31 Days Before Your CCNA Routing and Switching Exam
Third Edition

Allan Johnson

A Day-By-Day Review Guide for the ICND2 (200-101) Certification Exam

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
31 Days Before Your CCNA Routing and Switching Exam

A Day-By-Day Review Guide for the ICND2 (200-101) Certification Exam

Third Edition

Allan Johnson
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher
Paul Boger
Associate Publisher
Dave Dusthimer
Business Operation Manager, Cisco Press
Jan Cornelissen
Executive Editor
Mary Beth Ray
Managing Editor
Sandra Schroeder
Senior Development Editor
Christopher Cleveland
Project Editor
Mandie Frank
Copy Editor
Keith Cline
Technical Editor
Steve Stiles
Editorial Assistant
Vanessa Evans
Designer
Mark Shirar
Composition
Bumpy Design
Indexer
Ken Johnson
Proofreader
Chuck Hutchinson
About the Author

Allan Johnson entered the academic world in 1999 after 10 years as a business owner/operator to dedicate his efforts to his passion for teaching. He holds both an MBA and an MEd in Occupational Training and Development. He taught CCNA courses at the high school level for 7 years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team, providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for Cisco Networking Academy as a Learning Systems Developer.

About the Technical Reviewer

Steve Stiles is a Cisco Network Academy Instructor for Rhodes State College and a Cisco Certified Instructor Trainer, having earned CCNA Security and CCNP-level certifications. He was the recipient of the 2012 Outstanding Teacher of the Year by the Ohio Association of Two Year Colleges and co-recipient for the Outstanding Faculty of the Year at Rhodes State College.
Dedication

For my wife, Becky. Without the sacrifices you made during the project, this work would not have come to fruition. Thank you for providing me the comfort and resting place only you can give.
Acknowledgments

When I began to think of whom I would like to have as a technical editor for this work, Steve Stiles immediately came to mind. With his instructor and industry background, in addition to his excellent work building activities for the new Cisco Networking Academy curriculum, he was an obvious choice. Thankfully, when Mary Beth Ray contacted him, he was willing and able to do the arduous review work necessary to make sure that you get a book that is both technically accurate and unambiguous.

This book is a concise summary of the work of Cisco Press CCNA authors. Wendell Odom’s *Cisco CCENT/CCNA ICND2 200-101 Official Cert Guide* and John Tiso’s *Interconnecting Cisco Network Devices, Part 2 (ICND2) Foundation Learning Guide* were two of my main sources. The different approaches these two authors—both CCIEs—take toward the CCNA material gives the reader the breadth and the depth needed to master the CCNA exam topics.

The Cisco Network Academy authors for the online curriculum and series of Companion Guides take the reader deeper, past the CCNA exam topics, with the ultimate goal of not only preparing the student for CCNA certification, but for more advanced college-level technology courses and degrees, as well. Thank you especially to Amy Gerrie and her team of authors—Rick Graziani, Wayne Lewis, and Bob Vachon—for their excellent treatment of the material; it is reflected throughout this book.

Mary Beth Ray, executive editor, amazes me with her ability to juggle multiple projects simultaneously, steering each from beginning to end. I can always count on her to make the tough decisions. Thank you, Mary Beth, for bringing this project to me.

I’ve lost count, but this may be the tenth project with Christopher Cleveland as development editor. His dedication to perfection pays dividends in countless, unseen ways. Thank you again, Chris, for providing me with much needed guidance and support. This book could not be a reality without your persistence.
Contents at a Glance

Introduction xxiv

Day 31 Spanning Tree Protocols 1
Day 30 PVST and Rapid PVST+ Operation and Configuration 7
Day 29 EtherChannel Concepts and Configuration 17
Day 28 Routing Processes and Protocols 25
Day 27 Booting the Router 33
Day 26 IOS Images and Licensing 41
Day 25 Backing Up and Restoring Files 51
Day 24 OSPFv2 Modification 59
Day 23 OSPFv3 Modification 77
Day 22 EIGRP Concepts 85
Day 21 EIGRP for IPv4 Implementation 95
Day 20 EIGRP for IPv6 Implementation 111
Day 19 Varieties of FHRP 121
Day 18 FHRP Configurations 125
Day 17 SNMP and Syslog 133
Day 16 Utilizing NetFlow 145
Day 15 Troubleshooting Methodology 151
Day 14 Troubleshooting STP and EtherChannel 161
Day 13 Troubleshooting Inter-VLAN Routing 167
Day 12 Troubleshooting Routing 173
Day 11 Troubleshooting OSPF 179
Day 10 Troubleshooting EIGRP 183
Day 9 WAN Technology Overview 187
Day 8 WAN Connection Options and VPNs 193
Day 7 Serial Connections 211
<table>
<thead>
<tr>
<th>Day</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 6</td>
<td>PPP</td>
<td>217</td>
</tr>
<tr>
<td>Day 5</td>
<td>Frame Relay</td>
<td>225</td>
</tr>
<tr>
<td>Day 4</td>
<td>PPPoE</td>
<td>241</td>
</tr>
<tr>
<td>Day 3</td>
<td>Troubleshooting WAN Issues</td>
<td>245</td>
</tr>
<tr>
<td>Day 2</td>
<td>NAT</td>
<td>251</td>
</tr>
<tr>
<td>Day 1</td>
<td>CCNA Skills Review and Practice</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Exam Day</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Post-Exam Information</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>291</td>
</tr>
</tbody>
</table>
## Contents

**Introduction**  xxiv

**Day 31: Spanning Tree Protocols**  1

- CCNA 200-101 ICND2 Exam Topics  1
- Key Topics  1
  - STP Concepts and Operation  1
  - STP Algorithm  2
  - STP Convergence  2
- STP Varieties  4
- Study Resources  5

**Day 30: PVST and Rapid PVST+ Operation and Configuration**  7

- CCNA 200-101 ICND2 Exam Topics  7
- Key Topics  7
- PVST Operation  7
  - Port States  8
    - Extended System ID  8
- Rapid PVST+ Operation  9
  - RSTP Interface Behavior  9
  - RSTP Port Roles  10
  - Edge Ports  11
- Configuring and Verifying Varieties of STP  12
  - STP Configuration Overview  12
  - Configuring and Verifying the BID  12
  - Configuring PortFast  14
  - Configuring Rapid PVST+  15
  - Verifying STP  15
- Study Resources  16

**Day 29: EtherChannel Concepts and Configuration**  17

- CCNA 200-101 ICND2 Exam Topics  17
- Key Topics  17
- EtherChannel Operation  17
  - Benefits of EtherChannel  18
Implementation Restrictions 18
EtherChannel Protocols 19
Port Aggregation Protocol 19
Link Aggregation Control Protocol 20
Configuring EtherChannel 20
Verifying EtherChannel 21
Study Resources 23

Day 28: Routing Processes and Protocols 25
CCNA 200-101 ICND2 Exam Topics 25
Key Topics 25
Dynamic Routing Metrics 25
Administrative Distance 26
IGP Comparison Summary 28
Routing Loop Prevention 28
Link-State Routing Protocol Features 29
Building the LSDB 29
Calculating the Dijkstra Algorithm 30
Convergence with Link-State Protocols 31
Study Resources 32

Day 27: Booting the Router 33
CCNA 200-101 ICND2 Exam Topics 33
Key Topics 33
Router Internal Components 33
IOS 34
Router Boot Process 35
Changing the Configuration Register 36
Locating and Loading the Cisco IOS Image to Load 37
Selecting and Loading the Configuration 39
Study Resources 40

Day 26: IOS Images and Licensing 41
CCNA 200-101 ICND2 Exam Topics 41
Key Topics 41
Day 23: OSPFv3 Modification

CCNA 200-101 ICND2 Exam Topics

Key Topics

OSPFv3 Configuration Review

Modifying the OSPFv3 Configuration

Propagating a Default Route

Modifying the Timers

Configuring Multi-Area OSPFv3

Study Resources

Day 22: EIGRP Concepts

CCNA 200-101 ICND2 Exam Topics

Key Topics

EIGRP Overview

EIGRP Characteristics

PDMs

RTP

EIGRP Packet Types

EIGRP Message Format

EIGRP Operation

EIGRP Convergence

EIGRP Composite Metric

Administrative Distance

DUAL

DUAL Concepts

DUAL FSM

Study Resources
Day 21: EIGRP for IPv4 Implementation 95
CCNA 200-101 ICND2 Exam Topics 95
Key Topics 95
Configuring EIGRP for IPv4 95
   EIGRP Topology and Addressing Scheme 95
   The network Command 96
   The Router ID 96
Verifying EIGRP for IPv4 97
   Examining the Protocol Details 97
   Examining Neighbor Tables 98
   Examining Topology Tables 99
   Examining the Routing Table 101
Modifying the EIGRP for IPv4 Configuration 102
   Automatic Summarization 102
   Manual Summarization 103
   Propagating an IPv4 Default Route 105
   Modifying the EIGRP Metric 106
   Modifying Hello Intervals and Hold Times 106
   Authenticating EIGRP Messages 107
Study Resources 109

Day 20: EIGRP for IPv6 Implementation 111
CCNA 200-101 ICND2 Exam Topics 111
Key Topics 111
EIGRP for IPv6 Concepts 111
Configuring EIGRP for IPv6 112
Verifying EIGRP for IPv6 114
   Examining the Protocol Details 114
   Examining Neighbor Table 115
   Examining the Routing Table 115
Modifying EIGRP for IPv6 116
   Manual Summarization 116
   Propagating an IPv6 Default Route 118
Day 19: Varieties of FHRP  121
  CCNA 200-101 ICND2 Exam Topics  121
  Key Topics  121
  First-Hop Redundancy Concepts  121
  FHRPs  122
    HSRP  122
    GLBP  123
  Study Resources  124

Day 18: FHRP Configurations  125
  CCNA 200-101 ICND2 Exam Topics  125
  Key Topics  125
  HSRP Configuration  125
  GLBP Configuration  128
  Study Resources  131

Day 17: SNMP and Syslog  133
  CCNA 200-101 ICND2 Exam Topics  133
  Key Topics  133
  SNMP Operation  133
    SNMP Components  133
    SNMP Messages  133
    SNMP Versions  134
    The Management Information Base  134
  Configuring SNMP  136
  Verifying SNMP  136
  Syslog  138
    Syslog Operation  138
    Syslog Configuration and Verification  140
  Study Resources  142
Day 16: Utilizing NetFlow  145

CCNA 200-101 ICND2 Exam Topics  145
Key Topics  145
NetFlow Operation  145
Configuring NetFlow  146
Verifying and Using NetFlow  147
Examining NetFlow Data  148
Study Resources  150

