 STP verification, 77
 troubleshooting, 99-101
RPs (root ports), choosing, 52-53
SPAN, 718
 dependencies, 722
 destination ports, 719
 Encapsulated RSPAN (ERSPAN), 721
 limiting sources, 725
 local, 721-724
 network analyzer needs, 719
 Remote (RSPAN), 721
 sessions, 720-721
 source ports, 719
 traffic direction, 725
 VLANs, monitoring, 721
stacking
 access layer switches, 156-157
 benefits, 155
 chassis aggregation, 159-161
 FlexStack/FlexStack-Plus, 158
operating as single logical switch, 157-158
stack masters, 157
synchronization to VLAN database, verifying, 131-133
ToR (Top of Rack), 736
traditional access switching, 155
virtual (vSwitches), 735
voice switches, 34
as VTP servers, 124
switchport access vlan command, 25, 28-29, 37-40, 113, 135
switchport command
Layer 3 switches, 543
routed ports, 535
switchport mode access command, 25, 28, 37-38, 139
switchport mode command, 30, 40
switchport mode dynamic auto command, 116
switchport mode dynamic desirable command, 32
switchport mode trunk command, 30, 116, 524
switchport nonegotiate command, 34, 40, 116, 139
switchport trunk allowed vlan command, 41, 117
switchport trunk encapsulation command, 30, 40
switchport trunk native vlan command, 40, 118
switchport voice vlan command, 36-38, 41, 135
synchronizing
switches, 131-133
VTP, 125-126, 136-137
system ID extensions (BIDs), 73-74

T

T1. See leased-line WANs
T3, 334
TACACS+, 148
tagging (VLAN), 18-20
tail drops, 513
TCAM (ternary content-addressable memory), 766
T-carrier systems, 333
TCP (Transmission Control Protocol)
BGP connections, displaying, 313
packets, 675
port numbers, matching, 464-467
transporting messages between BGP peers, 310
windowing, 512-513
tcp keyword, 464
TCP/IP networks, 694
TDM (time-division multiplexing), 334
telcos (telephone companies), 331, 390
Telnet, 765
ternary content-addressable memory (TCAM), 766
testing IPv6
ACLs, 677
connectivity
hosts, 600-601
routers, 601-603
three-area OSPF, 189
TID fields (QoS marking), 501
tiebreakers (STP), 102-103
time burners, 785
time-division multiplexing (TDM), 334
time (exam)
budget versus number of questions, 785
checking, 786
time intervals (QoS shaping), 511-512

EIGRP for IPv6, 652
EIGRP neighbors, 233
Hello messages, 184
Hello/dead mismatches, troubleshooting, 293-294
STP, 56-57

Top of Rack (ToR) switches, 736
topologies
EIGRP
displaying, 255-257
feasible successor routes, 258-261
metrics, 262
successor routes, identifying, 257-258
EIGRP for IPv6, 657-658
MetroE, 366
full mesh, 368
hub and spoke, 369
partial mesh, 369
Point-to-Point, 367-368

