

Official Cert Guide

Learn, prepare, and practice for exam success

ciscopress.com

DAVID HUCABY, CCIE® No. 4594

CCNA Wireless 640-722 Official Cert Guide

David Hucaby

Cisco Press

800 East 96th Street Indianapolis, IN 46240

CCNA Wireless 640-722 Official Cert Guide

David Hucaby

Copyright© 2014 Cisco Systems, Inc.

Published by: Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing February 2014 Library of Congress Control Number: 2014931706 ISBN-13: 978-1-58720-562-0

ISBN-10: 1-58720-562-9

Warning and Disclaimer

This book is designed to provide information about preparing for the CCNA Wireless 640-722 exam. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The author, Cisco Press, and Cisco Systems, Inc., shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through e-mail at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger	Business Operation Manager, Cisco Press: Jan Cornelssen
Associate Publisher: Dave Dusthimer	Manager Global Certification: Sean Donovan
Executive Editor: Mary Beth Ray	Senior Development Editor: Christopher Cleveland
Managing Editor: Sandra Schroeder	Copy Editor: Keith Cline
Project Editor: Seth Kerney	Technical Editor: Jerome Henry
Editorial Assistant: Vanessa Evans	Proofreader: Jess DeGabriele
Cover Designer: Mark Shirar	Indexer: Tim Wright
Composition: Jake McFarland	

About the Author

David Hucaby, CCIE No. 4594, is a network architect for the University of Kentucky, where he works with academic and healthcare networks based on the Cisco Unified Wireless Network products. David has bachelor's and master's degrees in electrical engineering from the University of Kentucky. He is the author of several Cisco Press titles, including CCNP SWITCH Exam Certification Guide; Cisco LAN Switching Video Mentor; CCNP Security FIREWALL Exam Certification Guide; Cisco ASA, PIX, and FWSM Firewall Handbook, Second Edition; and Cisco Firewall Video Mentor.

David lives in Kentucky with his wife, Marci, and two daughters.

About the Technical Reviewer

Jerome Henry, CCIE Wireless No. 24750, is technical marketing engineer in the Wireless Enterprise Networking Group at Cisco systems. Jerome has close to 15 years experience teaching technical Cisco courses in more than 15 different countries and 4 different languages, to audiences ranging from bachelor degree students to networking professionals and Cisco internal system engineers.

Focusing on his wireless experience, Jerome joined Cisco in 2012. Before that time, he was consulting and teaching Heterogeneous Networks and Wireless Integration with the European Airespace team, which was later acquired by Cisco to become their main wireless solution. He then spent several years with a Cisco Learning partner, developing wireless courses, and working on training material for new wireless technologies. In addition to his CCIE Wireless certification, Jerome is a certified wireless networking expert (CWNE #45) and has developed several Cisco courses focusing on wireless topics (IUWNE, IUWMS, IUWVN, CUWSS, IAUWS, LBS, CWMN lab guide, and so on) and authored several Wireless books (IUWMS, CUWSS Quick Reference, and so on). Jerome is also an IEEE 802.11 group member and participant of Wi-Fi Alliance working groups. With more than 10000 hours in the classroom, Jerome was awarded the IT Training Award best Instructor silver medal in 2009. He is based in the Research Triangle Park in North Carolina.

Dedications

As always, this book is dedicated to the most important people in my life: my wife, Marci, and my two daughters, Lauren and Kara. Their love, encouragement, and support carry me along. I'm so grateful to God, who gives endurance and encouragement (Romans 15:5), and who has allowed me to enjoy networking and work on projects like this.

I would also like to dedicate this book to the memory of my father-in-law, Ermel Wilson. He helped me appreciate the simpler things in life—the outdoors, hikes in the woods, and snow.

Acknowledgments

It has been my great pleasure to work on another Cisco Press project. I enjoy the networking field very much, and technical writing even more. And more than that, I'm thankful for the joy and inner peace that Jesus Christ gives, making everything more abundant and worthwhile. As much as I enjoy learning about wireless networking (there's no end to it!), I realize that God created the original wireless connection that has no distance limits, unlimited capacity for clients (there's always room for one more), is trustworthy, always available everywhere, and connects directly to the Source: prayer!

I've now been writing Cisco Press titles continuously for what will soon be 15 years. I have physically worn out several laptop keyboards and probably several Cisco Press editors in the process. It has been a great pleasure to work with Chris Cleveland and Mary Beth Ray. I should have a certification in schedule slipping by now. Keith Cline and Seth Kerney have been great to work with and have made the whole review process smooth and efficient. One important part of the book I never get to see is the index. I'm grateful that Tim Wright worked on this one.

I am very grateful for the insight, knowledge, and helpful comments that Jerome Henry has provided. He is a great resource for wireless networking expertise and training. Jerome's input has made this a more well-rounded book and me a more educated author.

Finally, I have enjoyed the good discussions with my dad, Reid Hucaby, a fellow EE and a seasoned RF engineer, that this book has prompted about all things wireless.

Contents at a Glance

Introduction xix

Chapter 1	RF Signals and Modulation 3
Chapter 2	RF Standards 37
Chapter 3	RF Signals in the Real World 67
Chapter 4	Understanding Antennas 85
Chapter 5	Wireless LAN Topologies 105
Chapter 6	Understanding 802.11 Frame Types 123
Chapter 7	Planning Coverage with Wireless APs 147
Chapter 8	Using Autonomous APs 163
Chapter 9	Understanding the CUWN Architecture 181
Chapter 10	Initial Controller Configuration 201
Chapter 11	Understanding Controller Discovery 221
Chapter 12	Understanding Roaming 239
Chapter 13	Understanding RRM 259
Chapter 14	Wireless Security Fundamentals 281
Chapter 15	Configuring a WLAN 307
Chapter 16	Implementing a Wireless Guest Network 323
Chapter 17	Understanding Wireless Clients 335
Chapter 18	Managing Wireless Networks with WCS 359
Chapter 19	Dealing with Wireless Interference 383
Chapter 20	Troubleshooting WLAN Connectivity 401
Chapter 21	Maintaining Controllers 427
Chapter 22	Final Review 447
Appendix A	Answers to "Do I Know This Already?" Quizzes 457
Appendix B	Modulation and Coding Schemes 473
	Key Terms Glossary 481
	Index 494

Contents

Introduction xix

Chapter 1	RF Signals and Modulation 3
	"Do I Know This Already?" Quiz 3
	Foundation Topics 7
	Comparing Wired and Wireless Networks 7
	Understanding Basic Wireless Theory 8
	Understanding Frequency 10
	Understanding Phase 14
	Measuring Wavelength 14
	Understanding RF Power and dB 15
	Important dB Facts to Remember 17
	Comparing Power Against a Reference: dBm 19
	Measuring Power Changes Along the Signal Path 20
	Understanding Power Levels at the Receiver 23
	Carrying Data Over an RF Signal 24
	FHSS 26
	DSSS 27
	1-Mbps Data Rate 28
	2-Mbps Data Rate 29
	5.5-Mbps Data Rate 30
	11-Mbps Data Rate 30
	OFDM 31
	Modulation Summary 32
	Exam Preparation Tasks 34
	Review All Key Topics 34
	Key Terms 34
Chapter 2	RF Standards 37
	"Do I Know This Already?" Quiz 37
	Foundation Topics 41
	Regulatory Bodies 41
	ITU-R 41
	FCC 42
	ETSI 44
	Other Regulatory Bodies 45
	IEEE Standards Body 45
	802.11 Channel Use 47
	Channels in the 2.4-GHz ISM Band 47
	Channels in the 5-GHz U-NII Bands 49

IEEE 802.11 Standards 51 802.11-1997 52 802.11b 52 802.11g 52 802.11a 54 802.11n 55 Channel Aggregation 57 Spatial Multiplexing 58 MAC Layer Efficiency 59 Transmit Beam Forming (T×BF) 60 Maximal-Ratio Combining 61 802.11n Modulation and Coding Schemes 61 Beyond 802.11n 62 Wi-Fi Alliance 63 Exam Preparation Tasks 64 Review All Key Topics 64 Define Key Terms 64 **Chapter 3** RF Signals in the Real World 67 "Do I Know This Already?" Quiz 67 Foundation Topics 70 Interference 70 Co-Channel Interference 70 Neighboring Channel Interference 71 Non-802.11 Interference 72 Free Space Path Loss 72 Mitigating the Effects of Free Space Path Loss 74 Effects of Physical Objects 76 Reflection 76 Absorption 78 Scattering 78 Refraction 79 Diffraction 80 Fresnel Zones 80 Exam Preparation Tasks 83 Review All Key Topics 83 Define Key Terms 83 Chapter 4 Understanding Antennas 85 "Do I Know This Already?" Quiz 85 Foundation Topics 88

Antenna Characteristics 88 Radiation Patterns 88 Gain 91 Beamwidth 92 Polarization 92 Antenna Types 93 Omnidirectional Antennas 94 Directional Antennas 97 Antenna Summary 101 Adding Antenna Accessories 101 Exam Preparation Tasks 103 Review All Key Topics 103 Define Key Terms 103 Chapter 5 Wireless LAN Topologies 105 "Do I Know This Already?" Quiz 105 Foundation Topics 108 Types of Wireless Networks 108 Wireless LAN Topologies 109 Basic Service Set 110 Distribution System 112 Extended Service Set 114 Independent Basic Service Set 115 Other Wireless Topologies 116 Repeater 116 Workgroup Bridge 117 Outdoor Bridge 118 Mesh Network 119 Exam Preparation Tasks 120 Review All Key Topics 120 Define Key Terms 120 Understanding 802.11 Frame Types 123 Chapter 6 "Do I Know This Already?" Quiz 123 802.11 Frame Format 126 802.11 Frame Addressing 128 Accessing the Wireless Medium 130 Carrier Sense 131 Collision Avoidance 132 802.11 Frame Types 134 Management Frames 134

	Control Frames 135
	Data Frames 136
	Client Housekeeping 136
	A Client Scans for APs 137
	A Client Joins a BSS 138
	A Client Leaves a BSS 139
	A Client Moves Between BSSs 140
	A Client Saves Power 142
	Exam Preparation Tasks 145
	Review All Key Topics 145
	Define Key Terms 145
Chapter 7	Planning Coverage with Wireless APs 147
	"Do I Know This Already?" Quiz 147
	AP Cell Size 150
	Tuning Cell Size with Transmit Power 150
	Tuning Cell Size with Data Rates 152
	Adding APs to an ESS 153
	The Roaming Process 155
	WLAN Channel Layout 157
	Exam Preparation Tasks 161
	Review All Key Topics 161
	Define Key Terms 161
Chapter 8	Using Autonomous APs 163
	"Do I Know This Already?" Quiz 163
	Foundation Topics 166
	Autonomous Architecture 166
	Configuring an Autonomous AP 167
	Connecting the AP 167
	Configuring the AP 170
	Converting an Autonomous AP 174
	Using the Autonomous to Lightweight Mode Upgrade Tool 174
	Converting an Autonomous AP Manually 176
	Exam Preparation Tasks 178
	Review All Key Topics 178
	Define Key Terms 178
Chapter 9	Understanding the CUWN Architecture 181
	"Do I Know This Already?" Quiz 181
	Foundation Topics 184
	A Distributed Architecture 184