Day 15: Troubleshooting Methodology  151

CCNA 200-101 ICND2 Exam Topics  151
Key Topics  151
Troubleshooting Documentation  151
  Configuration Files  151
  Topology Diagrams  152
  Baseline Date  153
Troubleshooting Methods  154
Troubleshooting at Each Layer  156
  Physical Layer  156
  Data-Link Layer  156
  Network Layer  156
  Transport Layer  157
  Application Layer  158
  Bottom-Up and the Layers  159
Study Resources  159

Day 14: Troubleshooting STP and EtherChannel  161

CCNA 200-101 ICND2 Exam Topics  161
Key Topics  161
Troubleshooting STP  161
Troubleshooting EtherChannel  162
  Incorrect channel-group Command Configuration  162
  Physical Interface Mismatches  164
Study Resources  165
Day 13: Troubleshooting Inter-VLAN Routing  167
CCNA 200-101 ICND2 Exam Topics  167
Key Topics  167
Inter-VLAN Routing Configuration  167
Inter-VLAN Routing Issues  170
  Physical Connections  170
  Trunking Configuration  170
  IP Addressing Issues  171
Study Resources  171

Day 12: Troubleshooting Routing  173
CCNA 200-101 ICND2 Exam Topics  173
Key Topics  173
  Normal Routing Behavior  173
  Routing Protocol Operations  174
  The Basic Routing Troubleshooting Commands  174
  VLSM Troubleshooting  176
Study Resources  177

Day 11: Troubleshooting OSPF  179
CCNA 200-101 ICND2 Exam Topics  179
Key Topics  179
  OSPF Operational Considerations  179
    OSPF States  179
    OSPF Adjacency  180
    OSPF Troubleshooting Commands  180
Study Resources  182

Day 10: Troubleshooting EIGRP  183
CCNA 200-101 ICND2 Exam Topics  183
Key Topics  183
  EIGRP Troubleshooting Commands  183
  Discontiguous Networks  185
Study Resources  186
Day 9: WAN Technology Overview  187
  CCNA 200-101 ICND2 Exam Topics  187
  Key Topics  187
  WAN Technology Concepts  187
    WAN Components  187
    WAN Devices  189
  WAN Operations  190
    WAN Physical Layer Standards  190
    WAN Data-Link Protocols  191
    WAN Switching  191
  Study Resources  192

Day 8: WAN Connection Options and VPNs  193
  CCNA 200-101 ICND2 Exam Topics  193
  Key Topics  193
  WAN Connection Options  193
    Dedicated Connection Options  194
    Circuit-Switched Connection Options  194
    Packet-Switched Connection Options  195
      Metro Ethernet  196
      Frame Relay  196
    Internet Connection Options  197
      DSL  197
      Cable Modem  198
      Wireless  198
    Choosing a WAN Link Option  199
  VPN Technology  199
    VPN Benefits  200
    Types of VPN Access  200
    VPN Components  201
    Establishing Secure VPN Connections  202
      VPN Tunneling  202
      VPN Encryption Algorithms  203
Hashes 204
VPN Authentication 204
IPsec Security Protocols 204
GRE Tunneling 207
GRE Characteristics 207
GRE Configuration 208

Study Resources 210

Day 7: Serial Connections 211
CCNA 200-101 ICND2 Exam Topics 211
Key Topics 211
Serial Communications 211
HDLC 213
   HDLC Encapsulation 213
   Configuring HDLC 214
   Verifying HDLC 214
Study Resources 215

Day 6: PPP 217
CCNA 200-101 ICND2 Exam Topics 217
Key Topics 217
PPP Concepts 217
   The PPP Frame Format 217
   PPP Link Control Protocol (LCP) 218
      Looped-Link Detection 218
      Enhanced Error Detection 219
      PPP Multilink 219
      PPP Authentication 219
PPP Configuration and Verification 220
   Basic PPP 220
      CHAP 221
      PAP 222
Study Resources 223
Day 5: Frame Relay  225
CCNA 200-101 ICND2 Exam Topics  225
Key Topics  225
Frame Relay Concepts  225
  Frame Relay Components  226
  Frame Relay Topologies  227
  NBMA Limitations and Solutions  228
  Inverse ARP and LMI Concepts  229
  Inverse ARP and LMI Operation  231
Configuring and Verifying Frame Relay  232
  Full Mesh with One Subnet  233
    Configuring the Encapsulation  234
    Configuring the LMI Type  235
    Configuring Static Frame Relay Maps  235
  Partial Mesh with One Subnet per PVC  236
  Frame Relay Verification  238
Study Resources  239

Day 4: PPPoE  241
CCNA 200-101 ICND2 Exam Topics  241
Key Topics  241
PPPoE Concepts  241
PPPoE Configuration  242
Study Resources  243

Day 3: Troubleshooting WAN Issues  245
CCNA 200-101 ICND2 Exam Topics  245
Key Topics  245
Troubleshooting WAN Implementations  245
Troubleshooting Layer 1 Problems  246
Troubleshooting Layer 2 Problems  247
Troubleshooting Layer 3 Problems  248
Study Resources  249
Day 2: NAT 251

CCNA 200-101 ICND2 Exam Topics 251
Key Topics 251
NAT Concepts 251
  A NAT Example 252
  Dynamic and Static NAT 253
  NAT Overload 253
  NAT Benefits 254
  NAT Limitations 254
Configuring Static NAT 255
  Configuring Dynamic NAT 256
  Configuring NAT Overload 257
Verifying NAT 258
Troubleshooting NAT 259
NAT for IPv6 260
  IPv6 Private Address Space 260
  Purpose of NAT for IPv6 261
Study Resources 262

Day 1: CCNA Skills Review and Practice 263

Key Topics 263
CCNA Skills Practice 263
  Introduction 263
  Topology Diagram 263
  Addressing Table 264
  VLAN Configuration and Port Mappings 265
  ISP Configuration 265
  Task 1: Configure Frame Relay in a Hub-and-Spoke Topology 266
  Task 2: Configure PPP with CHAP 266
  Task 3: Configure Static and Dynamic NAT on HQ 267
  Task 4: Configure Default Routing 267
  Task 5: Configure Inter-VLAN Routing 267
  Task 6: Configure and Optimize EIGRP Routing 267
Icons Used in This Book

Router  Wireless Router  Wireless Access Point  Hub  Hub (alternate)

Multilayer Switch  Switch  ATM Switch  Relay Switch  WAN Switch  PBX Switch

Cisco ASA  Router with Firewall  PIX Firewall  Firewall  VPN Concentrator

DSLAM  CSU/DSU  Access Server  Voice-Enabled Access Server  Modem

IP Phone  Phone  Server  IP/TV Broadcast Server  Network Management Server

Web Server  Laptop  PC  Network Cloud  Ethernet Connection

Serial Line Connection  Wireless Connection
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([ ]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({{ }}) indicate a required choice within an optional element.
**Introduction**

If you're reading this Introduction, you've probably already spent a considerable amount of time and energy pursuing your CCNA certification. You're taking one of two paths. Either you've passed the Interconnecting Cisco Network Devices Part 1 (ICND1 100-101) exam and are now just about ready to take the second exam, ICND2 200-101, or you are planning on taking the full Cisco Certified Network Associate Exam (CCNA 200-120). If you are on the second path, hopefully you also purchased *31 Days Before Your CCENT Certification Exam* (ISBN: 9781587204531), because this book only addresses topics covered on the ICND2 exam. Regardless of how you got to this point in your travels through your CCNA studies, *31 Days Before Your CCNA Certification Exam* most likely represents the last leg of your journey on your way to the destination: to become a Cisco Certified Network Associate. However, if you are like me, you might be reading this book at the beginning of your studies. If so, this book provides an excellent overview of the material you must now spend a great deal of time studying and practicing. But I must warn you; unless you are extremely well versed in networking technologies and have considerable experience configuring and troubleshooting Cisco routers and switches, this book will not serve you well as the sole resource for your exam preparations. Therefore, let me spend some time discussing my recommendations for study resources.

**Study Resources**

Cisco Press offers an abundance of CCNA-related books to serve as your primary source for learning how to install, configure, operate, and troubleshoot small- to medium-size routed and switched networks.

---

**NOTE:** The following discussion focuses mainly on resources for the ICND2 exam. If you are taking the CCNA 200-120 exam, refer to the Study Resources recommendation in the Introduction of the *31 Days Before Your CCENT Certification Exam* book (9781587204531).

---

**Primary Resources**

First on the list must be Wendell Odom's *Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide* (ISBN: 9781587143731). If you do not buy any other books, buy this one. Wendell’s method of teaching, combined with his technical expertise and down-to-earth style, is unsurpassed in our industry. As you read through his books, you sense that he is sitting right there next to you walking you through the material. The practice exams and study materials on the DVD in the back of the book are worth the price of the book. There is no better resource on the market for a CCNA candidate.

Next on the list must be John Tiso’s *Interconnecting Cisco Network Devices, Part 2 (ICND2) Foundation Learning Guide* (ISBN: 9781587143779). This book is indispensable to those students who take the second of two Cisco recommended training classes for CCNA preparation: Interconnecting Cisco Network Devices 2 (ICND2). These courses, available through Cisco Training Partners in a variety of formats, are usually of a very short duration (1 to 6 weeks) and are geared toward the industry professional already working
in the field of networking. John's book serves the reader well as a concise, but thorough, treatment of the CCNA exam topics. His method and approach often differ and complement Wendell's approach. I recommend that you also refer to this book.

If you are a Cisco Networking Academy student, you are blessed with access to the online version of the CCNA Routing and Switching curriculum and the wildly popular Packet Tracer network simulator. Although there are currently two paths for the CCNA curriculum, I used the Scaling Networks (SN) and Connecting Networks (CN) courses in my daily review of the exam topics. SN describes the architecture, components, and operations of routers and switches in larger and more complex networks. Students learn how to configure routers and switches for advanced functionality. By the end of this course, students will be able to configure and troubleshoot routers and switches and resolve common issues with OSPF, EIGRP, and STP in both IPv4 and IPv6 networks. Students will also develop the knowledge and skills needed to implement a WLAN in a small- to medium-size network. CN discusses the WAN technologies and network services required by converged applications in a complex network. The course enables students to understand the selection criteria of network devices and WAN technologies to meet network requirements. Students learn how to configure and troubleshoot network devices and resolve common issues with data-link protocols. Students also develop the knowledge and skills needed to implement virtual private network (VPN) operations in a complex network. To learn more about CCNA Routing and Switching courses and to find an Academy near you, visit http://www.netacad.com.