OSPF area design, 188
STP, influences, 55-56
ToR (Top of Rack) switches, 736
to (Type of Service) field (IPv4), 499
trace route command, 574
GRE tunnels, 406
IPv6
 connectivity, testing, 600-602
 network router problems, troubleshooting, 611
 routes, testing, 614
 traceroute6 command, 615
tracert command, 615
traditional access switching, 155
traffic
bandwidth, managing, 491
characteristics, 491
congestion avoidance, 512
TCP windowing, 512-513
tools, 513-514
congestion management, 504
 Low Latency Queuing (LLQ), 505-507
 multiple queues, 504
 output queuing, 504
 prioritization, 505
 round robin scheduling, 505
 strategy, 507
delay, managing, 491
discarding excess traffic, 509
end-user, measuring, 713
IPv6 ACLs, 670
jitter, 491
loss, 491
policing, 507
edge between networks, 509-510
traffic features, 510
traffic rate versus configured policing rate, 508
public cloud branch office email services, 750-751
shaping, 507, 510
features, 512
slowing messages, 510
time intervals, 511-512
SPAN sessions, 725
types
data, 492-493
video, 494
voice, 378, 493-494
Traffic Class field (IPv6), 500
Transmission Control Protocol. See TCP
transparent mode (VTP), 135
Trap messages, 696-697
SNMPv2, 701-702
SNMPv3, 710-711
troubleshooting
CHAP authentication failures, 356
DPS on LAN segments, 105
EIGRP for IPv6
interfaces, 655
neighbors, 656-657
routes, 660
EIGRP interfaces, 275
configuration problems, 278-281
working details, 276-278
EIGRP neighbors
authentication failures, 286
example, 286-288
incorrect ASNs, 288
mismatched subnets, 286
verification checks, 285-286
EtherChannels, 106
cchannel-group command
incorrect options, 106-108
configuration checks before adding interfaces, 108-109
GRE tunnels, 406
ACLs, 409-410
interface state, 407
Layer 3 issues, 409
source/destination addresses, 406
tunnel destination, 408
HSRP, 560
ACL blocks HSRP packets, 563
configuration, 560-561
group number mismatches, 563
misconfiguration symptoms, 561
routers configuring different VIPs, 563
version mismatches, 562
with IP SLA
counters, 715-716
history data, 717
IPv4 ACLs, 477
ACL behavior in network, 477-479
ACL interactions with router-generated packets, 483-485
common syntax mistakes, 481
inbound ACL filters routing protocol packets, 481-482
reversed source/destination IP address, 480-481
troubleshooting commands, 479-480
IPv4 routing
default router IP address setting, 572
DHCP issues, 573-574
DNS problems, 571-572
incorrect addressing plans, 581-585
IP forwarding issues, 577-580
LAN issues, 575-576
mismatched IPv4 settings, 568-569
mismatched masks, 569-571
packet filtering with access lists, 586
router WAN interface status, 585
IPv6 routing, 604
ACLs, 612
filtering issues, 604
host issues, 604
host pings fail from default router, 606-607
host pings only working in some cases, 605-606
missing IPv6 settings in host, 608-610
name resolution problems, 607-608
router issues, 604
routes, 640-641
routings, 611-612
Layer 3 EtherChannels, 541
leased-line WANs, 353-354
Layer 1 problems, 354
Layer 2 problems, 354-356
Layer 3 problems, 357-358
mismatched subnets, 358
neighbors, 285
OSPF
MTU mismatched settings, 296
processes, shutting down, 294-296
OSPF interfaces, 281-283
area design, 281
configuration errors, 282-283
details, checking, 283
unsolicited log messages, 283
OSPF neighbors, 288-294
area mismatches, finding, 290-291
duplicate RIDs, 291-293
Hello timer/dead timer mismatches, 293-294
LAN problems, 289
neighbor states, 288
OSPFv3
interfaces, 631-632
neighbors, 633-635
PAP authentication failures, 356
PPPoE, 425-426
customer router configuration, 426
dialer 2 status, 427
Layer 1, 427-428
Layer 2, 428-429
Layer 3, 429
summary, 430
ROAS, 528-529
routing protocols
configuration errors, 274
internetwork, analyzing, 273
neighbor relationships, 274
routing tables, 273
routings with SVIs, 532-534
RP problems, 103
SPAN sessions, 725
standard numbered ACLs, 452-453
troubleshooting

STP
- convergence, 105-106
- DPs on LAN segments, 104-105
- root switch election, 99-101
- RPs on nonroot switches, 101-103

switch data plane forwarding
- EtherChannel impact on MAC tables, 111-112
- STP impact on MAC tables, 110
- VLAN of incoming frames, 112-113

VLANs
- access interfaces, 113-114
- frame switching problems, 113
- undefined/disabled VLANs, 114-115

VLAN trunking
- frame switching problems, 113
- mismatched native VLANs, 118
- mismatched operational states, 116
- mismatched supported VLAN lists, 117-118

VTP, 135
- adding switches, 137-139
- common configuration rejections, 137
- synchronization, 136-137

trunking (VLANs)
- 802.1Q, 20-21
- configuration, 30-34
- disabling, 139
- ISL (Inter-Switch Link), 20-21
- overview, 18
- protocol. See VTP
- troubleshooting, 113-118
- VLAN tagging, 18-20

trust boundaries (QoS marking), 501-502
trusted ports, 151
- configuring, 153
- DHCP snooping, 154

tunnel destination command, 406-408, 432

tunnel mode gre ip command, 404, 432

tunnel mode gre multipoint command, 404

tunnel source command, 406-407, 432

tragins
- destinations, 408
- GRE, 398
- between routers, 399
- configuring, 402-404
- details, displaying, 404
- functionality, testing, 406
- large scale environments, 411
- multipoint with DMVPN, 411
- point-to-point, 399
- routes, 405
- troubleshooting, 406-410
- tunnel interfaces, 398
- unsecured networks, 400-401
- verifying, 404-406

interfaces
- ACLs, 409-410
- creating, 400
- destinations, 408
- Layer 3 issues, 409
- replacing serial links, 398
- state, 407

VPN, 394-395

tutorial (exam), 784-785
Twitter (Wendell Odom), 799
Type of Service (ToS) field (IPv4), 499