	A Centralized Architecture 186
	Split-MAC Architecture 188
	Traffic Patterns in a CUWN 190
	CUWN Building Blocks 192
	Cisco Wireless LAN Controllers 192
	Cisco Lightweight APs 194
	CUWN Management 197
	Exam Preparation Tasks 198
	Review All Key Topics 198
Chapter 10	Initial Controller Configuration 201
	"Do I Know This Already?" Quiz 201
	Foundation Topics 204
	Connecting the Controller 204
	Using Controller Ports 204
	Using Controller Interfaces 206
	Running the Initial Setup Wizard 208
	Initial Setup with the Web Interface 208
	Initial Setup with the CLI 216
	Exam Preparation Tasks 218
	*
	Review All Key Topics 218
	Review All Key Topics 218 Define Key Terms 218
Chapter 11	Define Key Terms 218
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221
Chapter 11	Define Key Terms218Understanding Controller Discovery221"Do I Know This Already?" Quiz221
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231 N+1 Redundancy 231 N+N Redundancy 232
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231 N+1 Redundancy 231 N+N Redundancy 232 N+N+1 Redundancy 232
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231 N+1 Redundancy 231 N+N Redundancy 232
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231 N+1 Redundancy 231 N+N Redundancy 232 N+N+1 Redundancy 232 AP SSO Redundancy 233 Exam Preparation Tasks 235
Chapter 11	Define Key Terms 218 Understanding Controller Discovery 221 "Do I Know This Already?" Quiz 221 Foundation Topics 224 Discovering a Controller 224 AP States 224 Discovering a WLC 226 Selecting a WLC 227 Designing High Availability 228 Detecting a Controller Failure 230 Building Redundancy 231 N+1 Redundancy 231 N+N Redundancy 232 N+N+1 Redundancy 232 AP SSO Redundancy 233

Chapter 12	Understanding Roaming 239
	"Do I Know This Already?" Quiz 239
	Foundation Topics 242
	Roaming with Autonomous APs 242
	Intracontroller Roaming 244
	Intercontroller Roaming 246
	Layer 2 Roaming 247
	Layer 3 Roaming 248
	Using Mobility Groups 252
	Exam Preparation Tasks 256
	Review All Key Topics 256
	Define Key Terms 256
Chapter 13	Understanding RRM 259
	"Do I Know This Already?" Quiz 259
	Foundation Topics 262
	Configuring 802.11 Support 262
	Configuring Data Rates 263
	Configuring 802.11n Support 264
	Understanding RRM 265
	RF Groups 267
	TPC 269
	DCA 272
	Coverage Hole Detection 274
	Manual RF Configuration 276
	Verifying RRM Results 278
	Exam Preparation Tasks 279
	Review All Key Topics 279
	Define Key Terms 279
Chapter 14	Wireless Security Fundamentals 281
	"Do I Know This Already?" Quiz 282
	Foundation Topics 285
	Anatomy of a Secure Connection 285
	Authentication 286
	Message Privacy 287
	Message Integrity 288
	Intrusion Protection 289
	Wireless Client Authentication Methods 290
	Open Authentication 290
	WEP 291

802.1x/EAP 292 LEAP 294 EAP-FAST 294 PEAP 294 EAP-TLS 295 Wireless Privacy and Integrity Methods 295 TKIP 295 CCMP 296 WPA and WPA2 297 Securing Management Frames with MFP 298 Configuring Wireless Security 298 Configuring WPA or WPA2 Personal 299 Configuring WPA2 Enterprise Mode 300 Configuring WPA2 Enterprise with Local EAP 302 Exam Preparation Tasks 305 Review All Key Topics 305 Define Key Terms 305 Configuring a WLAN 307 Chapter 15 "Do I Know This Already?" Quiz 307 Foundation Topics 309 WLAN Overview 309 Configuring a WLAN 310 Configuring a RADIUS Server 310 Creating a Dynamic Interface 312 Creating a New WLAN 313 Configuring WLAN Security 315 Configuring WLAN QoS 317 Configuring Advanced WLAN Settings 318 Finalizing WLAN Configuration 319 Exam Preparation Tasks 320 Review All Key Topics 320 Chapter 16 Implementing a Wireless Guest Network 323 "Do I Know This Already?" Quiz 323 Foundation Topics 325 Guest Network Overview 325 Configuring a Guest Network 326 Scaling the Guest Network 329 Exam Preparation Tasks 332 Review All Key Topics 332 Define Key Terms 332

xvi CCNA Wireless 640-722 Official Cert Guide

Chapter 17	Understanding Wireless Clients 335
	"Do I Know This Already?" Quiz 335
	Foundation Topics 338
	Configuring Common Wireless Clients 338
	Windows 7 and 8 338
	Intel PROSet 341
	Android 345
	Apple OS X 346
	Cisco AnyConnect 348
	Cisco Compatible Extensions 352
	Exam Preparation Tasks 356
	Review All Key Topics 356
	Define Key Terms 356
Chapter 18	Managing Wireless Networks with WCS 359
-	"Do I Know This Already?" Quiz 359
	Foundation Topics 362
	WCS Overview 362
	Alarm Summary Dashboard 364
	Main Navigation Area 366
	WCS Home Area 366
	Using WCS to Configure Devices 368
	Using WCS Maps 370
	Displaying Maps 370
	Manipulating APs on Maps 373
	Viewing Information on Maps 375
	Generating Reports 377
	Exam Preparation Tasks 381
	Review All Key Topics 381
Chapter 19	Dealing with Wireless Interference 383
	"Do I Know This Already?" Quiz 383
	Understanding Types of Interference 386
	Bluetooth 386
	ZigBee 387
	Cordless Phones 388
	Microwave Ovens 388
	WiMAX 388
	Other Devices 389

Using Cisco CleanAir to Manage Interference 390 Enabling CleanAir 392 Air-Quality Index 394 Using Event-Driven RRM 396 Exam Preparation Tasks 397 Review All Key Topics 397 Define Key Terms 398 Chapter 20 Troubleshooting WLAN Connectivity 401 "Do I Know This Already?" Quiz 401 Foundation Topics 405 Troubleshooting Client Connectivity 405 Troubleshooting Clients from the Controller 406 Performing a Link Test 411 Debugging a Client 412 Troubleshooting Clients from WCS/NCS 415 Troubleshooting AP Connectivity 420 Verifying AP-to-WLC Connectivity 420 Verifying AP-to-Network Connectivity 422 Exam Preparation Tasks 425 Review All Key Topics 425 Chapter 21 Maintaining Controllers 427 "Do I Know This Already?" Quiz 427 Accessing WLC and AP Management Interfaces 430 Accessing APs 432 Maintaining WLC Code Images 434 Maintaining WLC Configurations 437 Working with WLC Logs 439 Exam Preparation Tasks 444 Review All Key Topics 444 Final Review 447 Chapter 22 Advice About the Exam Event 447 Learn the Question Types Using the Cisco Certification Exam Tutorial 447 Think About Your Time Budget 452 Other Pre-Exam Suggestions 453 Final Thoughts 455

Appendix A Answers to "Do I Know This Already?" Quizzes 457 Chapter 1 457 Chapter 2 458 Chapter 3 459 Chapter 4 459 Chapter 5 460 Chapter 6 461 Chapter 7 461 Chapter 8 462 Chapter 9 463 Chapter 10 464 Chapter 11 464 Chapter 12 465 Chapter 13 466 Chapter 14 467 Chapter 15 467 Chapter 16 468 Chapter 17 468 Chapter 18 469 Chapter 19 469 Chapter 20 470 Chapter 21 471 Appendix B Modulation and Coding Schemes 473 Key Terms Glossary 481 Index 494

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- *Italic* indicates arguments for which you supply actual values.
- Vertical bars () separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

Welcome to the world of Cisco Certified Network Associate (CCNA) Wireless! As technology continues to evolve, wireless technologies are finding their way to the forefront. This clearly indicates the progression from a fixed wired type of connectivity to a more fluid, mobile workforce that can work when, where, and how they want. Regardless of your background, one of the primary goals of the CCNA Wireless certification is to introduce you to the Cisco Unified Wireless Network (CUWN).

This book is designed to help you prepare for the Cisco CCNA Wireless 640-722 IUWNE (Implementing Cisco Unified Wireless Networking Essentials) certification exam. To achieve the CCNA Wireless specialization, you must first pass the ICND1, ICND2, or the CCNA Composite exam.

Who Should Read This Book

Wireless networking is a complex business. The CCNA Wireless specialization was developed to introduce wireless LANs, the CUWN, and Cisco's wireless product line. The certification tests for proficiency in designing, installing, configuring, monitoring, and troubleshooting wireless networks in an enterprise setting.

How to Use This Book

The book consists of 22 chapters. Each chapter tends to build upon the chapter that precedes it. The chapters of the book cover the following topics:

- Chapter 1, "RF Signals and Modulation": This chapter covers the basic theory behind radio frequency (RF) signals and the methods used to carry data wirelessly.
- Chapter 2, "RF Standards": This chapter covers the agencies that regulate, standardize, and validate the correct use of wireless LAN devices.
- Chapter 3, "RF Signals in the Real World": This chapter explores many of the conditions that can affect wireless signal propagation.
- Chapter 4, "Understanding Antennas": This chapter explains some basic antenna theory, in addition to various types of antennas and their application.
- Chapter 5, "Wireless LAN Topologies": This chapter explains the topologies that can be used to control access to the wireless medium and provide data exchange between devices.
- Chapter 6, "Understanding 802.11 Frame Types": This chapter covers the frame format and frame types that APs and clients must use to communicate successfully. It also discusses the choreography that occurs between an AP and its clients.
- Chapter 7, "Planning Coverage with Wireless APs": This chapter explains how wireless coverage can be adjusted to meet a need and how it can be grown to scale over a greater area and a greater number of clients.
- Chapter 8, "Using Autonomous APs": This chapter discusses basic operation of an autonomous AP and how you can connect to it and convert it to lightweight mode, to become a part of a larger, more integrated wireless network.
- Chapter 9, "Understanding the CUWN Architecture": This chapter describes the centralized or unified wireless architecture and how you can leverage its strengths to solve some fundamental problems.
- Chapter 10, "Initial Controller Configuration": This chapter covers the wireless controller's role in linking wired and wireless networks. It also covers the minimal initial configuration needed to get a controller up on the network where you can manage it more fully.
- Chapter 11, "Understanding Controller Discovery": This chapter explains the process that each lightweight AP must go through to discover and bind itself with a controller before wireless clients can be supported.