However, if you are not an Academy student but want to benefit from the extensive authoring done for these courses, you can buy any or all of CCNA Routing and Switching Companion Guides (CGs) and Lab Manuals (LMs) of the Academy's popular online curriculum. Although you will not have access to the Packet Tracer network simulator software, you will have access to the tireless work of an outstanding team of Cisco Academy instructors dedicated to providing students with comprehensive and engaging CCNA preparation course material. The titles and ISBNs for the CCNA Routing and Switching CGs and LMs are as follows:

- **Scaling Networks Lab Manual** (ISBN: 9781587133251)
- **Connecting Networks Lab Manual** (ISBN: 9781587133312)

You can find these books at http://www.ciscopress.com by clicking the Cisco Networking Academy link.

**Supplemental Resources**

In addition to the book you hold in your hands, I recommend four more supplemental resources to augment your final 31 days of review and preparation.

First, a plug for my own book, the *CCNA Practice and Study Guide, Exercises, Activities and Scenarios to Prepare for the ICND2/CCNA* (ISBN: 9781587133442). The subtitle is a concise summary of what you will get. Although an appropriate resource for anyone,
this book is specifically geared toward the Cisco Networking Academy instructors and students who want a resource to supplement the online curriculum. Mirroring the chapter layout of the last two online courses, the CCNA PSG offers exercises that help you learn the concepts and configurations that are crucial to your success as a CCNA candidate.

Second, Wendell Odom and Sean Wilkins have created more than 250 structured labs that are available in the Cisco CCNA 200-120 Network Simulator. These simulations map precisely to chapters in their book, but are also a great practice resource for anyone. The four types of labs in this product present you with progressively more difficult real-world challenges:

- Skill builder labs help you practice short, focused configuration tasks.
- Subnetting exercises help you improve the speed and accuracy of your subnetting calculations.
- Complex configuration scenario labs present realistic multi-layered, multi-technology configuration tasks.
- Challenging troubleshooting scenario labs provide you with an opportunity to test your problem identification and resolution skills.

If you need that extra edge or are struggling with a particular configuration or troubleshooting concept, you'll find these simulations very helpful.

Third, Eric Rivard is the author of Cisco CCNA 200-120 Flash Cards and Exam Practice Pack (ISBN: 9781587204005). The text portion of the book includes more than 450 flash cards that quickly review exam topics in bite-sized pieces. Also included are more than 100 pages in the Quick Reference Guide, which is designed for late-stage exam preparation. And on the included CD, you will find a test engine with more than 150 CCENT and CCNA practice exam questions.

Fourth, there is Scott Empson’s very popular CCNA Routing and Switching Portable Command Guide, Third Edition (ISBN: 9781587204302). This guide is much more than just a listing of commands and what they do. Yes, it summarizes all the CCNA certification-level IOS commands, keywords, command arguments, and associated prompts. But it also provides you with tips and examples of how to apply the commands to real-world scenarios. Configuration examples throughout the book provide you with a better understanding of how these commands are used in simple network designs.

The Cisco Learning Network

Finally, if you have not done so already, you should now register with The Cisco Learning Network at https://learningnetwork.cisco.com. Sponsored by Cisco, The Cisco Learning Network is a free social learning network where IT professionals can engage in the common pursuit of enhancing and advancing their IT careers. Here you can find many resources to help you prepare for your CCNA exam, in addition to a community of like-minded people ready to answer your questions, help you with your struggles, and share in your triumphs.
So, which resources should you buy? The answer to that question depends largely on how deep your pockets are or how much you like books. If you're like me, you must have it all! I admit it. My bookcase is a testament to my Cisco “geekness.” But if you are on a budget, choose one of the primary study resources and one of the supplemental resources (such as Wendell Odom’s certification book and my practice study guide). Whatever you choose, you will be in good hands. Any or all of these authors will serve you well.

Goals and Methods
The main goal of this book is to provide you with a clear and succinct review of the CCNA objectives. Each day’s exam topics are grouped into a common conceptual framework and use the following format:

- A title for the day that concisely states the overall topic
- A list of one or more CCNA 200-101 exam topics to be reviewed
- A “Key Topics” section to introduce the review material and quickly orient you to the day’s focus
- An extensive review section consisting of short paragraphs, lists, tables, examples, and graphics
- A “Study Resources” section to provide you a quick reference for locating more in-depth treatment of the day’s topics

The book counts down starting with Day 31 and continues through exam day to provide post-test information. Inside this book, you will also find a calendar and checklist that you can tear out and use during your exam preparation.

Use the calendar to enter each actual date beside the countdown day and the exact day, time, and location of your CCNA exam. The calendar provides a visual for the time that you can dedicate to each CCNA exam topic.

The checklist highlights important tasks and deadlines leading up to your exam. Use it to help you map out your studies.

Who Should Read This Book?
The audience for this book is anyone finishing preparation for taking the CCNA 200-101 ICND2 exam. A secondary audience is anyone needing a refresher review of CCNA exam topics—possibly before attempting to recertify or sit for another certification for which the CCNA is a prerequisite.

Getting to Know the CCNA 200-201 Exam
For the current certifications, announced in Spring 2013, Cisco created the ICND1 (100-101) and ICND2 (200-101) exams, along with the CCNA (200-120) exam. To become CCENT certified, you need to pass just the ICND1 exam. To become CCNA Routing and Switching certified, you must pass both the ICND1 and ICND2 exams, or just the CCNA exam. The CCNA exam simply covers all the topics on the ICND1 and ICND2 exams,
giving you two options for gaining your CCNA Routing and Switching certification. The two-exam path gives people with less experience a chance to study for a smaller set of topics at one time. The one-exam option provides a more cost-effective certification path for those who want to prepare for all the topics at once. This book focuses exclusively on the second exam of two-exam path using the entire list of topics published for the CCNA 200-101 ICND2 exam.

Currently for the CCNA exam, you are allowed 90 minutes to answer 50–60 questions. Use the following steps to access a tutorial at home that demonstrates the exam environment before you go to take the exam:

**Step 1**  Visit http://www.vue.com/cisco.

**Step 2**  Look for a link to the certification tutorial. Currently, it appears on the right side of the web page under the heading “Related Links.”

**Step 3**  Click the Certification Tutorial link.

When you get to the testing center and check in, the proctor verifies your identity, gives you some general instructions, and then takes you into a quiet room containing a PC. When you’re at the PC, you have a few things to do before the timer starts on your exam. For instance, you can take the tutorial to get accustomed to the PC and the testing engine. Every time I sit for an exam, I go through the tutorial even though I know how the test engine works. It helps me settle my nerves and get focused. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

When you start the exam, you are asked a series of questions. Each question is presented one at a time and must be answered before moving on to the next question. The exam engine does not let you go back and change your answer. The exam questions can be in one of the following formats:

- Multiple choice
- Fill in the blank
- Drag and drop
- Testlet
- Simlet
- Simulation

The multiple-choice format simply requires that you point and click a circle or check box next to the correct answer or answers. Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many or too few.

Fill-in-the-blank questions usually only require you to type numbers. However, if words are requested, the case does not matter unless the answer is a command that is case sensitive (such as passwords and device names when configuring authentication).
Drag-and-drop questions require you to click and hold, move a button or icon to another area, and release the mouse button to place the object somewhere else—usually in a list. For some questions, to get the question correct, you might need to put a list of five things in the proper order.

Testlets contain one general scenario and several multiple-choice questions about the scenario. These are ideal if you are confident in your knowledge of the scenario’s content because you can leverage your strength over multiple questions.

A simlet is similar to a testlet in that you are given a scenario with several multiple-choice questions. However, a simlet uses a network simulator to allow you access to a simulation of the command line of Cisco IOS Software. You can then use `show` commands to examine a network’s current behavior and answer the question.

A simulation also uses a network simulator, but you are given a task to accomplish such as implementing a network solution or troubleshooting an existing network implementation. You do this by configuring one or more routers and switches. The exam then grades the question based on the configuration you changed or added. A newer form of the simulation question is the GUI-based simulation, where a graphical interface like that found on a Linksys router or Cisco’s Security Device Manager is simulated.

**What Topics Are Covered on the CCNA Exam**
The topics of the CCNA 200-101 ICND2 exam focus on the following five key categories:

- LAN switching technologies
- IP routing technologies
- IP services
- Troubleshooting
- WAN technologies

Although Cisco outlines general exam topics, it is possible that not all topics will appear on the CCNA exam and that topics that are not specifically listed might appear on the exam. The exam topics provided by Cisco and included in this book are a general framework for exam preparation. Be sure to check Cisco’s website for the latest exam topics.

**Registering for the CCNA 200-101 ICND2 Exam**
If you are starting your *31 Days to Your CCNA Certification Exam* today, register for the exam right now. In my testing experience, there is no better motivator than a scheduled test date staring me in the face. I’m willing to bet it’s the same for you. Don’t worry about unforeseen circumstances. You can cancel your exam registration for a full refund up to 24 hours before taking the exam. So, if you’re ready, gather the following information in Table I-1 and register right now!
Table I-1  Personal Information for CCNA 200-101 ICND2 Exam Registration

<table>
<thead>
<tr>
<th>Item</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Name</td>
<td></td>
</tr>
<tr>
<td>Social Security or Passport Number</td>
<td></td>
</tr>
<tr>
<td>Cisco Certification ID or Test ID</td>
<td>Applies to exam candidates who have previously taken a Cisco certification exam</td>
</tr>
<tr>
<td>Cisco Academy Username</td>
<td>Applies to Cisco Networking Academy students only</td>
</tr>
<tr>
<td>Cisco Academy ID Number</td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td></td>
</tr>
<tr>
<td>Valid Email Address</td>
<td></td>
</tr>
<tr>
<td>Voucher Number</td>
<td></td>
</tr>
<tr>
<td>Method of Payment</td>
<td></td>
</tr>
</tbody>
</table>

To register for an exam, visit Pearson VUE online at http://www.vue.com/cisco. The process and available test times will vary based on the local testing center you choose.

Remember, there is no better motivation for study than an actual test date. Sign up today.
Spanning Tree Protocols

CCNA 200-101 ICND2 Exam Topics

- Identify enhanced switching technologies

Key Topics

Part I focuses on switching technologies, including Spanning Tree Protocol (STP), EtherChannel, and first-hop redundancy protocols (FHRPs). Today’s review covers STP and its variations, standards that allow for redundant switched networks without worrying about switching loops.

STP Concepts and Operation

One of the key characteristics of a well-built communications network is its resiliency. This means that the network needs to be able to handle a device or link failure through redundancy. A redundant topology can eliminate a single point of failure by using multiple links, multiple devices, or both. Spanning Tree Protocol (STP) helps to prevent loops in a redundant switched network. Figure 31-1 shows an example of a three-layer topology (core, distribution, access) with redundant links.