UCS (Unified Computing System), 733
UDP (User Datagram Protocol)
 Jitter probes, 713
 packets, IPv6 ACL matching, 675
 port numbers, matching, 464-467
undebug all command, 298
undefined VLANs, troubleshooting, 114-115
unequal-cost load balancing, 263
UNI (user network interface), 365
unicast IPv6 addresses, 593-595
Unified Computing System (UCS), 733
unique local unicast addresses, 593
unsecured networks (GRE tunnels), 400-401
unsolicited log messages, 283
untrusted ports, 151-154
upd keyword, 464
updates
 BGP, 303, 310
 DV protocols, 229-230
 EIGRP, 235-236
 full, 229
 partial, 232
 periodic, 229
User Datagram Protocol. See UDP
user network interface (UNI), 365
username command, 345, 359
U.S. National Institute of Standards and Technology (NIST), 739
verifying

IPv6 connectivity, 600
 hosts, 600-601
 routers, 601-603
Layer 3 EtherChannels, 539-540
MLPPP, 351-353
OSPFv2 configurations
 interfaces, 219-221
 multiarea, 210-212
 single-area, 200-202
OSPFv3
 interfaces, 630-631, 638-640
 neighbors, 632-633
PortFast, 82-83
PPP
 CHAP, 345-346
 PAP, 347
PPPoE, 420-421
 dialers, 421-422
 Layer 3 status, 425
 session status, 424
 virtual-access interfaces, 423
ROAS, 526-527
routing protocol-enabled interfaces, 274
routing with SVIs, 531
SNMPv2 configuration, 702-704
SNMPv3 configuration, 708-709
standard numbered ACLs, 452-453
STP, 75-77
switches synchronization to VLAN database, 131-133
username/passwords on AAA servers, 145
versions
HSRP, 559-560
OSPF, 619
VTP, 127

video traffic
 QoS requirements, 494
 shaping time intervals, 512
views (MIB), 705
virtual-access interfaces, 423
virtual LANs. See VLANs
virtual machines. See VMs
virtual network functions (VNFs), 752-754
Virtual Private LAN Service (VPLS), 367
Virtual Private Networks. See VPNs
Virtual Private Wire Service (VPWS), 367
Virtual Router Redundancy Protocol (VRRP), 544
virtualization
ASA firewall (ASAv), 754
CPU (vCPU), 734
data centers
 networking, 735
 physical networks, 736
 vendors, 735
 workflow, 737-738
firewalls, 754
machines. See VMs
network functions virtualization (NFV), 754
networks, 735-736, 754
NICs (vNICS), 735
routers (public cloud networks), 754
servers, 734-735
 hosts, 734
 hypervisors, 734
 multitreading, 734
 networking, 736
virtual data center vendors, 735
VMs, 734
switches (vSwitches), 735
VLANs (virtual LANs)
configuration
 data and voice VLANs, 36-38
data base, VTP synchronization, 125-126
full VLAN configuration
 example, 25-28
overview, 24-25
shorter VLAN configuration
 example, 28-29
trunking, 30-34
database, switches synchronization, 131-133
default, 25
enabling/disabling, 115
IDs, 18
incoming frames, choosing, 112-113
interfaces. See SVIs
IP telephony, 34
data and voice VLAN concepts, 34-36
data and voice VLAN
 configuration and verification, 36-38
summary, 38-39
LAN support, adding, 122
mismatched native on trunks, 118
mismatched supported trunk lists, 117-118
native, 20, 525-526
overview, 16-18
routing. See VLAN routing
SPAN monitoring, 721
standard range, 123
tagging, 18-20
troubleshooting
 access interfaces, 113-114
 frame switching process
 problems, 113
 undefined/disabled VLANs, 114-115
trunking
 802.1Q, 20-21
 configuration, 30-34
disabling, 139
ISL (Inter-Switch Link), 20-21
overview, 18
protocol. See VTP
troubleshooting, 113-118
VLAN tagging, 18-20

VLAN Trunking Protocol. See VTP

VLAN Trunking Protocol
VLSM (variable length subnet masking)
- overlapping subnets, 583-585
- recognizing when VLSM is used, 581

VMs (virtual machines), 734
- ACI, 773
- IaaS, 742
- networking, 736
- PaaS, 743-744
- SaaS, 743
- spinning up, 742
- virtual NICs (vNICs), 735

VNFs (virtual network functions), 752-754

vNICs (virtual NICs), 735
voice switches, 34
voice traffic, 493
- QoS requirements, 494
- shaping time intervals, 512
- VoIP, 378