- Chapter 12, "Understanding Roaming": This chapter discusses client mobility from the AP and controller perspectives so that you can design and configure your wireless network properly as it grows over time.
- Chapter 13, "Understanding RRM": This chapter covers Radio Resource Management (RRM), a flexible and automatic mechanism that Cisco wireless LAN controllers can use to make wireless network operation more efficient.
- Chapter 14, "Wireless Security Fundamentals": This chapter covers many of the methods you can use to secure a wireless network.
- Chapter 15, "Configuring a WLAN": This chapter explains how to define and tune a wireless LAN to support wireless clients and connectivity with a wired infrastructure.
- Chapter 16, "Implementing a Wireless Guest Network": This chapter discusses the steps you can take to configure a guest network as an extension to your wireless infrastructure.
- Chapter 17, "Understanding Wireless Clients": This chapter introduces some of the most common types of wireless clients and how to configure them to join a wireless LAN.
- Chapter 18, "Managing Wireless Networks with WCS": This chapter provides a brief overview of WCS, how you can configure controllers and APs with it, and how you can use it to monitor a variety of things in your network.
- Chapter 19, "Dealing with Wireless Interference": This chapter covers some common types of devices that can cause interference and the Cisco CleanAir features that can detect and react to the interference sources.
- Chapter 20, "Troubleshooting WLANs": This chapter helps you get some perspective about wireless problems, develop a troubleshooting strategy, and become comfortable using the tools at your disposal.
- Chapter 21, "Maintaining Controllers": This chapter explains how you can interface with controllers and APs so that you can upload and download files needed for their operation.
- Chapter 22, "Final Review": This short chapter lists the exam preparation tools useful at this point in the study process. It also provides a suggested study plan now that you have completed all of the earlier chapters in this book.
- Appendix A, "Answers to the 'Do I Know This Already?' Quizzes": This appendix provides the correct answers to the "Do I Know This Already?" quizzes that you will find at the beginning of each chapter. Brief explanations for the correct answers will also help you complete your understanding of topics covered.
- Appendix B, "Modulation and Coding Schemes": This appendix outlines the direct sequence spread spectrum (DSSS) and orthogonal frequency-division multiplexing (OFDM) data rates used for 802.11b/g and 802.11a; the modulation and coding schemes and data rates used for 802.11n; and the modulation, coding schemes, and data rates used for 802.11ac.

• Key Terms Glossary: The glossary defines all WLAN-related terms that you were asked to define at the end of each chapter.

Each chapter follows the same format and incorporates the following tools to assist you by assessing your current knowledge and emphasizing specific areas of interest within the chapter:

- Do I Already Know This Quiz?: Each chapter begins with a quiz to help you assess your current knowledge of the subject. The quiz is divided into specific areas of emphasis that enable you to best determine where to focus your efforts when working through the chapter.
- Foundation Topics: The foundation topics are the core sections of each chapter. They focus on the specific protocols, concepts, or skills that you must master to successfully prepare for the examination.
- Exam Preparation: Near the end of each chapter, this section highlights the key topics from the chapter and the pages where you can find them for quick review. This section also provides a list of key terms that you should be able to define in preparation for the exam. It is unlikely that you will be able to successfully complete the certification exam by just studying the key topics and key terms, although they are a good tool for last-minute preparation just before taking the exam.
- CD-ROM-based practice exam: This book includes a CD-ROM containing several interactive practice exams. It is recommended that you continue to test your knowledge and test-taking skills by using these exams. You will find that your test-taking skills will improve by continued exposure to the test format. Remember that the potential range of exam questions is limitless. Therefore, your goal should not be to "know" every possible answer but to have a sufficient understanding of the subject matter so that you can figure out the correct answer with the information provided.

Pearson IT Certification Practice Test Engine and Questions on the CD-ROM

The CD-ROM in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated exam that mimics real exam conditions. You can also serve up questions in a Flash Card Mode, which will display just the question and no answers, challenging you to state the answer in your own words before checking the actual answers to verify your work.

The installation process requires two major steps: installing the software and then activating the exam. The CD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam (the database of exam questions) is not on the CD.

Note The cardboard CD case in the back of this book includes the CD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the CD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows virtual machine, but it was built specifically for the PC platform. The minimum system requirements are as follows:

- Windows XP (SP3), Windows Vista (SP2), Windows 7, or Windows 8
- Microsoft .NET Framework 4.0 Client
- Pentium-class 1GHz processor (or equivalent)
- 512MB RAM
- 650MB disk space plus 50MB for each downloaded practice exam
- Access to the Internet to register and download exam databases

The software installation process is routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the CD sleeve.

The following steps outline the installation process:

- **1.** Insert the CD into your PC.
- **2.** The media interface that automatically runs allows you to access and use all CD-based features, including the exam engine and sample content from other Cisco self-study products. From the main menu, click the **Install the Exam Engine** option.
- 3. Respond to windows prompts as with any typical software installation process.

The installation process will give you the option to activate your exam with the activation code supplied on the paper in the CD sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

- **1.** Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.
- **2.** To activate and download the exam associated with this book, from the My Products or Tools tab, click the **Activate Exam** button.
- **3.** At the next screen, enter the activation key from paper inside the cardboard CD holder in the back of the book. Once entered, click the **Activate** button.
- **4.** The activation process will download the practice exam. Click **Next**, and then click **Finish**.

When the activation process completes, the My Products tab should list your new exam. If you do not see the exam, make sure that you have selected the **My Products** tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the **Open Exam** button.

To update a particular exam you have already activated and downloaded, display the **Tools** tab and click the **Update Products** button. Updating your exams will ensure that you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, display the **Tools** tab and click the **Update Application** button. You can then ensure that you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process, and the registration process, only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another Pearson IT Certification Cert Guide, extract the activation code from the CD sleeve in the back of that book; you do not even need the CD at this point. From there, all you have to do is start the exam engine (if not still up and running) and perform Steps 2 through 4 from the previous list.

Certification Exam Topics and This Book

The questions for each certification exam are a closely guarded secret. However, we do know which topics you must know to successfully complete this exam. Cisco publishes them as an exam blueprint for Implementing Cisco Unified Wireless Networking Essentials (IUWNE), exam 640-722. Table I-1 lists each exam topic listed in the blueprint along with a reference to the book chapter that covers the topic. These are the same topics you should be proficient in when working with Cisco wireless LANs in the real world.

Exam Topic	Chapter Where Topic is Covered
Describe WLAN Fundamentals	
Describe basics of spread spectrum technology	Chapter 1
Describe the impact of various wireless technologies (Bluetooth, WiMAX, ZigBee, and cordless phone)	Chapter 19
Describe wireless regulatory bodies, standards and certifications (FCC, ETSI, 802.11a/b/g/n, and WiFi Alliance)	Chapter 2
Describe Wireless LAN (WLAN) RF principles (antenna types, RF gain/loss, Effective Isotropic Radiated Power (EIRP), refraction, reflection, and so on)	Chapters 3-4
Describe networking technologies used in wireless (SSID to WLAN_ ID to Interface to VLAN, 802.1q trunking)	Chapter 5
Describe wireless topologies, such as Independent Basic Service Set (IBSS), Basic Service Set (BSS), Extended Service Set (ESS), Point-to- Point, Point-to-Multipoint, Mesh, and bridging)	Chapter 5
Describe 802.11 authentication and encryption methods (Open, Shared, 802.1X, EAP, TKIP, and AES)	Chapter 14
Describe frame types (associated and unassociated, management, control, and data)	Chapter 6
Describe basic RF deployment considerations related to site survey design of data or VoWLAN applications, common RF interference sources such as devices, building material, AP location, and basic RF site survey design related to channel reuse, signal strength, and cell overlap	Chapter 7
Install a Basic Cisco Wireless LAN	
Identify the components of the Cisco Unified Wireless Network architecture (Split MAC, LWAPP, stand-alone AP vs controller-based AP, specific hardware examples)	Chapter 9
Install and configure autonomous access points in the small business environment	Chapter 8
Describe the modes of controller-based AP deployment (local, monitor, HREAP, sniffer, rogue detector, bridge, OEAP, and SE-Connect)	Chapter 9
Describe controller-based AP discovery and association (DHCP, DNS, Master-Controller, Primary-Secondary-Tertiary, and n+1 redundancy)	Chapter 11
Describe roaming (Layer 2 and Layer 3, intra-controller and inter- controller, and mobility list)	Chapter 12

Table I-1 IUWNE Exam 640-722 Topics and Chapter References

Exam Topic	Chapter Where Topic is Covered
Configure a WLAN controller and access points WLC: ports, interfaces, WLANs, NTP, CLI and Web UI, CLI wizard, and link aggregation group (LAG) AP: Channel and Power	Chapter 10, 15
Describe Radio Resource Management (RRM) fundamentals including ED-RRM.	Chapter 13
Verify basic wireless network operation	Chapter 20
Install Wireless Clients	
Describe client WLAN configuration requirements, such as Service Set Identifier (SSID), security selection, and authentication	Chapter 17
Identify basic configuration of common wireless supplicants (Macintosh, Intel Wireless Pro, Windows, iOS, and Android)	Chapter 17
Describe basic AnyConnect 3.0 or above wireless configuration parameters	Chapter 17
Identify capabilities available in CCX versions 1 through 5	Chapter 17
Implement Basic WLAN Security	
Describe the general framework of wireless security and security components (authentication, encryption, MFP, IPS)	Chapter 14
Describe and configure authentication methods (Guest, PSK, 802.1X, WPA/WPA2 with EAP- TLS, EAP-FAST, PEAP, LEAP)	Chapters 14, 16
Describe and configure encryption methods (WPA/WPA2 with TKIP, AES)	Chapter 14
Describe and configure the different sources of authentication (PSK, EAP-local or -external, Radius)	Chapter 14
Operate Basic WCS	
Identify key functions of Cisco Wireless Control System (WCS) and Navigator (versions and licensing)	Chapter 18
Navigate WCS interface	Chapter 18
Configure controllers and access points (APs) (using the Configuration tab not templates)	Chapter 18
Use preconfigured maps in the WCS (adding/relocating/removing access points, turn on/off heat maps, view client location, and view CleanAir zones of influence)	Chapter 18
Use the WCS monitor tab and alarm summary to verify the WLAN operations	Chapter 18
Generate standard WCS reports (inventory, CleanAir, client-related, AP-related, and utilization)	Chapter 18

Exam Topic	Chapter Where Topic is Covered	
Conduct Basic WLAN Maintenance and Troubleshooting		
Identify and use basic WLAN troubleshooting tools (WLC show debug and logging) for client to AP connectivity, AP to controller connectivity	Chapter 20	
Use the WCS client troubleshooting tool	Chapter 20	
Transfer logs, configuration files, and O/S images to and from the WLC via the GUI	Chapter 21	
Differentiate and use WLC and AP (autonomous and LAP) management access methods (console port, CLI, telnet, ssh, http, https, and wired vs wireless management)	Chapter 21	

Notice that not all the chapters map to a specific exam topic. Each version of the exam can have topics that emphasize different functions or features, and some topics can be rather broad and generalized. The goal of this book is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. Although some chapters might not address specific exam topics, they provide a foundation that is necessary for a clear understanding of important topics. Your short-term goal might be to pass this exam, but your long-term goal should be to become a qualified wireless networking professional.

It is also important to understand that this book is a "static" reference, whereas the exam topics are dynamic. Cisco can and does change the topics covered on certification exams often.

This exam guide should not be your only reference when preparing for the certification exam. You can find a wealth of information available at Cisco.com that covers each topic in great detail. If you think that you need more detailed information on a specific topic, read the Cisco documentation that focuses on that topic.