Figure 31-1 Redundant Switched Topology
Without STP, redundancy in the switched network could introduce the following issues:

- **Broadcast storms**: Each switch floods broadcasts endlessly, called a broadcast storm.
- **Multiple frame transmission**: Multiple copies of unicast frames may be delivered to the destination, causing unrecoverable errors.
- **MAC database instability**: Instability in the content of the MAC address table results from copies of the same frame being received on different ports of the switch.

**STP Algorithm**

STP is an IEEE committee standard defined as 802.1D. STP places certain ports in the blocking state so that they do not listen to, forward, or flood data frames. STP creates a tree that ensures that only one path exists to each network segment at any one time. Then, if any segment experiences a disruption in connectivity, STP rebuilds a new tree by activating the previously inactive, but redundant, path.

The algorithm used by STP chooses the interfaces that should be placed into a forwarding state. For any interfaces not chosen to be in a forwarding state, STP places the interfaces in blocking state.

Switches exchange STP configuration messages every 2 seconds by default using a multicast frame called the bridge protocol data unit (BPDU). One of the pieces of information included in the BPDU is the bridge ID (BID).

As shown in Figure 31-2, the BID is unique to each switch and is composed of a priority value (2 bytes) and the bridge MAC address (6 bytes).

![Figure 31-2 Bridge ID](image)

The default priority is 32,768. The root bridge is the bridge with the lowest BID. Therefore, if the default priority value is not changed, the switch with the lowest MAC address becomes root.

**STP Convergence**

STP convergence is the process by which the switches collectively realize that something has changed in the LAN topology and so the switches might need to change which ports block and which ports forward. The following steps summarize the STP algorithm used to achieve convergence:
Step 1  Elect a root bridge (switch with lowest BID). There can be only one root bridge per network. All ports on the root bridge are forwarding ports.

Step 2  Elect a root port for each nonroot switch, based on lowest root path cost. Each nonroot switch has one root port. The root port is the port through which the nonroot bridge has its best path to the root bridge.

Step 3  Elect a designated port for each segment, based on the lowest root path cost. Each link will have one designated port.

Step 4  The root ports and designated ports transition to the forwarding state, and the other ports stay in the blocking state.

Table 31-1 summarizes the reasons STP places a port in forwarding or blocking state.

<table>
<thead>
<tr>
<th>Characterization of Port</th>
<th>STP State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the root switch’s ports</td>
<td>Forwarding</td>
<td>The root switch is always the designated switch on all connected segments.</td>
</tr>
<tr>
<td>Each nonroot switch’s root port</td>
<td>Forwarding</td>
<td>The port through which the switch has the least cost to reach the root switch.</td>
</tr>
<tr>
<td>Each LAN’s designated port</td>
<td>Forwarding</td>
<td>The switch forwarding the lowest-cost BPDU onto the segment is the designated switch for that segment.</td>
</tr>
<tr>
<td>All other working ports</td>
<td>Blocking</td>
<td>The port is not used for forwarding frames, nor are any frames received on these interfaces considered for forwarding.</td>
</tr>
</tbody>
</table>

Port bandwidth is used to determine the cost to reach the root bridge. Table 31-2 lists the default port costs defined by IEEE, which had to be revised with the advent of 10-Gbps ports.

<table>
<thead>
<tr>
<th>Ethernet Speed</th>
<th>Original IEEE Cost</th>
<th>Revised IEEE Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10 Gbps</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

STP uses the four states shown in Figure 31-3 as a port transitions from blocking to forwarding.
A fifth state, disabled, occurs either when a network administrator manually disables the port or a security violation disables the port.

**STP Varieties**

Several varieties of STP have emerged after the original IEEE 802.1D:

- **STP**: The original specification of STP, defined in 802.1D, provides a loop-free topology in a network with redundant links. STP is sometimes referred to as Common Spanning Tree (CST) because it assumes one spanning tree instance for the entire bridged network, regardless of the number of VLANs.

- **PVST+**: Per-VLAN Spanning Tree Plus is a Cisco enhancement of STP that provides a separate 802.1D spanning tree instance for each VLAN configured in the network.

- **RSTP**: Rapid STP, or IEEE 802.1w, is an evolution of STP that provides faster convergence than STP. However, RSTP still only provides for a single instance of STP.

- **Rapid PVST+**: Cisco enhancement of RSTP that uses PVST+. Rapid PVST+ provides a separate instance of 802.1w per VLAN.

- **Multiple Spanning Tree Protocol**: MSTP is an IEEE standard inspired by the earlier Cisco proprietary Multiple Instance STP (MISTP) implementation. MSTP maps multiple VLANs into the same spanning tree instance. The Cisco implementation of MSTP is MST, which provides up to 16 instances of RSTP and combines many VLANs with the same physical and logical topology into a common RSTP instance.
Part of your switch administration skill set is the ability to decide which type of STP to implement. Table 31-3 summarizes the features of each STP flavor.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Standard</th>
<th>Resources Needed</th>
<th>Convergence</th>
<th>Tree Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP</td>
<td>802.1D</td>
<td>Low</td>
<td>Slow</td>
<td>All VLANs</td>
</tr>
<tr>
<td>PVST+</td>
<td>Cisco</td>
<td>High</td>
<td>Slow</td>
<td>Per VLAN</td>
</tr>
<tr>
<td>RSTP</td>
<td>802.1w</td>
<td>Medium</td>
<td>Fast</td>
<td>All VLANs</td>
</tr>
<tr>
<td>Rapid PVST+</td>
<td>Cisco</td>
<td>Very high</td>
<td>Fast</td>
<td>Per VLAN</td>
</tr>
<tr>
<td>MSTP</td>
<td>802.1s, Cisco</td>
<td>Medium or high</td>
<td>Fast</td>
<td>Per instance</td>
</tr>
</tbody>
</table>

**Study Resources**

For today’s exam topics, refer to the following resources for more study.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Primary Resources</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switched Networks</td>
<td>4</td>
<td>Spanning Tree Concepts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Varieties of Spanning Tree Protocols</td>
</tr>
<tr>
<td>Scaling Networks</td>
<td>2</td>
<td>Spanning Tree Concepts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Varieties of Spanning Tree Protocols</td>
</tr>
<tr>
<td>ICND2 Official Cert Guide</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>ICND2 Foundation Learning Guide</td>
<td>1</td>
<td>Building Redundant Switch Topologies</td>
</tr>
<tr>
<td><strong>Supplemental Resources</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNA Practice and Study Guide</td>
<td>2</td>
<td>Spanning Tree Concepts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Varieties of Spanning Tree Protocols</td>
</tr>
<tr>
<td>CCNA ICND2 Flash Cards</td>
<td>2</td>
<td>Questions 1–37</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Symbols
3DES (Triple Data Encryption Standard) algorithm, 203

A
ABR (Area Border Routers), OSPF, 72
access servers and WAN, 189
ACK (Acknowledgement) packets, EIGRP, 88
active status (VC), 230
AD (Administrative Distance), 26-28
DUAL, 92
EIGRP, 91
Address field (HDLC), 213
address mapping and Frame Relay, 229-232
addressing schemes
EIGRP configuration in IPv4 implementations, 95-96
OSPFv2, 62
OSPFv3, 77-78
addressing tables, CCNA skills practice, 264-265
admission process (testing centers), 287
advancing via certification, 290
AES (Advanced Encryption Standard) algorithm, 203
AH (Authentication Headers), IPsec protocol, 204
analog dialup circuit-switched connections, 195
answering questions, strategies for success, 288
answers (CCNA skills practice)
default routing configuration, 275
DHCP configuration, 283-284
dynamic NAT configuration, 274-275
EIGRP routing configuration, 276-278
firewall ACL configuration, 284
Frame Relay configuration, 271-273
inter-VLAN routing configuration, 275-276
port security configuration, 281-282
PPP configuration, 273
static NAT configuration, 274-275
STP configuration, 282-283
trunking configuration, 278-281
VLAN
assignments, 281-282
configuration, 278-281
inter-VLAN routing configuration, 275-276
VTP configuration, 278, 279, 280-281
application layer (OSI model), troubleshooting, 158
ASBR (Autonomous System Boundary Routers), OSPF, 72
asymmetric encryption, 203
authentication
CHAP
CCNA skills practice, 266, 273
PPP configuration, 266, 273
EIGRP message authentication
IPv4 implementations, 107-108
IPv6 implementations, 119-120
HMAC, 204
MDS authentication
EIGRP and IPv4 implementations, 107-108
EIGRP and IPv6 implementations, 119-120
messages
EIGRP in IPv4, 107-108
EIGRP in IPv6, 119-120
single-area OSPFv2, 65-67
PPP, 218-222
PSK, 204
RSA signatures, 204
automatic summarization, 102-103, 185
Autonomous System Number field, EIGRP messages, 89

B
backbone routers (OSPF), 72
backups
IOS images, 56
software licenses, 49
bandwidth
EIGRP, 90
IPv4 implementations, 106
IPv6 implementations, 118-119
OSPFv2 configuration, 60-61
port bandwidth and STP, 3
baseline dates, troubleshooting, 153
BDR (Backup Designated Routers), electing in single-area OSPFv2, 67-70
BECN (Backward Explicit Congestion Notification), Frame Relay, 227
BID (Bridge ID), 2
Bridge Priority field, 8
configuring, 12-13
Extended System ID field, 8
MAC Address field, 8
PVST+, 8
verifying configurations, 13
boot process, routers, 35
  changing configuration registers, 36-37
  loading
    configuration files, 39
    IOS images, 37-38
bottom-up troubleshooting method, 155, 159
BRI (Basic Rate Interface) ISDN, 195
Bridge Priority field (BID), PVST+, 8
broadband modems and WAN, 189
broadcast multi-access networks, single-area OSPFv2, 67
broadcast replication, Frame Relay NBMA topologies, 229
broadcast storms, 2