VoIP (Voice over IP), 378, 493-494

VPLS (Virtual Private LAN Service), 367

VPNs (Virtual Private Networks)
- client, 396-397
- dynamic multipoint (DMVPN), 411
 - multipoint GRE tunnels, 411
 - NHRP (Next Hop Resolution Protocol), 412-413
- Internet, 389
 - benefits, 394
 - security, 393
- MPLS VPNs, 376
 - EIGRP challenges, 382
 - Layer 3, 379-382
 - OSPF area design, 381-382
- public cloud, accessing, 747
- site-to-site, 394-396
- tunnels, 394-395

VPWS (Virtual Private Wire Service), 367

VRRP (Virtual Router Redundancy Protocol), 544

vSwitches (virtual switches), 735

VTP (VLAN Trunking Protocol), 29, 120
- automated update powers, 120
- configuration
 - common rejections, troubleshooting, 137
 - default VTP settings, 129
 - example, 130-131
 - new VTP configuration settings, 130
 - planning, 129
 - steps, 129
 - storing, 134-135
- domains, 125-127
- features, 128
- pruning, 127-128
- requirements, 126-127
- servers, 124
- standard range VLANs, 123
- switches synchronization to VLAN database, verifying, 131-133
- synchronization, 125
- transparent mode, 135
- troubleshooting, 135
 - adding switches, 137-139
 - common configuration rejections, 137
 - synchronization, 136-137
- versions, 127
- VLAN support, adding, 123
- vtp commands, 134
vtp domain command, 134, 140
vtp mode command, 40, 134, 140
vtp mode off command, 29, 135
vtp mode transparent command, 29, 135
vtp password command, 134, 140
vtp pruning command, 134, 140
vtp version command, 140

WANs
Ethernet, 747
Frame Relay, 362
interface speeds, 490
Internet access, 389
Internet as WAN service, 389
leased-line, 330-331
 building, 335-336
 CSU/DSUs, 334
 mismatched subnets, 358
 physical components, 332-333
 speeds, 333-334
 troubleshooting, 353-358
leased-line with HDLC, 336
 configuring HDLC, 337-340
 de-encapsulating/re-encapsulating IP packets, 336
 framing, 336
leased-line with PPP
 authentication, 342-343
 configuring PPP, 343-344
 configuring PPP CHAP, 344-346
 configuring PPP PAP, 346-347
 control protocols, 341
 framing, 341
multilink. See MLPPP
PPP functions, 340
MetroE, 364
 access links, 365
 data usage, 373-375
 E-LAN service, 368-372
 E-Line service, 367-371
 E-Tree service, 369-372
 full mesh topology, 368
 hub and spoke topology, 369
 IEEE Ethernet standards, 366
 Layer 3 design, 370-372
 MEF, 366
 partial mesh topology, 369
 physical design, 365-366
 Point-to-Point topology, 367-368
 services, 366
MPLS, 375-377
 access links, 378
 Layer 3 design, 377
 MPLS VPNs, 379-382
 QoS, 378-379
 VPNs, 376
private
 public cloud access, 746-749
 public cloud branch office connections, 751
types, 362
public cloud connections
 Internet as, 745-746
 private WANs, 746-749
service providers (SPs), 362
wireless, 392-393
WAN interface cards (WICs), 332
WC masks. See wildcard masks
websites
- APIC-EM Analysis tool released code, 777
- APIC-EM labs, 777
- ARIN, 174
- BGP routing table analysis reports, 303
- CCNA (ICND2) Config Labs, 796
- CCNA Routing and Switching ICND2 Official Cert Guide, 777
Cisco
- ACI, 774
- APIC-EM pages, 777
- DevNet, 777
- Feature Navigator, 531
- Prime management products, 695
Eclipse IDE, 744
ETSI, 754
Google App Engine PaaS, 744
IANA, 174
- ICMPv6 parameters, 669
- IPv6 multicast address space registry, 682
- ICMPv6 packets, 669
Jenkins continuous integration and automation tool, 744
MEF, 366
- OpenDaylight SDN controller, 771
- OpenFlow, 768
- Pearson Network Simulator (the Sim), 796
- Wendell Odom’s SDN Skills, 777
- Wireshark network analyzer, 718
weighting, 505
- Wendell Odom’s SDN Skills blog, 777
- WICs (WAN interface cards), 332
wildcard_mask parameter (network command), 198
wildcard masks
- binary, 447
- decimal, 446-447
- EIGRP configuration, 248-249
- finding, 448
- OSPF single-area configuration, 199
wireless Internet, 393
wireless WANs, 392-393
Wireshark network analyzer, 718
workflow (virtualized data center), 737-738
working interfaces, 49
write views (SNMPv3 groups), 706