Note that as wireless technologies continue to develop, Cisco reserves the right to change the exam topics without notice. Although you can refer to the list of exam topics in Table I-1, always check Cisco.com to verify the actual list of topics to ensure that you are prepared before taking the exam. You can view the current exam topics on any current Cisco certification exam by visiting the Cisco.com website, hovering over Training & Events, and selecting from the Certifications list. Note also that, if needed, Cisco Press might post additional preparatory content on the web page associated with this book at http://www.ciscopress.com/title/9781587205620. It's a good idea to check the website a couple of weeks before taking your exam to be sure that you have up-to-date content.

Taking the CCNA Wireless Certification Exam

As with any Cisco certification exam, you should strive to be thoroughly prepared before taking the exam. There is no way to determine exactly what questions are on the exam, so the best way to prepare is to have a good working knowledge of all subjects covered on the exam. Schedule yourself for the exam and be sure to be rested and ready to focus when taking the exam.

The best place to find out the latest available Cisco training and certifications is under the Training & Events section at Cisco.com.

Tracking Your Status

You can track your certification progress by checking http://www.cisco.com/go/ certifications/login. You must create an account the first time you log in to the site.

How to Prepare for an Exam

The best way to prepare for any certification exam is to use a combination of the preparation resources, labs, and practice tests. This guide has integrated some practice questions and example scenarios to help you better prepare. If possible, get some hands-on experience with CUWN equipment. There is no substitute for real-world experience; it is much easier to understand the designs, configurations, and concepts when you can actually work with a live wireless network.

Cisco.com provides a wealth of information about wireless LAN controllers, access points (APs), and wireless management products, and wireless LAN technologies and features.

Assessing Exam Readiness

Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30 percent of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the "Do I Know This Already?" quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Cisco Wireless Certifications in the Real World

Cisco has one of the most recognized names on the Internet. Cisco Certified wireless specialists can bring quite a bit of knowledge to the table because of their deep understanding of wireless technologies, standards, and networking devices. This is why the

Cisco certification carries such high respect in the marketplace. Cisco certifications demonstrate to potential employers and contract holders a certain professionalism, expertise, and dedication required to complete a difficult goal. If Cisco certifications were easy to obtain, everyone would have them.

Exam Registration

The CCNA Wireless IUWNE 640-722 exam is a computer-based exam, with around 75 to 85 multiple-choice, fill-in-the-blank, list-in-order, and simulation-based questions. You can take the exam at any Pearson VUE (http://www.pearsonvue.com) testing center. According to Cisco, the exam should last about 90 minutes. Be aware that when you register for the exam, you might be told to allow a certain amount of time to take the exam that is longer than the testing time indicated by the testing software when you begin. This discrepancy is because the testing center will want you to allow for some time to get settled and take the tutorial about the test engine.

Book Content Updates

Because Cisco occasionally updates exam topics without notice, Cisco Press might post additional preparatory content on the web page associated with this book at http://www. ciscopress.com/title/9781587205620. It is a good idea to check the website a couple of weeks before taking your exam, to review any updated content that might be posted online. We also recommend that you periodically check back to this page on the Cisco Press website to view any errata or supporting book files that may be available.

This page intentionally left blank

This chapter covers the following topics:

- AP Cell Size—This section discusses how the size of a wireless cell affects things like coverage area, performance, and efficiency.
- Adding APs to an ESS—This section covers the process of growing an extended service set, with an emphasis on client roaming and proper layout of wireless channels over an area.

This chapter covers the following exam topics:

 Describe basic RF deployment considerations related to site survey design of data or VoWLAN applications; common RF interference sources such as devices, building material, AP location; and basic RF site survey design related to channel reuse, signal strength, and cell overlap

CHAPTER 7

Planning Coverage with Wireless APs

Chapters 1 through 6 covered wireless communication with a focus on a single access point (AP) exchanging data with one or more clients. A single AP may be sufficient for home or small office use, but most wireless LANs involve a greater geographic area and require more APs. This chapter explains how wireless coverage can be adjusted to meet a need and how it can be grown to scale over a greater area and a greater number of clients. As you work through this chapter, remember that two things are important: the size of the BSA or AP cell and the location of cells in relation to each other.

"Do I Know This Already?" Quiz

The "Do I Know This Already?" quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the "Exam Preparation Tasks" section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 7-1 lists the major headings in this chapter and their corresponding "Do I Know This Already?" quiz questions. You can find the answers in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes."

Foundation Topics Section	Questions
AP Cell Size	1-4
Adding APs to an ESS	5-10

 Table 7-1
 "Do I Know This Already?" Section-to-Question Mapping

Caution The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.

- **1.** Which of the following parameters can be adjusted on an AP to change the size of its cell or BSA? (Choose all that apply.)
 - **a.** Channel number within a band
 - **b.** Transmit power
 - c. Supported modulation and coding schemes
 - d. Supported data rates
- **2.** An AP has been configured to use channel 1 with a transmit power of 20 dBm. With the AP located in the center of the lobby, you have determined that its signal will reach all locations in the lobby area. However, some users with small battery-operated devices report connectivity problems when they move toward the outer walls of the lobby. Which one of the following approaches will probably fix the problem?
 - **a.** Increase the AP's transmit power to increase its range
 - **b.** Increase the client device's transmit power
 - c. Adjust the client device's roaming algorithm
 - d. Enable some lower data rates on the AP
- **3.** Suppose that an AP is configured to offer the following data rates: 2-, 5.5-, 6-, 9-, 11-, 12-, 18-, 24-, 36-, and 48-Mbps data rates to its clients. Which one of the following strategies should be used to reduce the AP's cell size?
 - **a.** Enable the 1-Mbps data rate
 - **b.** Enable the 54-Mbps data rate
 - c. Disable the 36- and 48-Mbps data rates
 - d. Disable the 2-Mbps data rate
- **4.** All the APs on the second floor of a building are part of a single ESS. Each AP has been configured with a transmit power level of 14 dBm. In addition, each AP has been configured to use a non-overlapping channel that is different from its adjacent neighbors. All APs have been configured to offer only the 24-, 36-, 48-, and 54-Mbps data rates; all other rates are disabled. One day, one of the APs fails and someone replaces it. Afterward, users begin to call and complain about poor performance and roaming. You discover that the problems are not occurring in the area covered by the failed AP; instead, they are occurring about two APs away from it. Which one of the following could be causing the problem?
 - **a.** The replacement AP has its radios disabled.
 - **b.** The replacement AP is using a transmit level of 1 dBm.
 - **c.** The replacement AP is using the 1- and 2-Mbps data rates.
 - **d.** The replacement AP is new and cannot be causing the problem.
- **5.** Which one of the following determines when a wireless client will roam from one AP to another?
 - **a.** The current AP detects a weak signal coming from the client and forces the client to roam.

- **b.** The next AP overhears the client's signal and asks it to roam.
- **c.** The client's roaming algorithm reaches a threshold in signal quality.
- d. The client loses its IP address.
- **6.** Which one of the following 802.11 frames is used to trigger a roam from one AP to another?
 - a. Association request
 - b. Disassociation request
 - c. Probe
 - d. Reassociation request
- 7. Which one of the following statements is true about roaming?
 - a. All wireless clients use the same algorithms to trigger a roaming condition.
 - **b.** Wireless clients can scan available channels to look for a new AP when roaming.
 - c. Wireless clients must roam from one AP to another on the same channel.
 - d. The 802.11 standard defines a set of roaming algorithms for clients.
- 8. Which one of the following statements is true about a good wireless LAN design?
 - **a.** Neighboring APs should use the same channel to promote good roaming.
 - **b.** APs should be positioned so that their cells overlap.
 - c. APs should be positioned so that their cells do not overlap at all.
 - d. APs should use channels that overlap each other.
- **9.** When you are designing the AP channel layout for an area, which one of the following is the most important consideration?
 - **a.** The number of channels is conserved.
 - **b.** APs in different areas use different channels.
 - c. Adjacent APs use non-overlapping channels.
 - d. Clients are grouped into common channels.
- **10.** An AP is located in the main office on the third floor of a building. The AP is configured to use channel 6 in the 2.4-GHz band. Which of the following conditions might hinder clients as they move around on the third floor and need to roam? (Choose all that apply.)
 - **a.** Two other APs in the third floor main office area use channel 6.
 - **b.** None of the fourth floor APs directly above the main office use channel 6.
 - **c.** One of the second floor APs directly below the main office use channel 6.
 - d. All of these answers are correct.

AP Cell Size

The basic service area (BSA) or cell that is provided by an AP can vary, depending on several factors. Obviously, the cell size determines the geographic area where wireless service will be offered. AP cell size can also affect the performance of the APs as clients move around or gather in one place.

Remember that a wireless LAN is a shared medium. Within a single AP cell, all of the clients associated with that AP must share the bandwidth and contend for access. If the cell is large, a large number of clients could potentially gather and use that AP. If the cell size is reduced, the number of simultaneous clients can also be reduced.

The signal from an AP does not simply stop at the boundary of its cell. Instead, the signal continues to expand ad infinitum, growing exponentially weaker. Devices inside the cell boundary can communicate with the AP. Devices outside the boundary cannot because the signal strength of either the client or the AP is too weak for the pair to find any usable modulation that can be used to exchange information. You can control the size of a cell by changing the parameters that are described in the following sections.

Tuning Cell Size with Transmit Power

To use a wireless LAN, devices must be located within the range of an AP's signal and have an active association with the AP. This area is known as the BSA or cell. Consider the scenario shown in Figure 7-1. PCs 1 through 4 are within the cell's perimeter and are associated with the AP. PC-5, however, is outside the cell and cannot form an association or participate in the basic service set (BSS).

Figure 7-1 An Example Cell That Includes All but One Client.

If the area outside a cell is a legitimate location where wireless devices might be present, the coverage area should probably be extended there. How can that be accomplished? The most straightforward approach is to increase the transmit power or signal strength leaving the AP's antenna. A greater signal strength will overcome some of the free space path loss so that the usable signal reaches farther away from the AP.

Figure 7-2 shows the effect of changing the AP's transmit power level. The original cell from Figure 7-1 is shown as the second concentric circle, where the transmit power level was set to 17 dBm. If the level is increased to 20 dBm, the cell grows into the area shown by the outermost circle. Notice that PC-5 now falls within the cell boundary. If the transmit power level is decreased to 10 dBm, the cell shrinks and includes only clients PC-2 and PC-3. Why would you ever want to decrease a cell's size? That question will be answered later in this section.

Figure 7-2 The Effects of the Transmit Power Level on Cell Size.

How should you decide on a transmit power level value? Cisco APs offer eight different values for their 2.4-GHz radios and seven values for their 5-GHz radios. Most 802.11 scenarios fall within government regulations which limit the effective isotropic radiated power (EIRP) to a maximum transmit power level of 20 dBm (100 mW). You could just configure an AP to run wide open at maximum power, but that is not always appropriate or beneficial.