cable connectors and WAN, 190
cable modem Internet connections, 198
career options, determining, 289
Carrier protocol, VPN tunneling, 202
CCENT/ICND1 exam, NAT, 251
CCNA exam
certification
  options for advancing, 290
  receiving, 289
  validity of, 289
certified examination score reports, 287
exam day requirements, 287
failing, 290
NAT as prerequisite knowledge, 251
post-exam process, 287-290
questions, answering, 288
retaking, 290
skills practice
  addressing table, 264-265
  challenge modification, 285
default routing configuration, 267, 275
DHCP configuration, 269, 283-284
dynamic NAT configuration, 267, 274-275
EIGRP routing configuration, 267, 276-278
firewall ACL configuration, 269, 284
Frame Relay configuration, 266, 271-273
inter-VLAN routing configuration, 267, 275-276
ISP configuration, 265-266
port mappings, 265
port security configuration, 268, 281-282
PPP configuration, 266, 273
static NAT configuration, 267, 274-275
STP configuration, 269, 282-283
topology diagram, 263
trunking configuration, 268, 278-281
VLAN assignments, 268, 281-282
VLAN configuration, 265, 268, 278-281
VLAN interface configuration, 268, 278-281
VTP configuration, 268, 278-281
strategies for success, 288-290
study groups (online), 290
testing center
  admission process, 287
  storing personal items during examination, 287
Cellular service connections, 199
certification
  options for advancing, 290
  receiving, 289
  validity of, 289
certified examination score reports, 287
CHAP (Challenge Handshake Authentication Protocol), 218-222, 266, 273
CIR (Committed Information Rates), Frame Relay, 227
circuit-switching
  circuit-switched connections, 195, 199
  WAN, 191-192
Cisco License Registration Portal, 47
clear ip nat translation command, 251
CCENT/ICND1 exam, NAT, 251
CCNA exam
certification
  options for advancing, 290
  receiving, 289
  validity of, 289
certified examination score reports, 287
exam day requirements, 287
failing, 290
NAT as prerequisite knowledge, 251
post-exam process, 287-290
questions, answering, 288
retaking, 290
skills practice
  addressing table, 264-265
  challenge modification, 285
default routing configuration, 267, 275
DHCP configuration, 269, 283-284
dynamic NAT configuration, 267, 274-275
EIGRP routing configuration, 267, 276-278
firewall ACL configuration, 269, 284
Frame Relay configuration, 266, 271-273
inter-VLAN routing configuration, 267, 275-276
ISP configuration, 265-266
port mappings, 265
port security configuration, 268, 281-282
PPP configuration, 266, 273
static NAT configuration, 267, 274-275
STP configuration, 269, 282-283
DCENT/ICDN1 exam, NAT, 251
configuring
  BID, 12-13
  CHAP, 221
default routing, CCNA skills practice, 267, 275
DHCP, CCNA skills practice, 269, 283-284
dynamic NAT, 256-257, 267, 274-275
EIGRP
  CCNA skills practice, 267, 276-278
  IPv4 implementation, 95-97
  IPv6 implementation, 112-113
EtherChannel, 20-21
firewall ACL, CCNA skills practice, 269, 284
Frame Relay, 232, 239
CCNA skills practice, 266, 271-273
full-mesh topologies with one subnet, 233-236
partial-mesh topologies with one subnet, 236-238
static mapping, 235-236
GLBP, 128
GRE tunneling, 208-209
HDLC, 214
HSRP, 125-126
inter-VLAN routing, 167-170, 267, 275-276
ISP, CCNA skills practice, 265-266
LMI type, Frame Relay, 235
multi-area OSPFv2, 73-75
multi-area OSPFv3, 81-83
NAT overloading, 257-258
NetFlow, 146
OSPFv2
  bandwidth utilization, 60-61
equivalent of, 62-63
  multi-area OSPFv2, 73-75
  network command, 59
  passive interfaces, 60
  router ID, 60
  router ospf command, 59
OSPFv3, 77-83
PortFast, 14
port security, CCNA skills practice, 268, 281-282
PPP, 220-221, 266, 273
PPPoE, 242-243
Rapid PVST+, 15
SNMP, 136
static NAT, 255-256, 267, 274-275
STP, 12, 269, 282-283
Syslog, 140-141
trunking, CCNA skills practice, 268, 278-281
VLAN, CCNA skills practice, 265, 268, 278-281
VTP, CCNA skills practice, 268, 278-281
Control field (HDLC), 213
core routers and WAN, 190
core routers and WAN, 190
CPE (Customer Premises Equipment) and WAN, 188
CSU/DSU (Channel Service Units/Data Service Units) and WAN, 189

D
Data field (HDLC), 214
data-link layer (OSI model), troubleshooting, 156
data-link protocols and WAN, 191
DCE (Data Communications Equipment)
  Frame Relay and, 225
  WAN and, 188
dead intervals
  OSPFv3, 80-81
  single-area OSPFv2, 65
default administrative distances, 27
default routing, CCNA skills practice, 267, 275
delay and EIGRP, 90
delay intervals (VC), 231
demarcation points and WAN, 188
DES (Data Encryption Standard) algorithm,
  203
dialup circuit-switched connections (analog), 195
dialup modems and WAN, 189
Dijkstra Shortest Path First (SPF) algorithm,
  30-31
discontiguous networks and EIGRP, 185
domain administration, 210
divide-and-conquer troubleshooting method, 155
DLCI (Data-Link Connection Identifiers),
  Frame Relay, 227
documentation, troubleshooting, 151
  baseline dates, 153
  configuration files, 151
driving force (OSI model), troubleshooting, 156
drivers licenses, exam day requirements, 287
DSL, Internet connections, 197-198
DTE (Data Terminal Equipment)
  Frame Relay and, 225
  WAN and, 188
DUAL (Diffusing Update Algorithm) and EIGRP, 91-92
dynamic NAT (Network Address Translation), 253
  CCNA skills practice, 267, 274-275
configuring, 256-257

dynamic routing protocols
dynamic routing metrics, 25-26
link-state routing protocols
convergence, 31-32
Dijkstra Shortest Path First (SPF) algorithm, 30-31
link-state database (LSDB), building, 29-30
routing loop prevention, 28-29

e
edge ports (Rapid PVST+), 11
EIA/TIA-232 WAN physical layer standard, 190
EIA/TIA-449/530 WAN physical layer standard, 190
EIA/TIA-612/613 WAN physical layer standard, 190
EIGRP (Enhanced Interior Gateway Routing Protocol), 28
ACK packets, 88
AD, 91
automatic summarization, 185
bandwidth metric, 90
CCNA skills practice, 267, 276-278
composite metric, 90
cconvergence, 89
delay metric, 90
discontiguous networks, 185
DUAL, 91-92
hello packets, 87
IPv4 implementation
addressing schemes, 95-96
automatic summarization, 102-103
bandwidth utilization, 106
configuring, 95-97
default route propagation, 105
hello intervals, 106-107
hello times, 106-107
IPv6 comparisons to, 111
manual summarization, 103-105
message authentication, 107-108
multicast packets, 87
neighbor tables, 98-99
network command, 96
router ID, 96-97
routing tables, 101
topologies, 95
topology tables, 99-100
verifying configuration, 97-101
IPv6 implementation
bandwidth utilization, 118-119
configuring, 112-113
default route propagation, 118
hello intervals, 119
hello times, 119
IPv4 comparisons to, 111
manual summarization, 116-118
message authentication, 119-120
multicast packets, 87
neighbor tables, 115
routing tables, 115-116
verifying configuration, 114-116
messages, format of, 88-89
multicast packets, 87
neighbor adjacency, 183
operation of, 89-92
PDM, 86
query packets, 88
reply packets, 88
RTP, 86
traditional distance vector routing protocol comparisons to, 85-86
troubleshooting, 183-184
update packets, 87
Encapsulating protocol, VPN tunneling, 202
encapsulation
Frame Relay, 234
GRE tunneling
characters of, 207
configuring, 208-209
HDLC, 213
VPN, 202
enetration, 202-203
error detection and LCP, 218-219
ESP (Encapsulating Security Payload), IPsec protocol, 206
EtherChannel
benefits of, 18
configuring, 20-21
implementation restrictions, 18
LACP, 20
operation of, 17
PAGP, 19
port channels, 18
topologies, 17
troubleshooting
channel-group command configurations, 162-164
physical interface, 164
verifying configurations, 21-23
Ethernet, MetroE packet-switched connections, 196
exams
certification
options for advancing, 290
receiving, 289
validity of, 289
certified examination score reports, 287
exam day requirements, 287
failing, 290
post-exam process, 287-290
questions, answering, 288
retaking, 290
strategies for success, 288-290
testing centers, admission process, 287
Extended System ID field (BID), PVST+, 8

F
failing exams, 287, 290
FC (Feasible Condition), DUAL, 92
FCS (Frame Check Sequence) field (HDLC), 214
FD (Feasible Distance), DUAL, 92
FECN (Forward Explicit Congestion Notification), Frame Relay, 227
FHRP (First-Hop Redundancy Protocols) GLBP, 122-123
configuring, 128
load balancing, 124, 131
topology, 125
verifying configuration, 129-131
HSRP
configuring, 125-126
load balancing, 123, 127-128
topology, 125
verifying configuration, 126-127
redundancy, 121-122
VRRP, 122
file management, IOS
IFS, 51-55
IOS images
backups, 56
filenames, 45-46
restoring, 57
upgrades, 57-58
IOS version 12.4
software release family, 41-42
software train, 42
IOS version 15
software release family, 43
software train, 43
license management, 46-49
firewall ACL, CCNA skills practice, 269, 284
flags, HDLC, 213
Flash
directories/files in IFS, 52-53
memory and routers, 34
Flexible NetFlow, 145

Frame Relay
address mapping, 229-232
BECN, 227
CCNA skills practice, 266, 271-273
CIR, 227
configuring, 232, 239
full-mesh topologies with one subnet, 233-236
partial-mesh topologies with one subnet, 236-238
DCE and, 225
DLCI, 227
DTE and, 225
encapsulation, 234
FECN, 227
Inverse ARP, 227-232, 235-236
LMI, 227, 230-232, 235
local access rates, 226
NBMA, 228-229
PVC, 197, 226
signaling, 230-232
split horizon, 228
static mapping, 235-236
subinterfaces, 229, 233
SVC, 227
topologies
full-mesh topologies, 228, 233-236
NBMA topologies, 228-229
partial-mesh topologies, 236-238
partial-mesh topologies, 228
star topologies, 228
VC, 226
Frame Relay configuration, 232
LMI changes to VC status, 230
verifying configurations, 238-239
WAN connections, 197
frames
HDLC frames, 213, 217
I-frames (HDLC), 213
multiple frame transmissions, 2
PPP frames, HDLC frame comparison to, 217
S-frames (HDLC), 213
U-frames (HDLC), 213
FS (Feasible Successors), DUAL, 92
full-mesh topologies, Frame Relay, 228, 233-236