One thing to consider is the two-way nature of wireless communications. By increasing the AP's transmit power, the AP might reach a distant client, but can the client's own signal reach the AP? Notice client PC-5 in Figure 7-3. If the AP transmit power level is increased to 20 dBm (the outermost circle), PC-5 is included in the cell. However, PC-5's wireless transmitter has a lesser power level; in its current location, PC-5 has a coverage area that falls short of including the AP. This scenario is known as the *asymmetric power* problem, where the two communicating devices have differing transmit power levels that might not reach each other.

Figure 7-3 The Asymmetric Power Problem.

Tuning Cell Size with Data Rates

Setting the transmit power level is a simplistic approach to defining the cell size, but that is not the only variable involved. The cell size of an AP is actually a compromise between its transmit power and the data rates that it offers.

Recall from Chapters 1 and 3 that the higher data rates or more complex modulation and coding schemes (MCS) offer the greatest throughput but require the best signal conditions—usually closer to the AP. The less complex schemes can work further away from an AP, but offer slower data rates. Therefore, at the perimeter of a cell, a client is likely to be using the least complex MCS and the lowest data rate. Figure 7-4 shows a simplified representation of the range of each data rate with concentric circles. At the outer edge of the cell, a client will probably resort to a 1-Mbps data rate.

To design a wireless LAN for best performance, you would most likely need to disable some of the lower data rates. For example, you could disable the 1-, 2-, and 5.5-Mbps rates to force clients to use higher rates and better modulation and coding schemes. That would improve throughput for individual clients and would also benefit the BSS as a whole by eliminating the slower rates that use more time on a channel.

As you disable lower data rates, the respective concentric circles in Figure 7-4 become irrelevant. This effectively *reduces* the usable size of the AP's cell, even though the radio frequency (RF) footprint remains the same. After all, you haven't reduced the transmit power level which would reduce the extent of the RF energy. Be aware that as smaller usable cells are placed closer together, their available data rates are higher. At the same time, their RF footprints can remain large and overlap each other, resulting in a higher noise floor.

Key

Topic

Figure 7-4 The Relationship of Data Rates and Cell Range.

To provide robust wireless coverage to an ever-increasing area, you should use the following two-pronged approach:

- Tune the cell size based on data rates and performance.
- Add additional APs to build an ESS that covers more area.

Adding APs requires careful consideration for client mobility and the use of wireless channels. These topics are covered in the next section.

Adding APs to an ESS

If a client is associated with an AP, it can maintain the association as long as it stays within range of the AP. Consider the cell shown in Figure 7-5. As long as the client stays within points A and B, three conditions are met:

- The client is able to receive the AP's signal at an acceptable level.
- The AP is able to receive the client's signal.
- One of the acceptable modulations can be successfully used between the client and the AP.

As soon as the client goes outside the cell range at point C, one or more of the conditions fails and the client loses the association. In the figure, the AP's signal has fallen below an acceptable threshold.

Figure 7-5 A Mobile Client Moves Within an AP Cell.

Other APs can be added so that the client can move within a larger area; however, the APs must be carefully deployed to allow the client to roam from AP to AP. *Roaming* is the process of moving an association from one AP to the next, so that the wireless connection is maintained as the client moves.

In Figure 7-6, a new AP has been added alongside AP-1, each using the same channel. It might seem intuitive to build a larger coverage area by using a single channel. Usually this turns out to be a bad idea because the client may experience an excessive amount of frame collisions in the area between the two cells.

Remember that the signal from an AP does not actually stop at the edge of the cell; rather, it continues to propagate as it eventually dies off. This is shown by the signal strength graph of each AP. The client is able to form an association with AP-1 at point A. Even at that location, some portion of AP-2's signal can be received, albeit at a lower level. Because AP-2 is using the same channel as AP-1, the two APs (and any clients within range) can essentially interfere with each other through co-channel interference.

Figure 7-6 Pitfalls of Reusing Channels in Adjacent Aps.

Ideally, when the client in Figure 7-6 moves to location B, it should begin to anticipate the need to roam or transfer its association from AP-1 to AP-2. Notice that AP-1 and AP-2 are spaced appropriately for roaming, where their cells have some overlap. The two APs are out of range of each other, so they are not aware of each other's transmissions on the same channel. Each AP will coordinate the use of the channel with devices that are inside its own cell, but not with the other AP and devices in the other cell. As a result, the client around location B will probably experience so many collisions that it may never be able to roam cleanly.

The Roaming Process

What enables a client to roam in the first place? First, adjacent APs *should* be configured to use different non-overlapping channels. For example, an AP using channel 1 must not be adjacent to other APs also using channel 1. Instead, a neighboring AP should use channel 6 or higher to avoid any frequency overlap with channel 1. This ensures that clients will be able to receive signals from a nearby AP without interference from other APs. As you learned in Chapter 2, "RF Standards," the 5-GHz band is much more flexible in this regard because it has many more non-overlapping channels available.

156 CCNA Wireless 640-722 Official Cert Guide

The roaming process is driven entirely by the wireless client driver—not by the AP. Wireless clients decide that it is time to roam based on a variety of conditions. The 802.11 standard does not address this at all, so roaming algorithms are vendor specific. In addition, the roaming algorithms are usually "secret recipes," so the exact thresholds and conditions are hidden from view.

Some of the ingredients in the roaming algorithm are the received signal strength indicator (RSSI), signal-to-noise ratio (SNR), a count of missed AP beacons, errors due to collisions or interference, and so on. These are usually logical choices because they indicate an inferior connection.

Because different clients use different thresholds, some will try to roam earlier than others at a given location within a cell. Some clients will tend to "latch on" to an existing association until the AP can hardly be heard, whereas others will attempt to roam whenever a better AP is discovered.

Figure 7-7 depicts a clean roam between two APs that have been correctly configured with non-overlapping channels 1 and 6. The two AP signal strengths are also shown as a graph corresponding to the client's location. At location A, the client has a clear signal from AP-1, so it maintains an association with that AP.

Figure 7-7 A Client Roaming Correctly Between Two APs.

As the client moves toward location B, it decides that AP-1's signal is no longer optimal. Somewhere along the way, the client begins to gather more information about any neighboring AP cells. The client can passively scan by tuning its radio to another channel and listening for beacons transmitted from other APs. During the time that the radio is tuned away from the associated channel, the client might lose packets that have been sent to it. A client might use active scanning instead, where it sends probe requests to seek out a better AP where it can move its association. The client does not know what channel is used on the next AP it encounters, so it must send the probes over every possible channel. Again, the client must take time to tune its radio away from the current AP's channel so it can scan other channels and send probes.

You might think of this as someone watching television. As the current program gets boring or nears its end, the viewer begins to "channel surf" and scans other channels for a better program. One thing to keep in mind: While the viewer is scanning channels, he cannot keep watching the original program. Some of that program will be missed. This is also true of wireless clients. While a radio is scanning other channels, packets arriving on the original channel will be dropped because they cannot be received. Therefore, there is a trade-off between staying available on a single channel and attempting to roam to other APs.

After the client is satisfied with all of the beacons or probe responses it receives, it evaluates them to see which AP offers the most potential for a new association. Returning to Figure 7-7, when the client nears location B, it receives a probe response from AP-2 on channel 6. At location C, the client sends a reassociation frame to AP-2 and moves its association to that BSS.

How much should cells overlap each other to promote good roaming? Cisco recommends 15 percent to 20 percent overlap for most applications. The idea is to give a client device some continued coverage even after the RSSI of its associated AP falls below a threshold and a roam might be triggered. The client can probe and reassociate with the next AP before it completely loses contact with the previous AP. Seamless roaming is especially important for time critical applications like voice traffic.

WLAN Channel Layout

The previous section laid the foundation for roaming by describing movement between two AP cells. Most scenarios require more than two APs to cover the appropriate area within a building. Therefore, you need to consider the layout and configuration of more and more APs to scale the design to fit your wireless environment.

For example, to cover the entire area of a warehouse or one floor of a building, APs must be placed at regular intervals throughout that space. A site survey is a vital step toward deciding on AP placement, as actual live measurements are taken with an AP staged at various points in the actual space. This method also takes any factors like free space loss and absorption into account, as the signal strength is measured within the actual environment where clients are located.

To minimize channel overlap and interference, APs cells should be designed so that adjacent APs use different channels. For simplicity and a convenient design constraint, the examples in this section use the three non-overlapping 2.4-GHz channels. The cells could be laid out in a regular, alternating pattern, as shown in Figure 7-8.

Figure 7-8 Holes in an Alternating Channel Pattern.

However, notice what is happening in the center where the cells meet; there is a small hole in RF coverage. If a client roams through that hole, his wireless signal could drop completely. In addition, if the cells were brought closer together to close this hole, the two cells using channel 1 would overlap and begin interfering with each other.

Instead, you should lay the cells out in a "honeycomb" fashion, as shown in Figure 7-9. This pattern is seamless, leaving no holes in coverage. In addition, notice how the two cells using channel 1 are well separated, providing isolation from interference. As far as ordering channels in the pattern, there are several different variations using combinations of the three channels, but the result is basically the same.

Notice that as the client shown in the channel 1 cell moves around, it will roam into adjacent cells on different channels. For roaming to work properly, a client must be able to move from one channel into a completely different channel.

Alternating channels to avoid overlap is commonly called *channel reuse*. The basic pattern shown in Figure 7-9 can be repeated to expand over a larger area, as shown in Figure 7-10. Naturally, this ideal layout uses perfect circles that are positioned regularly across the building. In practice, cells can take on different shapes and the AP locations may end up being irregularly spaced.

Key Topic

Figure 7-9 A Better Alternating Channel Pattern.

So far, only the channel layout of a two-dimensional area has been discussed. For example, Figure 7-10 might represent only one floor of a building. What happens when you need to design a wireless LAN for multiple floors in the same building?

Recall that an RF signal propagating from an antenna actually takes on a three-dimensional shape. With an omnidirectional antenna, the pattern is somewhat like a donut shape with the antenna at the center. The signal extends outward, giving the cell a circular shape along the floor. The signal also extends upward and downward to a lesser extent—affecting AP cells on adjacent floors as well.

Consider the building with three floors shown in Figure 7-11. The same two-dimensional channel layout from Figure 7-10 is being used on the first floor. The floors in the figure are shown greatly separated, so that you can see the channel patterns and numbers. In reality, the cells on adjacent floors would touch or overlap, just as adjacent cells on the same floor do.

Figure 7-10 Channel Reuse Over a Large Area.

Figure 7-11 Channel Layout in Three Dimensions.

ARR FREE

The pattern of alternating channels exists within the plane of a floor and between floors. Channel 1 on the first floor should not overlap with channel 1 directly above it on the second floor or below it in the basement.

When you consider each of the tasks involved in designing and maintaining a wireless LAN, it can really become a puzzle to solve. The cell size, transmit power, and channel assignment all have to be coordinated for each and every AP. Roaming also becomes an issue on a large scale, if mobile clients can move throughout an entire campus wireless network.

The good news is that Chapter 13, "Understanding RRM," explains how to solve many of these puzzles automatically.

Exam Preparation Tasks

As mentioned in the section, "How to Use This Book," in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 22, "Final Review," and the exam simulation questions on the CD-ROM.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 7-2 lists a reference of these key topics and the page numbers on which each is found.

Key Topic Element	Description	Page Number
Figure 7-2	The effects of transmit power on cell size	151
Figure 7-4	The effects of data rate on cell size	153
Figure 7-7	Roaming between BSSs	156
Figure 7-9	Optimizing channel layout for roaming	159

 Table 7-2
 Key Topics for Chapter 7

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

asymmetric power problem, channel reuse

This page intentionally left blank

Index

Symbols & Numerics λ (lambda), 14 1-Mbps data rate, 28-29 2.4 GHz ISM band, 47-49 2-Mbps data rate (DSSS), 29 5.5-Mbps data rate (DSSS), 30 5-GHz frequency bands, 12 5-GHz U-NII bands, 49-51 11-Mbps data rate (DSSS), 30 802.11-1997 standard, 52 802.11a standard, 54-55 802.11ac amendment, 62 802.11b standard, 52-53 802.11g standard, 52-54 802.11n standard, 55-56 channel aggregation, 57-58 Cisco controller support, configuring, 264 MAC layer efficiency, 59-60 MRC, 61 spatial multiplexing, 58-59 TxBF, 60-61 802.1x standard, 292-293

A

absolute power measurement, 16 absorption, 78

accessing

AP management interface, 432-433 wireless media, 130-134 WLC management interface, 430-432 accessories, adding to antennas, 101-102 ACK frames, 136 active scans, 137 adding APs to ESS, 153-161 roaming process, 155-157 controllers to WCS configuration, 368-369 addressing, 802.11 frames, 128-130 advanced settings, configuring on WLANs, 318-319 **AES** (Advanced Encryption Standard), 296 Alarm Summary dashboard (WCS), 364-365 alternating channel pattern, 159-160 amendments (IEEE), 47 802.11ac, 62 amplifiers, 101 amplitude, 15 Android wireless clients, configuring, 345 answers to self-assessment quizzes chapter 1, 456-458 chapter 2, 458

chapter 3, 459 chapter 4, 459-460 chapter 5, 460-461 chapter 6, 461 chapter 7, 461-462 chapter 8, 462-463 chapter 9, 463-464 chapter 10, 464 chapter 11, 464-465 chapter 12, 465-466 chapter 13, 466 chapter 14, 467 chapter 15, 467-468 chapter 16, 468 chapter 17, 468-469 chapter 18, 469 chapter 19, 469-470 chapter 20, 470 chapter 21, 471 antennas, 20-21 adding accessories, 101-102 amplifiers, 101 attenuators, 102 beamwidth, 92 dipole, 22 directional antennas, 96-100 dish antennas. 99-100 patch antennas, 96-98 Yagi-Uda antennas, 98-99

EIRP, measuring, 21-22 gain, 91 lightning arrestors, 102 omnidirectional antennas, 94-96 dipole antennas, 94 integrated omnidirectional antennas, 96 monopole antennas, 94 polarization, 92-93 radiation patterns, 88-91 AP SSO redundancy, 233-235 Apple OS X wireless clients, configuring, 345 APs (access points), 110-111 adding to an ESS, 153-161 roaming process, 155-157 authentication, 287 autonomous APs centralized architecture, 186-187 configuring, 167-173 converting to lightweight mode, 174-177 distributed architecture, 184-186 management functions, 187 real-time processes, 187 roaming, 242-244 BSS, join process, 137-140 CAPWAP, 188-190

cell size, tuning, 150-153 with data rates, 152-153 with transmit power, 150-151 connectivity, troubleshooting, 420-424 AP-to-network connectivity, verifying, 422-423 AP-to-WLC connectivity, verifying, 420-421 data rates, 136 IP address, identifying, 168-170 LAPs, 187 image downloads, 225-226 split-MAC architecture, 188-190 state machine, 224 WLC, discovering, 226-227 WLC, selecting, 227-228 management interface, accessing, 432-433 manipulating on maps, 373-374 multiple SSID support, 113-114 placement of, 157-161 ports, 167-168 repeater mode, 116 roaming process, intercontroller roaming, 246-255 rogue APs, 290, 386 RRM CHDM, 274-275 DCA, 272 ED-RRM, 272 manual RFconfiguration, 276-278 RF groups, 267-269 TPC, 269-271 AOI (air quality index), displaying, 394-395

association request frames, 135 associations, 111, 405-406 attenuators, 102 authentication, 286-287 802.1x, 292-293 EAP, 292-293 EAP-FAST, 294 EAP-TLS, 295 enterprise mode authentication (WPA/ WPA2), configuring, 300-302 LEAP. 294 local EAP, configuring, 302-305 open authentication, 290-291 PEAP. 294-295 personal mode authentication (WPA), 297 personal mode authentication (WPA), configuring, 299-300 supported schemes in CCX versions, 355-354 WEP. 291-292 autonomous APs, 166-167 centralized architecture, 186-187 configuring, 167-173, 170-173 converting to lightweight mode, 174-177 Autonomous to Lightweight Mode Upgrade tool, 174-176 manual conversion, 176-177 distributed architecture, 184-186 management functions, 187 real-time processes, 187 roaming, 242-244 Autonomous to Lightweight Mode Upgrade tool, 174-176 azimuth plane, 90

В

bands of frequency, 11 channels, 12-13 licensed bands, 42 2.4 GHz ISM band, 47-49 **U-NII. 42** unlicensed bands, 42 bandwidth, 12 base-10 logarithm function, 17 beacons, 134 beamwidth, 92 benefits of Cisco WCS, 362 bidirectional communication, 109 Block ACK frames, 136 Bluetooth as source of interference. 386-387 BPSK (binary phase shift keying), 32 BSA (basic service area), 111 BSS (basic service set), 110-111 DS, 112-114 multiple SSID support on APs, 113-114 join process, 137-140 leaving, 139-140 moving between, 140-142 BSSID (basic service set identifier), 111 building blocks of CUWN, 192-194 Cisco LAPs, 194-196 Cisco WLC, 192-194 BVI (bridged-virtual interface), displaying P address, 169-170

С

calculating free space path loss, 73-74 Canopy as source of interference, 389 CAPWAP (Control and Provisioning of Wireless Access Points), 188-190 RFC 5415, 224 carrier sense, 131 carrier signals, 24 CCA (clear channel assessment), 131 CCK (Complementary Code Keying), 27,30 CCKM (Cisco Centralized Key Management), 246 CCMP (Counter/CBC-MAC Protocol), 296 CCX (Cisco Compatible Extensions), 352-354 feature support, 352-353 goals of, 352 supported authentication schemes, 355-354 CCX Lite, 354 cells layout, 157-161 size of, tuning with data rates, 152-153 with transmit power, 150-151 centralized architecture, 186-187 channel aggregation, 57-58 channel separation, 12 channels, 12-13 in 2.4 GHz ISM band, 47-49 alternating pattern, 159-160 AP placement, 157-161 DCA, 272 non-overlapping, 49 subchannels, 31 CHDM (coverage hole detection mechanism), 269, 274-275 Cisco Aironet Antennas and Accessories Reference Guide, 93

Cisco AnyConnect Secure Mobility Client, configuring, 348-350 Cisco Certification Exam Tutorial, 446-452 Cisco CleanAir, 392-396. See also AQI, 394-395 ED-RRM, 396 enabling, 392 Cisco LAPs (lightweight access points), 194-196 Cisco WLC (Wireless LAN Controller), 192-194 CLI initial WLC configuration, 216-217 LAP management interface, accessing, 432-433 WLC management interface, accessing, 430-432 client MFP. 298 co-channel interference, 70-71 code images displaying, 434 downloading, 434-436 coding, 27 collisions, 131, 132-134 DCF. 134 interframe space periods, 132-133 commands, show run-config, 439 comparing 802.3 and 802.11 frames, 126-128 power levels, 17-19 wired and wireless networks, 7 configuration files displaying, 439 saving, 437-438 uploading to PC, 438 configuring

autonomous APs, 167-173, 170-173 IP address, identifying, 168-170 controllers 802.11n support, 264 data rates, 263-264 with WCS, 368-370 wireless clients Android, 345 Apple OS X, 345 Cisco AnyConnect Secure Mobility Client, 348-350 Intel PROSet, 341-344 Windows 7/8, 338-340 WLANs, 310-312, 315-319 advanced settings, 318-319 dynamic interface, 312 QoS, 317 RADIUS server, 310 security, 315-317 WLC with CLI. 216-217 with web browser, 208-216 WPA/WPA2 enterprise mode authentication, 300-302 personal mode authentication, 299-300 connecting WLC to switched network using controller interfaces, 205-208 using controller ports, 204-206 connectivity AP connectivity, 420-424 AP-to-network connectivity, verifying, 422-423 AP-to-WLC connectivity, verifying, 420-421

wireless clients, troubleshooting, 405-419 associations, 405-406 from controller, 41-410 link tests, performing, 411 from WCS/NCS, 44-45 conserving power on wireless devices, 142-144 control plane, 185 controllers 802.11n support, configuring, 264 adding to WCS configuration, 368-369 AQI, displaying, 394-395 code images displaying, 434 downloading, 434-436 configuration files displaying, 439 saving, 437-438 uploading to PC, 438 configuring with CLI, 216-217 with WCS, 368-370 with web browser, 208-216 connecting WLC to switched network using controller interfaces, 205-208 using controller ports, 204-206 data rates, configuring, 263-264 discovering, 228-229 failure, detecting, 230 high availability AP SSO redundancy, 233-235 N+1 redundancy, 231 N+N redundancy, 232

N+N+1 redundancy, 232-233 redundancy, 231 hot standby controller, 234 intercontroller roaming, 246-255 Layer 2 roaming, 247 mobility groups, 252-255 intracontroller roaming, 244-246 rebooting, 436-437 trap logs, 439-443 sending to trap receivers, 440-443 viewing, 440 wireless client connectivity, troubleshooting, 41-410 WLC, discovering, 226-227 converting autonomous APs to lightweight mode, 174-177 Autonomous to Lightweight Mode Upgrade tool, 174-176 manual conversion, 176-177 cordless phones as source of interference, 388 creating guest networks, 326-328 WCS reports, 377-380 WLANs, 313-315 CSMA (carrier sense multiple access), 131 **CUWN** (Cisco Unified Wireless Network), 180 building blocks, 192-194 Cisco LAPs, 194-196 Cisco WLC, 192-194 LAPs. 187 split-MAC architecture, 188-190 managing, 197 traffic patterns, 190-191 cycles, 10