G-H
get/set messages (SNMP), 133-134
GLBP (Gateway Load Balancing Protocol), 122-123
configuring, 128
load balancing, 124, 131
topology, 125
verifying configuration, 129-131
grading exams, 287
GRE (Generic Routing Encapsulation)
tunneling
characteristics of, 207
configuring, 208-209
verifying configuration, 209
hashes and VPN, 204
HDLC (High-Level Data Link Control)
configuring, 214
eapsulation, 213
frames, PPP frame comparison to, 217
verifying configuration, 214
hello intervals
EIGRP modifications
IPv4 implementations, 106-107
IPv6 implementations, 119
OSPFv3, 80-81
single-area OSPFv2, 64-65
hello packets, EIGRP, 87
HMAC (Hashed Message Authentication Code) and VPN, 204
hold-down timers, 29
hold times
EIGRP modifications
IPv4 implementations, 106-107
IPv6 implementations, 119
single-area OSPFv2, 64-65
hop count, 25
HQ
CCNA skills practice, 267, 274-275
dynamic NAT configuration, 267, 274-275
static NAT configuration, 267, 274-275
HSRP (Hot Standby Router Protocol), 122
configuring, 125-126
load balancing, 123, 127-128
topology, 125
verifying configuration, 126-127
HSSI (High-Speed Serial Interface) serial communication standard, 212
hub-and-spoke topologies, Frame Relay configuration, 266, 271-273
I
I (Information) frames, HDLC, 213
ID (Identification), exam day requirements, 287
IFS (IOS Integrated File System)
commands, 51-53
configuration files, 54-55
file locations, specifying via URL prefixes, 54
Flash directories/files, 52-53
NVRAM directory, listing contents of, 53
URL prefixes for specifying file locations, 54
IGP (interior gateway protocols), 28
images (IOS)
backups, 56
filenames, 45-46
restoring, 57
router boot process, 37-38
upgrades, 57-58
inactive status (VC), 231
inside global addresses, 252
inside local addresses, 252
installing software licenses, 47-48
interface keyword, 257
interior gateway protocols (IGP), 28
internal routers (OSPF), 72
Internet connections
cable modems, 198
cellular service, 199
DSL, 197-198
Municipal Wi-Fi, 198
satellite Internet, 199
WiMAX, 198
inter-VLAN routing
CCNA skills practice, 267, 275-276
configuring, 167-170
topologies, 167
troubleshooting
IP addressing, 171
physical connections, 170
trunking configurations, 170-171
verifying configuration, 169-170
Inverse ARP (Address Resolution Protocol) and Frame Relay, 227-232, 235-236
IOS (Internetwork Operating System)
configuration files, router boot process, 39
configuration registers, 36-37
IFS
commands, 51-53
configuration files, 54-55
file locations, specifying via URL prefixes, 54
Flash directories/files, 52-53
NVRAM directory, 53
URL prefixes for specifying file locations, 54
IOS images
backups, 56
filenames, 45-46
restoring, 57
router boot process, 37-38
upgrades, 57-58
link-state routing protocols  297

IOS version 12.4
- software release family, 41-42
- software train, 42

IOS version 15
- software release family, 43
- software train, 43

license management, 46
- backing up licenses, 49
- Cisco License Registration Portal, 47
- CLM, 47
- installing licenses, 47-48
- obtaining licenses, 47
- PAK, 47
- UDI, 47
- uninstalling licenses, 49
- verifying license installations, 48

routers and, 34
- changing configuration registers, 36-37
- loading configuration files, 39
- loading IOS images, 37-38

IP addressing and inter-VLAN routing, troubleshooting, 171

IP Base licenses, 46
IPsec protocol, 204-206
IPv4 (Internet Protocol version 4) and EIGRP
- addressing schemes, 95-96
- automatic summarization, 102-103
- bandwidth utilization, 106
- configuring, 95-97
- default route propagation, 105
- hello intervals, 106-107
- hold times, 106-107
- IPv6 comparisons to, 111
- manual summarization, 103-105
- neighbor tables, 98-99
- network command, 96
- router ID, 96-97
- routing tables, 101
- topologies, 95
- topology tables, 99-100
- verifying configuration, 97-101

IPv6 (Internet Protocol version 6) and EIGRP
- bandwidth utilization, 118-119
- configuring, 112-113
- default route propagation, 118
- hello intervals, 119
- hold times, 119
- IPv4 comparisons to, 111
- manual summarization, 116-118
- message authentication, 107-108, 119-120
- NAT, 260-261
- neighbor tables, 115
- routing tables, 115-116
- verifying configuration, 114-116

ISDN (Integrated Services for Digital Networks), 195

ISP (Internet Service Providers), CCNA skills practice, 265-266

J-K-L
- job options, determining, 289
- keepalives, troubleshooting, 247-248

LACP (Link Aggregation Control Protocol) and EtherChannel, 20

LAN (Local Area Network) serial connections, 211
- HDLC, 213-214
- HSSI standard, 212
- RS-232 standard, 212
- V.35 standard, 212

Layer 1 (WAN), troubleshooting, 246
Layer 2 (WAN), troubleshooting, 247-248
Layer 3 (WAN), troubleshooting, 248-249

LCP (Link Control Protocol), PPP
- authentication, 218-222
- CHAP, 218-222
- error detection, 218-219
- looped link detection, 218
- LQM, 218-219
- magic number feature, 218
- multilink PPP, 218-219
- PAP, 218-219, 222

leased-line connections, 194, 199, 211
- HDLC
  - configuring, 214
  - encapsulation, 213
  - verifying configuration, 214
- HSSI standard, 212
- RS-232 standard, 212
- V.35 standard, 212

licenses (software), managing
- backing up licenses, 49
- Cisco License Registration Portal, 47
- CLM, 47
- installing licenses, 47-48
- IOS licenses, 46
- obtaining licenses, 47
- PAK, 47
- UDI, 47
- uninstalling licenses, 49
- verifying license installations, 48

links (looped) and LCP, 218

link-state routing protocols
- convergence, 31-32
Dijkstra Shortest Path First (SPF) algorithm, 30-31
link-state database (LSDB), building, 29-30
link-type point-to-point links and RSTP, 10
link-type shared links and RSTP, 10
LMI (Local Management Interface) and Frame Relay, 227, 230-232, 235
load balancing
GLBP, 124, 131
HSRP, 123, 127-128
local access rates, Frame Relay, 226
local loops
ISDN, 195
WAN and, 188
looped links and LCP, 218
LQM (Link Quality Monitoring) and LCP, error detection, 218-219
LSA (Link-State Advertisements) and OSPFv2
LSA flooding, 67
multi-area OSPFv2, 72
LSDB (Link-State Databases)
building, 29-30
multi-area OSPFv2, 71

M
MAC Address field (BID), PVST+, 8
MAC databases, instability and redundancy, 2
magic number feature (LCP), 218
mainline trains
IOS version 12.4, 42
IOS version 15, 43
managing
IFS configuration files, 54-55
IOS licenses, 46
backing up licenses, 49
Cisco License Registration Portal, 47
CLM, 47
installing licenses, 47-48
obtaining licenses, 47
PAK, 47
UDI, 47
uninstalling licenses, 49
verifying license installations, 48
networks
SNMP, 133-138
Syslog, 138-142
manual summarization, EIGRP and
IPv4 implementations, 103-105
IPv6 implementations, 116-118
MDS authentication, 204
EIGRP
IPv4 implementations, 107-108
IPv6 implementations, 119-120
single-area OSPFv2, 65-67
memory and routers, 34
message authentication, single-area OSPFv2, 65-67
messaging protocols (network management)
SNMP
components of, 133
configuring, 136
get/set messages, 133-134
MIB, 134-135
operation of, 133-134
RO community strings, 134
RW community strings, 134
SNMPv1, 134
SNMPv2c, 134
SNMPv3, 134
verifying configuration, 136-138
Syslog
configuring, 140-141
message format, 139-140
operation of, 138-140
severity levels list, 139
verifying configuration, 141-142
MetroE (Metro Ethernet) packet-switched connections, 196
MIB (Management Information Base), SNMP, 134-135
military ID, exam day requirements, 287
modems
analog dialup circuit-switched connections, 195
Internet connections, 198
WAN and, 189
modifying
EIGRP in IPv4 implementations
automatic summarization, 102-103
bandwidth utilization, 106
default route propagation, 105
hello intervals, 106-107
hold times, 106-107
manual summarization, 103-105
message authentication, 107-108
EIGRP in IPv6 implementations
bandwidth utilization, 118-119
default route propagation, 118
hello intervals, 119
hold times, 119
manual summarization, 116-118
message authentication, 119-120
OSPFv3
dead intervals, 80-81
default route propagation, 79-80
hello intervals, 80-81
NetFlow
configuring, 146
data collection/analysis, 148-149
Flexible NetFlow, 145
operation of, 145-146
purpose of, 145
verifying configuration, 147-148

network command
EIGRP configuration in IPv4
implementations, 96
OSPFv2 configuration, 59

network layer (OSI model), troubleshooting, 156

networks
managing, SNMP
components of, 133
configuring, 136
get/set messages, 133-134
MIB, 134-135
operation of, 133-134
RO community strings, 134
RW community strings, 134
SNMPv1, 134
SNMPv2c, 134
SNMPv3, 134
verifying configuration, 136-138
managing, Syslog
configuring, 140-141
message format, 139-140
operation of, 139-140
severity levels list, 139
verifying configuration, 141-142
monitoring via NetFlow
configuring, 146
data collection/analysis, 148-149
Flexible NetFlow, 145
operation of, 145-146
purpose of, 145
verifying configuration, 147-148

single-area OSPFv2, 67

NVRAM (Non-Volatile Random Access Memory)
NVRAM directory (IFS), listing contents of, 53
routers and, 34

O
Opcode field, EIGRP messages, 89
optimizing EIGRP routing, CCNA skills practice, 267-278