D

data frames, 136 data plane, 185 data rates 802.11-1997 standard, 52 802.11a standard, 54 802.11b standard, 52-53 802.11g standard, 53 for APs, 136 for controllers, configuring, 263-264 effect on AP cell size, 152-153 dB (decibel), 17-19 dBm (decibel-milliwatt), 22 DBPSK (differential binary phase shift keying), 28-29 DCA (dynamic channel allocation), 269, 272 DCF (distributed coordination function), 130, 134 debugging wireless clients, 44-415 designing AP cells, 157-161 high availability, 228-235 AP SSO redundancy, 233-235 controller failure, detecting, 230 N+N redundancy, 232 *N*+*N*+1 redundancy, 232-233 redundancy, 231 detecting controller failure, 230 sources of interference, 390-391 diffraction. 80 DIFS (distributed interframe space), 132 dipole antennas, 22, 94 directional antennas, 96-100

dish antennas, 99-100 patch antennas, 96-98 Yagi-Uda antennas, 98-99 disabled data rates, 136 discovering controllers, 228-229 WLC, 226-227 dish antennas, 99-100 displaying alarm details (WCS), 364-365 AQI, 394-395 configuration files, 439 maps (WCS), 370-372 RRM results in NCS maps, 278 dissociation frames, 135 distributed architecture, 184-186 DMZ (demilitarized zone), 325 "Do I Know This Already?" guizzes. See self-assessment quizzes downloading controller code images, 434-436 DQPSK (differential quadrature phase shift keying), 29 DRS (dynamic rate shifting), 75 DS (distribution system), 112-114 multiple SSID support, 113-114 DSSS (direct-sequence spread spectrum), 26, 27-28 11-Mbps data rate, 30 1-Mbps data rate, 28-29 2-Mbps data rate, 29 5.5-Mbps data rate, 30 DTIM (delivery traffic indication message), 143 duration field, 802.11 frames, 131 dynamic interface, configuring for WLANs, 312

Ε

EAP (Extensible Authentication Protocol), 292-293 **EAP-FAST (EAP Flexible** Authentication by Secure Tunneling), 294 **EAP-TLS (EAP Transport Layer** Security), 295 ED-RRM (Event-Driven RRM), 272 using with Cisco CleanAir, 396 EIFS (extended interframe space), 132 EIRP (effective isotropic radiated power) FCC requirements, 43-44 measuring, 21-22 electromagnetic waves in wireless networks, 9 elevation plane, 90 enabling Cisco CleanAir, 392 encoding, Barker 11 code, 28 encryption, AES, 296 enterprise mode authentication (WPA/ WPA2), configuring, 300-302 ERP (Extended Rate PHY), 53 ESS (extended service set), 114-115 APs, adding, 153-161 **ETSI** (European Telecommunication Standards Institute), 44-45 Express Setup configuration, autonomous APs, 170-173

F

FCC (Federal Communications Commission), 42-44 EIRP, 43-44 transmitter requirements, 44

U-NII, 5-GHz bands, 49-51 feature support for CCX program, 352-353 FHSS (frequency-hopping spread spectrum), 26-27 finalizing WLAN configuration, 319 frames (802.11), 126-130 addressing, 128-130 collision avoidance, 132-134 comparing with 802.3 frames, 126-128 data frames, 136 duration field, 131 management frames, 134-135 securing with MFP. 298 NAV timer, 131-132 free space path loss, 72-76 calculating, 73-74 mitigating, 74-76 frequency, 10-13 5-GHz frequency bands, 12 amplitude, 15 bands, 11 bands of frequency channels, 12-13 U-NII, 42 cycles, 10 Hz, 10 microwave frequency, 11 phase, 14 RF, 11-13 absolute power measurement, 16 signal strength, 15-17 signal bandwidth, 12 watts, 15 wavelength, measuring, 14-15 Fresnel zones, 80-82

G

gain, 20-21, 91 generating WCS reports, 377-380 goals of CCX program, 352 GTC (Generic Token Card), 295 guest networks, 325 configuring, 326-328 scaling, 329-331

Η

H plane, 90 half-duplex transmission, 110 heatmaps (WCS), 370-372 high availability, 228-235 AP SSO redundancy, 233-235 controller failure, detecting, 230 N+1 redundancy, 231 N+N redundancy, 232 N+N+1 redundancy, 232-233 redundancy, 231 history of CUWN management products, 197 home area (WCS), 366-367 home page (WCS), 363 Alarm Summary dashboard, 364-365 home area, 366-367 main navigation area, 366 hot standby controller, 234 Hz (hertz), 10

IBSS (independent basic service set), 115-116

identifying IP address of APs, 168-170 sources of interference, 390-391 IEEE (Institute of Electric and Electronic Engineers), 45-47 amendments, 47 study groups, 47 task groups, 47 working groups, 46 IEEE 802.11 standard, 47-62 2.4 GHz ISM band, 47-49 5-GHz U-NII bands, 49-51 802.11-1997 standard, 52 802.11a standard, 54-55 802.11ac amendment, 62 802.11b standard, 52-53 802.11g standard, 52-54 802.11n standard, 55-56 channel aggregation, 57-58 MAC layer efficiency, 59-60 modulation, 61 MRC, 61 spatial multiplexing, 58-59 TxBF. 60-61 CSMA, 131 frames, 126-130 addressing, 128-130 collision avoidance, 132-134 comparing with 802.3 frames, 126-128 data frames, 136 duration field, 131 management frames, 134-135 NAV timer, 131-132 interframe space periods, 132-133 IEEE 802.3 standard, 7 image downloads for LAP, 225-226

infrastructure MFP, 298 initial WLC configuration using CLI, 216-217 using web browser, 208-216 integrated omnidirectional antennas, 96 integrity MIC, 288-289 TKIP, 295-296 Intel PROSet wireless client, configuring, 341-344 intercontroller roaming, 246-255 Layer 2 roaming, 247 Layer 3 roaming, 248-252 mobility groups, 252-255 interfaces, connecting WLC to switched network. 205-208 interference, 386-389 co-channel interference, 70-71 neighboring channel interference, 71-72 non-802.11 interference, 72 rogue APs. 386 sources of, 389 Bluetooth, 386-387 cordless phones, 388 locating, 390-391 microwave ovens, 388 WiMAX, 388-389 ZigBee, 387 interframe space periods, 132-133 interleaving, 27 intracontroller roaming, 244-246 intrusion protection, 289-290 IP address of APs, identifying, 168-170 ISM (industrial, scientific, and medical applications), 2.4 GHz band, 47-49

isotropic antennas EIRP, measuring, 21-22 radiation patterns, 88-91 ITU-R (International Telecommunication Union Radiocommunication Sector), 41-42 IV (Initialization Vector), 296

J-K

jammers as source of interference, 389 join process (BSS), 137-140 keepalives, detecting controller failure, 230 key exchanges during roams, 246

LAPs (lightweight access points), 187 Cisco LAPs, 194-196 image downloads, 225-226 management interface, accessing, 432-433 split-MAC architecture, 188-190 state machine, 224 WLC discovering, 226-227 selecting, 227-228 Layer 2 roaming, 247 Layer 3 roaming, 248-252 leader configuration (RF groups), 268 LEAP (Lightweight EAP), 294 leaving a BSS, 139-140 licensed bands, 42 2.4 GHz ISM band, 47-49 licensing, WCS, 363 lightning arrestors, 102

lightweight mode conversion from autonomous APs, 174-177 lightweight mode, conversion from autonomous APs Autonomous to Lightweight Mode Upgrade tool, 174-176 manual conversion, 176-177 limitations of 802.11g, 54 of wired networks, 7 line-of-sight transmission, Fresnel zones, 80-82 link budget, 22 link tests, performing, 411 local EAP, configuring, 302-305 locating sources of interference, 390-391 log files, 439 logarithms, 16 login screen, WCS, 363 loss in signal strength, measuring, 19-20

Μ

MAC layer efficiency, 59-60 magnetic waves in wireless networks, 8 main navigation area (WCS), 366 management frames (802.11), 134-135 securing with MFP, 298 management functions of autonomous APs, 187 management interface for APs, accessing, 432-433 for WLC, accessing, 430-432 managing CUWN, 197 mandatory data rates, 136 manipulating APs on maps, 373-374 manual RF configuration (RRM), 276-278 maps (WCS), 370 APs, manipulating, 373-374 displaying, 370-372 viewing information, 375-376 MCS (modulation and coding scheme), 136 measuring EIRP, 21-22 loss in signal strength, 19-20 power absolute power measurement, 16-17 dB. 17-19 **QAM**, 32 wavelength, 14-15 media, accessing wireless media, 130-134 mesh networks, 119 message privacy, 287-288 MFP (Management Frame Protection), 298 MIC (message integrity check), 288-289 microwave frequency, 11 microwave ovens as source of interference, 388 MIMO (multiple-input, multiple-output) systems, 56 mitigating free space path loss, 74-76 mobility anchors, creating for guest networks, 330-331 mobility groups, 252-255 modulation, 25-26, 802.11n standard, 61 DBPSK, 28-29

DQPSK, 29 monopole antennas, 94 moving between a BSS (clients), 140-142 MRC (maximal-ratio combining), 61 MSCHAPv2 (Microsoft Challenge Authentication Protocol), 295 multi-floor buildings, cell layout, 159-161

Ν

N+1 redundancy, 231 N+N redundancy, 232 N+N+1 redundancy, 232-233 narrowband transmissions, 26 NAV (network allocation vector) timer, 131-132 NCS (Cisco Prime Network Control System), 197 displaying RRM results, 278 wireless client connectivity, troubleshooting, 44-45 neighboring channel interference, 71-72 net loss in signal strength, measuring, 19-20 noise, 386 non-802.11 interference, 72 non-overlapping channels, 49 DCA, 272

0

OFDM (orthogonal frequency-division multiplexing), 26, 31-32 omnidirectional antennas, 94-96 dipole antennas, 94 integrated omnidirectional antennas, 96 monopole antennas, 94 open authentication, 290-291 outdoor bridges, 118 overlapping channels, DCA, 272

Ρ

PAC (protected access credential), 294 parabolic dish antennas, 99-100 passive scans, 137 patch antennas, 96-98 PEAP (Protected EAP), 294-295 performing link tests, 411 personal mode authentication (WPA), 297 configuring, 299-300 phase, 14 physical carrier sense, 131 ping tests, performing, 411 PKC (proactive key caching), 246 polarization, 92-93 ports on APs. 167-168 connecting WLC to switched network, 204-206 power absolute power measurement, 16 dB. 17-19 link budget, 22 at receiving end, 23-24 TPC, 269-271 power conservation on wireless clients, 142-144 preparing for exam, 453-454 Cisco Certification Exam Tutorial, 446-452 time management, 452-453

privacy CCMP, 296 message privacy, 287-288 WEP, 291-292 probes, 135 Project 802, 46 protected mode transmission (802.11g), 53-54 protecting message privacy, 287-288 PS-Poll frames, 136

Q

QAM (quadrature amplitude modulation), 32
QoS (Quality of Service), configuring on WLANs, 317
QPSK (quadrature phase shift keying), 32

R

radiation patterns, 88-91 radio chains, 56 RADIUS server, configuring for WLANs, 310 RC4 cipher algorithm, 291 real-time processes of autonomous APs. 187 reassociation frames, 135 rebooting controllers, 436-437 receivers loss of signal strength, measuring, 19-20 power levels, 23-24 redundancy AP SSO redundancy, 233-235 N+1 redundancy, 231