OSI model, troubleshooting
application layer, 158
data-link layer, 156
network layer, 156
physical layer, 156
transport layer, 157
OSPF (Open Shortest Path First), 28
  ABR, 72
  ASBR, 72
  backbone routers, 72
  internal routers, 72
  neighbor adjacency, 179-180
  states of, 179
  troubleshooting, 179-181
OSPFv2 (Open Shortest Path First version 2)
  addressing schemes, 62
  bandwidth utilization, 60-61
  configuring
    bandwidth utilization, 60-61
    example of, 62-63
    network command, 59
    passive interfaces, 60
    router ID, 60
    router ospf command, 59
  multi-OSPFv2
    configuring, 73-75
    LSA, 72
    LSDB, 71
    operation of, 70-72
    routing tables, 71
    SPA algorithm, 71
    topologies, 73
  network command, 59
  passive interfaces, 60
  router ID, 60
  router ospf command, 59
  single-OSPFv2
    BDR election, 67-70
    broadcast multi-access networks, 67
    dead intervals, 65
    default route redistribution, 63-64
    DR election, 67-70
    hello intervals, 64-65
    hold times, 64-65
    LSA flooding, 67
    message authentication, 65-67
    NBMA networks, 67
    point-to-multipoint networks, 67
    point-to-point networks, 67
    virtual links, 67
  topologies, 62
OSPFv3 (Open Shortest Path First version 3)
  addressing schemes, 77-78
  configuring, 77-79
  dead intervals, 80-81
  default route propagation, 79-80
  EIGRP IPv6 implementation, 113
  hello intervals, 80-81
  topologies, 77
  outside global addresses, 252
  outside local addresses, 252
  overloading NAT (Network Address Translation), 253-254, 257-258
  overload keyword, 257
P
  packet forwarding and routers, 173-174
  packet monitoring and NetFlow
    configuring, 146
    data collection/analysis, 148-149
    Flexible NetFlow, 145
    operation of, 145-146
    purpose of, 145
    verifying configuration, 147-148
  packet-switched connections, 199
    Frame Relay, 197
    MetroE, 196
  packet-switching and WAN, 191-192
  PAgP (Port Aggregation Protocol) and EtherChannel, 19
  PAK (Product Activation Keys), software licenses, 47
  PAP (Password Authentication Protocol), 218-219, 222
  partial-mesh topologies, Frame Relay, 228, 236-238
  Passenger protocol, VPN tunneling, 202
  passing exams, 287
  passive interfaces, OSPFv2 configuration, 60
  passports, exam day requirements, 287
  PAT (Port Address Translation), 253-254, 257-258
  PDM (Protocol-Dependent Modules), EIGRP, 86
  personal items, storing during examination, 287
  photo ID, exam day requirements, 287
  physical layer (OSI model), troubleshooting, 156
  physical layer standards (WAN), 190
  point-to-multipoint networks, single-area OSPFv2, 67
  point-to-point networks, single-area OSPFv2, 67
  point-to-point serial connections, 194, 199, 211
  HDLC
    configuring, 214
    encapsulation, 213
    verifying configuration, 214
  HSSI standard, 212
  RS-232 standard, 212
V.35 standard, 212
port channels (EtherChannel), 18
PortFast
configuring, 14
RSTP and, 9
ports
blocking, STP, 3
forwarding, STP, 3
mappings, CCNA skills practice, 265
security, CCNA skills practice, 268, 281-282
post-exam process, 287
career options, determining, 289
certification
options for advancing, 290
receiving, 289
validity of, 289
failing the exam, 290
PPP (Point-to-Point Protocol), 241
authentication, 218-222
CCNA skills practice, 266, 273
CHAP, 218-222
configuring, 220-221
HDLC frame comparison to, 217
LCP
authentication, 218-222
CHAP, 218-222
error detection, 218-219
looped link detection, 218
LQM, 218-219
magic number feature, 218
multilink PPP, 218-219
PAP, 218-219, 222
multilink PPP, 218-219
PAP, 218-219, 222
topologies, 220-221
validating configurations, 220-221
PPPoE (Point-to-Point Protocol over Ethernet), 242-243
practicing CCNA skills
addressing table, 264-265
challenge modification, 285
default routing configuration, 267, 275
dHCP configuration, 269, 283-284
dynamic NAT configuration, 267, 274-275
EIGRP routing configuration, 267, 276-278
firewall ACL configuration, 269, 284
Frame Relay configuration, 266, 271-273
inter-VLAN routing configuration, 267, 275-276
ISP configuration, 265-266
port mappings, 265
port security configuration, 268, 281-282
PPP configuration, 266, 273
static NAT configuration, 267, 274-275
STP configuration, 269, 282-283
topology diagram, 263
trunking configuration, 268, 278-281
VLAN
assignments, 268, 281-282
configuration, 265, 268, 278-281
inter-VLAN routing configuration, 267, 275-276
VTP configuration, 268, 278-281
PRI (Primary Rate Interface) ISDN, 195
Protocol field (HDLC), 214
PSK (Preshared Key) authentication, 204
PVC (Permanent Virtual Circuits), 192, 197, 226
PVST+ (Per-VLAN Spanning Tree Plus), 4
BID, 8
operation of, 7-8
port states, 8
topologies, 7
Q-R
query packets, EIGRP, 88
questions, answering (strategies for success), 288
RAM (Random Access Memory) and routers, 34
Rapid PVST+ (Per-VLAN Spanning Tree Plus), 4
configuring, 15
corensce, 9
dge ports, 11
interface behavior, 9-10
link-type point-to-point links, 10
link-type shared links, 10
operation of, 9
PortFast and, 9
port roles, 10
port states, 10
RD (Reported Distance), DUAL, 92
redundancy
broadcast storms and, 2
FHRP, 121-122
MAC database instability, 2
multiple frame transmission, 2
STP, 1
reference bandwidth, OSPFv2 configuration, 60-61
release families (software)
IOS version 12.4, 41-42
IOS version 15, 43
release trains (software)
IOS version 12.4, 42
IOS version 15, 43
remote-access VPN (Virtual Private Networks), 201
reply packets, EIGRP, 88
requirements for exam day, 287
restoring IOS images, 57
retaking exams, 290
RIP (Routing Information Protocol), 26
RIPv2 (Routing Information Protocol version 2), 28
RO (Read-Only) community strings (SNMP), 134
ROM (Read-Only Memory) and routers, 34
route poisoning, 29
router ospf command, OSPFv2 configuration, 59
routers
ABR (OSPF), 72
ASBR (OSPF), 72
backbone routers (OSPF), 72
BDR, electing in single-area OSPFv2, 67-70
boot process, 35
changing configuration registers, 36-37
loading configuration files, 39
loading IOS images, 37-38
components of, 33-34
default routing configuration, CCNA skills practice, 267, 275
DR, electing in single-area OSPFv2, 67-70
dynamic routing protocols
AD (administrative distance), 26-28
dynamic routing metrics, 25-26
routing loop prevention, 28-29
EIGRP routing configuration
CCNA skills practice, 267, 276-278
router ID in IPv4 implementations, 96-97
FHRP and redundancy, 121-122
GLBP, 122-124
HSRP, 122-123
IGP, 28
internal routers (OSPF), 72
inter-VLAN routing
CCNA skills practice, 267, 275-276
configuring, 167-170, 267, 275-276
IP addressing, 171
physical connections, 170
topologies, 167
troubleshooting, 170-171
trunking, 170-171
verifying configuration, 169-170
IOS and, 34
changing configuration registers, 36-37
loading configuration files, 39
loading IOS images, 37-38
keepalives, troubleshooting, 247-248
link-state routing protocols
convergence, 31-32
Dijkstra Shortest Path First (SPF) algorithm, 30-31
link-state database (LSDB), building, 29-30
LMI, 230-232, 235
memory, 34
NetFlow
configuring, 146
verifying configuration, 147-148
normal routing behavior, 173-174
OSPFv2 configuration, 60
packet forwarding, 173-174
router ID
EIGRP configuration in IPv4 implementations, 96-97
OSPFv2 configuration, 60
routing processes, 25
routing protocols, 25
routing tables, multi-area OSPFv2, 71
routing updates, Frame Relay NBMA topologies, 228
troubleshooting, 174-176
VRRP, 122
WAN and, 190
RS-232 serial communication standard, 212
RSA (Rivest, Shamir, and Adleman) algorithm, 203
RSA signatures, VPN authentication, 204
RSTP (Rapid Spanning Tree Plus), 4
RTP (Reliable Transport Protocol), EIGRP, 86
RW (Read-Write) community strings (SNMP), 134
S
S (Supervisory) frames, HDLC, 213
satellite Internet connections, 199
scenarios (CCNA skills practice)
addressing table, 264-265
challenge modification, 285
default routing configuration, 267
DHCP configuration, 269
dynamic NAT configuration, 267
EIGRP routing configuration, 267
firewall ACL configuration, 269
Frame Relay configuration, 266
inter-VLAN routing configuration, 267
ISP configuration, 265-266
port mappings, 265
port security configuration, 268
PPP configuration, 266
static NAT configuration, 267
STP configuration, 269
message authentication, 65-67
NBMA networks, 67
point-to-multipoint networks, 67
point-to-point networks, 67
virtual links, 67
site-to-site VPN (Virtual Private Networks), 200

skills practice

addressing table, 264-265
challenge modification, 285
default routing configuration, 267, 275
DHCP configuration, 269, 283-284
dynamic NAT configuration, 267, 274-275
EIGRP routing configuration, 267, 276-278
firewall ACL configuration, 269, 284
Frame Relay configuration, 266, 271-273
inter-VLAN routing configuration, 267, 275-276
ISP configuration, 265-266
port mappings, 265
port security configuration, 268, 281-282
PPP configuration, 266, 273
static NAT configuration, 269, 282-283
topology diagram, 263
trunking configuration, 268, 278-281
VLAN

set/get messages (SNMP), 133-134
SHA-1 (Secure Hash Algorithm-1), 204
Shortest Path First (SPF) algorithm, 30-31
show ip nat statistics command, 258-259
show ip nat translations command, 258-259
show ip protocols command, 27
show ip route command, 25
signaling, Frame Relay, 230-232
Simple Network Management Protocol
components of, 133
countering, 136
get/set messages, 133-134
MIB, 134-135
operation of, 133-134
RO community strings, 134
RW community strings, 134
SNMPv1, 134
SNMPv2c, 134
SNMPv3, 134
verifying configuration, 136-138
single-area OSPFv2 (Open Shortest Path
First version 2)
BDR election, 67-70
broadcast multi-access networks, 67
dead intervals, 65
default route redistribution, 63-64
DR election, 67-70
hello intervals, 64-65
hold times, 64-65
LSA flooding, 67
SNMP GET utility, 135
software
licenses, managing
backing up licenses, 49
Cisco License Registration Portal, 47
CLM, 47
installing licenses, 47-48
IOS licenses, 46
obtaining licenses, 47
PAK, 47
UDI, 47
uninstalling licenses, 49
verifying license installations, 48
release families
IOS version 12.4, 41-42
IOS version 15, 43
trains
IOS version 12.4, 42
IOS version 15, 43
SPF (Shortest Path First) algorithm, 30-31, 71
split horizon, 29, 228
star topologies, Frame Relay, 228
static mapping and Frame Relay, 235-236
static NAT (Network Address Translation), 253
CCNA skills practice, 267, 274-275
configuring, 255-256
STP (Spanning Tree Protocol)
algorithm, 2-3
BID, 2
configuring, 12-13
verifying configurations, 13
CCNA skills practice, 269, 282-283
configuring, 12
convergence, 2-3
dge ports, 11
MSTP, 4
PortFast, configuring, 14
ports
bandwidth, 3
blocking, 3
forwarding, 3
roles, 10
states, 3, 10
PVST+, 4
BID, 8
operation of, 7-8
port states, 8
topologies, 7
Rapid PVST+, 4
configuring, 15
convergence, 9
dge ports, 11
interface behavior, 9-10
link-type point-to-point links, 10
link-type shared links, 10
operation of, 9
PortFast and, 9
port roles, 10
port states, 10
redundancy, 1
RSTP, 4
troubleshooting, 161-162
verifying configurations, 13-15
strategies (exams), 288-290
study groups (online), 290
subinterfaces, Frame Relay, 229, 233
subnet masks, troubleshooting VLSM, 176
successors (DUAL), 92
summarization
automatic summarization, 102-103, 185
manual summarization and EIGRP
IPv4 implementations, 103-105
IPv6 implementations, 116-118
SVC (Switched Virtual Circuits), 192, 227
switches (WAN), 190-192
symmetric encryption, 203
Syslog
configuring, 140-141
message format, 139-140
operation of, 138-140
severity levels list, 139
verifying configuration, 141-142
T
T (Technology) trains
IOS version 12.4, 42
IOS version 15, 43
TDM (Time Division Multiplexing) digital
connections, 195
testing centers, admission process, 287
TFTP (Trivial File Transfer Protocol) servers,
IOS images
backups, 56
restoring, 57
upgrades, 57-58
top-down troubleshooting method, 155
topologies
EIGRP configuration in IPv4
implementations, 95
EtherChannel topologies, 17
Frame Relay, 228-229, 233-238
full-mesh topologies, 228, 233-236
GLBP, 125
GRE tunneling, 208
HSRP, 125
hub-and-spoke topologies, CCNA skills
practice, 266, 271-273
inter-VLAN routing, 167
multi-area OSPFv2, 73
NBMA topologies, 228-229
OSPFv2 configuration, 62
OSPFv3, 77
partial-mesh topologies, 228, 236-238
PPP, 220-221
PVST+ topologies, 7
star topologies, 228
topology diagrams
CCNA skills practice, 263
troubleshooting, 152-153
traffic monitoring and NetFlow
configuring, 146
data collection/analysis, 148-149
Flexible NetFlow, 145
operation of, 145-146
purpose of, 145
verifying configuration, 147-148
transport layer (OSI model), troubleshooting, 157
triggered updates, 29
troubleshooting
application layer (OSI model), 158
baseline dates, 153
bottom-up method, 155, 159
configuration files, 151
data-link layer (OSI model), 156
divide-and-conquer method, 155
documentation
baseline dates, 153
configuration files, 151
topology diagrams, 152-153
EIGRP, 183-184
EtherChannel
channel-group command configurations, 162-164
physical interface, 164
inter-VLAN routing
IP addressing, 171
physical connections, 170
trunking configurations, 170-171
keepalives, 247-248
NAT (Network Address Translation), 259-260
network layer (OSI model), 156
OSI model
application layer, 158
data-link layer, 156
network layer, 156
physical layer, 156
transport layer, 157
OSPF, 179-181
physical layer (OSI model), 156
process of, 154
routers, 174-176
STP, 161-162
top-down method, 155
topology diagrams, 152-153
transport layer (OSI model), 157
VLSM, 176
WAN
implementations, 245-246
Layer 1 problems, 246
Layer 2 problems, 247-248
Layer 3 problems, 248-249
trunking
CCNA skills practice, 268, 278-281
inter-VLAN routing trunking configurations, troubleshooting, 170-171
TTL (Time to Live) field, 29
tunneling
GRE tunneling
characteristics of, 207
configuring, 208-209
VPN, 202
U-V
U (Unnumbered) frames, HDLC, 213
UDI (Unique Device Identifiers), software licenses, 47
uninstalling software licenses, 49
updates
routing updates, Frame Relay NBMA topologies, 228
update packets, EIGRP, 87
upgrades, IOS images, 57-58
URL prefixes, specifying IFS file locations, 54
V.35 serial communication standard, 212
V.35 WAN physical layer standard, 190
validity (certificate), length of, 289
VC (Virtual Circuits)
active status, 230
deleted status, 231
Frame Relay configuration, 232
inactive status, 231
LMI changes to VC status, 230
PVC, 192, 197, 226
SVC, 192, 227
verifying
BID configurations, 13
EIGRP
IPv4 implementation, 97-101
IPv6 implementation, 114-116
EtherChannel configurations, 21-23
Frame Relay configurations, 238-239
GLBP configuration, 129-131
GRE tunneling configuration, 209
HDLC configuration, 214
HSRP configuration, 126-127
inter-VLAN routing configuration, 169-170
NAT (Network Address Translation), 258-259
NetFlow configuration, 147-148
PPP configurations, 220-221
SNMP configuration, 136-138
software license installations, 48
STP configurations, 13-15
Syslog configuration, 141-142
virtual links, single-area OSPFv2, 67
VLAN (Virtual Local Area Networks), 265
assigning, CCNA skills practice, 268, 281-282
configuring, CCNA skills practice, 268, 278-281
inter-VLAN routing
  CCNA skills practice, 267, 275-276
  configuring, 167-170
  IP addressing, 171
  physical connections, 170
  topologies, 167
  troubleshooting, 170-171
  trunking, 170-171
  verifying configuration, 169-170
PVST+, 4
  BID, 8
  operation of, 7-8
  port states, 8
  topologies, 7
Rapid PVST+
  configuring, 15
  convergence, 9
  edge ports, 11
  interface behavior, 9-10
  link-type point-to-point links, 10
  link-type shared links, 10
  operation of, 9
  PortFast and, 9
  port roles, 10
  port states, 10
VLAN interface, CCNA skills practice, 268, 278-281
VLSM (Variable-Length Subnet Masking), troubleshooting, 176
VPN (Virtual Private Networks)
  authentication, 204
  benefits of, 200
  components of, 201
  encapsulation, 202, 207-209
  encryption, 202-203
  GRE tunneling
    characteristics of, 207
    configuring, 208-209
  hashes, 204
  HMAC, 204
  IPsec protocol, 204-206
  PSK, 204
  remote-access VPN, 201
  RSA signatures, 204
  security, 204-206
  site-to-site VPN, 200
  tunneling, 202
VRRP (Virtual Router Redundancy Protocol), 122
VTP (VLAN Trunking Protocol), CCNA skills practice, 268, 278-281
<table>
<thead>
<tr>
<th>COUNTDOWN</th>
<th>CCNA SKILL</th>
<th>DAYS LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Spanning Tree Protocols</td>
<td>31</td>
</tr>
<tr>
<td>30</td>
<td>PVST and Rapid PVST+ Operation and Configuration</td>
<td>30</td>
</tr>
<tr>
<td>29</td>
<td>EtherChannel Concepts and Configuration</td>
<td>29</td>
</tr>
<tr>
<td>28</td>
<td>Routing Processes and Protocols</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>Booting the Router</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>IOS Images and Licensing</td>
<td>26</td>
</tr>
<tr>
<td>25</td>
<td>Backing Up and Restoring Files</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>OSPFv2 Modification</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>OSPFv3 Modification</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>EIGRP Concepts</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>EIGRP for IPv4 Implementation</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>EIGRP for IPv6 Implementation</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>Varieties of FHRP</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>FHRP Configurations</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>SNMP and Syslog</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>Utilizing NetFlow</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Troubleshooting Methodology</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Troubleshooting STP and EtherChannel</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Troubleshooting Inter-VLAN Routing</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Troubleshooting Routing</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Troubleshooting OSPF</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Troubleshooting EIGRP</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>WAN Technology Overview</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>WAN Connection Options and VPNs</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Serial Connections</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>PPP</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Frame Relay</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>PPPoE</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Troubleshooting WAN Issues</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>NAT</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>CCNA Skills Review and Practice</td>
<td>1</td>
</tr>
</tbody>
</table>

**EXAM DAY**
### Exam Checklist

#### CCNA Checklist Days 31–20

<table>
<thead>
<tr>
<th>Check Box</th>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schedule to take the CCNA or ICND2 exam at <a href="http://www.vue.com">http://www.vue.com</a>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Take at least 1 practice CCNA exam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the process of STP convergence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare the varieties of STP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the operations allowed for each PVST port state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Explain the difference between PVST* and Rapid PVST*.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement a 2-switch topology with Rapid PVST*. Configure the primary and secondary root. Use appropriate show commands to verify your configurations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the benefits of EtherChannel. Compare the two EtherChannel protocols.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement a 2-switch topology with EtherChannel. Review implementation issues by changing the configuration parameters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare the features of interior gateway protocols.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Explain to someone you know how the Dijkstra algorithm calculates best paths.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Explain the default router boot sequence and the process to modify it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Explain the concept of software families and trains.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the process to install and remove software licenses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the Cisco IOS file system and the process for backing up and restoring files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the ways to modify OSPFv2 and OSPFv3, including redistributing a default route, modifying timers, authenticating updates, and controlling the DR/BDR election.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the types of OSPF routers and types of OSPF LSAs used in multi-area OSPF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe EIGRP characteristics, including PDMs, RTP, packet types, composite metric, and DUAL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement EIGRP for IPv4 and IPv6 on a dual-stack 2-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specify modifications for an EIGRP for IPv4 and IPv6 implementation to summarize routes, authenticate updates, fine-tune the timers, and redistribute a default route.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Read and review Days 31–20 in this book.</td>
</tr>
</tbody>
</table>

#### CCNA Checklist Days 19–10

<table>
<thead>
<tr>
<th>Check Box</th>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Take at least 2 practice CCNA exams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare HSRP and GLBP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement HSRP in a 2-router topology. Change the requirements to implement GLBP.</td>
</tr>
</tbody>
</table>

#### CCNA Checklist Days 9–1

<table>
<thead>
<tr>
<th>Check Box</th>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Define common WAN terminology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare various WAN connection options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe types of VPNs and components needed to establish a VPN connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare the various VPN encryption and authentication methodologies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement a VPN using the IPsec framework.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the characteristics of GRE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement GRE in a 2-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the operation of PPP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement PPP with CHAP in a 2-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the main components of Frame Relay.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement Frame Relay in a full-mesh 3-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the purpose and operation of inverse ARP and LMI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement Frame Relay in a partial-mesh with 1 subnet per PVC 3-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe the concept of PPPoE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement PPPoE in a 2-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design a set of requirements to implement PPPoE in a 2-router topology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For each of your WAN technology implementations, have a friend introduce a few errors. Then use your troubleshooting skills to isolate and resolve the problem. If you are working solo, make a list of potential issues and the steps you would take to resolve each one.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review Day 2, “NAT,” in detail and refresh yourself on this CCENT/ICND1 topic in case you see NAT on the CCNA exam.</td>
</tr>
</tbody>
</table>

#### CCNA Checklist Days 9–1

<table>
<thead>
<tr>
<th>Check Box</th>
<th>Date</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Configure the network from Day 1, “CCNA Skills Review and Practice,” without using any references or the answer scripts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attempt all elements of the CCNA Skills Challenge at the end of Day 1. You will find this after the answer scripts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Read and review Days 9–1 in this book.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visit the testing center and talk with the proctor at least 2 days before the exam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eat a decent meal, watch a good movie, and get a good night's rest before the exam.</td>
</tr>
</tbody>
</table>