N+N redundancy, 232 N+N+1 redundancy, 232-233 reflection, 76-77 refraction, 79 regions in ITU-R, 41 regulatory bodies, 41-45 ETSI, 44-45 FCC, 42-44 EIRP, 43-44 transmitter requirements, 44 ITU-R, 41-42 repeater mode, 116 reports (WCS), generating, 377-380 RF (radio frequency), 11-13 absolute power measurement, 16 absorption, 78 amplitude, 15 antennas, 20-21 EIRP, measuring, 21-22 bands of frequency, 2.4 GHz ISM band, 47-49 carrier signals, 24 channel aggregation, 57-58 diffraction, 80 free space path loss, 72-76 calculating, 73-74 mitigating, 74-76 Fresnel zones, 80-82 interference, 386-389 Bluetooth as source of, 386-387 cordless phones as source of, 388 microwave ovens as source of, 388 rogue APs, 386 WiMAX as source of, 388-389 ZigBee as source of, 387 MAC layer efficiency, 59-60

modulation, 25-26 DBPSK, 28-29 DQPSK, 29 narrowband transmissions, 26 non-overlapping channels, 49 phase, 14 receiver power levels, 23-24 reflection, 76-77 refraction, 79 scattering, 78-79 signal strength, 15-17 spatial multiplexing, 58-59 spread spectrum DSSS, 27-28 FHSS. 26-27 watts, 15 RF groups, 267-269 RFC 5415. 224 RIFS (reduced interframe space), 132 roaming process, 155-157 with autonomous APs, 242-244 intercontroller roaming, 246-255 Layer 2 roaming, 247 Layer 3 roaming, 248-252 mobility groups, 252-255 intracontroller roaming, 244-246 key exchanges, 246 rogue APs, 290, 386 rogue clients, 290 rope analogy of wireless networks, 8 **RP-TNC** (reverse-polarity threaded Neill-Concelman) connectors, 43 RRM (Radio Resource Management), 265-278 CHDM, 274-275 DCA, 272 ED-RRM. 272

manual RF configuration, 276-278 results, displaying in NCS maps, 278 RF groups, 267-269 TPC, 269-271 **RSSI (received signal strength indicator)** scale, 23-24 **RTS/CTS frames, 136**

S

saving controller configuration files, 437-438 scanning for APs, 137 scattering, 78-79 scrambling, 27 security authentication, 286-287 *802.1x*, *292-293* EAP, 292-293 EAP-FAST, 294 EAP-TLS. 295 LEAP. 294 open authentication, 290-291 PEAP, 294-295 personal mode authentication (WPA), 297 supported schemes in CCX versions, 354-355 WEP, 291-292 CCMP, 296 integrity MIC, 288-289 TKIP, 295-296 intrusion protection, 289-290 message privacy, 287-288 MFP, 298 MIC, 288-289

shared-key security, 292 chapter 1, 2-6 WLAN, configuring, 315-317 chapter 2, 36-40 WPA, 297 chapter 3, 66-69 enterprise mode authentication, chapter 4, 84-87 configuring, 300-302 chapter 5, 104-107 personal mode authentication, chapter 6, 122-125 configuring, 299-300 chapter 7, 146-149 WPA2, 297 chapter 8, 162-165 enterprise mode authentication. chapter 9, 180-183 configuring, 300-302 chapter 10, 200-203 personal mode authentication, chapter 11, 220-223 configuring, 299-300 chapter 12, 238-242 selecting WLC, 227-228 chapter 13, 258-261 self-assessment quizzes chapter 14, 282-284 answers chapter 15, 306-308 chapter 1, 456-458 chapter 16, 322-324 *chapter 2*, 458 chapter 17, 334-337 *chapter 3*, 459 chapter 18, 358-361 chapter 4, 459-460 chapter 19, 382-385 chapter 5, 460-461 chapter 20, 400-404 chapter 6, 461 chapter 21, 426-429 chapter 7, 461-462 sending messages to trap receivers, chapter 8, 462-463 440-443 chapter 9, 463-464 shared-key security, 292 *chapter* 10, 464 show run-config command, 439 chapter 11, 464-465 SIFS (short interframe space), 132 chapter 12, 465-466 signal bandwidth, 12 chapter 13, 466 signal strength (RF), 15-17 chapter 14, 467 free space path loss, 72-76 chapter 15, 467-468 calculating, 73-74 chapter 16, 468 mitigating, 74-76 chapter 17, 468-469 link budget, 22 chapter 18, 469 loss in, measuring, 19-20 chapter 19, 469-470 RSSI, 23-24 chapter 20, 470 watts, 15 chapter 21, 471

SISO (single-in, single-out) systems, 56

SNMP, sending messages to trap receivers, 440-443 SNR (signal-to-noise ratio), 75 sources of interference, 389 Bluetooth, 386-387 cordless phones, 388 microwave ovens, 388 WiMAX, 388-389 spatial multiplexing, 58-59 spectral mask, 13 split-MAC architecture, 188-190 spread spectrum, 26 DSSS. 27-28 11-Mbps data rate, 30 1-Mbps data rate, 28-29 2-Mbps data rate, 29 5.5-Mbps data rate, 30 FHSS, 26-27 OFDM. 31-32 SSID (service set identifier), 111 bridging to VLANs, 166-167 state machine, 224 STP (Spanning Tree Protocol), 186 study groups, 47 subchannels, 31 SuperAG as source of interference, 389 supplicants, 293 supported data rates (APs), 136

Т

task groups, 47 telecommunications regulatory bodies, 41 three-dimensional channel layout, 159-161 TIM (traffic indication map), 143 time management, preparing for exam, 452-453 timing schemes, 132-133 **TKIP** (Temporal Key Integrity Protocol), 295-296 TLS (Transport Layer Security), 294 EAP-TLS, 295 TNC (threaded Neill-Concelman) connectors, 43 topologies for wireless networks, 109-119 BSS, 110-111 DS. 112-114 ESS. 114-115 IBSS. 115-116 mesh network, 119 outdoor bridge, 118 repeater mode, 116 WGB. 117-118 TPC (transmit power control), 269-271 traffic patterns in CUWN, 190-191 translational bridging, 112 transmitters absolute power measurement, 16-17 antennas, 20-21 adding accessories, 101-102 amplifiers, 101 attenuators, 102 beamwidth, 92 directional antennas, 96-100 EIRP, measuring, 21-22 gain, 91 lightning arrestors, 102 omnidirectional, 94-96 polarization, 92-93 radiation patterns, 88-91 ETSI requirements, 45

FCC requirements, 44 interference co-channel interference, 70-71 neighboring channel interference, 71-72 non-802.11 interference, 72 loss in signal strength, measuring, 19-20 narrowband transmissions, 26 power level, effect on AP cell size, 150-151 trap logs, 439-443 sending to trap receivers, 440-443 viewing, 440 troubleshooting AP connectivity, 420-424 AP-to-network connectivity, verifying, 422-423 AP-to-WLC connectivity, verifying, 420-421 wireless client connectivity, 405-419 associations, 405-406 from controller, 41-410 link tests, performing, 411 from WCS/NCS, 44-45 tuning cell size of APs, 150-153 with data rates, 152-153 with transmit power, 150-151 two-dimensional channel layout, 157-160 TxBF (transmit beam forming), 60-61

U

U-APSD (unscheduled automatic power delivery), 144unidirectional communication, 109U-NII (Unlicensed National Information Infrastructure), 42 5-GHz bands, 49-51 unlicensed bands, 42 uploading configuration files to PC, 438 uWGB (universal workgroup bridge), 118

V

verifying AP-to-network connectivity, 422-423 AP-to-WLC connectivity, 420-421 video cameras as source of interference, 389 viewing map information, 375-376 trap logs, 440 virtual carrier sense, 131 VLANs, bridging to SSIDs, 166-167

W

W (watts), 15 wave propagation, 8-9 cycles, 10 frequency, 10-13 benefits of, 362 wavelength, measuring, 14-15 WCS (Wireless Control System), 197. See also NCS (Cisco Prime Network **Control System**) controllers adding, 368-369 configuring, 368-370 home page, 363 Alarm Summary dashboard, 364-365 bome area, 366-367

main navigation area, 366 licensing, 363 login screen, 363 maps, 370 APs, manipulating, 373-374 displaying, 370-372 viewing information, 375-376 reports, generating, 377-380 wireless client connectivity, troubleshooting, 44-45 web browser, initial WLC configuration, 208-216 websites ETSI, 44 FCC, 42 IEEE, 45 ITU-R, 41 Wi-Fi Alliance, 63 WEP (Wired Equivalent Privacy), 135, 291-292 WGB (workgroup bridge), 117-118 Wi-Fi Alliance, WPA, 297 WiGig (Wireless Gigabit Alliance), 62 WiMAX as source of interference. 388-389 Windows 8, wireless client configuration, 338-340 wIPS (wireless intrusion protection system), 289-290 wired networks comparing with wireless, 7 DS. 112-114 limitations of, 7 wireless clients Android, configuring, 345 Apple OS X, configuring, 345 authentication, 286-287

open authentication, 290-291 WEP. 291-292 CCX. 352-354 feature support, 352-353 goals of, 352 CCX Lite, 354 Cisco AnyConnect Secure Mobility Client, configuring, 348-350 connectivity associations, 405-406 troubleshooting, 405-419 conserving power, 142-144 debugging, 44-415 Intel PROSet, configuring, 341-344 joining a BSS, 139-140 leaving a BSS, 139-140 moving between a BSS, 140-142 rogue clients, 290 scanning for APs, 137 Windows 7/8, configuring, 338-340 wireless networks APs, repeater mode, 116 collision avoidance, 132-134 comparing with wired, 7 distributed architecture, 184-186 electromagnetic waves, 9 frequency, 10-13 5-GHz frequency bands, 12 bands of frequency, 11 channels, 12-13 Hz. 10 phase, 14 RF. 11-13 signal bandwidth, 12 rope analogy, 8 topologies, 109-119

BSS. 110-111 ESS. 114-115 IBSS, 115-116 mesh network, 119 outdoor bridge, 118 WGB, 117-118 wave propagation, 8-9 cycles, 10 wireless LANs, 108 WLANs, 108 WMANs, 108 WPANs, 108 WWANs, 109 WiSM2 (Wireless Service Module 2), 192 WLANs (wireless local-area networks), 108, 309-310 advanced settings, configuring, 318-319 channel layout, 157-161 configuring, 310-312, 315-319 creating, 313-315 dynamic interface, configuring, 312 QoS, configuring, 317 RADIUS server, configuring, 310 security, configuring, 315-317 WLC (wireless LAN controller), 190 configuration files displaying, 439 saving, 437-438 uploading to PC, 438 configuring with CLI. 216-217 with web browser, 208-216 connecting to switched network, 204-217 using controller interfaces,

205-208 using controller ports, 204-206 as CUWN building block, 192-194 discovering, 226-227 management interface, accessing, 430-432 selecting, 227-228 trap logs, 439-443 WMANs (wireless metropolitan-area networks), 108 WMM (Wireless Multimedia), 144 working groups, 46 WPA (Wi-Fi Protected Access), 297 personal mode authentication, configuring, 299-300 WPA2 (Wi-Fi Protected Access version 2), 297 local EAP, configuring, 302-305 personal mode authentication, configuring, 299-300 WPANs (wireless personal-area networks), 108 WWANs (wireless wide-area networks), 109 X-Y-Z

Xbox as source of interference, 389 Yagi-Uda antennas, 98-99 zero gain antennas, 91 ZigBee as source of interference, 387